![]() |
|
|||
0001 /* SPDX-License-Identifier: GPL-2.0+ */ 0002 /* 0003 * Copyright (C) 2018 Exceet Electronics GmbH 0004 * Copyright (C) 2018 Bootlin 0005 * 0006 * Author: 0007 * Peter Pan <peterpandong@micron.com> 0008 * Boris Brezillon <boris.brezillon@bootlin.com> 0009 */ 0010 0011 #ifndef __LINUX_SPI_MEM_H 0012 #define __LINUX_SPI_MEM_H 0013 0014 #include <linux/spi/spi.h> 0015 0016 #define SPI_MEM_OP_CMD(__opcode, __buswidth) \ 0017 { \ 0018 .buswidth = __buswidth, \ 0019 .opcode = __opcode, \ 0020 .nbytes = 1, \ 0021 } 0022 0023 #define SPI_MEM_OP_ADDR(__nbytes, __val, __buswidth) \ 0024 { \ 0025 .nbytes = __nbytes, \ 0026 .val = __val, \ 0027 .buswidth = __buswidth, \ 0028 } 0029 0030 #define SPI_MEM_OP_NO_ADDR { } 0031 0032 #define SPI_MEM_OP_DUMMY(__nbytes, __buswidth) \ 0033 { \ 0034 .nbytes = __nbytes, \ 0035 .buswidth = __buswidth, \ 0036 } 0037 0038 #define SPI_MEM_OP_NO_DUMMY { } 0039 0040 #define SPI_MEM_OP_DATA_IN(__nbytes, __buf, __buswidth) \ 0041 { \ 0042 .dir = SPI_MEM_DATA_IN, \ 0043 .nbytes = __nbytes, \ 0044 .buf.in = __buf, \ 0045 .buswidth = __buswidth, \ 0046 } 0047 0048 #define SPI_MEM_OP_DATA_OUT(__nbytes, __buf, __buswidth) \ 0049 { \ 0050 .dir = SPI_MEM_DATA_OUT, \ 0051 .nbytes = __nbytes, \ 0052 .buf.out = __buf, \ 0053 .buswidth = __buswidth, \ 0054 } 0055 0056 #define SPI_MEM_OP_NO_DATA { } 0057 0058 /** 0059 * enum spi_mem_data_dir - describes the direction of a SPI memory data 0060 * transfer from the controller perspective 0061 * @SPI_MEM_NO_DATA: no data transferred 0062 * @SPI_MEM_DATA_IN: data coming from the SPI memory 0063 * @SPI_MEM_DATA_OUT: data sent to the SPI memory 0064 */ 0065 enum spi_mem_data_dir { 0066 SPI_MEM_NO_DATA, 0067 SPI_MEM_DATA_IN, 0068 SPI_MEM_DATA_OUT, 0069 }; 0070 0071 /** 0072 * struct spi_mem_op - describes a SPI memory operation 0073 * @cmd.nbytes: number of opcode bytes (only 1 or 2 are valid). The opcode is 0074 * sent MSB-first. 0075 * @cmd.buswidth: number of IO lines used to transmit the command 0076 * @cmd.opcode: operation opcode 0077 * @cmd.dtr: whether the command opcode should be sent in DTR mode or not 0078 * @addr.nbytes: number of address bytes to send. Can be zero if the operation 0079 * does not need to send an address 0080 * @addr.buswidth: number of IO lines used to transmit the address cycles 0081 * @addr.dtr: whether the address should be sent in DTR mode or not 0082 * @addr.val: address value. This value is always sent MSB first on the bus. 0083 * Note that only @addr.nbytes are taken into account in this 0084 * address value, so users should make sure the value fits in the 0085 * assigned number of bytes. 0086 * @dummy.nbytes: number of dummy bytes to send after an opcode or address. Can 0087 * be zero if the operation does not require dummy bytes 0088 * @dummy.buswidth: number of IO lanes used to transmit the dummy bytes 0089 * @dummy.dtr: whether the dummy bytes should be sent in DTR mode or not 0090 * @data.buswidth: number of IO lanes used to send/receive the data 0091 * @data.dtr: whether the data should be sent in DTR mode or not 0092 * @data.ecc: whether error correction is required or not 0093 * @data.dir: direction of the transfer 0094 * @data.nbytes: number of data bytes to send/receive. Can be zero if the 0095 * operation does not involve transferring data 0096 * @data.buf.in: input buffer (must be DMA-able) 0097 * @data.buf.out: output buffer (must be DMA-able) 0098 */ 0099 struct spi_mem_op { 0100 struct { 0101 u8 nbytes; 0102 u8 buswidth; 0103 u8 dtr : 1; 0104 u16 opcode; 0105 } cmd; 0106 0107 struct { 0108 u8 nbytes; 0109 u8 buswidth; 0110 u8 dtr : 1; 0111 u64 val; 0112 } addr; 0113 0114 struct { 0115 u8 nbytes; 0116 u8 buswidth; 0117 u8 dtr : 1; 0118 } dummy; 0119 0120 struct { 0121 u8 buswidth; 0122 u8 dtr : 1; 0123 u8 ecc : 1; 0124 enum spi_mem_data_dir dir; 0125 unsigned int nbytes; 0126 union { 0127 void *in; 0128 const void *out; 0129 } buf; 0130 } data; 0131 }; 0132 0133 #define SPI_MEM_OP(__cmd, __addr, __dummy, __data) \ 0134 { \ 0135 .cmd = __cmd, \ 0136 .addr = __addr, \ 0137 .dummy = __dummy, \ 0138 .data = __data, \ 0139 } 0140 0141 /** 0142 * struct spi_mem_dirmap_info - Direct mapping information 0143 * @op_tmpl: operation template that should be used by the direct mapping when 0144 * the memory device is accessed 0145 * @offset: absolute offset this direct mapping is pointing to 0146 * @length: length in byte of this direct mapping 0147 * 0148 * These information are used by the controller specific implementation to know 0149 * the portion of memory that is directly mapped and the spi_mem_op that should 0150 * be used to access the device. 0151 * A direct mapping is only valid for one direction (read or write) and this 0152 * direction is directly encoded in the ->op_tmpl.data.dir field. 0153 */ 0154 struct spi_mem_dirmap_info { 0155 struct spi_mem_op op_tmpl; 0156 u64 offset; 0157 u64 length; 0158 }; 0159 0160 /** 0161 * struct spi_mem_dirmap_desc - Direct mapping descriptor 0162 * @mem: the SPI memory device this direct mapping is attached to 0163 * @info: information passed at direct mapping creation time 0164 * @nodirmap: set to 1 if the SPI controller does not implement 0165 * ->mem_ops->dirmap_create() or when this function returned an 0166 * error. If @nodirmap is true, all spi_mem_dirmap_{read,write}() 0167 * calls will use spi_mem_exec_op() to access the memory. This is a 0168 * degraded mode that allows spi_mem drivers to use the same code 0169 * no matter whether the controller supports direct mapping or not 0170 * @priv: field pointing to controller specific data 0171 * 0172 * Common part of a direct mapping descriptor. This object is created by 0173 * spi_mem_dirmap_create() and controller implementation of ->create_dirmap() 0174 * can create/attach direct mapping resources to the descriptor in the ->priv 0175 * field. 0176 */ 0177 struct spi_mem_dirmap_desc { 0178 struct spi_mem *mem; 0179 struct spi_mem_dirmap_info info; 0180 unsigned int nodirmap; 0181 void *priv; 0182 }; 0183 0184 /** 0185 * struct spi_mem - describes a SPI memory device 0186 * @spi: the underlying SPI device 0187 * @drvpriv: spi_mem_driver private data 0188 * @name: name of the SPI memory device 0189 * 0190 * Extra information that describe the SPI memory device and may be needed by 0191 * the controller to properly handle this device should be placed here. 0192 * 0193 * One example would be the device size since some controller expose their SPI 0194 * mem devices through a io-mapped region. 0195 */ 0196 struct spi_mem { 0197 struct spi_device *spi; 0198 void *drvpriv; 0199 const char *name; 0200 }; 0201 0202 /** 0203 * struct spi_mem_set_drvdata() - attach driver private data to a SPI mem 0204 * device 0205 * @mem: memory device 0206 * @data: data to attach to the memory device 0207 */ 0208 static inline void spi_mem_set_drvdata(struct spi_mem *mem, void *data) 0209 { 0210 mem->drvpriv = data; 0211 } 0212 0213 /** 0214 * struct spi_mem_get_drvdata() - get driver private data attached to a SPI mem 0215 * device 0216 * @mem: memory device 0217 * 0218 * Return: the data attached to the mem device. 0219 */ 0220 static inline void *spi_mem_get_drvdata(struct spi_mem *mem) 0221 { 0222 return mem->drvpriv; 0223 } 0224 0225 /** 0226 * struct spi_controller_mem_ops - SPI memory operations 0227 * @adjust_op_size: shrink the data xfer of an operation to match controller's 0228 * limitations (can be alignment of max RX/TX size 0229 * limitations) 0230 * @supports_op: check if an operation is supported by the controller 0231 * @exec_op: execute a SPI memory operation 0232 * @get_name: get a custom name for the SPI mem device from the controller. 0233 * This might be needed if the controller driver has been ported 0234 * to use the SPI mem layer and a custom name is used to keep 0235 * mtdparts compatible. 0236 * Note that if the implementation of this function allocates memory 0237 * dynamically, then it should do so with devm_xxx(), as we don't 0238 * have a ->free_name() function. 0239 * @dirmap_create: create a direct mapping descriptor that can later be used to 0240 * access the memory device. This method is optional 0241 * @dirmap_destroy: destroy a memory descriptor previous created by 0242 * ->dirmap_create() 0243 * @dirmap_read: read data from the memory device using the direct mapping 0244 * created by ->dirmap_create(). The function can return less 0245 * data than requested (for example when the request is crossing 0246 * the currently mapped area), and the caller of 0247 * spi_mem_dirmap_read() is responsible for calling it again in 0248 * this case. 0249 * @dirmap_write: write data to the memory device using the direct mapping 0250 * created by ->dirmap_create(). The function can return less 0251 * data than requested (for example when the request is crossing 0252 * the currently mapped area), and the caller of 0253 * spi_mem_dirmap_write() is responsible for calling it again in 0254 * this case. 0255 * @poll_status: poll memory device status until (status & mask) == match or 0256 * when the timeout has expired. It fills the data buffer with 0257 * the last status value. 0258 * 0259 * This interface should be implemented by SPI controllers providing an 0260 * high-level interface to execute SPI memory operation, which is usually the 0261 * case for QSPI controllers. 0262 * 0263 * Note on ->dirmap_{read,write}(): drivers should avoid accessing the direct 0264 * mapping from the CPU because doing that can stall the CPU waiting for the 0265 * SPI mem transaction to finish, and this will make real-time maintainers 0266 * unhappy and might make your system less reactive. Instead, drivers should 0267 * use DMA to access this direct mapping. 0268 */ 0269 struct spi_controller_mem_ops { 0270 int (*adjust_op_size)(struct spi_mem *mem, struct spi_mem_op *op); 0271 bool (*supports_op)(struct spi_mem *mem, 0272 const struct spi_mem_op *op); 0273 int (*exec_op)(struct spi_mem *mem, 0274 const struct spi_mem_op *op); 0275 const char *(*get_name)(struct spi_mem *mem); 0276 int (*dirmap_create)(struct spi_mem_dirmap_desc *desc); 0277 void (*dirmap_destroy)(struct spi_mem_dirmap_desc *desc); 0278 ssize_t (*dirmap_read)(struct spi_mem_dirmap_desc *desc, 0279 u64 offs, size_t len, void *buf); 0280 ssize_t (*dirmap_write)(struct spi_mem_dirmap_desc *desc, 0281 u64 offs, size_t len, const void *buf); 0282 int (*poll_status)(struct spi_mem *mem, 0283 const struct spi_mem_op *op, 0284 u16 mask, u16 match, 0285 unsigned long initial_delay_us, 0286 unsigned long polling_rate_us, 0287 unsigned long timeout_ms); 0288 }; 0289 0290 /** 0291 * struct spi_controller_mem_caps - SPI memory controller capabilities 0292 * @dtr: Supports DTR operations 0293 * @ecc: Supports operations with error correction 0294 */ 0295 struct spi_controller_mem_caps { 0296 bool dtr; 0297 bool ecc; 0298 }; 0299 0300 #define spi_mem_controller_is_capable(ctlr, cap) \ 0301 ((ctlr)->mem_caps && (ctlr)->mem_caps->cap) 0302 0303 /** 0304 * struct spi_mem_driver - SPI memory driver 0305 * @spidrv: inherit from a SPI driver 0306 * @probe: probe a SPI memory. Usually where detection/initialization takes 0307 * place 0308 * @remove: remove a SPI memory 0309 * @shutdown: take appropriate action when the system is shutdown 0310 * 0311 * This is just a thin wrapper around a spi_driver. The core takes care of 0312 * allocating the spi_mem object and forwarding the probe/remove/shutdown 0313 * request to the spi_mem_driver. The reason we use this wrapper is because 0314 * we might have to stuff more information into the spi_mem struct to let 0315 * SPI controllers know more about the SPI memory they interact with, and 0316 * having this intermediate layer allows us to do that without adding more 0317 * useless fields to the spi_device object. 0318 */ 0319 struct spi_mem_driver { 0320 struct spi_driver spidrv; 0321 int (*probe)(struct spi_mem *mem); 0322 int (*remove)(struct spi_mem *mem); 0323 void (*shutdown)(struct spi_mem *mem); 0324 }; 0325 0326 #if IS_ENABLED(CONFIG_SPI_MEM) 0327 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 0328 const struct spi_mem_op *op, 0329 struct sg_table *sg); 0330 0331 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 0332 const struct spi_mem_op *op, 0333 struct sg_table *sg); 0334 0335 bool spi_mem_default_supports_op(struct spi_mem *mem, 0336 const struct spi_mem_op *op); 0337 #else 0338 static inline int 0339 spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr, 0340 const struct spi_mem_op *op, 0341 struct sg_table *sg) 0342 { 0343 return -ENOTSUPP; 0344 } 0345 0346 static inline void 0347 spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr, 0348 const struct spi_mem_op *op, 0349 struct sg_table *sg) 0350 { 0351 } 0352 0353 static inline 0354 bool spi_mem_default_supports_op(struct spi_mem *mem, 0355 const struct spi_mem_op *op) 0356 { 0357 return false; 0358 } 0359 #endif /* CONFIG_SPI_MEM */ 0360 0361 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op); 0362 0363 bool spi_mem_supports_op(struct spi_mem *mem, 0364 const struct spi_mem_op *op); 0365 0366 int spi_mem_exec_op(struct spi_mem *mem, 0367 const struct spi_mem_op *op); 0368 0369 const char *spi_mem_get_name(struct spi_mem *mem); 0370 0371 struct spi_mem_dirmap_desc * 0372 spi_mem_dirmap_create(struct spi_mem *mem, 0373 const struct spi_mem_dirmap_info *info); 0374 void spi_mem_dirmap_destroy(struct spi_mem_dirmap_desc *desc); 0375 ssize_t spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, 0376 u64 offs, size_t len, void *buf); 0377 ssize_t spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, 0378 u64 offs, size_t len, const void *buf); 0379 struct spi_mem_dirmap_desc * 0380 devm_spi_mem_dirmap_create(struct device *dev, struct spi_mem *mem, 0381 const struct spi_mem_dirmap_info *info); 0382 void devm_spi_mem_dirmap_destroy(struct device *dev, 0383 struct spi_mem_dirmap_desc *desc); 0384 0385 int spi_mem_poll_status(struct spi_mem *mem, 0386 const struct spi_mem_op *op, 0387 u16 mask, u16 match, 0388 unsigned long initial_delay_us, 0389 unsigned long polling_delay_us, 0390 u16 timeout_ms); 0391 0392 int spi_mem_driver_register_with_owner(struct spi_mem_driver *drv, 0393 struct module *owner); 0394 0395 void spi_mem_driver_unregister(struct spi_mem_driver *drv); 0396 0397 #define spi_mem_driver_register(__drv) \ 0398 spi_mem_driver_register_with_owner(__drv, THIS_MODULE) 0399 0400 #define module_spi_mem_driver(__drv) \ 0401 module_driver(__drv, spi_mem_driver_register, \ 0402 spi_mem_driver_unregister) 0403 0404 #endif /* __LINUX_SPI_MEM_H */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |