Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0-or-later */
0002 /*
0003  *  Definitions for the 'struct sk_buff' memory handlers.
0004  *
0005  *  Authors:
0006  *      Alan Cox, <gw4pts@gw4pts.ampr.org>
0007  *      Florian La Roche, <rzsfl@rz.uni-sb.de>
0008  */
0009 
0010 #ifndef _LINUX_SKBUFF_H
0011 #define _LINUX_SKBUFF_H
0012 
0013 #include <linux/kernel.h>
0014 #include <linux/compiler.h>
0015 #include <linux/time.h>
0016 #include <linux/bug.h>
0017 #include <linux/bvec.h>
0018 #include <linux/cache.h>
0019 #include <linux/rbtree.h>
0020 #include <linux/socket.h>
0021 #include <linux/refcount.h>
0022 
0023 #include <linux/atomic.h>
0024 #include <asm/types.h>
0025 #include <linux/spinlock.h>
0026 #include <linux/net.h>
0027 #include <linux/textsearch.h>
0028 #include <net/checksum.h>
0029 #include <linux/rcupdate.h>
0030 #include <linux/hrtimer.h>
0031 #include <linux/dma-mapping.h>
0032 #include <linux/netdev_features.h>
0033 #include <linux/sched.h>
0034 #include <linux/sched/clock.h>
0035 #include <net/flow_dissector.h>
0036 #include <linux/splice.h>
0037 #include <linux/in6.h>
0038 #include <linux/if_packet.h>
0039 #include <linux/llist.h>
0040 #include <net/flow.h>
0041 #include <net/page_pool.h>
0042 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
0043 #include <linux/netfilter/nf_conntrack_common.h>
0044 #endif
0045 #include <net/net_debug.h>
0046 #include <net/dropreason.h>
0047 
0048 /**
0049  * DOC: skb checksums
0050  *
0051  * The interface for checksum offload between the stack and networking drivers
0052  * is as follows...
0053  *
0054  * IP checksum related features
0055  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0056  *
0057  * Drivers advertise checksum offload capabilities in the features of a device.
0058  * From the stack's point of view these are capabilities offered by the driver.
0059  * A driver typically only advertises features that it is capable of offloading
0060  * to its device.
0061  *
0062  * .. flat-table:: Checksum related device features
0063  *   :widths: 1 10
0064  *
0065  *   * - %NETIF_F_HW_CSUM
0066  *     - The driver (or its device) is able to compute one
0067  *   IP (one's complement) checksum for any combination
0068  *   of protocols or protocol layering. The checksum is
0069  *   computed and set in a packet per the CHECKSUM_PARTIAL
0070  *   interface (see below).
0071  *
0072  *   * - %NETIF_F_IP_CSUM
0073  *     - Driver (device) is only able to checksum plain
0074  *   TCP or UDP packets over IPv4. These are specifically
0075  *   unencapsulated packets of the form IPv4|TCP or
0076  *   IPv4|UDP where the Protocol field in the IPv4 header
0077  *   is TCP or UDP. The IPv4 header may contain IP options.
0078  *   This feature cannot be set in features for a device
0079  *   with NETIF_F_HW_CSUM also set. This feature is being
0080  *   DEPRECATED (see below).
0081  *
0082  *   * - %NETIF_F_IPV6_CSUM
0083  *     - Driver (device) is only able to checksum plain
0084  *   TCP or UDP packets over IPv6. These are specifically
0085  *   unencapsulated packets of the form IPv6|TCP or
0086  *   IPv6|UDP where the Next Header field in the IPv6
0087  *   header is either TCP or UDP. IPv6 extension headers
0088  *   are not supported with this feature. This feature
0089  *   cannot be set in features for a device with
0090  *   NETIF_F_HW_CSUM also set. This feature is being
0091  *   DEPRECATED (see below).
0092  *
0093  *   * - %NETIF_F_RXCSUM
0094  *     - Driver (device) performs receive checksum offload.
0095  *   This flag is only used to disable the RX checksum
0096  *   feature for a device. The stack will accept receive
0097  *   checksum indication in packets received on a device
0098  *   regardless of whether NETIF_F_RXCSUM is set.
0099  *
0100  * Checksumming of received packets by device
0101  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0102  *
0103  * Indication of checksum verification is set in &sk_buff.ip_summed.
0104  * Possible values are:
0105  *
0106  * - %CHECKSUM_NONE
0107  *
0108  *   Device did not checksum this packet e.g. due to lack of capabilities.
0109  *   The packet contains full (though not verified) checksum in packet but
0110  *   not in skb->csum. Thus, skb->csum is undefined in this case.
0111  *
0112  * - %CHECKSUM_UNNECESSARY
0113  *
0114  *   The hardware you're dealing with doesn't calculate the full checksum
0115  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
0116  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
0117  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
0118  *   though. A driver or device must never modify the checksum field in the
0119  *   packet even if checksum is verified.
0120  *
0121  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
0122  *
0123  *     - TCP: IPv6 and IPv4.
0124  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
0125  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
0126  *       may perform further validation in this case.
0127  *     - GRE: only if the checksum is present in the header.
0128  *     - SCTP: indicates the CRC in SCTP header has been validated.
0129  *     - FCOE: indicates the CRC in FC frame has been validated.
0130  *
0131  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
0132  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
0133  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
0134  *   and a device is able to verify the checksums for UDP (possibly zero),
0135  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
0136  *   two. If the device were only able to verify the UDP checksum and not
0137  *   GRE, either because it doesn't support GRE checksum or because GRE
0138  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
0139  *   not considered in this case).
0140  *
0141  * - %CHECKSUM_COMPLETE
0142  *
0143  *   This is the most generic way. The device supplied checksum of the _whole_
0144  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
0145  *   hardware doesn't need to parse L3/L4 headers to implement this.
0146  *
0147  *   Notes:
0148  *
0149  *   - Even if device supports only some protocols, but is able to produce
0150  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
0151  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
0152  *
0153  * - %CHECKSUM_PARTIAL
0154  *
0155  *   A checksum is set up to be offloaded to a device as described in the
0156  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
0157  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
0158  *   on the same host, or it may be set in the input path in GRO or remote
0159  *   checksum offload. For the purposes of checksum verification, the checksum
0160  *   referred to by skb->csum_start + skb->csum_offset and any preceding
0161  *   checksums in the packet are considered verified. Any checksums in the
0162  *   packet that are after the checksum being offloaded are not considered to
0163  *   be verified.
0164  *
0165  * Checksumming on transmit for non-GSO
0166  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0167  *
0168  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
0169  * Values are:
0170  *
0171  * - %CHECKSUM_PARTIAL
0172  *
0173  *   The driver is required to checksum the packet as seen by hard_start_xmit()
0174  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
0175  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
0176  *   A driver may verify that the
0177  *   csum_start and csum_offset values are valid values given the length and
0178  *   offset of the packet, but it should not attempt to validate that the
0179  *   checksum refers to a legitimate transport layer checksum -- it is the
0180  *   purview of the stack to validate that csum_start and csum_offset are set
0181  *   correctly.
0182  *
0183  *   When the stack requests checksum offload for a packet, the driver MUST
0184  *   ensure that the checksum is set correctly. A driver can either offload the
0185  *   checksum calculation to the device, or call skb_checksum_help (in the case
0186  *   that the device does not support offload for a particular checksum).
0187  *
0188  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
0189  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
0190  *   checksum offload capability.
0191  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
0192  *   on network device checksumming capabilities: if a packet does not match
0193  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
0194  *   &sk_buff.csum_not_inet, see :ref:`crc`)
0195  *   is called to resolve the checksum.
0196  *
0197  * - %CHECKSUM_NONE
0198  *
0199  *   The skb was already checksummed by the protocol, or a checksum is not
0200  *   required.
0201  *
0202  * - %CHECKSUM_UNNECESSARY
0203  *
0204  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
0205  *   output.
0206  *
0207  * - %CHECKSUM_COMPLETE
0208  *
0209  *   Not used in checksum output. If a driver observes a packet with this value
0210  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
0211  *
0212  * .. _crc:
0213  *
0214  * Non-IP checksum (CRC) offloads
0215  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0216  *
0217  * .. flat-table::
0218  *   :widths: 1 10
0219  *
0220  *   * - %NETIF_F_SCTP_CRC
0221  *     - This feature indicates that a device is capable of
0222  *   offloading the SCTP CRC in a packet. To perform this offload the stack
0223  *   will set csum_start and csum_offset accordingly, set ip_summed to
0224  *   %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
0225  *   in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
0226  *   A driver that supports both IP checksum offload and SCTP CRC32c offload
0227  *   must verify which offload is configured for a packet by testing the
0228  *   value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
0229  *   resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
0230  *
0231  *   * - %NETIF_F_FCOE_CRC
0232  *     - This feature indicates that a device is capable of offloading the FCOE
0233  *   CRC in a packet. To perform this offload the stack will set ip_summed
0234  *   to %CHECKSUM_PARTIAL and set csum_start and csum_offset
0235  *   accordingly. Note that there is no indication in the skbuff that the
0236  *   %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
0237  *   both IP checksum offload and FCOE CRC offload must verify which offload
0238  *   is configured for a packet, presumably by inspecting packet headers.
0239  *
0240  * Checksumming on output with GSO
0241  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0242  *
0243  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
0244  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
0245  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
0246  * part of the GSO operation is implied. If a checksum is being offloaded
0247  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
0248  * csum_offset are set to refer to the outermost checksum being offloaded
0249  * (two offloaded checksums are possible with UDP encapsulation).
0250  */
0251 
0252 /* Don't change this without changing skb_csum_unnecessary! */
0253 #define CHECKSUM_NONE       0
0254 #define CHECKSUM_UNNECESSARY    1
0255 #define CHECKSUM_COMPLETE   2
0256 #define CHECKSUM_PARTIAL    3
0257 
0258 /* Maximum value in skb->csum_level */
0259 #define SKB_MAX_CSUM_LEVEL  3
0260 
0261 #define SKB_DATA_ALIGN(X)   ALIGN(X, SMP_CACHE_BYTES)
0262 #define SKB_WITH_OVERHEAD(X)    \
0263     ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
0264 #define SKB_MAX_ORDER(X, ORDER) \
0265     SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
0266 #define SKB_MAX_HEAD(X)     (SKB_MAX_ORDER((X), 0))
0267 #define SKB_MAX_ALLOC       (SKB_MAX_ORDER(0, 2))
0268 
0269 /* return minimum truesize of one skb containing X bytes of data */
0270 #define SKB_TRUESIZE(X) ((X) +                      \
0271              SKB_DATA_ALIGN(sizeof(struct sk_buff)) +   \
0272              SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
0273 
0274 struct ahash_request;
0275 struct net_device;
0276 struct scatterlist;
0277 struct pipe_inode_info;
0278 struct iov_iter;
0279 struct napi_struct;
0280 struct bpf_prog;
0281 union bpf_attr;
0282 struct skb_ext;
0283 
0284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
0285 struct nf_bridge_info {
0286     enum {
0287         BRNF_PROTO_UNCHANGED,
0288         BRNF_PROTO_8021Q,
0289         BRNF_PROTO_PPPOE
0290     } orig_proto:8;
0291     u8          pkt_otherhost:1;
0292     u8          in_prerouting:1;
0293     u8          bridged_dnat:1;
0294     __u16           frag_max_size;
0295     struct net_device   *physindev;
0296 
0297     /* always valid & non-NULL from FORWARD on, for physdev match */
0298     struct net_device   *physoutdev;
0299     union {
0300         /* prerouting: detect dnat in orig/reply direction */
0301         __be32          ipv4_daddr;
0302         struct in6_addr ipv6_daddr;
0303 
0304         /* after prerouting + nat detected: store original source
0305          * mac since neigh resolution overwrites it, only used while
0306          * skb is out in neigh layer.
0307          */
0308         char neigh_header[8];
0309     };
0310 };
0311 #endif
0312 
0313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
0314 /* Chain in tc_skb_ext will be used to share the tc chain with
0315  * ovs recirc_id. It will be set to the current chain by tc
0316  * and read by ovs to recirc_id.
0317  */
0318 struct tc_skb_ext {
0319     __u32 chain;
0320     __u16 mru;
0321     __u16 zone;
0322     u8 post_ct:1;
0323     u8 post_ct_snat:1;
0324     u8 post_ct_dnat:1;
0325 };
0326 #endif
0327 
0328 struct sk_buff_head {
0329     /* These two members must be first to match sk_buff. */
0330     struct_group_tagged(sk_buff_list, list,
0331         struct sk_buff  *next;
0332         struct sk_buff  *prev;
0333     );
0334 
0335     __u32       qlen;
0336     spinlock_t  lock;
0337 };
0338 
0339 struct sk_buff;
0340 
0341 /* To allow 64K frame to be packed as single skb without frag_list we
0342  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
0343  * buffers which do not start on a page boundary.
0344  *
0345  * Since GRO uses frags we allocate at least 16 regardless of page
0346  * size.
0347  */
0348 #if (65536/PAGE_SIZE + 1) < 16
0349 #define MAX_SKB_FRAGS 16UL
0350 #else
0351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
0352 #endif
0353 extern int sysctl_max_skb_frags;
0354 
0355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
0356  * segment using its current segmentation instead.
0357  */
0358 #define GSO_BY_FRAGS    0xFFFF
0359 
0360 typedef struct bio_vec skb_frag_t;
0361 
0362 /**
0363  * skb_frag_size() - Returns the size of a skb fragment
0364  * @frag: skb fragment
0365  */
0366 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
0367 {
0368     return frag->bv_len;
0369 }
0370 
0371 /**
0372  * skb_frag_size_set() - Sets the size of a skb fragment
0373  * @frag: skb fragment
0374  * @size: size of fragment
0375  */
0376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
0377 {
0378     frag->bv_len = size;
0379 }
0380 
0381 /**
0382  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
0383  * @frag: skb fragment
0384  * @delta: value to add
0385  */
0386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
0387 {
0388     frag->bv_len += delta;
0389 }
0390 
0391 /**
0392  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
0393  * @frag: skb fragment
0394  * @delta: value to subtract
0395  */
0396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
0397 {
0398     frag->bv_len -= delta;
0399 }
0400 
0401 /**
0402  * skb_frag_must_loop - Test if %p is a high memory page
0403  * @p: fragment's page
0404  */
0405 static inline bool skb_frag_must_loop(struct page *p)
0406 {
0407 #if defined(CONFIG_HIGHMEM)
0408     if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
0409         return true;
0410 #endif
0411     return false;
0412 }
0413 
0414 /**
0415  *  skb_frag_foreach_page - loop over pages in a fragment
0416  *
0417  *  @f:     skb frag to operate on
0418  *  @f_off:     offset from start of f->bv_page
0419  *  @f_len:     length from f_off to loop over
0420  *  @p:     (temp var) current page
0421  *  @p_off:     (temp var) offset from start of current page,
0422  *                             non-zero only on first page.
0423  *  @p_len:     (temp var) length in current page,
0424  *                 < PAGE_SIZE only on first and last page.
0425  *  @copied:    (temp var) length so far, excluding current p_len.
0426  *
0427  *  A fragment can hold a compound page, in which case per-page
0428  *  operations, notably kmap_atomic, must be called for each
0429  *  regular page.
0430  */
0431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
0432     for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),        \
0433          p_off = (f_off) & (PAGE_SIZE - 1),             \
0434          p_len = skb_frag_must_loop(p) ?                \
0435          min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,      \
0436          copied = 0;                        \
0437          copied < f_len;                        \
0438          copied += p_len, p++, p_off = 0,               \
0439          p_len = min_t(u32, f_len - copied, PAGE_SIZE))     \
0440 
0441 #define HAVE_HW_TIME_STAMP
0442 
0443 /**
0444  * struct skb_shared_hwtstamps - hardware time stamps
0445  * @hwtstamp:       hardware time stamp transformed into duration
0446  *          since arbitrary point in time
0447  * @netdev_data:    address/cookie of network device driver used as
0448  *          reference to actual hardware time stamp
0449  *
0450  * Software time stamps generated by ktime_get_real() are stored in
0451  * skb->tstamp.
0452  *
0453  * hwtstamps can only be compared against other hwtstamps from
0454  * the same device.
0455  *
0456  * This structure is attached to packets as part of the
0457  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
0458  */
0459 struct skb_shared_hwtstamps {
0460     union {
0461         ktime_t hwtstamp;
0462         void *netdev_data;
0463     };
0464 };
0465 
0466 /* Definitions for tx_flags in struct skb_shared_info */
0467 enum {
0468     /* generate hardware time stamp */
0469     SKBTX_HW_TSTAMP = 1 << 0,
0470 
0471     /* generate software time stamp when queueing packet to NIC */
0472     SKBTX_SW_TSTAMP = 1 << 1,
0473 
0474     /* device driver is going to provide hardware time stamp */
0475     SKBTX_IN_PROGRESS = 1 << 2,
0476 
0477     /* generate hardware time stamp based on cycles if supported */
0478     SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
0479 
0480     /* generate wifi status information (where possible) */
0481     SKBTX_WIFI_STATUS = 1 << 4,
0482 
0483     /* determine hardware time stamp based on time or cycles */
0484     SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
0485 
0486     /* generate software time stamp when entering packet scheduling */
0487     SKBTX_SCHED_TSTAMP = 1 << 6,
0488 };
0489 
0490 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP    | \
0491                  SKBTX_SCHED_TSTAMP)
0492 #define SKBTX_ANY_TSTAMP    (SKBTX_HW_TSTAMP | \
0493                  SKBTX_HW_TSTAMP_USE_CYCLES | \
0494                  SKBTX_ANY_SW_TSTAMP)
0495 
0496 /* Definitions for flags in struct skb_shared_info */
0497 enum {
0498     /* use zcopy routines */
0499     SKBFL_ZEROCOPY_ENABLE = BIT(0),
0500 
0501     /* This indicates at least one fragment might be overwritten
0502      * (as in vmsplice(), sendfile() ...)
0503      * If we need to compute a TX checksum, we'll need to copy
0504      * all frags to avoid possible bad checksum
0505      */
0506     SKBFL_SHARED_FRAG = BIT(1),
0507 
0508     /* segment contains only zerocopy data and should not be
0509      * charged to the kernel memory.
0510      */
0511     SKBFL_PURE_ZEROCOPY = BIT(2),
0512 
0513     SKBFL_DONT_ORPHAN = BIT(3),
0514 
0515     /* page references are managed by the ubuf_info, so it's safe to
0516      * use frags only up until ubuf_info is released
0517      */
0518     SKBFL_MANAGED_FRAG_REFS = BIT(4),
0519 };
0520 
0521 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
0522 #define SKBFL_ALL_ZEROCOPY  (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
0523                  SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
0524 
0525 /*
0526  * The callback notifies userspace to release buffers when skb DMA is done in
0527  * lower device, the skb last reference should be 0 when calling this.
0528  * The zerocopy_success argument is true if zero copy transmit occurred,
0529  * false on data copy or out of memory error caused by data copy attempt.
0530  * The ctx field is used to track device context.
0531  * The desc field is used to track userspace buffer index.
0532  */
0533 struct ubuf_info {
0534     void (*callback)(struct sk_buff *, struct ubuf_info *,
0535              bool zerocopy_success);
0536     union {
0537         struct {
0538             unsigned long desc;
0539             void *ctx;
0540         };
0541         struct {
0542             u32 id;
0543             u16 len;
0544             u16 zerocopy:1;
0545             u32 bytelen;
0546         };
0547     };
0548     refcount_t refcnt;
0549     u8 flags;
0550 
0551     struct mmpin {
0552         struct user_struct *user;
0553         unsigned int num_pg;
0554     } mmp;
0555 };
0556 
0557 #define skb_uarg(SKB)   ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
0558 
0559 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
0560 void mm_unaccount_pinned_pages(struct mmpin *mmp);
0561 
0562 /* This data is invariant across clones and lives at
0563  * the end of the header data, ie. at skb->end.
0564  */
0565 struct skb_shared_info {
0566     __u8        flags;
0567     __u8        meta_len;
0568     __u8        nr_frags;
0569     __u8        tx_flags;
0570     unsigned short  gso_size;
0571     /* Warning: this field is not always filled in (UFO)! */
0572     unsigned short  gso_segs;
0573     struct sk_buff  *frag_list;
0574     struct skb_shared_hwtstamps hwtstamps;
0575     unsigned int    gso_type;
0576     u32     tskey;
0577 
0578     /*
0579      * Warning : all fields before dataref are cleared in __alloc_skb()
0580      */
0581     atomic_t    dataref;
0582     unsigned int    xdp_frags_size;
0583 
0584     /* Intermediate layers must ensure that destructor_arg
0585      * remains valid until skb destructor */
0586     void *      destructor_arg;
0587 
0588     /* must be last field, see pskb_expand_head() */
0589     skb_frag_t  frags[MAX_SKB_FRAGS];
0590 };
0591 
0592 /**
0593  * DOC: dataref and headerless skbs
0594  *
0595  * Transport layers send out clones of payload skbs they hold for
0596  * retransmissions. To allow lower layers of the stack to prepend their headers
0597  * we split &skb_shared_info.dataref into two halves.
0598  * The lower 16 bits count the overall number of references.
0599  * The higher 16 bits indicate how many of the references are payload-only.
0600  * skb_header_cloned() checks if skb is allowed to add / write the headers.
0601  *
0602  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
0603  * (via __skb_header_release()). Any clone created from marked skb will get
0604  * &sk_buff.hdr_len populated with the available headroom.
0605  * If there's the only clone in existence it's able to modify the headroom
0606  * at will. The sequence of calls inside the transport layer is::
0607  *
0608  *  <alloc skb>
0609  *  skb_reserve()
0610  *  __skb_header_release()
0611  *  skb_clone()
0612  *  // send the clone down the stack
0613  *
0614  * This is not a very generic construct and it depends on the transport layers
0615  * doing the right thing. In practice there's usually only one payload-only skb.
0616  * Having multiple payload-only skbs with different lengths of hdr_len is not
0617  * possible. The payload-only skbs should never leave their owner.
0618  */
0619 #define SKB_DATAREF_SHIFT 16
0620 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
0621 
0622 
0623 enum {
0624     SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
0625     SKB_FCLONE_ORIG,    /* orig skb (from fclone_cache) */
0626     SKB_FCLONE_CLONE,   /* companion fclone skb (from fclone_cache) */
0627 };
0628 
0629 enum {
0630     SKB_GSO_TCPV4 = 1 << 0,
0631 
0632     /* This indicates the skb is from an untrusted source. */
0633     SKB_GSO_DODGY = 1 << 1,
0634 
0635     /* This indicates the tcp segment has CWR set. */
0636     SKB_GSO_TCP_ECN = 1 << 2,
0637 
0638     SKB_GSO_TCP_FIXEDID = 1 << 3,
0639 
0640     SKB_GSO_TCPV6 = 1 << 4,
0641 
0642     SKB_GSO_FCOE = 1 << 5,
0643 
0644     SKB_GSO_GRE = 1 << 6,
0645 
0646     SKB_GSO_GRE_CSUM = 1 << 7,
0647 
0648     SKB_GSO_IPXIP4 = 1 << 8,
0649 
0650     SKB_GSO_IPXIP6 = 1 << 9,
0651 
0652     SKB_GSO_UDP_TUNNEL = 1 << 10,
0653 
0654     SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
0655 
0656     SKB_GSO_PARTIAL = 1 << 12,
0657 
0658     SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
0659 
0660     SKB_GSO_SCTP = 1 << 14,
0661 
0662     SKB_GSO_ESP = 1 << 15,
0663 
0664     SKB_GSO_UDP = 1 << 16,
0665 
0666     SKB_GSO_UDP_L4 = 1 << 17,
0667 
0668     SKB_GSO_FRAGLIST = 1 << 18,
0669 };
0670 
0671 #if BITS_PER_LONG > 32
0672 #define NET_SKBUFF_DATA_USES_OFFSET 1
0673 #endif
0674 
0675 #ifdef NET_SKBUFF_DATA_USES_OFFSET
0676 typedef unsigned int sk_buff_data_t;
0677 #else
0678 typedef unsigned char *sk_buff_data_t;
0679 #endif
0680 
0681 /**
0682  * DOC: Basic sk_buff geometry
0683  *
0684  * struct sk_buff itself is a metadata structure and does not hold any packet
0685  * data. All the data is held in associated buffers.
0686  *
0687  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
0688  * into two parts:
0689  *
0690  *  - data buffer, containing headers and sometimes payload;
0691  *    this is the part of the skb operated on by the common helpers
0692  *    such as skb_put() or skb_pull();
0693  *  - shared info (struct skb_shared_info) which holds an array of pointers
0694  *    to read-only data in the (page, offset, length) format.
0695  *
0696  * Optionally &skb_shared_info.frag_list may point to another skb.
0697  *
0698  * Basic diagram may look like this::
0699  *
0700  *                                  ---------------
0701  *                                 | sk_buff       |
0702  *                                  ---------------
0703  *     ,---------------------------  + head
0704  *    /          ,-----------------  + data
0705  *   /          /      ,-----------  + tail
0706  *  |          |      |            , + end
0707  *  |          |      |           |
0708  *  v          v      v           v
0709  *   -----------------------------------------------
0710  *  | headroom | data |  tailroom | skb_shared_info |
0711  *   -----------------------------------------------
0712  *                                 + [page frag]
0713  *                                 + [page frag]
0714  *                                 + [page frag]
0715  *                                 + [page frag]       ---------
0716  *                                 + frag_list    --> | sk_buff |
0717  *                                                     ---------
0718  *
0719  */
0720 
0721 /**
0722  *  struct sk_buff - socket buffer
0723  *  @next: Next buffer in list
0724  *  @prev: Previous buffer in list
0725  *  @tstamp: Time we arrived/left
0726  *  @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
0727  *      for retransmit timer
0728  *  @rbnode: RB tree node, alternative to next/prev for netem/tcp
0729  *  @list: queue head
0730  *  @ll_node: anchor in an llist (eg socket defer_list)
0731  *  @sk: Socket we are owned by
0732  *  @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
0733  *      fragmentation management
0734  *  @dev: Device we arrived on/are leaving by
0735  *  @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
0736  *  @cb: Control buffer. Free for use by every layer. Put private vars here
0737  *  @_skb_refdst: destination entry (with norefcount bit)
0738  *  @sp: the security path, used for xfrm
0739  *  @len: Length of actual data
0740  *  @data_len: Data length
0741  *  @mac_len: Length of link layer header
0742  *  @hdr_len: writable header length of cloned skb
0743  *  @csum: Checksum (must include start/offset pair)
0744  *  @csum_start: Offset from skb->head where checksumming should start
0745  *  @csum_offset: Offset from csum_start where checksum should be stored
0746  *  @priority: Packet queueing priority
0747  *  @ignore_df: allow local fragmentation
0748  *  @cloned: Head may be cloned (check refcnt to be sure)
0749  *  @ip_summed: Driver fed us an IP checksum
0750  *  @nohdr: Payload reference only, must not modify header
0751  *  @pkt_type: Packet class
0752  *  @fclone: skbuff clone status
0753  *  @ipvs_property: skbuff is owned by ipvs
0754  *  @inner_protocol_type: whether the inner protocol is
0755  *      ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
0756  *  @remcsum_offload: remote checksum offload is enabled
0757  *  @offload_fwd_mark: Packet was L2-forwarded in hardware
0758  *  @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
0759  *  @tc_skip_classify: do not classify packet. set by IFB device
0760  *  @tc_at_ingress: used within tc_classify to distinguish in/egress
0761  *  @redirected: packet was redirected by packet classifier
0762  *  @from_ingress: packet was redirected from the ingress path
0763  *  @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
0764  *  @peeked: this packet has been seen already, so stats have been
0765  *      done for it, don't do them again
0766  *  @nf_trace: netfilter packet trace flag
0767  *  @protocol: Packet protocol from driver
0768  *  @destructor: Destruct function
0769  *  @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
0770  *  @_sk_redir: socket redirection information for skmsg
0771  *  @_nfct: Associated connection, if any (with nfctinfo bits)
0772  *  @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
0773  *  @skb_iif: ifindex of device we arrived on
0774  *  @tc_index: Traffic control index
0775  *  @hash: the packet hash
0776  *  @queue_mapping: Queue mapping for multiqueue devices
0777  *  @head_frag: skb was allocated from page fragments,
0778  *      not allocated by kmalloc() or vmalloc().
0779  *  @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
0780  *  @pp_recycle: mark the packet for recycling instead of freeing (implies
0781  *      page_pool support on driver)
0782  *  @active_extensions: active extensions (skb_ext_id types)
0783  *  @ndisc_nodetype: router type (from link layer)
0784  *  @ooo_okay: allow the mapping of a socket to a queue to be changed
0785  *  @l4_hash: indicate hash is a canonical 4-tuple hash over transport
0786  *      ports.
0787  *  @sw_hash: indicates hash was computed in software stack
0788  *  @wifi_acked_valid: wifi_acked was set
0789  *  @wifi_acked: whether frame was acked on wifi or not
0790  *  @no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
0791  *  @encapsulation: indicates the inner headers in the skbuff are valid
0792  *  @encap_hdr_csum: software checksum is needed
0793  *  @csum_valid: checksum is already valid
0794  *  @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
0795  *  @csum_complete_sw: checksum was completed by software
0796  *  @csum_level: indicates the number of consecutive checksums found in
0797  *      the packet minus one that have been verified as
0798  *      CHECKSUM_UNNECESSARY (max 3)
0799  *  @dst_pending_confirm: need to confirm neighbour
0800  *  @decrypted: Decrypted SKB
0801  *  @slow_gro: state present at GRO time, slower prepare step required
0802  *  @mono_delivery_time: When set, skb->tstamp has the
0803  *      delivery_time in mono clock base (i.e. EDT).  Otherwise, the
0804  *      skb->tstamp has the (rcv) timestamp at ingress and
0805  *      delivery_time at egress.
0806  *  @napi_id: id of the NAPI struct this skb came from
0807  *  @sender_cpu: (aka @napi_id) source CPU in XPS
0808  *  @alloc_cpu: CPU which did the skb allocation.
0809  *  @secmark: security marking
0810  *  @mark: Generic packet mark
0811  *  @reserved_tailroom: (aka @mark) number of bytes of free space available
0812  *      at the tail of an sk_buff
0813  *  @vlan_present: VLAN tag is present
0814  *  @vlan_proto: vlan encapsulation protocol
0815  *  @vlan_tci: vlan tag control information
0816  *  @inner_protocol: Protocol (encapsulation)
0817  *  @inner_ipproto: (aka @inner_protocol) stores ipproto when
0818  *      skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
0819  *  @inner_transport_header: Inner transport layer header (encapsulation)
0820  *  @inner_network_header: Network layer header (encapsulation)
0821  *  @inner_mac_header: Link layer header (encapsulation)
0822  *  @transport_header: Transport layer header
0823  *  @network_header: Network layer header
0824  *  @mac_header: Link layer header
0825  *  @kcov_handle: KCOV remote handle for remote coverage collection
0826  *  @tail: Tail pointer
0827  *  @end: End pointer
0828  *  @head: Head of buffer
0829  *  @data: Data head pointer
0830  *  @truesize: Buffer size
0831  *  @users: User count - see {datagram,tcp}.c
0832  *  @extensions: allocated extensions, valid if active_extensions is nonzero
0833  */
0834 
0835 struct sk_buff {
0836     union {
0837         struct {
0838             /* These two members must be first to match sk_buff_head. */
0839             struct sk_buff      *next;
0840             struct sk_buff      *prev;
0841 
0842             union {
0843                 struct net_device   *dev;
0844                 /* Some protocols might use this space to store information,
0845                  * while device pointer would be NULL.
0846                  * UDP receive path is one user.
0847                  */
0848                 unsigned long       dev_scratch;
0849             };
0850         };
0851         struct rb_node      rbnode; /* used in netem, ip4 defrag, and tcp stack */
0852         struct list_head    list;
0853         struct llist_node   ll_node;
0854     };
0855 
0856     union {
0857         struct sock     *sk;
0858         int         ip_defrag_offset;
0859     };
0860 
0861     union {
0862         ktime_t     tstamp;
0863         u64     skb_mstamp_ns; /* earliest departure time */
0864     };
0865     /*
0866      * This is the control buffer. It is free to use for every
0867      * layer. Please put your private variables there. If you
0868      * want to keep them across layers you have to do a skb_clone()
0869      * first. This is owned by whoever has the skb queued ATM.
0870      */
0871     char            cb[48] __aligned(8);
0872 
0873     union {
0874         struct {
0875             unsigned long   _skb_refdst;
0876             void        (*destructor)(struct sk_buff *skb);
0877         };
0878         struct list_head    tcp_tsorted_anchor;
0879 #ifdef CONFIG_NET_SOCK_MSG
0880         unsigned long       _sk_redir;
0881 #endif
0882     };
0883 
0884 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
0885     unsigned long        _nfct;
0886 #endif
0887     unsigned int        len,
0888                 data_len;
0889     __u16           mac_len,
0890                 hdr_len;
0891 
0892     /* Following fields are _not_ copied in __copy_skb_header()
0893      * Note that queue_mapping is here mostly to fill a hole.
0894      */
0895     __u16           queue_mapping;
0896 
0897 /* if you move cloned around you also must adapt those constants */
0898 #ifdef __BIG_ENDIAN_BITFIELD
0899 #define CLONED_MASK (1 << 7)
0900 #else
0901 #define CLONED_MASK 1
0902 #endif
0903 #define CLONED_OFFSET       offsetof(struct sk_buff, __cloned_offset)
0904 
0905     /* private: */
0906     __u8            __cloned_offset[0];
0907     /* public: */
0908     __u8            cloned:1,
0909                 nohdr:1,
0910                 fclone:2,
0911                 peeked:1,
0912                 head_frag:1,
0913                 pfmemalloc:1,
0914                 pp_recycle:1; /* page_pool recycle indicator */
0915 #ifdef CONFIG_SKB_EXTENSIONS
0916     __u8            active_extensions;
0917 #endif
0918 
0919     /* Fields enclosed in headers group are copied
0920      * using a single memcpy() in __copy_skb_header()
0921      */
0922     struct_group(headers,
0923 
0924     /* private: */
0925     __u8            __pkt_type_offset[0];
0926     /* public: */
0927     __u8            pkt_type:3; /* see PKT_TYPE_MAX */
0928     __u8            ignore_df:1;
0929     __u8            nf_trace:1;
0930     __u8            ip_summed:2;
0931     __u8            ooo_okay:1;
0932 
0933     __u8            l4_hash:1;
0934     __u8            sw_hash:1;
0935     __u8            wifi_acked_valid:1;
0936     __u8            wifi_acked:1;
0937     __u8            no_fcs:1;
0938     /* Indicates the inner headers are valid in the skbuff. */
0939     __u8            encapsulation:1;
0940     __u8            encap_hdr_csum:1;
0941     __u8            csum_valid:1;
0942 
0943     /* private: */
0944     __u8            __pkt_vlan_present_offset[0];
0945     /* public: */
0946     __u8            vlan_present:1; /* See PKT_VLAN_PRESENT_BIT */
0947     __u8            csum_complete_sw:1;
0948     __u8            csum_level:2;
0949     __u8            dst_pending_confirm:1;
0950     __u8            mono_delivery_time:1;   /* See SKB_MONO_DELIVERY_TIME_MASK */
0951 #ifdef CONFIG_NET_CLS_ACT
0952     __u8            tc_skip_classify:1;
0953     __u8            tc_at_ingress:1;    /* See TC_AT_INGRESS_MASK */
0954 #endif
0955 #ifdef CONFIG_IPV6_NDISC_NODETYPE
0956     __u8            ndisc_nodetype:2;
0957 #endif
0958 
0959     __u8            ipvs_property:1;
0960     __u8            inner_protocol_type:1;
0961     __u8            remcsum_offload:1;
0962 #ifdef CONFIG_NET_SWITCHDEV
0963     __u8            offload_fwd_mark:1;
0964     __u8            offload_l3_fwd_mark:1;
0965 #endif
0966     __u8            redirected:1;
0967 #ifdef CONFIG_NET_REDIRECT
0968     __u8            from_ingress:1;
0969 #endif
0970 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
0971     __u8            nf_skip_egress:1;
0972 #endif
0973 #ifdef CONFIG_TLS_DEVICE
0974     __u8            decrypted:1;
0975 #endif
0976     __u8            slow_gro:1;
0977     __u8            csum_not_inet:1;
0978 
0979 #ifdef CONFIG_NET_SCHED
0980     __u16           tc_index;   /* traffic control index */
0981 #endif
0982 
0983     union {
0984         __wsum      csum;
0985         struct {
0986             __u16   csum_start;
0987             __u16   csum_offset;
0988         };
0989     };
0990     __u32           priority;
0991     int         skb_iif;
0992     __u32           hash;
0993     __be16          vlan_proto;
0994     __u16           vlan_tci;
0995 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
0996     union {
0997         unsigned int    napi_id;
0998         unsigned int    sender_cpu;
0999     };
1000 #endif
1001     u16         alloc_cpu;
1002 #ifdef CONFIG_NETWORK_SECMARK
1003     __u32       secmark;
1004 #endif
1005 
1006     union {
1007         __u32       mark;
1008         __u32       reserved_tailroom;
1009     };
1010 
1011     union {
1012         __be16      inner_protocol;
1013         __u8        inner_ipproto;
1014     };
1015 
1016     __u16           inner_transport_header;
1017     __u16           inner_network_header;
1018     __u16           inner_mac_header;
1019 
1020     __be16          protocol;
1021     __u16           transport_header;
1022     __u16           network_header;
1023     __u16           mac_header;
1024 
1025 #ifdef CONFIG_KCOV
1026     u64         kcov_handle;
1027 #endif
1028 
1029     ); /* end headers group */
1030 
1031     /* These elements must be at the end, see alloc_skb() for details.  */
1032     sk_buff_data_t      tail;
1033     sk_buff_data_t      end;
1034     unsigned char       *head,
1035                 *data;
1036     unsigned int        truesize;
1037     refcount_t      users;
1038 
1039 #ifdef CONFIG_SKB_EXTENSIONS
1040     /* only useable after checking ->active_extensions != 0 */
1041     struct skb_ext      *extensions;
1042 #endif
1043 };
1044 
1045 /* if you move pkt_type around you also must adapt those constants */
1046 #ifdef __BIG_ENDIAN_BITFIELD
1047 #define PKT_TYPE_MAX    (7 << 5)
1048 #else
1049 #define PKT_TYPE_MAX    7
1050 #endif
1051 #define PKT_TYPE_OFFSET     offsetof(struct sk_buff, __pkt_type_offset)
1052 
1053 /* if you move pkt_vlan_present, tc_at_ingress, or mono_delivery_time
1054  * around, you also must adapt these constants.
1055  */
1056 #ifdef __BIG_ENDIAN_BITFIELD
1057 #define PKT_VLAN_PRESENT_BIT    7
1058 #define TC_AT_INGRESS_MASK      (1 << 0)
1059 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2)
1060 #else
1061 #define PKT_VLAN_PRESENT_BIT    0
1062 #define TC_AT_INGRESS_MASK      (1 << 7)
1063 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5)
1064 #endif
1065 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset)
1066 
1067 #ifdef __KERNEL__
1068 /*
1069  *  Handling routines are only of interest to the kernel
1070  */
1071 
1072 #define SKB_ALLOC_FCLONE    0x01
1073 #define SKB_ALLOC_RX        0x02
1074 #define SKB_ALLOC_NAPI      0x04
1075 
1076 /**
1077  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1078  * @skb: buffer
1079  */
1080 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1081 {
1082     return unlikely(skb->pfmemalloc);
1083 }
1084 
1085 /*
1086  * skb might have a dst pointer attached, refcounted or not.
1087  * _skb_refdst low order bit is set if refcount was _not_ taken
1088  */
1089 #define SKB_DST_NOREF   1UL
1090 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1091 
1092 /**
1093  * skb_dst - returns skb dst_entry
1094  * @skb: buffer
1095  *
1096  * Returns skb dst_entry, regardless of reference taken or not.
1097  */
1098 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1099 {
1100     /* If refdst was not refcounted, check we still are in a
1101      * rcu_read_lock section
1102      */
1103     WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1104         !rcu_read_lock_held() &&
1105         !rcu_read_lock_bh_held());
1106     return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1107 }
1108 
1109 /**
1110  * skb_dst_set - sets skb dst
1111  * @skb: buffer
1112  * @dst: dst entry
1113  *
1114  * Sets skb dst, assuming a reference was taken on dst and should
1115  * be released by skb_dst_drop()
1116  */
1117 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1118 {
1119     skb->slow_gro |= !!dst;
1120     skb->_skb_refdst = (unsigned long)dst;
1121 }
1122 
1123 /**
1124  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1125  * @skb: buffer
1126  * @dst: dst entry
1127  *
1128  * Sets skb dst, assuming a reference was not taken on dst.
1129  * If dst entry is cached, we do not take reference and dst_release
1130  * will be avoided by refdst_drop. If dst entry is not cached, we take
1131  * reference, so that last dst_release can destroy the dst immediately.
1132  */
1133 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1134 {
1135     WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1136     skb->slow_gro |= !!dst;
1137     skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1138 }
1139 
1140 /**
1141  * skb_dst_is_noref - Test if skb dst isn't refcounted
1142  * @skb: buffer
1143  */
1144 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1145 {
1146     return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1147 }
1148 
1149 /**
1150  * skb_rtable - Returns the skb &rtable
1151  * @skb: buffer
1152  */
1153 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1154 {
1155     return (struct rtable *)skb_dst(skb);
1156 }
1157 
1158 /* For mangling skb->pkt_type from user space side from applications
1159  * such as nft, tc, etc, we only allow a conservative subset of
1160  * possible pkt_types to be set.
1161 */
1162 static inline bool skb_pkt_type_ok(u32 ptype)
1163 {
1164     return ptype <= PACKET_OTHERHOST;
1165 }
1166 
1167 /**
1168  * skb_napi_id - Returns the skb's NAPI id
1169  * @skb: buffer
1170  */
1171 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1172 {
1173 #ifdef CONFIG_NET_RX_BUSY_POLL
1174     return skb->napi_id;
1175 #else
1176     return 0;
1177 #endif
1178 }
1179 
1180 /**
1181  * skb_unref - decrement the skb's reference count
1182  * @skb: buffer
1183  *
1184  * Returns true if we can free the skb.
1185  */
1186 static inline bool skb_unref(struct sk_buff *skb)
1187 {
1188     if (unlikely(!skb))
1189         return false;
1190     if (likely(refcount_read(&skb->users) == 1))
1191         smp_rmb();
1192     else if (likely(!refcount_dec_and_test(&skb->users)))
1193         return false;
1194 
1195     return true;
1196 }
1197 
1198 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1199 
1200 /**
1201  *  kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1202  *  @skb: buffer to free
1203  */
1204 static inline void kfree_skb(struct sk_buff *skb)
1205 {
1206     kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1207 }
1208 
1209 void skb_release_head_state(struct sk_buff *skb);
1210 void kfree_skb_list_reason(struct sk_buff *segs,
1211                enum skb_drop_reason reason);
1212 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1213 void skb_tx_error(struct sk_buff *skb);
1214 
1215 static inline void kfree_skb_list(struct sk_buff *segs)
1216 {
1217     kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1218 }
1219 
1220 #ifdef CONFIG_TRACEPOINTS
1221 void consume_skb(struct sk_buff *skb);
1222 #else
1223 static inline void consume_skb(struct sk_buff *skb)
1224 {
1225     return kfree_skb(skb);
1226 }
1227 #endif
1228 
1229 void __consume_stateless_skb(struct sk_buff *skb);
1230 void  __kfree_skb(struct sk_buff *skb);
1231 extern struct kmem_cache *skbuff_head_cache;
1232 
1233 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1234 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1235               bool *fragstolen, int *delta_truesize);
1236 
1237 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1238                 int node);
1239 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1240 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1241 struct sk_buff *build_skb_around(struct sk_buff *skb,
1242                  void *data, unsigned int frag_size);
1243 void skb_attempt_defer_free(struct sk_buff *skb);
1244 
1245 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1246 
1247 /**
1248  * alloc_skb - allocate a network buffer
1249  * @size: size to allocate
1250  * @priority: allocation mask
1251  *
1252  * This function is a convenient wrapper around __alloc_skb().
1253  */
1254 static inline struct sk_buff *alloc_skb(unsigned int size,
1255                     gfp_t priority)
1256 {
1257     return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1258 }
1259 
1260 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1261                      unsigned long data_len,
1262                      int max_page_order,
1263                      int *errcode,
1264                      gfp_t gfp_mask);
1265 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1266 
1267 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1268 struct sk_buff_fclones {
1269     struct sk_buff  skb1;
1270 
1271     struct sk_buff  skb2;
1272 
1273     refcount_t  fclone_ref;
1274 };
1275 
1276 /**
1277  *  skb_fclone_busy - check if fclone is busy
1278  *  @sk: socket
1279  *  @skb: buffer
1280  *
1281  * Returns true if skb is a fast clone, and its clone is not freed.
1282  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1283  * so we also check that this didnt happen.
1284  */
1285 static inline bool skb_fclone_busy(const struct sock *sk,
1286                    const struct sk_buff *skb)
1287 {
1288     const struct sk_buff_fclones *fclones;
1289 
1290     fclones = container_of(skb, struct sk_buff_fclones, skb1);
1291 
1292     return skb->fclone == SKB_FCLONE_ORIG &&
1293            refcount_read(&fclones->fclone_ref) > 1 &&
1294            READ_ONCE(fclones->skb2.sk) == sk;
1295 }
1296 
1297 /**
1298  * alloc_skb_fclone - allocate a network buffer from fclone cache
1299  * @size: size to allocate
1300  * @priority: allocation mask
1301  *
1302  * This function is a convenient wrapper around __alloc_skb().
1303  */
1304 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1305                            gfp_t priority)
1306 {
1307     return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1308 }
1309 
1310 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1311 void skb_headers_offset_update(struct sk_buff *skb, int off);
1312 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1313 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1314 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1315 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1316 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1317                    gfp_t gfp_mask, bool fclone);
1318 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1319                       gfp_t gfp_mask)
1320 {
1321     return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1322 }
1323 
1324 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1325 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1326                      unsigned int headroom);
1327 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1328 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1329                 int newtailroom, gfp_t priority);
1330 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1331                      int offset, int len);
1332 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1333                   int offset, int len);
1334 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1335 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1336 
1337 /**
1338  *  skb_pad         -   zero pad the tail of an skb
1339  *  @skb: buffer to pad
1340  *  @pad: space to pad
1341  *
1342  *  Ensure that a buffer is followed by a padding area that is zero
1343  *  filled. Used by network drivers which may DMA or transfer data
1344  *  beyond the buffer end onto the wire.
1345  *
1346  *  May return error in out of memory cases. The skb is freed on error.
1347  */
1348 static inline int skb_pad(struct sk_buff *skb, int pad)
1349 {
1350     return __skb_pad(skb, pad, true);
1351 }
1352 #define dev_kfree_skb(a)    consume_skb(a)
1353 
1354 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1355              int offset, size_t size);
1356 
1357 struct skb_seq_state {
1358     __u32       lower_offset;
1359     __u32       upper_offset;
1360     __u32       frag_idx;
1361     __u32       stepped_offset;
1362     struct sk_buff  *root_skb;
1363     struct sk_buff  *cur_skb;
1364     __u8        *frag_data;
1365     __u32       frag_off;
1366 };
1367 
1368 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1369               unsigned int to, struct skb_seq_state *st);
1370 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1371               struct skb_seq_state *st);
1372 void skb_abort_seq_read(struct skb_seq_state *st);
1373 
1374 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1375                unsigned int to, struct ts_config *config);
1376 
1377 /*
1378  * Packet hash types specify the type of hash in skb_set_hash.
1379  *
1380  * Hash types refer to the protocol layer addresses which are used to
1381  * construct a packet's hash. The hashes are used to differentiate or identify
1382  * flows of the protocol layer for the hash type. Hash types are either
1383  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1384  *
1385  * Properties of hashes:
1386  *
1387  * 1) Two packets in different flows have different hash values
1388  * 2) Two packets in the same flow should have the same hash value
1389  *
1390  * A hash at a higher layer is considered to be more specific. A driver should
1391  * set the most specific hash possible.
1392  *
1393  * A driver cannot indicate a more specific hash than the layer at which a hash
1394  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1395  *
1396  * A driver may indicate a hash level which is less specific than the
1397  * actual layer the hash was computed on. For instance, a hash computed
1398  * at L4 may be considered an L3 hash. This should only be done if the
1399  * driver can't unambiguously determine that the HW computed the hash at
1400  * the higher layer. Note that the "should" in the second property above
1401  * permits this.
1402  */
1403 enum pkt_hash_types {
1404     PKT_HASH_TYPE_NONE, /* Undefined type */
1405     PKT_HASH_TYPE_L2,   /* Input: src_MAC, dest_MAC */
1406     PKT_HASH_TYPE_L3,   /* Input: src_IP, dst_IP */
1407     PKT_HASH_TYPE_L4,   /* Input: src_IP, dst_IP, src_port, dst_port */
1408 };
1409 
1410 static inline void skb_clear_hash(struct sk_buff *skb)
1411 {
1412     skb->hash = 0;
1413     skb->sw_hash = 0;
1414     skb->l4_hash = 0;
1415 }
1416 
1417 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1418 {
1419     if (!skb->l4_hash)
1420         skb_clear_hash(skb);
1421 }
1422 
1423 static inline void
1424 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1425 {
1426     skb->l4_hash = is_l4;
1427     skb->sw_hash = is_sw;
1428     skb->hash = hash;
1429 }
1430 
1431 static inline void
1432 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1433 {
1434     /* Used by drivers to set hash from HW */
1435     __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1436 }
1437 
1438 static inline void
1439 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1440 {
1441     __skb_set_hash(skb, hash, true, is_l4);
1442 }
1443 
1444 void __skb_get_hash(struct sk_buff *skb);
1445 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1446 u32 skb_get_poff(const struct sk_buff *skb);
1447 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1448            const struct flow_keys_basic *keys, int hlen);
1449 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1450                 const void *data, int hlen_proto);
1451 
1452 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1453                     int thoff, u8 ip_proto)
1454 {
1455     return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1456 }
1457 
1458 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1459                  const struct flow_dissector_key *key,
1460                  unsigned int key_count);
1461 
1462 struct bpf_flow_dissector;
1463 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1464               __be16 proto, int nhoff, int hlen, unsigned int flags);
1465 
1466 bool __skb_flow_dissect(const struct net *net,
1467             const struct sk_buff *skb,
1468             struct flow_dissector *flow_dissector,
1469             void *target_container, const void *data,
1470             __be16 proto, int nhoff, int hlen, unsigned int flags);
1471 
1472 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1473                     struct flow_dissector *flow_dissector,
1474                     void *target_container, unsigned int flags)
1475 {
1476     return __skb_flow_dissect(NULL, skb, flow_dissector,
1477                   target_container, NULL, 0, 0, 0, flags);
1478 }
1479 
1480 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1481                           struct flow_keys *flow,
1482                           unsigned int flags)
1483 {
1484     memset(flow, 0, sizeof(*flow));
1485     return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1486                   flow, NULL, 0, 0, 0, flags);
1487 }
1488 
1489 static inline bool
1490 skb_flow_dissect_flow_keys_basic(const struct net *net,
1491                  const struct sk_buff *skb,
1492                  struct flow_keys_basic *flow,
1493                  const void *data, __be16 proto,
1494                  int nhoff, int hlen, unsigned int flags)
1495 {
1496     memset(flow, 0, sizeof(*flow));
1497     return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1498                   data, proto, nhoff, hlen, flags);
1499 }
1500 
1501 void skb_flow_dissect_meta(const struct sk_buff *skb,
1502                struct flow_dissector *flow_dissector,
1503                void *target_container);
1504 
1505 /* Gets a skb connection tracking info, ctinfo map should be a
1506  * map of mapsize to translate enum ip_conntrack_info states
1507  * to user states.
1508  */
1509 void
1510 skb_flow_dissect_ct(const struct sk_buff *skb,
1511             struct flow_dissector *flow_dissector,
1512             void *target_container,
1513             u16 *ctinfo_map, size_t mapsize,
1514             bool post_ct, u16 zone);
1515 void
1516 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1517                  struct flow_dissector *flow_dissector,
1518                  void *target_container);
1519 
1520 void skb_flow_dissect_hash(const struct sk_buff *skb,
1521                struct flow_dissector *flow_dissector,
1522                void *target_container);
1523 
1524 static inline __u32 skb_get_hash(struct sk_buff *skb)
1525 {
1526     if (!skb->l4_hash && !skb->sw_hash)
1527         __skb_get_hash(skb);
1528 
1529     return skb->hash;
1530 }
1531 
1532 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1533 {
1534     if (!skb->l4_hash && !skb->sw_hash) {
1535         struct flow_keys keys;
1536         __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1537 
1538         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1539     }
1540 
1541     return skb->hash;
1542 }
1543 
1544 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1545                const siphash_key_t *perturb);
1546 
1547 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1548 {
1549     return skb->hash;
1550 }
1551 
1552 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1553 {
1554     to->hash = from->hash;
1555     to->sw_hash = from->sw_hash;
1556     to->l4_hash = from->l4_hash;
1557 };
1558 
1559 static inline void skb_copy_decrypted(struct sk_buff *to,
1560                       const struct sk_buff *from)
1561 {
1562 #ifdef CONFIG_TLS_DEVICE
1563     to->decrypted = from->decrypted;
1564 #endif
1565 }
1566 
1567 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1568 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1569 {
1570     return skb->head + skb->end;
1571 }
1572 
1573 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1574 {
1575     return skb->end;
1576 }
1577 
1578 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1579 {
1580     skb->end = offset;
1581 }
1582 #else
1583 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1584 {
1585     return skb->end;
1586 }
1587 
1588 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1589 {
1590     return skb->end - skb->head;
1591 }
1592 
1593 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1594 {
1595     skb->end = skb->head + offset;
1596 }
1597 #endif
1598 
1599 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1600                        struct ubuf_info *uarg);
1601 
1602 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1603 
1604 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1605                bool success);
1606 
1607 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1608                 struct sk_buff *skb, struct iov_iter *from,
1609                 size_t length);
1610 
1611 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1612                       struct msghdr *msg, int len)
1613 {
1614     return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1615 }
1616 
1617 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1618                  struct msghdr *msg, int len,
1619                  struct ubuf_info *uarg);
1620 
1621 /* Internal */
1622 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1623 
1624 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1625 {
1626     return &skb_shinfo(skb)->hwtstamps;
1627 }
1628 
1629 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1630 {
1631     bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1632 
1633     return is_zcopy ? skb_uarg(skb) : NULL;
1634 }
1635 
1636 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1637 {
1638     return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1639 }
1640 
1641 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1642 {
1643     return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1644 }
1645 
1646 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1647                        const struct sk_buff *skb2)
1648 {
1649     return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1650 }
1651 
1652 static inline void net_zcopy_get(struct ubuf_info *uarg)
1653 {
1654     refcount_inc(&uarg->refcnt);
1655 }
1656 
1657 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1658 {
1659     skb_shinfo(skb)->destructor_arg = uarg;
1660     skb_shinfo(skb)->flags |= uarg->flags;
1661 }
1662 
1663 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1664                  bool *have_ref)
1665 {
1666     if (skb && uarg && !skb_zcopy(skb)) {
1667         if (unlikely(have_ref && *have_ref))
1668             *have_ref = false;
1669         else
1670             net_zcopy_get(uarg);
1671         skb_zcopy_init(skb, uarg);
1672     }
1673 }
1674 
1675 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1676 {
1677     skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1678     skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1679 }
1680 
1681 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1682 {
1683     return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1684 }
1685 
1686 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1687 {
1688     return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1689 }
1690 
1691 static inline void net_zcopy_put(struct ubuf_info *uarg)
1692 {
1693     if (uarg)
1694         uarg->callback(NULL, uarg, true);
1695 }
1696 
1697 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1698 {
1699     if (uarg) {
1700         if (uarg->callback == msg_zerocopy_callback)
1701             msg_zerocopy_put_abort(uarg, have_uref);
1702         else if (have_uref)
1703             net_zcopy_put(uarg);
1704     }
1705 }
1706 
1707 /* Release a reference on a zerocopy structure */
1708 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1709 {
1710     struct ubuf_info *uarg = skb_zcopy(skb);
1711 
1712     if (uarg) {
1713         if (!skb_zcopy_is_nouarg(skb))
1714             uarg->callback(skb, uarg, zerocopy_success);
1715 
1716         skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1717     }
1718 }
1719 
1720 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1721 
1722 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1723 {
1724     if (unlikely(skb_zcopy_managed(skb)))
1725         __skb_zcopy_downgrade_managed(skb);
1726 }
1727 
1728 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1729 {
1730     skb->next = NULL;
1731 }
1732 
1733 /* Iterate through singly-linked GSO fragments of an skb. */
1734 #define skb_list_walk_safe(first, skb, next_skb)                               \
1735     for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1736          (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1737 
1738 static inline void skb_list_del_init(struct sk_buff *skb)
1739 {
1740     __list_del_entry(&skb->list);
1741     skb_mark_not_on_list(skb);
1742 }
1743 
1744 /**
1745  *  skb_queue_empty - check if a queue is empty
1746  *  @list: queue head
1747  *
1748  *  Returns true if the queue is empty, false otherwise.
1749  */
1750 static inline int skb_queue_empty(const struct sk_buff_head *list)
1751 {
1752     return list->next == (const struct sk_buff *) list;
1753 }
1754 
1755 /**
1756  *  skb_queue_empty_lockless - check if a queue is empty
1757  *  @list: queue head
1758  *
1759  *  Returns true if the queue is empty, false otherwise.
1760  *  This variant can be used in lockless contexts.
1761  */
1762 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1763 {
1764     return READ_ONCE(list->next) == (const struct sk_buff *) list;
1765 }
1766 
1767 
1768 /**
1769  *  skb_queue_is_last - check if skb is the last entry in the queue
1770  *  @list: queue head
1771  *  @skb: buffer
1772  *
1773  *  Returns true if @skb is the last buffer on the list.
1774  */
1775 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1776                      const struct sk_buff *skb)
1777 {
1778     return skb->next == (const struct sk_buff *) list;
1779 }
1780 
1781 /**
1782  *  skb_queue_is_first - check if skb is the first entry in the queue
1783  *  @list: queue head
1784  *  @skb: buffer
1785  *
1786  *  Returns true if @skb is the first buffer on the list.
1787  */
1788 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1789                       const struct sk_buff *skb)
1790 {
1791     return skb->prev == (const struct sk_buff *) list;
1792 }
1793 
1794 /**
1795  *  skb_queue_next - return the next packet in the queue
1796  *  @list: queue head
1797  *  @skb: current buffer
1798  *
1799  *  Return the next packet in @list after @skb.  It is only valid to
1800  *  call this if skb_queue_is_last() evaluates to false.
1801  */
1802 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1803                          const struct sk_buff *skb)
1804 {
1805     /* This BUG_ON may seem severe, but if we just return then we
1806      * are going to dereference garbage.
1807      */
1808     BUG_ON(skb_queue_is_last(list, skb));
1809     return skb->next;
1810 }
1811 
1812 /**
1813  *  skb_queue_prev - return the prev packet in the queue
1814  *  @list: queue head
1815  *  @skb: current buffer
1816  *
1817  *  Return the prev packet in @list before @skb.  It is only valid to
1818  *  call this if skb_queue_is_first() evaluates to false.
1819  */
1820 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1821                          const struct sk_buff *skb)
1822 {
1823     /* This BUG_ON may seem severe, but if we just return then we
1824      * are going to dereference garbage.
1825      */
1826     BUG_ON(skb_queue_is_first(list, skb));
1827     return skb->prev;
1828 }
1829 
1830 /**
1831  *  skb_get - reference buffer
1832  *  @skb: buffer to reference
1833  *
1834  *  Makes another reference to a socket buffer and returns a pointer
1835  *  to the buffer.
1836  */
1837 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1838 {
1839     refcount_inc(&skb->users);
1840     return skb;
1841 }
1842 
1843 /*
1844  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1845  */
1846 
1847 /**
1848  *  skb_cloned - is the buffer a clone
1849  *  @skb: buffer to check
1850  *
1851  *  Returns true if the buffer was generated with skb_clone() and is
1852  *  one of multiple shared copies of the buffer. Cloned buffers are
1853  *  shared data so must not be written to under normal circumstances.
1854  */
1855 static inline int skb_cloned(const struct sk_buff *skb)
1856 {
1857     return skb->cloned &&
1858            (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1859 }
1860 
1861 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1862 {
1863     might_sleep_if(gfpflags_allow_blocking(pri));
1864 
1865     if (skb_cloned(skb))
1866         return pskb_expand_head(skb, 0, 0, pri);
1867 
1868     return 0;
1869 }
1870 
1871 /* This variant of skb_unclone() makes sure skb->truesize
1872  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1873  *
1874  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1875  * when various debugging features are in place.
1876  */
1877 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1878 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1879 {
1880     might_sleep_if(gfpflags_allow_blocking(pri));
1881 
1882     if (skb_cloned(skb))
1883         return __skb_unclone_keeptruesize(skb, pri);
1884     return 0;
1885 }
1886 
1887 /**
1888  *  skb_header_cloned - is the header a clone
1889  *  @skb: buffer to check
1890  *
1891  *  Returns true if modifying the header part of the buffer requires
1892  *  the data to be copied.
1893  */
1894 static inline int skb_header_cloned(const struct sk_buff *skb)
1895 {
1896     int dataref;
1897 
1898     if (!skb->cloned)
1899         return 0;
1900 
1901     dataref = atomic_read(&skb_shinfo(skb)->dataref);
1902     dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1903     return dataref != 1;
1904 }
1905 
1906 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1907 {
1908     might_sleep_if(gfpflags_allow_blocking(pri));
1909 
1910     if (skb_header_cloned(skb))
1911         return pskb_expand_head(skb, 0, 0, pri);
1912 
1913     return 0;
1914 }
1915 
1916 /**
1917  * __skb_header_release() - allow clones to use the headroom
1918  * @skb: buffer to operate on
1919  *
1920  * See "DOC: dataref and headerless skbs".
1921  */
1922 static inline void __skb_header_release(struct sk_buff *skb)
1923 {
1924     skb->nohdr = 1;
1925     atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1926 }
1927 
1928 
1929 /**
1930  *  skb_shared - is the buffer shared
1931  *  @skb: buffer to check
1932  *
1933  *  Returns true if more than one person has a reference to this
1934  *  buffer.
1935  */
1936 static inline int skb_shared(const struct sk_buff *skb)
1937 {
1938     return refcount_read(&skb->users) != 1;
1939 }
1940 
1941 /**
1942  *  skb_share_check - check if buffer is shared and if so clone it
1943  *  @skb: buffer to check
1944  *  @pri: priority for memory allocation
1945  *
1946  *  If the buffer is shared the buffer is cloned and the old copy
1947  *  drops a reference. A new clone with a single reference is returned.
1948  *  If the buffer is not shared the original buffer is returned. When
1949  *  being called from interrupt status or with spinlocks held pri must
1950  *  be GFP_ATOMIC.
1951  *
1952  *  NULL is returned on a memory allocation failure.
1953  */
1954 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1955 {
1956     might_sleep_if(gfpflags_allow_blocking(pri));
1957     if (skb_shared(skb)) {
1958         struct sk_buff *nskb = skb_clone(skb, pri);
1959 
1960         if (likely(nskb))
1961             consume_skb(skb);
1962         else
1963             kfree_skb(skb);
1964         skb = nskb;
1965     }
1966     return skb;
1967 }
1968 
1969 /*
1970  *  Copy shared buffers into a new sk_buff. We effectively do COW on
1971  *  packets to handle cases where we have a local reader and forward
1972  *  and a couple of other messy ones. The normal one is tcpdumping
1973  *  a packet thats being forwarded.
1974  */
1975 
1976 /**
1977  *  skb_unshare - make a copy of a shared buffer
1978  *  @skb: buffer to check
1979  *  @pri: priority for memory allocation
1980  *
1981  *  If the socket buffer is a clone then this function creates a new
1982  *  copy of the data, drops a reference count on the old copy and returns
1983  *  the new copy with the reference count at 1. If the buffer is not a clone
1984  *  the original buffer is returned. When called with a spinlock held or
1985  *  from interrupt state @pri must be %GFP_ATOMIC
1986  *
1987  *  %NULL is returned on a memory allocation failure.
1988  */
1989 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1990                       gfp_t pri)
1991 {
1992     might_sleep_if(gfpflags_allow_blocking(pri));
1993     if (skb_cloned(skb)) {
1994         struct sk_buff *nskb = skb_copy(skb, pri);
1995 
1996         /* Free our shared copy */
1997         if (likely(nskb))
1998             consume_skb(skb);
1999         else
2000             kfree_skb(skb);
2001         skb = nskb;
2002     }
2003     return skb;
2004 }
2005 
2006 /**
2007  *  skb_peek - peek at the head of an &sk_buff_head
2008  *  @list_: list to peek at
2009  *
2010  *  Peek an &sk_buff. Unlike most other operations you _MUST_
2011  *  be careful with this one. A peek leaves the buffer on the
2012  *  list and someone else may run off with it. You must hold
2013  *  the appropriate locks or have a private queue to do this.
2014  *
2015  *  Returns %NULL for an empty list or a pointer to the head element.
2016  *  The reference count is not incremented and the reference is therefore
2017  *  volatile. Use with caution.
2018  */
2019 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2020 {
2021     struct sk_buff *skb = list_->next;
2022 
2023     if (skb == (struct sk_buff *)list_)
2024         skb = NULL;
2025     return skb;
2026 }
2027 
2028 /**
2029  *  __skb_peek - peek at the head of a non-empty &sk_buff_head
2030  *  @list_: list to peek at
2031  *
2032  *  Like skb_peek(), but the caller knows that the list is not empty.
2033  */
2034 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2035 {
2036     return list_->next;
2037 }
2038 
2039 /**
2040  *  skb_peek_next - peek skb following the given one from a queue
2041  *  @skb: skb to start from
2042  *  @list_: list to peek at
2043  *
2044  *  Returns %NULL when the end of the list is met or a pointer to the
2045  *  next element. The reference count is not incremented and the
2046  *  reference is therefore volatile. Use with caution.
2047  */
2048 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2049         const struct sk_buff_head *list_)
2050 {
2051     struct sk_buff *next = skb->next;
2052 
2053     if (next == (struct sk_buff *)list_)
2054         next = NULL;
2055     return next;
2056 }
2057 
2058 /**
2059  *  skb_peek_tail - peek at the tail of an &sk_buff_head
2060  *  @list_: list to peek at
2061  *
2062  *  Peek an &sk_buff. Unlike most other operations you _MUST_
2063  *  be careful with this one. A peek leaves the buffer on the
2064  *  list and someone else may run off with it. You must hold
2065  *  the appropriate locks or have a private queue to do this.
2066  *
2067  *  Returns %NULL for an empty list or a pointer to the tail element.
2068  *  The reference count is not incremented and the reference is therefore
2069  *  volatile. Use with caution.
2070  */
2071 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2072 {
2073     struct sk_buff *skb = READ_ONCE(list_->prev);
2074 
2075     if (skb == (struct sk_buff *)list_)
2076         skb = NULL;
2077     return skb;
2078 
2079 }
2080 
2081 /**
2082  *  skb_queue_len   - get queue length
2083  *  @list_: list to measure
2084  *
2085  *  Return the length of an &sk_buff queue.
2086  */
2087 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2088 {
2089     return list_->qlen;
2090 }
2091 
2092 /**
2093  *  skb_queue_len_lockless  - get queue length
2094  *  @list_: list to measure
2095  *
2096  *  Return the length of an &sk_buff queue.
2097  *  This variant can be used in lockless contexts.
2098  */
2099 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2100 {
2101     return READ_ONCE(list_->qlen);
2102 }
2103 
2104 /**
2105  *  __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2106  *  @list: queue to initialize
2107  *
2108  *  This initializes only the list and queue length aspects of
2109  *  an sk_buff_head object.  This allows to initialize the list
2110  *  aspects of an sk_buff_head without reinitializing things like
2111  *  the spinlock.  It can also be used for on-stack sk_buff_head
2112  *  objects where the spinlock is known to not be used.
2113  */
2114 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2115 {
2116     list->prev = list->next = (struct sk_buff *)list;
2117     list->qlen = 0;
2118 }
2119 
2120 /*
2121  * This function creates a split out lock class for each invocation;
2122  * this is needed for now since a whole lot of users of the skb-queue
2123  * infrastructure in drivers have different locking usage (in hardirq)
2124  * than the networking core (in softirq only). In the long run either the
2125  * network layer or drivers should need annotation to consolidate the
2126  * main types of usage into 3 classes.
2127  */
2128 static inline void skb_queue_head_init(struct sk_buff_head *list)
2129 {
2130     spin_lock_init(&list->lock);
2131     __skb_queue_head_init(list);
2132 }
2133 
2134 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2135         struct lock_class_key *class)
2136 {
2137     skb_queue_head_init(list);
2138     lockdep_set_class(&list->lock, class);
2139 }
2140 
2141 /*
2142  *  Insert an sk_buff on a list.
2143  *
2144  *  The "__skb_xxxx()" functions are the non-atomic ones that
2145  *  can only be called with interrupts disabled.
2146  */
2147 static inline void __skb_insert(struct sk_buff *newsk,
2148                 struct sk_buff *prev, struct sk_buff *next,
2149                 struct sk_buff_head *list)
2150 {
2151     /* See skb_queue_empty_lockless() and skb_peek_tail()
2152      * for the opposite READ_ONCE()
2153      */
2154     WRITE_ONCE(newsk->next, next);
2155     WRITE_ONCE(newsk->prev, prev);
2156     WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2157     WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2158     WRITE_ONCE(list->qlen, list->qlen + 1);
2159 }
2160 
2161 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2162                       struct sk_buff *prev,
2163                       struct sk_buff *next)
2164 {
2165     struct sk_buff *first = list->next;
2166     struct sk_buff *last = list->prev;
2167 
2168     WRITE_ONCE(first->prev, prev);
2169     WRITE_ONCE(prev->next, first);
2170 
2171     WRITE_ONCE(last->next, next);
2172     WRITE_ONCE(next->prev, last);
2173 }
2174 
2175 /**
2176  *  skb_queue_splice - join two skb lists, this is designed for stacks
2177  *  @list: the new list to add
2178  *  @head: the place to add it in the first list
2179  */
2180 static inline void skb_queue_splice(const struct sk_buff_head *list,
2181                     struct sk_buff_head *head)
2182 {
2183     if (!skb_queue_empty(list)) {
2184         __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2185         head->qlen += list->qlen;
2186     }
2187 }
2188 
2189 /**
2190  *  skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2191  *  @list: the new list to add
2192  *  @head: the place to add it in the first list
2193  *
2194  *  The list at @list is reinitialised
2195  */
2196 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2197                      struct sk_buff_head *head)
2198 {
2199     if (!skb_queue_empty(list)) {
2200         __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2201         head->qlen += list->qlen;
2202         __skb_queue_head_init(list);
2203     }
2204 }
2205 
2206 /**
2207  *  skb_queue_splice_tail - join two skb lists, each list being a queue
2208  *  @list: the new list to add
2209  *  @head: the place to add it in the first list
2210  */
2211 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2212                      struct sk_buff_head *head)
2213 {
2214     if (!skb_queue_empty(list)) {
2215         __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2216         head->qlen += list->qlen;
2217     }
2218 }
2219 
2220 /**
2221  *  skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2222  *  @list: the new list to add
2223  *  @head: the place to add it in the first list
2224  *
2225  *  Each of the lists is a queue.
2226  *  The list at @list is reinitialised
2227  */
2228 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2229                           struct sk_buff_head *head)
2230 {
2231     if (!skb_queue_empty(list)) {
2232         __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2233         head->qlen += list->qlen;
2234         __skb_queue_head_init(list);
2235     }
2236 }
2237 
2238 /**
2239  *  __skb_queue_after - queue a buffer at the list head
2240  *  @list: list to use
2241  *  @prev: place after this buffer
2242  *  @newsk: buffer to queue
2243  *
2244  *  Queue a buffer int the middle of a list. This function takes no locks
2245  *  and you must therefore hold required locks before calling it.
2246  *
2247  *  A buffer cannot be placed on two lists at the same time.
2248  */
2249 static inline void __skb_queue_after(struct sk_buff_head *list,
2250                      struct sk_buff *prev,
2251                      struct sk_buff *newsk)
2252 {
2253     __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2254 }
2255 
2256 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2257         struct sk_buff_head *list);
2258 
2259 static inline void __skb_queue_before(struct sk_buff_head *list,
2260                       struct sk_buff *next,
2261                       struct sk_buff *newsk)
2262 {
2263     __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2264 }
2265 
2266 /**
2267  *  __skb_queue_head - queue a buffer at the list head
2268  *  @list: list to use
2269  *  @newsk: buffer to queue
2270  *
2271  *  Queue a buffer at the start of a list. This function takes no locks
2272  *  and you must therefore hold required locks before calling it.
2273  *
2274  *  A buffer cannot be placed on two lists at the same time.
2275  */
2276 static inline void __skb_queue_head(struct sk_buff_head *list,
2277                     struct sk_buff *newsk)
2278 {
2279     __skb_queue_after(list, (struct sk_buff *)list, newsk);
2280 }
2281 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2282 
2283 /**
2284  *  __skb_queue_tail - queue a buffer at the list tail
2285  *  @list: list to use
2286  *  @newsk: buffer to queue
2287  *
2288  *  Queue a buffer at the end of a list. This function takes no locks
2289  *  and you must therefore hold required locks before calling it.
2290  *
2291  *  A buffer cannot be placed on two lists at the same time.
2292  */
2293 static inline void __skb_queue_tail(struct sk_buff_head *list,
2294                    struct sk_buff *newsk)
2295 {
2296     __skb_queue_before(list, (struct sk_buff *)list, newsk);
2297 }
2298 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2299 
2300 /*
2301  * remove sk_buff from list. _Must_ be called atomically, and with
2302  * the list known..
2303  */
2304 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2305 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2306 {
2307     struct sk_buff *next, *prev;
2308 
2309     WRITE_ONCE(list->qlen, list->qlen - 1);
2310     next       = skb->next;
2311     prev       = skb->prev;
2312     skb->next  = skb->prev = NULL;
2313     WRITE_ONCE(next->prev, prev);
2314     WRITE_ONCE(prev->next, next);
2315 }
2316 
2317 /**
2318  *  __skb_dequeue - remove from the head of the queue
2319  *  @list: list to dequeue from
2320  *
2321  *  Remove the head of the list. This function does not take any locks
2322  *  so must be used with appropriate locks held only. The head item is
2323  *  returned or %NULL if the list is empty.
2324  */
2325 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2326 {
2327     struct sk_buff *skb = skb_peek(list);
2328     if (skb)
2329         __skb_unlink(skb, list);
2330     return skb;
2331 }
2332 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2333 
2334 /**
2335  *  __skb_dequeue_tail - remove from the tail of the queue
2336  *  @list: list to dequeue from
2337  *
2338  *  Remove the tail of the list. This function does not take any locks
2339  *  so must be used with appropriate locks held only. The tail item is
2340  *  returned or %NULL if the list is empty.
2341  */
2342 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2343 {
2344     struct sk_buff *skb = skb_peek_tail(list);
2345     if (skb)
2346         __skb_unlink(skb, list);
2347     return skb;
2348 }
2349 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2350 
2351 
2352 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2353 {
2354     return skb->data_len;
2355 }
2356 
2357 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2358 {
2359     return skb->len - skb->data_len;
2360 }
2361 
2362 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2363 {
2364     unsigned int i, len = 0;
2365 
2366     for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2367         len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2368     return len;
2369 }
2370 
2371 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2372 {
2373     return skb_headlen(skb) + __skb_pagelen(skb);
2374 }
2375 
2376 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2377                           int i, struct page *page,
2378                           int off, int size)
2379 {
2380     skb_frag_t *frag = &shinfo->frags[i];
2381 
2382     /*
2383      * Propagate page pfmemalloc to the skb if we can. The problem is
2384      * that not all callers have unique ownership of the page but rely
2385      * on page_is_pfmemalloc doing the right thing(tm).
2386      */
2387     frag->bv_page         = page;
2388     frag->bv_offset       = off;
2389     skb_frag_size_set(frag, size);
2390 }
2391 
2392 /**
2393  * skb_len_add - adds a number to len fields of skb
2394  * @skb: buffer to add len to
2395  * @delta: number of bytes to add
2396  */
2397 static inline void skb_len_add(struct sk_buff *skb, int delta)
2398 {
2399     skb->len += delta;
2400     skb->data_len += delta;
2401     skb->truesize += delta;
2402 }
2403 
2404 /**
2405  * __skb_fill_page_desc - initialise a paged fragment in an skb
2406  * @skb: buffer containing fragment to be initialised
2407  * @i: paged fragment index to initialise
2408  * @page: the page to use for this fragment
2409  * @off: the offset to the data with @page
2410  * @size: the length of the data
2411  *
2412  * Initialises the @i'th fragment of @skb to point to &size bytes at
2413  * offset @off within @page.
2414  *
2415  * Does not take any additional reference on the fragment.
2416  */
2417 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2418                     struct page *page, int off, int size)
2419 {
2420     __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2421     page = compound_head(page);
2422     if (page_is_pfmemalloc(page))
2423         skb->pfmemalloc = true;
2424 }
2425 
2426 /**
2427  * skb_fill_page_desc - initialise a paged fragment in an skb
2428  * @skb: buffer containing fragment to be initialised
2429  * @i: paged fragment index to initialise
2430  * @page: the page to use for this fragment
2431  * @off: the offset to the data with @page
2432  * @size: the length of the data
2433  *
2434  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2435  * @skb to point to @size bytes at offset @off within @page. In
2436  * addition updates @skb such that @i is the last fragment.
2437  *
2438  * Does not take any additional reference on the fragment.
2439  */
2440 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2441                       struct page *page, int off, int size)
2442 {
2443     __skb_fill_page_desc(skb, i, page, off, size);
2444     skb_shinfo(skb)->nr_frags = i + 1;
2445 }
2446 
2447 /**
2448  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2449  * @skb: buffer containing fragment to be initialised
2450  * @i: paged fragment index to initialise
2451  * @page: the page to use for this fragment
2452  * @off: the offset to the data with @page
2453  * @size: the length of the data
2454  *
2455  * Variant of skb_fill_page_desc() which does not deal with
2456  * pfmemalloc, if page is not owned by us.
2457  */
2458 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2459                         struct page *page, int off,
2460                         int size)
2461 {
2462     struct skb_shared_info *shinfo = skb_shinfo(skb);
2463 
2464     __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2465     shinfo->nr_frags = i + 1;
2466 }
2467 
2468 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2469              int size, unsigned int truesize);
2470 
2471 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2472               unsigned int truesize);
2473 
2474 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2475 
2476 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2477 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2478 {
2479     return skb->head + skb->tail;
2480 }
2481 
2482 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2483 {
2484     skb->tail = skb->data - skb->head;
2485 }
2486 
2487 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2488 {
2489     skb_reset_tail_pointer(skb);
2490     skb->tail += offset;
2491 }
2492 
2493 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2494 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2495 {
2496     return skb->tail;
2497 }
2498 
2499 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2500 {
2501     skb->tail = skb->data;
2502 }
2503 
2504 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2505 {
2506     skb->tail = skb->data + offset;
2507 }
2508 
2509 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2510 
2511 static inline void skb_assert_len(struct sk_buff *skb)
2512 {
2513 #ifdef CONFIG_DEBUG_NET
2514     if (WARN_ONCE(!skb->len, "%s\n", __func__))
2515         DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2516 #endif /* CONFIG_DEBUG_NET */
2517 }
2518 
2519 /*
2520  *  Add data to an sk_buff
2521  */
2522 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2523 void *skb_put(struct sk_buff *skb, unsigned int len);
2524 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2525 {
2526     void *tmp = skb_tail_pointer(skb);
2527     SKB_LINEAR_ASSERT(skb);
2528     skb->tail += len;
2529     skb->len  += len;
2530     return tmp;
2531 }
2532 
2533 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2534 {
2535     void *tmp = __skb_put(skb, len);
2536 
2537     memset(tmp, 0, len);
2538     return tmp;
2539 }
2540 
2541 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2542                    unsigned int len)
2543 {
2544     void *tmp = __skb_put(skb, len);
2545 
2546     memcpy(tmp, data, len);
2547     return tmp;
2548 }
2549 
2550 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2551 {
2552     *(u8 *)__skb_put(skb, 1) = val;
2553 }
2554 
2555 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2556 {
2557     void *tmp = skb_put(skb, len);
2558 
2559     memset(tmp, 0, len);
2560 
2561     return tmp;
2562 }
2563 
2564 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2565                  unsigned int len)
2566 {
2567     void *tmp = skb_put(skb, len);
2568 
2569     memcpy(tmp, data, len);
2570 
2571     return tmp;
2572 }
2573 
2574 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2575 {
2576     *(u8 *)skb_put(skb, 1) = val;
2577 }
2578 
2579 void *skb_push(struct sk_buff *skb, unsigned int len);
2580 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2581 {
2582     skb->data -= len;
2583     skb->len  += len;
2584     return skb->data;
2585 }
2586 
2587 void *skb_pull(struct sk_buff *skb, unsigned int len);
2588 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2589 {
2590     skb->len -= len;
2591     if (unlikely(skb->len < skb->data_len)) {
2592 #if defined(CONFIG_DEBUG_NET)
2593         skb->len += len;
2594         pr_err("__skb_pull(len=%u)\n", len);
2595         skb_dump(KERN_ERR, skb, false);
2596 #endif
2597         BUG();
2598     }
2599     return skb->data += len;
2600 }
2601 
2602 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2603 {
2604     return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2605 }
2606 
2607 void *skb_pull_data(struct sk_buff *skb, size_t len);
2608 
2609 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2610 
2611 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2612 {
2613     if (len > skb_headlen(skb) &&
2614         !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2615         return NULL;
2616     skb->len -= len;
2617     return skb->data += len;
2618 }
2619 
2620 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2621 {
2622     return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2623 }
2624 
2625 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2626 {
2627     if (likely(len <= skb_headlen(skb)))
2628         return true;
2629     if (unlikely(len > skb->len))
2630         return false;
2631     return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2632 }
2633 
2634 void skb_condense(struct sk_buff *skb);
2635 
2636 /**
2637  *  skb_headroom - bytes at buffer head
2638  *  @skb: buffer to check
2639  *
2640  *  Return the number of bytes of free space at the head of an &sk_buff.
2641  */
2642 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2643 {
2644     return skb->data - skb->head;
2645 }
2646 
2647 /**
2648  *  skb_tailroom - bytes at buffer end
2649  *  @skb: buffer to check
2650  *
2651  *  Return the number of bytes of free space at the tail of an sk_buff
2652  */
2653 static inline int skb_tailroom(const struct sk_buff *skb)
2654 {
2655     return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2656 }
2657 
2658 /**
2659  *  skb_availroom - bytes at buffer end
2660  *  @skb: buffer to check
2661  *
2662  *  Return the number of bytes of free space at the tail of an sk_buff
2663  *  allocated by sk_stream_alloc()
2664  */
2665 static inline int skb_availroom(const struct sk_buff *skb)
2666 {
2667     if (skb_is_nonlinear(skb))
2668         return 0;
2669 
2670     return skb->end - skb->tail - skb->reserved_tailroom;
2671 }
2672 
2673 /**
2674  *  skb_reserve - adjust headroom
2675  *  @skb: buffer to alter
2676  *  @len: bytes to move
2677  *
2678  *  Increase the headroom of an empty &sk_buff by reducing the tail
2679  *  room. This is only allowed for an empty buffer.
2680  */
2681 static inline void skb_reserve(struct sk_buff *skb, int len)
2682 {
2683     skb->data += len;
2684     skb->tail += len;
2685 }
2686 
2687 /**
2688  *  skb_tailroom_reserve - adjust reserved_tailroom
2689  *  @skb: buffer to alter
2690  *  @mtu: maximum amount of headlen permitted
2691  *  @needed_tailroom: minimum amount of reserved_tailroom
2692  *
2693  *  Set reserved_tailroom so that headlen can be as large as possible but
2694  *  not larger than mtu and tailroom cannot be smaller than
2695  *  needed_tailroom.
2696  *  The required headroom should already have been reserved before using
2697  *  this function.
2698  */
2699 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2700                     unsigned int needed_tailroom)
2701 {
2702     SKB_LINEAR_ASSERT(skb);
2703     if (mtu < skb_tailroom(skb) - needed_tailroom)
2704         /* use at most mtu */
2705         skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2706     else
2707         /* use up to all available space */
2708         skb->reserved_tailroom = needed_tailroom;
2709 }
2710 
2711 #define ENCAP_TYPE_ETHER    0
2712 #define ENCAP_TYPE_IPPROTO  1
2713 
2714 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2715                       __be16 protocol)
2716 {
2717     skb->inner_protocol = protocol;
2718     skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2719 }
2720 
2721 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2722                      __u8 ipproto)
2723 {
2724     skb->inner_ipproto = ipproto;
2725     skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2726 }
2727 
2728 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2729 {
2730     skb->inner_mac_header = skb->mac_header;
2731     skb->inner_network_header = skb->network_header;
2732     skb->inner_transport_header = skb->transport_header;
2733 }
2734 
2735 static inline void skb_reset_mac_len(struct sk_buff *skb)
2736 {
2737     skb->mac_len = skb->network_header - skb->mac_header;
2738 }
2739 
2740 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2741                             *skb)
2742 {
2743     return skb->head + skb->inner_transport_header;
2744 }
2745 
2746 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2747 {
2748     return skb_inner_transport_header(skb) - skb->data;
2749 }
2750 
2751 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2752 {
2753     skb->inner_transport_header = skb->data - skb->head;
2754 }
2755 
2756 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2757                            const int offset)
2758 {
2759     skb_reset_inner_transport_header(skb);
2760     skb->inner_transport_header += offset;
2761 }
2762 
2763 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2764 {
2765     return skb->head + skb->inner_network_header;
2766 }
2767 
2768 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2769 {
2770     skb->inner_network_header = skb->data - skb->head;
2771 }
2772 
2773 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2774                         const int offset)
2775 {
2776     skb_reset_inner_network_header(skb);
2777     skb->inner_network_header += offset;
2778 }
2779 
2780 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2781 {
2782     return skb->head + skb->inner_mac_header;
2783 }
2784 
2785 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2786 {
2787     skb->inner_mac_header = skb->data - skb->head;
2788 }
2789 
2790 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2791                         const int offset)
2792 {
2793     skb_reset_inner_mac_header(skb);
2794     skb->inner_mac_header += offset;
2795 }
2796 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2797 {
2798     return skb->transport_header != (typeof(skb->transport_header))~0U;
2799 }
2800 
2801 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2802 {
2803     DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2804     return skb->head + skb->transport_header;
2805 }
2806 
2807 static inline void skb_reset_transport_header(struct sk_buff *skb)
2808 {
2809     skb->transport_header = skb->data - skb->head;
2810 }
2811 
2812 static inline void skb_set_transport_header(struct sk_buff *skb,
2813                         const int offset)
2814 {
2815     skb_reset_transport_header(skb);
2816     skb->transport_header += offset;
2817 }
2818 
2819 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2820 {
2821     return skb->head + skb->network_header;
2822 }
2823 
2824 static inline void skb_reset_network_header(struct sk_buff *skb)
2825 {
2826     skb->network_header = skb->data - skb->head;
2827 }
2828 
2829 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2830 {
2831     skb_reset_network_header(skb);
2832     skb->network_header += offset;
2833 }
2834 
2835 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2836 {
2837     return skb->mac_header != (typeof(skb->mac_header))~0U;
2838 }
2839 
2840 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2841 {
2842     DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2843     return skb->head + skb->mac_header;
2844 }
2845 
2846 static inline int skb_mac_offset(const struct sk_buff *skb)
2847 {
2848     return skb_mac_header(skb) - skb->data;
2849 }
2850 
2851 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2852 {
2853     DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2854     return skb->network_header - skb->mac_header;
2855 }
2856 
2857 static inline void skb_unset_mac_header(struct sk_buff *skb)
2858 {
2859     skb->mac_header = (typeof(skb->mac_header))~0U;
2860 }
2861 
2862 static inline void skb_reset_mac_header(struct sk_buff *skb)
2863 {
2864     skb->mac_header = skb->data - skb->head;
2865 }
2866 
2867 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2868 {
2869     skb_reset_mac_header(skb);
2870     skb->mac_header += offset;
2871 }
2872 
2873 static inline void skb_pop_mac_header(struct sk_buff *skb)
2874 {
2875     skb->mac_header = skb->network_header;
2876 }
2877 
2878 static inline void skb_probe_transport_header(struct sk_buff *skb)
2879 {
2880     struct flow_keys_basic keys;
2881 
2882     if (skb_transport_header_was_set(skb))
2883         return;
2884 
2885     if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2886                          NULL, 0, 0, 0, 0))
2887         skb_set_transport_header(skb, keys.control.thoff);
2888 }
2889 
2890 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2891 {
2892     if (skb_mac_header_was_set(skb)) {
2893         const unsigned char *old_mac = skb_mac_header(skb);
2894 
2895         skb_set_mac_header(skb, -skb->mac_len);
2896         memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2897     }
2898 }
2899 
2900 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2901 {
2902     return skb->csum_start - skb_headroom(skb);
2903 }
2904 
2905 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2906 {
2907     return skb->head + skb->csum_start;
2908 }
2909 
2910 static inline int skb_transport_offset(const struct sk_buff *skb)
2911 {
2912     return skb_transport_header(skb) - skb->data;
2913 }
2914 
2915 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2916 {
2917     return skb->transport_header - skb->network_header;
2918 }
2919 
2920 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2921 {
2922     return skb->inner_transport_header - skb->inner_network_header;
2923 }
2924 
2925 static inline int skb_network_offset(const struct sk_buff *skb)
2926 {
2927     return skb_network_header(skb) - skb->data;
2928 }
2929 
2930 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2931 {
2932     return skb_inner_network_header(skb) - skb->data;
2933 }
2934 
2935 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2936 {
2937     return pskb_may_pull(skb, skb_network_offset(skb) + len);
2938 }
2939 
2940 /*
2941  * CPUs often take a performance hit when accessing unaligned memory
2942  * locations. The actual performance hit varies, it can be small if the
2943  * hardware handles it or large if we have to take an exception and fix it
2944  * in software.
2945  *
2946  * Since an ethernet header is 14 bytes network drivers often end up with
2947  * the IP header at an unaligned offset. The IP header can be aligned by
2948  * shifting the start of the packet by 2 bytes. Drivers should do this
2949  * with:
2950  *
2951  * skb_reserve(skb, NET_IP_ALIGN);
2952  *
2953  * The downside to this alignment of the IP header is that the DMA is now
2954  * unaligned. On some architectures the cost of an unaligned DMA is high
2955  * and this cost outweighs the gains made by aligning the IP header.
2956  *
2957  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2958  * to be overridden.
2959  */
2960 #ifndef NET_IP_ALIGN
2961 #define NET_IP_ALIGN    2
2962 #endif
2963 
2964 /*
2965  * The networking layer reserves some headroom in skb data (via
2966  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2967  * the header has to grow. In the default case, if the header has to grow
2968  * 32 bytes or less we avoid the reallocation.
2969  *
2970  * Unfortunately this headroom changes the DMA alignment of the resulting
2971  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2972  * on some architectures. An architecture can override this value,
2973  * perhaps setting it to a cacheline in size (since that will maintain
2974  * cacheline alignment of the DMA). It must be a power of 2.
2975  *
2976  * Various parts of the networking layer expect at least 32 bytes of
2977  * headroom, you should not reduce this.
2978  *
2979  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2980  * to reduce average number of cache lines per packet.
2981  * get_rps_cpu() for example only access one 64 bytes aligned block :
2982  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2983  */
2984 #ifndef NET_SKB_PAD
2985 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2986 #endif
2987 
2988 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2989 
2990 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2991 {
2992     if (WARN_ON(skb_is_nonlinear(skb)))
2993         return;
2994     skb->len = len;
2995     skb_set_tail_pointer(skb, len);
2996 }
2997 
2998 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2999 {
3000     __skb_set_length(skb, len);
3001 }
3002 
3003 void skb_trim(struct sk_buff *skb, unsigned int len);
3004 
3005 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3006 {
3007     if (skb->data_len)
3008         return ___pskb_trim(skb, len);
3009     __skb_trim(skb, len);
3010     return 0;
3011 }
3012 
3013 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3014 {
3015     return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3016 }
3017 
3018 /**
3019  *  pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3020  *  @skb: buffer to alter
3021  *  @len: new length
3022  *
3023  *  This is identical to pskb_trim except that the caller knows that
3024  *  the skb is not cloned so we should never get an error due to out-
3025  *  of-memory.
3026  */
3027 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3028 {
3029     int err = pskb_trim(skb, len);
3030     BUG_ON(err);
3031 }
3032 
3033 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3034 {
3035     unsigned int diff = len - skb->len;
3036 
3037     if (skb_tailroom(skb) < diff) {
3038         int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3039                        GFP_ATOMIC);
3040         if (ret)
3041             return ret;
3042     }
3043     __skb_set_length(skb, len);
3044     return 0;
3045 }
3046 
3047 /**
3048  *  skb_orphan - orphan a buffer
3049  *  @skb: buffer to orphan
3050  *
3051  *  If a buffer currently has an owner then we call the owner's
3052  *  destructor function and make the @skb unowned. The buffer continues
3053  *  to exist but is no longer charged to its former owner.
3054  */
3055 static inline void skb_orphan(struct sk_buff *skb)
3056 {
3057     if (skb->destructor) {
3058         skb->destructor(skb);
3059         skb->destructor = NULL;
3060         skb->sk     = NULL;
3061     } else {
3062         BUG_ON(skb->sk);
3063     }
3064 }
3065 
3066 /**
3067  *  skb_orphan_frags - orphan the frags contained in a buffer
3068  *  @skb: buffer to orphan frags from
3069  *  @gfp_mask: allocation mask for replacement pages
3070  *
3071  *  For each frag in the SKB which needs a destructor (i.e. has an
3072  *  owner) create a copy of that frag and release the original
3073  *  page by calling the destructor.
3074  */
3075 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3076 {
3077     if (likely(!skb_zcopy(skb)))
3078         return 0;
3079     if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3080         return 0;
3081     return skb_copy_ubufs(skb, gfp_mask);
3082 }
3083 
3084 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3085 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3086 {
3087     if (likely(!skb_zcopy(skb)))
3088         return 0;
3089     return skb_copy_ubufs(skb, gfp_mask);
3090 }
3091 
3092 /**
3093  *  __skb_queue_purge - empty a list
3094  *  @list: list to empty
3095  *
3096  *  Delete all buffers on an &sk_buff list. Each buffer is removed from
3097  *  the list and one reference dropped. This function does not take the
3098  *  list lock and the caller must hold the relevant locks to use it.
3099  */
3100 static inline void __skb_queue_purge(struct sk_buff_head *list)
3101 {
3102     struct sk_buff *skb;
3103     while ((skb = __skb_dequeue(list)) != NULL)
3104         kfree_skb(skb);
3105 }
3106 void skb_queue_purge(struct sk_buff_head *list);
3107 
3108 unsigned int skb_rbtree_purge(struct rb_root *root);
3109 
3110 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3111 
3112 /**
3113  * netdev_alloc_frag - allocate a page fragment
3114  * @fragsz: fragment size
3115  *
3116  * Allocates a frag from a page for receive buffer.
3117  * Uses GFP_ATOMIC allocations.
3118  */
3119 static inline void *netdev_alloc_frag(unsigned int fragsz)
3120 {
3121     return __netdev_alloc_frag_align(fragsz, ~0u);
3122 }
3123 
3124 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3125                         unsigned int align)
3126 {
3127     WARN_ON_ONCE(!is_power_of_2(align));
3128     return __netdev_alloc_frag_align(fragsz, -align);
3129 }
3130 
3131 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3132                    gfp_t gfp_mask);
3133 
3134 /**
3135  *  netdev_alloc_skb - allocate an skbuff for rx on a specific device
3136  *  @dev: network device to receive on
3137  *  @length: length to allocate
3138  *
3139  *  Allocate a new &sk_buff and assign it a usage count of one. The
3140  *  buffer has unspecified headroom built in. Users should allocate
3141  *  the headroom they think they need without accounting for the
3142  *  built in space. The built in space is used for optimisations.
3143  *
3144  *  %NULL is returned if there is no free memory. Although this function
3145  *  allocates memory it can be called from an interrupt.
3146  */
3147 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3148                            unsigned int length)
3149 {
3150     return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3151 }
3152 
3153 /* legacy helper around __netdev_alloc_skb() */
3154 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3155                           gfp_t gfp_mask)
3156 {
3157     return __netdev_alloc_skb(NULL, length, gfp_mask);
3158 }
3159 
3160 /* legacy helper around netdev_alloc_skb() */
3161 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3162 {
3163     return netdev_alloc_skb(NULL, length);
3164 }
3165 
3166 
3167 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3168         unsigned int length, gfp_t gfp)
3169 {
3170     struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3171 
3172     if (NET_IP_ALIGN && skb)
3173         skb_reserve(skb, NET_IP_ALIGN);
3174     return skb;
3175 }
3176 
3177 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3178         unsigned int length)
3179 {
3180     return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3181 }
3182 
3183 static inline void skb_free_frag(void *addr)
3184 {
3185     page_frag_free(addr);
3186 }
3187 
3188 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3189 
3190 static inline void *napi_alloc_frag(unsigned int fragsz)
3191 {
3192     return __napi_alloc_frag_align(fragsz, ~0u);
3193 }
3194 
3195 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3196                       unsigned int align)
3197 {
3198     WARN_ON_ONCE(!is_power_of_2(align));
3199     return __napi_alloc_frag_align(fragsz, -align);
3200 }
3201 
3202 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3203                  unsigned int length, gfp_t gfp_mask);
3204 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3205                          unsigned int length)
3206 {
3207     return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3208 }
3209 void napi_consume_skb(struct sk_buff *skb, int budget);
3210 
3211 void napi_skb_free_stolen_head(struct sk_buff *skb);
3212 void __kfree_skb_defer(struct sk_buff *skb);
3213 
3214 /**
3215  * __dev_alloc_pages - allocate page for network Rx
3216  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3217  * @order: size of the allocation
3218  *
3219  * Allocate a new page.
3220  *
3221  * %NULL is returned if there is no free memory.
3222 */
3223 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3224                          unsigned int order)
3225 {
3226     /* This piece of code contains several assumptions.
3227      * 1.  This is for device Rx, therefor a cold page is preferred.
3228      * 2.  The expectation is the user wants a compound page.
3229      * 3.  If requesting a order 0 page it will not be compound
3230      *     due to the check to see if order has a value in prep_new_page
3231      * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3232      *     code in gfp_to_alloc_flags that should be enforcing this.
3233      */
3234     gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3235 
3236     return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3237 }
3238 
3239 static inline struct page *dev_alloc_pages(unsigned int order)
3240 {
3241     return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3242 }
3243 
3244 /**
3245  * __dev_alloc_page - allocate a page for network Rx
3246  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3247  *
3248  * Allocate a new page.
3249  *
3250  * %NULL is returned if there is no free memory.
3251  */
3252 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3253 {
3254     return __dev_alloc_pages(gfp_mask, 0);
3255 }
3256 
3257 static inline struct page *dev_alloc_page(void)
3258 {
3259     return dev_alloc_pages(0);
3260 }
3261 
3262 /**
3263  * dev_page_is_reusable - check whether a page can be reused for network Rx
3264  * @page: the page to test
3265  *
3266  * A page shouldn't be considered for reusing/recycling if it was allocated
3267  * under memory pressure or at a distant memory node.
3268  *
3269  * Returns false if this page should be returned to page allocator, true
3270  * otherwise.
3271  */
3272 static inline bool dev_page_is_reusable(const struct page *page)
3273 {
3274     return likely(page_to_nid(page) == numa_mem_id() &&
3275               !page_is_pfmemalloc(page));
3276 }
3277 
3278 /**
3279  *  skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3280  *  @page: The page that was allocated from skb_alloc_page
3281  *  @skb: The skb that may need pfmemalloc set
3282  */
3283 static inline void skb_propagate_pfmemalloc(const struct page *page,
3284                         struct sk_buff *skb)
3285 {
3286     if (page_is_pfmemalloc(page))
3287         skb->pfmemalloc = true;
3288 }
3289 
3290 /**
3291  * skb_frag_off() - Returns the offset of a skb fragment
3292  * @frag: the paged fragment
3293  */
3294 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3295 {
3296     return frag->bv_offset;
3297 }
3298 
3299 /**
3300  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3301  * @frag: skb fragment
3302  * @delta: value to add
3303  */
3304 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3305 {
3306     frag->bv_offset += delta;
3307 }
3308 
3309 /**
3310  * skb_frag_off_set() - Sets the offset of a skb fragment
3311  * @frag: skb fragment
3312  * @offset: offset of fragment
3313  */
3314 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3315 {
3316     frag->bv_offset = offset;
3317 }
3318 
3319 /**
3320  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3321  * @fragto: skb fragment where offset is set
3322  * @fragfrom: skb fragment offset is copied from
3323  */
3324 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3325                      const skb_frag_t *fragfrom)
3326 {
3327     fragto->bv_offset = fragfrom->bv_offset;
3328 }
3329 
3330 /**
3331  * skb_frag_page - retrieve the page referred to by a paged fragment
3332  * @frag: the paged fragment
3333  *
3334  * Returns the &struct page associated with @frag.
3335  */
3336 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3337 {
3338     return frag->bv_page;
3339 }
3340 
3341 /**
3342  * __skb_frag_ref - take an addition reference on a paged fragment.
3343  * @frag: the paged fragment
3344  *
3345  * Takes an additional reference on the paged fragment @frag.
3346  */
3347 static inline void __skb_frag_ref(skb_frag_t *frag)
3348 {
3349     get_page(skb_frag_page(frag));
3350 }
3351 
3352 /**
3353  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3354  * @skb: the buffer
3355  * @f: the fragment offset.
3356  *
3357  * Takes an additional reference on the @f'th paged fragment of @skb.
3358  */
3359 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3360 {
3361     __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3362 }
3363 
3364 /**
3365  * __skb_frag_unref - release a reference on a paged fragment.
3366  * @frag: the paged fragment
3367  * @recycle: recycle the page if allocated via page_pool
3368  *
3369  * Releases a reference on the paged fragment @frag
3370  * or recycles the page via the page_pool API.
3371  */
3372 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3373 {
3374     struct page *page = skb_frag_page(frag);
3375 
3376 #ifdef CONFIG_PAGE_POOL
3377     if (recycle && page_pool_return_skb_page(page))
3378         return;
3379 #endif
3380     put_page(page);
3381 }
3382 
3383 /**
3384  * skb_frag_unref - release a reference on a paged fragment of an skb.
3385  * @skb: the buffer
3386  * @f: the fragment offset
3387  *
3388  * Releases a reference on the @f'th paged fragment of @skb.
3389  */
3390 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3391 {
3392     struct skb_shared_info *shinfo = skb_shinfo(skb);
3393 
3394     if (!skb_zcopy_managed(skb))
3395         __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3396 }
3397 
3398 /**
3399  * skb_frag_address - gets the address of the data contained in a paged fragment
3400  * @frag: the paged fragment buffer
3401  *
3402  * Returns the address of the data within @frag. The page must already
3403  * be mapped.
3404  */
3405 static inline void *skb_frag_address(const skb_frag_t *frag)
3406 {
3407     return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3408 }
3409 
3410 /**
3411  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3412  * @frag: the paged fragment buffer
3413  *
3414  * Returns the address of the data within @frag. Checks that the page
3415  * is mapped and returns %NULL otherwise.
3416  */
3417 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3418 {
3419     void *ptr = page_address(skb_frag_page(frag));
3420     if (unlikely(!ptr))
3421         return NULL;
3422 
3423     return ptr + skb_frag_off(frag);
3424 }
3425 
3426 /**
3427  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3428  * @fragto: skb fragment where page is set
3429  * @fragfrom: skb fragment page is copied from
3430  */
3431 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3432                       const skb_frag_t *fragfrom)
3433 {
3434     fragto->bv_page = fragfrom->bv_page;
3435 }
3436 
3437 /**
3438  * __skb_frag_set_page - sets the page contained in a paged fragment
3439  * @frag: the paged fragment
3440  * @page: the page to set
3441  *
3442  * Sets the fragment @frag to contain @page.
3443  */
3444 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3445 {
3446     frag->bv_page = page;
3447 }
3448 
3449 /**
3450  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3451  * @skb: the buffer
3452  * @f: the fragment offset
3453  * @page: the page to set
3454  *
3455  * Sets the @f'th fragment of @skb to contain @page.
3456  */
3457 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3458                      struct page *page)
3459 {
3460     __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3461 }
3462 
3463 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3464 
3465 /**
3466  * skb_frag_dma_map - maps a paged fragment via the DMA API
3467  * @dev: the device to map the fragment to
3468  * @frag: the paged fragment to map
3469  * @offset: the offset within the fragment (starting at the
3470  *          fragment's own offset)
3471  * @size: the number of bytes to map
3472  * @dir: the direction of the mapping (``PCI_DMA_*``)
3473  *
3474  * Maps the page associated with @frag to @device.
3475  */
3476 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3477                       const skb_frag_t *frag,
3478                       size_t offset, size_t size,
3479                       enum dma_data_direction dir)
3480 {
3481     return dma_map_page(dev, skb_frag_page(frag),
3482                 skb_frag_off(frag) + offset, size, dir);
3483 }
3484 
3485 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3486                     gfp_t gfp_mask)
3487 {
3488     return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3489 }
3490 
3491 
3492 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3493                           gfp_t gfp_mask)
3494 {
3495     return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3496 }
3497 
3498 
3499 /**
3500  *  skb_clone_writable - is the header of a clone writable
3501  *  @skb: buffer to check
3502  *  @len: length up to which to write
3503  *
3504  *  Returns true if modifying the header part of the cloned buffer
3505  *  does not requires the data to be copied.
3506  */
3507 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3508 {
3509     return !skb_header_cloned(skb) &&
3510            skb_headroom(skb) + len <= skb->hdr_len;
3511 }
3512 
3513 static inline int skb_try_make_writable(struct sk_buff *skb,
3514                     unsigned int write_len)
3515 {
3516     return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3517            pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3518 }
3519 
3520 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3521                 int cloned)
3522 {
3523     int delta = 0;
3524 
3525     if (headroom > skb_headroom(skb))
3526         delta = headroom - skb_headroom(skb);
3527 
3528     if (delta || cloned)
3529         return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3530                     GFP_ATOMIC);
3531     return 0;
3532 }
3533 
3534 /**
3535  *  skb_cow - copy header of skb when it is required
3536  *  @skb: buffer to cow
3537  *  @headroom: needed headroom
3538  *
3539  *  If the skb passed lacks sufficient headroom or its data part
3540  *  is shared, data is reallocated. If reallocation fails, an error
3541  *  is returned and original skb is not changed.
3542  *
3543  *  The result is skb with writable area skb->head...skb->tail
3544  *  and at least @headroom of space at head.
3545  */
3546 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3547 {
3548     return __skb_cow(skb, headroom, skb_cloned(skb));
3549 }
3550 
3551 /**
3552  *  skb_cow_head - skb_cow but only making the head writable
3553  *  @skb: buffer to cow
3554  *  @headroom: needed headroom
3555  *
3556  *  This function is identical to skb_cow except that we replace the
3557  *  skb_cloned check by skb_header_cloned.  It should be used when
3558  *  you only need to push on some header and do not need to modify
3559  *  the data.
3560  */
3561 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3562 {
3563     return __skb_cow(skb, headroom, skb_header_cloned(skb));
3564 }
3565 
3566 /**
3567  *  skb_padto   - pad an skbuff up to a minimal size
3568  *  @skb: buffer to pad
3569  *  @len: minimal length
3570  *
3571  *  Pads up a buffer to ensure the trailing bytes exist and are
3572  *  blanked. If the buffer already contains sufficient data it
3573  *  is untouched. Otherwise it is extended. Returns zero on
3574  *  success. The skb is freed on error.
3575  */
3576 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3577 {
3578     unsigned int size = skb->len;
3579     if (likely(size >= len))
3580         return 0;
3581     return skb_pad(skb, len - size);
3582 }
3583 
3584 /**
3585  *  __skb_put_padto - increase size and pad an skbuff up to a minimal size
3586  *  @skb: buffer to pad
3587  *  @len: minimal length
3588  *  @free_on_error: free buffer on error
3589  *
3590  *  Pads up a buffer to ensure the trailing bytes exist and are
3591  *  blanked. If the buffer already contains sufficient data it
3592  *  is untouched. Otherwise it is extended. Returns zero on
3593  *  success. The skb is freed on error if @free_on_error is true.
3594  */
3595 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3596                            unsigned int len,
3597                            bool free_on_error)
3598 {
3599     unsigned int size = skb->len;
3600 
3601     if (unlikely(size < len)) {
3602         len -= size;
3603         if (__skb_pad(skb, len, free_on_error))
3604             return -ENOMEM;
3605         __skb_put(skb, len);
3606     }
3607     return 0;
3608 }
3609 
3610 /**
3611  *  skb_put_padto - increase size and pad an skbuff up to a minimal size
3612  *  @skb: buffer to pad
3613  *  @len: minimal length
3614  *
3615  *  Pads up a buffer to ensure the trailing bytes exist and are
3616  *  blanked. If the buffer already contains sufficient data it
3617  *  is untouched. Otherwise it is extended. Returns zero on
3618  *  success. The skb is freed on error.
3619  */
3620 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3621 {
3622     return __skb_put_padto(skb, len, true);
3623 }
3624 
3625 static inline int skb_add_data(struct sk_buff *skb,
3626                    struct iov_iter *from, int copy)
3627 {
3628     const int off = skb->len;
3629 
3630     if (skb->ip_summed == CHECKSUM_NONE) {
3631         __wsum csum = 0;
3632         if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3633                              &csum, from)) {
3634             skb->csum = csum_block_add(skb->csum, csum, off);
3635             return 0;
3636         }
3637     } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3638         return 0;
3639 
3640     __skb_trim(skb, off);
3641     return -EFAULT;
3642 }
3643 
3644 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3645                     const struct page *page, int off)
3646 {
3647     if (skb_zcopy(skb))
3648         return false;
3649     if (i) {
3650         const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3651 
3652         return page == skb_frag_page(frag) &&
3653                off == skb_frag_off(frag) + skb_frag_size(frag);
3654     }
3655     return false;
3656 }
3657 
3658 static inline int __skb_linearize(struct sk_buff *skb)
3659 {
3660     return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3661 }
3662 
3663 /**
3664  *  skb_linearize - convert paged skb to linear one
3665  *  @skb: buffer to linarize
3666  *
3667  *  If there is no free memory -ENOMEM is returned, otherwise zero
3668  *  is returned and the old skb data released.
3669  */
3670 static inline int skb_linearize(struct sk_buff *skb)
3671 {
3672     return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3673 }
3674 
3675 /**
3676  * skb_has_shared_frag - can any frag be overwritten
3677  * @skb: buffer to test
3678  *
3679  * Return true if the skb has at least one frag that might be modified
3680  * by an external entity (as in vmsplice()/sendfile())
3681  */
3682 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3683 {
3684     return skb_is_nonlinear(skb) &&
3685            skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3686 }
3687 
3688 /**
3689  *  skb_linearize_cow - make sure skb is linear and writable
3690  *  @skb: buffer to process
3691  *
3692  *  If there is no free memory -ENOMEM is returned, otherwise zero
3693  *  is returned and the old skb data released.
3694  */
3695 static inline int skb_linearize_cow(struct sk_buff *skb)
3696 {
3697     return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3698            __skb_linearize(skb) : 0;
3699 }
3700 
3701 static __always_inline void
3702 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3703              unsigned int off)
3704 {
3705     if (skb->ip_summed == CHECKSUM_COMPLETE)
3706         skb->csum = csum_block_sub(skb->csum,
3707                        csum_partial(start, len, 0), off);
3708     else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3709          skb_checksum_start_offset(skb) < 0)
3710         skb->ip_summed = CHECKSUM_NONE;
3711 }
3712 
3713 /**
3714  *  skb_postpull_rcsum - update checksum for received skb after pull
3715  *  @skb: buffer to update
3716  *  @start: start of data before pull
3717  *  @len: length of data pulled
3718  *
3719  *  After doing a pull on a received packet, you need to call this to
3720  *  update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3721  *  CHECKSUM_NONE so that it can be recomputed from scratch.
3722  */
3723 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3724                       const void *start, unsigned int len)
3725 {
3726     if (skb->ip_summed == CHECKSUM_COMPLETE)
3727         skb->csum = wsum_negate(csum_partial(start, len,
3728                              wsum_negate(skb->csum)));
3729     else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3730          skb_checksum_start_offset(skb) < 0)
3731         skb->ip_summed = CHECKSUM_NONE;
3732 }
3733 
3734 static __always_inline void
3735 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3736              unsigned int off)
3737 {
3738     if (skb->ip_summed == CHECKSUM_COMPLETE)
3739         skb->csum = csum_block_add(skb->csum,
3740                        csum_partial(start, len, 0), off);
3741 }
3742 
3743 /**
3744  *  skb_postpush_rcsum - update checksum for received skb after push
3745  *  @skb: buffer to update
3746  *  @start: start of data after push
3747  *  @len: length of data pushed
3748  *
3749  *  After doing a push on a received packet, you need to call this to
3750  *  update the CHECKSUM_COMPLETE checksum.
3751  */
3752 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3753                       const void *start, unsigned int len)
3754 {
3755     __skb_postpush_rcsum(skb, start, len, 0);
3756 }
3757 
3758 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3759 
3760 /**
3761  *  skb_push_rcsum - push skb and update receive checksum
3762  *  @skb: buffer to update
3763  *  @len: length of data pulled
3764  *
3765  *  This function performs an skb_push on the packet and updates
3766  *  the CHECKSUM_COMPLETE checksum.  It should be used on
3767  *  receive path processing instead of skb_push unless you know
3768  *  that the checksum difference is zero (e.g., a valid IP header)
3769  *  or you are setting ip_summed to CHECKSUM_NONE.
3770  */
3771 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3772 {
3773     skb_push(skb, len);
3774     skb_postpush_rcsum(skb, skb->data, len);
3775     return skb->data;
3776 }
3777 
3778 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3779 /**
3780  *  pskb_trim_rcsum - trim received skb and update checksum
3781  *  @skb: buffer to trim
3782  *  @len: new length
3783  *
3784  *  This is exactly the same as pskb_trim except that it ensures the
3785  *  checksum of received packets are still valid after the operation.
3786  *  It can change skb pointers.
3787  */
3788 
3789 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3790 {
3791     if (likely(len >= skb->len))
3792         return 0;
3793     return pskb_trim_rcsum_slow(skb, len);
3794 }
3795 
3796 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3797 {
3798     if (skb->ip_summed == CHECKSUM_COMPLETE)
3799         skb->ip_summed = CHECKSUM_NONE;
3800     __skb_trim(skb, len);
3801     return 0;
3802 }
3803 
3804 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3805 {
3806     if (skb->ip_summed == CHECKSUM_COMPLETE)
3807         skb->ip_summed = CHECKSUM_NONE;
3808     return __skb_grow(skb, len);
3809 }
3810 
3811 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3812 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3813 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3814 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3815 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3816 
3817 #define skb_queue_walk(queue, skb) \
3818         for (skb = (queue)->next;                   \
3819              skb != (struct sk_buff *)(queue);              \
3820              skb = skb->next)
3821 
3822 #define skb_queue_walk_safe(queue, skb, tmp)                    \
3823         for (skb = (queue)->next, tmp = skb->next;          \
3824              skb != (struct sk_buff *)(queue);              \
3825              skb = tmp, tmp = skb->next)
3826 
3827 #define skb_queue_walk_from(queue, skb)                     \
3828         for (; skb != (struct sk_buff *)(queue);            \
3829              skb = skb->next)
3830 
3831 #define skb_rbtree_walk(skb, root)                      \
3832         for (skb = skb_rb_first(root); skb != NULL;         \
3833              skb = skb_rb_next(skb))
3834 
3835 #define skb_rbtree_walk_from(skb)                       \
3836         for (; skb != NULL;                     \
3837              skb = skb_rb_next(skb))
3838 
3839 #define skb_rbtree_walk_from_safe(skb, tmp)                 \
3840         for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);  \
3841              skb = tmp)
3842 
3843 #define skb_queue_walk_from_safe(queue, skb, tmp)               \
3844         for (tmp = skb->next;                       \
3845              skb != (struct sk_buff *)(queue);              \
3846              skb = tmp, tmp = skb->next)
3847 
3848 #define skb_queue_reverse_walk(queue, skb) \
3849         for (skb = (queue)->prev;                   \
3850              skb != (struct sk_buff *)(queue);              \
3851              skb = skb->prev)
3852 
3853 #define skb_queue_reverse_walk_safe(queue, skb, tmp)                \
3854         for (skb = (queue)->prev, tmp = skb->prev;          \
3855              skb != (struct sk_buff *)(queue);              \
3856              skb = tmp, tmp = skb->prev)
3857 
3858 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)           \
3859         for (tmp = skb->prev;                       \
3860              skb != (struct sk_buff *)(queue);              \
3861              skb = tmp, tmp = skb->prev)
3862 
3863 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3864 {
3865     return skb_shinfo(skb)->frag_list != NULL;
3866 }
3867 
3868 static inline void skb_frag_list_init(struct sk_buff *skb)
3869 {
3870     skb_shinfo(skb)->frag_list = NULL;
3871 }
3872 
3873 #define skb_walk_frags(skb, iter)   \
3874     for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3875 
3876 
3877 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3878                 int *err, long *timeo_p,
3879                 const struct sk_buff *skb);
3880 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3881                       struct sk_buff_head *queue,
3882                       unsigned int flags,
3883                       int *off, int *err,
3884                       struct sk_buff **last);
3885 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3886                     struct sk_buff_head *queue,
3887                     unsigned int flags, int *off, int *err,
3888                     struct sk_buff **last);
3889 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3890                     struct sk_buff_head *sk_queue,
3891                     unsigned int flags, int *off, int *err);
3892 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3893 __poll_t datagram_poll(struct file *file, struct socket *sock,
3894                struct poll_table_struct *wait);
3895 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3896                struct iov_iter *to, int size);
3897 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3898                     struct msghdr *msg, int size)
3899 {
3900     return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3901 }
3902 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3903                    struct msghdr *msg);
3904 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3905                struct iov_iter *to, int len,
3906                struct ahash_request *hash);
3907 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3908                  struct iov_iter *from, int len);
3909 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3910 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3911 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3912 static inline void skb_free_datagram_locked(struct sock *sk,
3913                         struct sk_buff *skb)
3914 {
3915     __skb_free_datagram_locked(sk, skb, 0);
3916 }
3917 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3918 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3919 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3920 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3921                   int len);
3922 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3923             struct pipe_inode_info *pipe, unsigned int len,
3924             unsigned int flags);
3925 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3926              int len);
3927 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3928 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3929 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3930 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3931          int len, int hlen);
3932 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3933 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3934 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3935 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3936 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3937 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3938 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3939                  unsigned int offset);
3940 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3941 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3942 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3943 int skb_vlan_pop(struct sk_buff *skb);
3944 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3945 int skb_eth_pop(struct sk_buff *skb);
3946 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3947          const unsigned char *src);
3948 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3949           int mac_len, bool ethernet);
3950 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3951          bool ethernet);
3952 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3953 int skb_mpls_dec_ttl(struct sk_buff *skb);
3954 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3955                  gfp_t gfp);
3956 
3957 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3958 {
3959     return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3960 }
3961 
3962 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3963 {
3964     return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3965 }
3966 
3967 struct skb_checksum_ops {
3968     __wsum (*update)(const void *mem, int len, __wsum wsum);
3969     __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3970 };
3971 
3972 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3973 
3974 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3975               __wsum csum, const struct skb_checksum_ops *ops);
3976 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3977             __wsum csum);
3978 
3979 static inline void * __must_check
3980 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3981              const void *data, int hlen, void *buffer)
3982 {
3983     if (likely(hlen - offset >= len))
3984         return (void *)data + offset;
3985 
3986     if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3987         return NULL;
3988 
3989     return buffer;
3990 }
3991 
3992 static inline void * __must_check
3993 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3994 {
3995     return __skb_header_pointer(skb, offset, len, skb->data,
3996                     skb_headlen(skb), buffer);
3997 }
3998 
3999 /**
4000  *  skb_needs_linearize - check if we need to linearize a given skb
4001  *                depending on the given device features.
4002  *  @skb: socket buffer to check
4003  *  @features: net device features
4004  *
4005  *  Returns true if either:
4006  *  1. skb has frag_list and the device doesn't support FRAGLIST, or
4007  *  2. skb is fragmented and the device does not support SG.
4008  */
4009 static inline bool skb_needs_linearize(struct sk_buff *skb,
4010                        netdev_features_t features)
4011 {
4012     return skb_is_nonlinear(skb) &&
4013            ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4014         (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4015 }
4016 
4017 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4018                          void *to,
4019                          const unsigned int len)
4020 {
4021     memcpy(to, skb->data, len);
4022 }
4023 
4024 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4025                             const int offset, void *to,
4026                             const unsigned int len)
4027 {
4028     memcpy(to, skb->data + offset, len);
4029 }
4030 
4031 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4032                        const void *from,
4033                        const unsigned int len)
4034 {
4035     memcpy(skb->data, from, len);
4036 }
4037 
4038 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4039                           const int offset,
4040                           const void *from,
4041                           const unsigned int len)
4042 {
4043     memcpy(skb->data + offset, from, len);
4044 }
4045 
4046 void skb_init(void);
4047 
4048 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4049 {
4050     return skb->tstamp;
4051 }
4052 
4053 /**
4054  *  skb_get_timestamp - get timestamp from a skb
4055  *  @skb: skb to get stamp from
4056  *  @stamp: pointer to struct __kernel_old_timeval to store stamp in
4057  *
4058  *  Timestamps are stored in the skb as offsets to a base timestamp.
4059  *  This function converts the offset back to a struct timeval and stores
4060  *  it in stamp.
4061  */
4062 static inline void skb_get_timestamp(const struct sk_buff *skb,
4063                      struct __kernel_old_timeval *stamp)
4064 {
4065     *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4066 }
4067 
4068 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4069                      struct __kernel_sock_timeval *stamp)
4070 {
4071     struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4072 
4073     stamp->tv_sec = ts.tv_sec;
4074     stamp->tv_usec = ts.tv_nsec / 1000;
4075 }
4076 
4077 static inline void skb_get_timestampns(const struct sk_buff *skb,
4078                        struct __kernel_old_timespec *stamp)
4079 {
4080     struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4081 
4082     stamp->tv_sec = ts.tv_sec;
4083     stamp->tv_nsec = ts.tv_nsec;
4084 }
4085 
4086 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4087                        struct __kernel_timespec *stamp)
4088 {
4089     struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4090 
4091     stamp->tv_sec = ts.tv_sec;
4092     stamp->tv_nsec = ts.tv_nsec;
4093 }
4094 
4095 static inline void __net_timestamp(struct sk_buff *skb)
4096 {
4097     skb->tstamp = ktime_get_real();
4098     skb->mono_delivery_time = 0;
4099 }
4100 
4101 static inline ktime_t net_timedelta(ktime_t t)
4102 {
4103     return ktime_sub(ktime_get_real(), t);
4104 }
4105 
4106 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4107                      bool mono)
4108 {
4109     skb->tstamp = kt;
4110     skb->mono_delivery_time = kt && mono;
4111 }
4112 
4113 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4114 
4115 /* It is used in the ingress path to clear the delivery_time.
4116  * If needed, set the skb->tstamp to the (rcv) timestamp.
4117  */
4118 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4119 {
4120     if (skb->mono_delivery_time) {
4121         skb->mono_delivery_time = 0;
4122         if (static_branch_unlikely(&netstamp_needed_key))
4123             skb->tstamp = ktime_get_real();
4124         else
4125             skb->tstamp = 0;
4126     }
4127 }
4128 
4129 static inline void skb_clear_tstamp(struct sk_buff *skb)
4130 {
4131     if (skb->mono_delivery_time)
4132         return;
4133 
4134     skb->tstamp = 0;
4135 }
4136 
4137 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4138 {
4139     if (skb->mono_delivery_time)
4140         return 0;
4141 
4142     return skb->tstamp;
4143 }
4144 
4145 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4146 {
4147     if (!skb->mono_delivery_time && skb->tstamp)
4148         return skb->tstamp;
4149 
4150     if (static_branch_unlikely(&netstamp_needed_key) || cond)
4151         return ktime_get_real();
4152 
4153     return 0;
4154 }
4155 
4156 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4157 {
4158     return skb_shinfo(skb)->meta_len;
4159 }
4160 
4161 static inline void *skb_metadata_end(const struct sk_buff *skb)
4162 {
4163     return skb_mac_header(skb);
4164 }
4165 
4166 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4167                       const struct sk_buff *skb_b,
4168                       u8 meta_len)
4169 {
4170     const void *a = skb_metadata_end(skb_a);
4171     const void *b = skb_metadata_end(skb_b);
4172     /* Using more efficient varaiant than plain call to memcmp(). */
4173 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4174     u64 diffs = 0;
4175 
4176     switch (meta_len) {
4177 #define __it(x, op) (x -= sizeof(u##op))
4178 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4179     case 32: diffs |= __it_diff(a, b, 64);
4180         fallthrough;
4181     case 24: diffs |= __it_diff(a, b, 64);
4182         fallthrough;
4183     case 16: diffs |= __it_diff(a, b, 64);
4184         fallthrough;
4185     case  8: diffs |= __it_diff(a, b, 64);
4186         break;
4187     case 28: diffs |= __it_diff(a, b, 64);
4188         fallthrough;
4189     case 20: diffs |= __it_diff(a, b, 64);
4190         fallthrough;
4191     case 12: diffs |= __it_diff(a, b, 64);
4192         fallthrough;
4193     case  4: diffs |= __it_diff(a, b, 32);
4194         break;
4195     }
4196     return diffs;
4197 #else
4198     return memcmp(a - meta_len, b - meta_len, meta_len);
4199 #endif
4200 }
4201 
4202 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4203                     const struct sk_buff *skb_b)
4204 {
4205     u8 len_a = skb_metadata_len(skb_a);
4206     u8 len_b = skb_metadata_len(skb_b);
4207 
4208     if (!(len_a | len_b))
4209         return false;
4210 
4211     return len_a != len_b ?
4212            true : __skb_metadata_differs(skb_a, skb_b, len_a);
4213 }
4214 
4215 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4216 {
4217     skb_shinfo(skb)->meta_len = meta_len;
4218 }
4219 
4220 static inline void skb_metadata_clear(struct sk_buff *skb)
4221 {
4222     skb_metadata_set(skb, 0);
4223 }
4224 
4225 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4226 
4227 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4228 
4229 void skb_clone_tx_timestamp(struct sk_buff *skb);
4230 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4231 
4232 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4233 
4234 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4235 {
4236 }
4237 
4238 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4239 {
4240     return false;
4241 }
4242 
4243 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4244 
4245 /**
4246  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4247  *
4248  * PHY drivers may accept clones of transmitted packets for
4249  * timestamping via their phy_driver.txtstamp method. These drivers
4250  * must call this function to return the skb back to the stack with a
4251  * timestamp.
4252  *
4253  * @skb: clone of the original outgoing packet
4254  * @hwtstamps: hardware time stamps
4255  *
4256  */
4257 void skb_complete_tx_timestamp(struct sk_buff *skb,
4258                    struct skb_shared_hwtstamps *hwtstamps);
4259 
4260 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4261              struct skb_shared_hwtstamps *hwtstamps,
4262              struct sock *sk, int tstype);
4263 
4264 /**
4265  * skb_tstamp_tx - queue clone of skb with send time stamps
4266  * @orig_skb:   the original outgoing packet
4267  * @hwtstamps:  hardware time stamps, may be NULL if not available
4268  *
4269  * If the skb has a socket associated, then this function clones the
4270  * skb (thus sharing the actual data and optional structures), stores
4271  * the optional hardware time stamping information (if non NULL) or
4272  * generates a software time stamp (otherwise), then queues the clone
4273  * to the error queue of the socket.  Errors are silently ignored.
4274  */
4275 void skb_tstamp_tx(struct sk_buff *orig_skb,
4276            struct skb_shared_hwtstamps *hwtstamps);
4277 
4278 /**
4279  * skb_tx_timestamp() - Driver hook for transmit timestamping
4280  *
4281  * Ethernet MAC Drivers should call this function in their hard_xmit()
4282  * function immediately before giving the sk_buff to the MAC hardware.
4283  *
4284  * Specifically, one should make absolutely sure that this function is
4285  * called before TX completion of this packet can trigger.  Otherwise
4286  * the packet could potentially already be freed.
4287  *
4288  * @skb: A socket buffer.
4289  */
4290 static inline void skb_tx_timestamp(struct sk_buff *skb)
4291 {
4292     skb_clone_tx_timestamp(skb);
4293     if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4294         skb_tstamp_tx(skb, NULL);
4295 }
4296 
4297 /**
4298  * skb_complete_wifi_ack - deliver skb with wifi status
4299  *
4300  * @skb: the original outgoing packet
4301  * @acked: ack status
4302  *
4303  */
4304 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4305 
4306 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4307 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4308 
4309 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4310 {
4311     return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4312         skb->csum_valid ||
4313         (skb->ip_summed == CHECKSUM_PARTIAL &&
4314          skb_checksum_start_offset(skb) >= 0));
4315 }
4316 
4317 /**
4318  *  skb_checksum_complete - Calculate checksum of an entire packet
4319  *  @skb: packet to process
4320  *
4321  *  This function calculates the checksum over the entire packet plus
4322  *  the value of skb->csum.  The latter can be used to supply the
4323  *  checksum of a pseudo header as used by TCP/UDP.  It returns the
4324  *  checksum.
4325  *
4326  *  For protocols that contain complete checksums such as ICMP/TCP/UDP,
4327  *  this function can be used to verify that checksum on received
4328  *  packets.  In that case the function should return zero if the
4329  *  checksum is correct.  In particular, this function will return zero
4330  *  if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4331  *  hardware has already verified the correctness of the checksum.
4332  */
4333 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4334 {
4335     return skb_csum_unnecessary(skb) ?
4336            0 : __skb_checksum_complete(skb);
4337 }
4338 
4339 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4340 {
4341     if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4342         if (skb->csum_level == 0)
4343             skb->ip_summed = CHECKSUM_NONE;
4344         else
4345             skb->csum_level--;
4346     }
4347 }
4348 
4349 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4350 {
4351     if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4352         if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4353             skb->csum_level++;
4354     } else if (skb->ip_summed == CHECKSUM_NONE) {
4355         skb->ip_summed = CHECKSUM_UNNECESSARY;
4356         skb->csum_level = 0;
4357     }
4358 }
4359 
4360 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4361 {
4362     if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4363         skb->ip_summed = CHECKSUM_NONE;
4364         skb->csum_level = 0;
4365     }
4366 }
4367 
4368 /* Check if we need to perform checksum complete validation.
4369  *
4370  * Returns true if checksum complete is needed, false otherwise
4371  * (either checksum is unnecessary or zero checksum is allowed).
4372  */
4373 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4374                           bool zero_okay,
4375                           __sum16 check)
4376 {
4377     if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4378         skb->csum_valid = 1;
4379         __skb_decr_checksum_unnecessary(skb);
4380         return false;
4381     }
4382 
4383     return true;
4384 }
4385 
4386 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4387  * in checksum_init.
4388  */
4389 #define CHECKSUM_BREAK 76
4390 
4391 /* Unset checksum-complete
4392  *
4393  * Unset checksum complete can be done when packet is being modified
4394  * (uncompressed for instance) and checksum-complete value is
4395  * invalidated.
4396  */
4397 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4398 {
4399     if (skb->ip_summed == CHECKSUM_COMPLETE)
4400         skb->ip_summed = CHECKSUM_NONE;
4401 }
4402 
4403 /* Validate (init) checksum based on checksum complete.
4404  *
4405  * Return values:
4406  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4407  *  case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4408  *  checksum is stored in skb->csum for use in __skb_checksum_complete
4409  *   non-zero: value of invalid checksum
4410  *
4411  */
4412 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4413                                bool complete,
4414                                __wsum psum)
4415 {
4416     if (skb->ip_summed == CHECKSUM_COMPLETE) {
4417         if (!csum_fold(csum_add(psum, skb->csum))) {
4418             skb->csum_valid = 1;
4419             return 0;
4420         }
4421     }
4422 
4423     skb->csum = psum;
4424 
4425     if (complete || skb->len <= CHECKSUM_BREAK) {
4426         __sum16 csum;
4427 
4428         csum = __skb_checksum_complete(skb);
4429         skb->csum_valid = !csum;
4430         return csum;
4431     }
4432 
4433     return 0;
4434 }
4435 
4436 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4437 {
4438     return 0;
4439 }
4440 
4441 /* Perform checksum validate (init). Note that this is a macro since we only
4442  * want to calculate the pseudo header which is an input function if necessary.
4443  * First we try to validate without any computation (checksum unnecessary) and
4444  * then calculate based on checksum complete calling the function to compute
4445  * pseudo header.
4446  *
4447  * Return values:
4448  *   0: checksum is validated or try to in skb_checksum_complete
4449  *   non-zero: value of invalid checksum
4450  */
4451 #define __skb_checksum_validate(skb, proto, complete,           \
4452                 zero_okay, check, compute_pseudo)   \
4453 ({                                  \
4454     __sum16 __ret = 0;                      \
4455     skb->csum_valid = 0;                        \
4456     if (__skb_checksum_validate_needed(skb, zero_okay, check))  \
4457         __ret = __skb_checksum_validate_complete(skb,       \
4458                 complete, compute_pseudo(skb, proto));  \
4459     __ret;                              \
4460 })
4461 
4462 #define skb_checksum_init(skb, proto, compute_pseudo)           \
4463     __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4464 
4465 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4466     __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4467 
4468 #define skb_checksum_validate(skb, proto, compute_pseudo)       \
4469     __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4470 
4471 #define skb_checksum_validate_zero_check(skb, proto, check,     \
4472                      compute_pseudo)        \
4473     __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4474 
4475 #define skb_checksum_simple_validate(skb)               \
4476     __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4477 
4478 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4479 {
4480     return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4481 }
4482 
4483 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4484 {
4485     skb->csum = ~pseudo;
4486     skb->ip_summed = CHECKSUM_COMPLETE;
4487 }
4488 
4489 #define skb_checksum_try_convert(skb, proto, compute_pseudo)    \
4490 do {                                    \
4491     if (__skb_checksum_convert_check(skb))              \
4492         __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4493 } while (0)
4494 
4495 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4496                           u16 start, u16 offset)
4497 {
4498     skb->ip_summed = CHECKSUM_PARTIAL;
4499     skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4500     skb->csum_offset = offset - start;
4501 }
4502 
4503 /* Update skbuf and packet to reflect the remote checksum offload operation.
4504  * When called, ptr indicates the starting point for skb->csum when
4505  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4506  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4507  */
4508 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4509                        int start, int offset, bool nopartial)
4510 {
4511     __wsum delta;
4512 
4513     if (!nopartial) {
4514         skb_remcsum_adjust_partial(skb, ptr, start, offset);
4515         return;
4516     }
4517 
4518     if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4519         __skb_checksum_complete(skb);
4520         skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4521     }
4522 
4523     delta = remcsum_adjust(ptr, skb->csum, start, offset);
4524 
4525     /* Adjust skb->csum since we changed the packet */
4526     skb->csum = csum_add(skb->csum, delta);
4527 }
4528 
4529 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4530 {
4531 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4532     return (void *)(skb->_nfct & NFCT_PTRMASK);
4533 #else
4534     return NULL;
4535 #endif
4536 }
4537 
4538 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4539 {
4540 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4541     return skb->_nfct;
4542 #else
4543     return 0UL;
4544 #endif
4545 }
4546 
4547 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4548 {
4549 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4550     skb->slow_gro |= !!nfct;
4551     skb->_nfct = nfct;
4552 #endif
4553 }
4554 
4555 #ifdef CONFIG_SKB_EXTENSIONS
4556 enum skb_ext_id {
4557 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4558     SKB_EXT_BRIDGE_NF,
4559 #endif
4560 #ifdef CONFIG_XFRM
4561     SKB_EXT_SEC_PATH,
4562 #endif
4563 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4564     TC_SKB_EXT,
4565 #endif
4566 #if IS_ENABLED(CONFIG_MPTCP)
4567     SKB_EXT_MPTCP,
4568 #endif
4569 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4570     SKB_EXT_MCTP,
4571 #endif
4572     SKB_EXT_NUM, /* must be last */
4573 };
4574 
4575 /**
4576  *  struct skb_ext - sk_buff extensions
4577  *  @refcnt: 1 on allocation, deallocated on 0
4578  *  @offset: offset to add to @data to obtain extension address
4579  *  @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4580  *  @data: start of extension data, variable sized
4581  *
4582  *  Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4583  *  to use 'u8' types while allowing up to 2kb worth of extension data.
4584  */
4585 struct skb_ext {
4586     refcount_t refcnt;
4587     u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4588     u8 chunks;      /* same */
4589     char data[] __aligned(8);
4590 };
4591 
4592 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4593 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4594             struct skb_ext *ext);
4595 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4596 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4597 void __skb_ext_put(struct skb_ext *ext);
4598 
4599 static inline void skb_ext_put(struct sk_buff *skb)
4600 {
4601     if (skb->active_extensions)
4602         __skb_ext_put(skb->extensions);
4603 }
4604 
4605 static inline void __skb_ext_copy(struct sk_buff *dst,
4606                   const struct sk_buff *src)
4607 {
4608     dst->active_extensions = src->active_extensions;
4609 
4610     if (src->active_extensions) {
4611         struct skb_ext *ext = src->extensions;
4612 
4613         refcount_inc(&ext->refcnt);
4614         dst->extensions = ext;
4615     }
4616 }
4617 
4618 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4619 {
4620     skb_ext_put(dst);
4621     __skb_ext_copy(dst, src);
4622 }
4623 
4624 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4625 {
4626     return !!ext->offset[i];
4627 }
4628 
4629 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4630 {
4631     return skb->active_extensions & (1 << id);
4632 }
4633 
4634 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4635 {
4636     if (skb_ext_exist(skb, id))
4637         __skb_ext_del(skb, id);
4638 }
4639 
4640 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4641 {
4642     if (skb_ext_exist(skb, id)) {
4643         struct skb_ext *ext = skb->extensions;
4644 
4645         return (void *)ext + (ext->offset[id] << 3);
4646     }
4647 
4648     return NULL;
4649 }
4650 
4651 static inline void skb_ext_reset(struct sk_buff *skb)
4652 {
4653     if (unlikely(skb->active_extensions)) {
4654         __skb_ext_put(skb->extensions);
4655         skb->active_extensions = 0;
4656     }
4657 }
4658 
4659 static inline bool skb_has_extensions(struct sk_buff *skb)
4660 {
4661     return unlikely(skb->active_extensions);
4662 }
4663 #else
4664 static inline void skb_ext_put(struct sk_buff *skb) {}
4665 static inline void skb_ext_reset(struct sk_buff *skb) {}
4666 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4667 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4668 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4669 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4670 #endif /* CONFIG_SKB_EXTENSIONS */
4671 
4672 static inline void nf_reset_ct(struct sk_buff *skb)
4673 {
4674 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4675     nf_conntrack_put(skb_nfct(skb));
4676     skb->_nfct = 0;
4677 #endif
4678 }
4679 
4680 static inline void nf_reset_trace(struct sk_buff *skb)
4681 {
4682 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4683     skb->nf_trace = 0;
4684 #endif
4685 }
4686 
4687 static inline void ipvs_reset(struct sk_buff *skb)
4688 {
4689 #if IS_ENABLED(CONFIG_IP_VS)
4690     skb->ipvs_property = 0;
4691 #endif
4692 }
4693 
4694 /* Note: This doesn't put any conntrack info in dst. */
4695 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4696                  bool copy)
4697 {
4698 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4699     dst->_nfct = src->_nfct;
4700     nf_conntrack_get(skb_nfct(src));
4701 #endif
4702 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4703     if (copy)
4704         dst->nf_trace = src->nf_trace;
4705 #endif
4706 }
4707 
4708 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4709 {
4710 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4711     nf_conntrack_put(skb_nfct(dst));
4712 #endif
4713     dst->slow_gro = src->slow_gro;
4714     __nf_copy(dst, src, true);
4715 }
4716 
4717 #ifdef CONFIG_NETWORK_SECMARK
4718 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4719 {
4720     to->secmark = from->secmark;
4721 }
4722 
4723 static inline void skb_init_secmark(struct sk_buff *skb)
4724 {
4725     skb->secmark = 0;
4726 }
4727 #else
4728 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4729 { }
4730 
4731 static inline void skb_init_secmark(struct sk_buff *skb)
4732 { }
4733 #endif
4734 
4735 static inline int secpath_exists(const struct sk_buff *skb)
4736 {
4737 #ifdef CONFIG_XFRM
4738     return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4739 #else
4740     return 0;
4741 #endif
4742 }
4743 
4744 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4745 {
4746     return !skb->destructor &&
4747         !secpath_exists(skb) &&
4748         !skb_nfct(skb) &&
4749         !skb->_skb_refdst &&
4750         !skb_has_frag_list(skb);
4751 }
4752 
4753 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4754 {
4755     skb->queue_mapping = queue_mapping;
4756 }
4757 
4758 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4759 {
4760     return skb->queue_mapping;
4761 }
4762 
4763 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4764 {
4765     to->queue_mapping = from->queue_mapping;
4766 }
4767 
4768 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4769 {
4770     skb->queue_mapping = rx_queue + 1;
4771 }
4772 
4773 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4774 {
4775     return skb->queue_mapping - 1;
4776 }
4777 
4778 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4779 {
4780     return skb->queue_mapping != 0;
4781 }
4782 
4783 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4784 {
4785     skb->dst_pending_confirm = val;
4786 }
4787 
4788 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4789 {
4790     return skb->dst_pending_confirm != 0;
4791 }
4792 
4793 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4794 {
4795 #ifdef CONFIG_XFRM
4796     return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4797 #else
4798     return NULL;
4799 #endif
4800 }
4801 
4802 /* Keeps track of mac header offset relative to skb->head.
4803  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4804  * For non-tunnel skb it points to skb_mac_header() and for
4805  * tunnel skb it points to outer mac header.
4806  * Keeps track of level of encapsulation of network headers.
4807  */
4808 struct skb_gso_cb {
4809     union {
4810         int mac_offset;
4811         int data_offset;
4812     };
4813     int encap_level;
4814     __wsum  csum;
4815     __u16   csum_start;
4816 };
4817 #define SKB_GSO_CB_OFFSET   32
4818 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4819 
4820 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4821 {
4822     return (skb_mac_header(inner_skb) - inner_skb->head) -
4823         SKB_GSO_CB(inner_skb)->mac_offset;
4824 }
4825 
4826 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4827 {
4828     int new_headroom, headroom;
4829     int ret;
4830 
4831     headroom = skb_headroom(skb);
4832     ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4833     if (ret)
4834         return ret;
4835 
4836     new_headroom = skb_headroom(skb);
4837     SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4838     return 0;
4839 }
4840 
4841 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4842 {
4843     /* Do not update partial checksums if remote checksum is enabled. */
4844     if (skb->remcsum_offload)
4845         return;
4846 
4847     SKB_GSO_CB(skb)->csum = res;
4848     SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4849 }
4850 
4851 /* Compute the checksum for a gso segment. First compute the checksum value
4852  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4853  * then add in skb->csum (checksum from csum_start to end of packet).
4854  * skb->csum and csum_start are then updated to reflect the checksum of the
4855  * resultant packet starting from the transport header-- the resultant checksum
4856  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4857  * header.
4858  */
4859 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4860 {
4861     unsigned char *csum_start = skb_transport_header(skb);
4862     int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4863     __wsum partial = SKB_GSO_CB(skb)->csum;
4864 
4865     SKB_GSO_CB(skb)->csum = res;
4866     SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4867 
4868     return csum_fold(csum_partial(csum_start, plen, partial));
4869 }
4870 
4871 static inline bool skb_is_gso(const struct sk_buff *skb)
4872 {
4873     return skb_shinfo(skb)->gso_size;
4874 }
4875 
4876 /* Note: Should be called only if skb_is_gso(skb) is true */
4877 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4878 {
4879     return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4880 }
4881 
4882 /* Note: Should be called only if skb_is_gso(skb) is true */
4883 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4884 {
4885     return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4886 }
4887 
4888 /* Note: Should be called only if skb_is_gso(skb) is true */
4889 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4890 {
4891     return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4892 }
4893 
4894 static inline void skb_gso_reset(struct sk_buff *skb)
4895 {
4896     skb_shinfo(skb)->gso_size = 0;
4897     skb_shinfo(skb)->gso_segs = 0;
4898     skb_shinfo(skb)->gso_type = 0;
4899 }
4900 
4901 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4902                      u16 increment)
4903 {
4904     if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4905         return;
4906     shinfo->gso_size += increment;
4907 }
4908 
4909 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4910                      u16 decrement)
4911 {
4912     if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4913         return;
4914     shinfo->gso_size -= decrement;
4915 }
4916 
4917 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4918 
4919 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4920 {
4921     /* LRO sets gso_size but not gso_type, whereas if GSO is really
4922      * wanted then gso_type will be set. */
4923     const struct skb_shared_info *shinfo = skb_shinfo(skb);
4924 
4925     if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4926         unlikely(shinfo->gso_type == 0)) {
4927         __skb_warn_lro_forwarding(skb);
4928         return true;
4929     }
4930     return false;
4931 }
4932 
4933 static inline void skb_forward_csum(struct sk_buff *skb)
4934 {
4935     /* Unfortunately we don't support this one.  Any brave souls? */
4936     if (skb->ip_summed == CHECKSUM_COMPLETE)
4937         skb->ip_summed = CHECKSUM_NONE;
4938 }
4939 
4940 /**
4941  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4942  * @skb: skb to check
4943  *
4944  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4945  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4946  * use this helper, to document places where we make this assertion.
4947  */
4948 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4949 {
4950     DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4951 }
4952 
4953 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4954 
4955 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4956 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4957                      unsigned int transport_len,
4958                      __sum16(*skb_chkf)(struct sk_buff *skb));
4959 
4960 /**
4961  * skb_head_is_locked - Determine if the skb->head is locked down
4962  * @skb: skb to check
4963  *
4964  * The head on skbs build around a head frag can be removed if they are
4965  * not cloned.  This function returns true if the skb head is locked down
4966  * due to either being allocated via kmalloc, or by being a clone with
4967  * multiple references to the head.
4968  */
4969 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4970 {
4971     return !skb->head_frag || skb_cloned(skb);
4972 }
4973 
4974 /* Local Checksum Offload.
4975  * Compute outer checksum based on the assumption that the
4976  * inner checksum will be offloaded later.
4977  * See Documentation/networking/checksum-offloads.rst for
4978  * explanation of how this works.
4979  * Fill in outer checksum adjustment (e.g. with sum of outer
4980  * pseudo-header) before calling.
4981  * Also ensure that inner checksum is in linear data area.
4982  */
4983 static inline __wsum lco_csum(struct sk_buff *skb)
4984 {
4985     unsigned char *csum_start = skb_checksum_start(skb);
4986     unsigned char *l4_hdr = skb_transport_header(skb);
4987     __wsum partial;
4988 
4989     /* Start with complement of inner checksum adjustment */
4990     partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4991                             skb->csum_offset));
4992 
4993     /* Add in checksum of our headers (incl. outer checksum
4994      * adjustment filled in by caller) and return result.
4995      */
4996     return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4997 }
4998 
4999 static inline bool skb_is_redirected(const struct sk_buff *skb)
5000 {
5001     return skb->redirected;
5002 }
5003 
5004 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5005 {
5006     skb->redirected = 1;
5007 #ifdef CONFIG_NET_REDIRECT
5008     skb->from_ingress = from_ingress;
5009     if (skb->from_ingress)
5010         skb_clear_tstamp(skb);
5011 #endif
5012 }
5013 
5014 static inline void skb_reset_redirect(struct sk_buff *skb)
5015 {
5016     skb->redirected = 0;
5017 }
5018 
5019 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5020 {
5021     return skb->csum_not_inet;
5022 }
5023 
5024 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5025                        const u64 kcov_handle)
5026 {
5027 #ifdef CONFIG_KCOV
5028     skb->kcov_handle = kcov_handle;
5029 #endif
5030 }
5031 
5032 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5033 {
5034 #ifdef CONFIG_KCOV
5035     return skb->kcov_handle;
5036 #else
5037     return 0;
5038 #endif
5039 }
5040 
5041 #ifdef CONFIG_PAGE_POOL
5042 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5043 {
5044     skb->pp_recycle = 1;
5045 }
5046 #endif
5047 
5048 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
5049 {
5050     if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
5051         return false;
5052     return page_pool_return_skb_page(virt_to_page(data));
5053 }
5054 
5055 #endif  /* __KERNEL__ */
5056 #endif  /* _LINUX_SKBUFF_H */