![]() |
|
|||
0001 /* SPDX-License-Identifier: GPL-2.0+ */ 0002 /* 0003 * Read-Copy Update mechanism for mutual exclusion 0004 * 0005 * Copyright IBM Corporation, 2001 0006 * 0007 * Author: Dipankar Sarma <dipankar@in.ibm.com> 0008 * 0009 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 0010 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 0011 * Papers: 0012 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 0013 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 0014 * 0015 * For detailed explanation of Read-Copy Update mechanism see - 0016 * http://lse.sourceforge.net/locking/rcupdate.html 0017 * 0018 */ 0019 0020 #ifndef __LINUX_RCUPDATE_H 0021 #define __LINUX_RCUPDATE_H 0022 0023 #include <linux/types.h> 0024 #include <linux/compiler.h> 0025 #include <linux/atomic.h> 0026 #include <linux/irqflags.h> 0027 #include <linux/preempt.h> 0028 #include <linux/bottom_half.h> 0029 #include <linux/lockdep.h> 0030 #include <asm/processor.h> 0031 #include <linux/cpumask.h> 0032 #include <linux/context_tracking_irq.h> 0033 0034 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 0035 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 0036 #define ulong2long(a) (*(long *)(&(a))) 0037 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) 0038 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) 0039 0040 /* Exported common interfaces */ 0041 void call_rcu(struct rcu_head *head, rcu_callback_t func); 0042 void rcu_barrier_tasks(void); 0043 void rcu_barrier_tasks_rude(void); 0044 void synchronize_rcu(void); 0045 unsigned long get_completed_synchronize_rcu(void); 0046 0047 #ifdef CONFIG_PREEMPT_RCU 0048 0049 void __rcu_read_lock(void); 0050 void __rcu_read_unlock(void); 0051 0052 /* 0053 * Defined as a macro as it is a very low level header included from 0054 * areas that don't even know about current. This gives the rcu_read_lock() 0055 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 0056 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 0057 */ 0058 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting) 0059 0060 #else /* #ifdef CONFIG_PREEMPT_RCU */ 0061 0062 #ifdef CONFIG_TINY_RCU 0063 #define rcu_read_unlock_strict() do { } while (0) 0064 #else 0065 void rcu_read_unlock_strict(void); 0066 #endif 0067 0068 static inline void __rcu_read_lock(void) 0069 { 0070 preempt_disable(); 0071 } 0072 0073 static inline void __rcu_read_unlock(void) 0074 { 0075 preempt_enable(); 0076 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) 0077 rcu_read_unlock_strict(); 0078 } 0079 0080 static inline int rcu_preempt_depth(void) 0081 { 0082 return 0; 0083 } 0084 0085 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 0086 0087 /* Internal to kernel */ 0088 void rcu_init(void); 0089 extern int rcu_scheduler_active; 0090 void rcu_sched_clock_irq(int user); 0091 void rcu_report_dead(unsigned int cpu); 0092 void rcutree_migrate_callbacks(int cpu); 0093 0094 #ifdef CONFIG_TASKS_RCU_GENERIC 0095 void rcu_init_tasks_generic(void); 0096 #else 0097 static inline void rcu_init_tasks_generic(void) { } 0098 #endif 0099 0100 #ifdef CONFIG_RCU_STALL_COMMON 0101 void rcu_sysrq_start(void); 0102 void rcu_sysrq_end(void); 0103 #else /* #ifdef CONFIG_RCU_STALL_COMMON */ 0104 static inline void rcu_sysrq_start(void) { } 0105 static inline void rcu_sysrq_end(void) { } 0106 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 0107 0108 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) 0109 void rcu_irq_work_resched(void); 0110 #else 0111 static inline void rcu_irq_work_resched(void) { } 0112 #endif 0113 0114 #ifdef CONFIG_RCU_NOCB_CPU 0115 void rcu_init_nohz(void); 0116 int rcu_nocb_cpu_offload(int cpu); 0117 int rcu_nocb_cpu_deoffload(int cpu); 0118 void rcu_nocb_flush_deferred_wakeup(void); 0119 #else /* #ifdef CONFIG_RCU_NOCB_CPU */ 0120 static inline void rcu_init_nohz(void) { } 0121 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 0122 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 0123 static inline void rcu_nocb_flush_deferred_wakeup(void) { } 0124 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 0125 0126 /** 0127 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 0128 * @a: Code that RCU needs to pay attention to. 0129 * 0130 * RCU read-side critical sections are forbidden in the inner idle loop, 0131 * that is, between the ct_idle_enter() and the ct_idle_exit() -- RCU 0132 * will happily ignore any such read-side critical sections. However, 0133 * things like powertop need tracepoints in the inner idle loop. 0134 * 0135 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 0136 * will tell RCU that it needs to pay attention, invoke its argument 0137 * (in this example, calling the do_something_with_RCU() function), 0138 * and then tell RCU to go back to ignoring this CPU. It is permissible 0139 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 0140 * on the order of a million or so, even on 32-bit systems). It is 0141 * not legal to block within RCU_NONIDLE(), nor is it permissible to 0142 * transfer control either into or out of RCU_NONIDLE()'s statement. 0143 */ 0144 #define RCU_NONIDLE(a) \ 0145 do { \ 0146 ct_irq_enter_irqson(); \ 0147 do { a; } while (0); \ 0148 ct_irq_exit_irqson(); \ 0149 } while (0) 0150 0151 /* 0152 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 0153 * This is a macro rather than an inline function to avoid #include hell. 0154 */ 0155 #ifdef CONFIG_TASKS_RCU_GENERIC 0156 0157 # ifdef CONFIG_TASKS_RCU 0158 # define rcu_tasks_classic_qs(t, preempt) \ 0159 do { \ 0160 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 0161 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 0162 } while (0) 0163 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 0164 void synchronize_rcu_tasks(void); 0165 # else 0166 # define rcu_tasks_classic_qs(t, preempt) do { } while (0) 0167 # define call_rcu_tasks call_rcu 0168 # define synchronize_rcu_tasks synchronize_rcu 0169 # endif 0170 0171 # ifdef CONFIG_TASKS_TRACE_RCU 0172 // Bits for ->trc_reader_special.b.need_qs field. 0173 #define TRC_NEED_QS 0x1 // Task needs a quiescent state. 0174 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state. 0175 0176 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new); 0177 void rcu_tasks_trace_qs_blkd(struct task_struct *t); 0178 0179 # define rcu_tasks_trace_qs(t) \ 0180 do { \ 0181 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \ 0182 \ 0183 if (likely(!READ_ONCE((t)->trc_reader_special.b.need_qs)) && \ 0184 likely(!___rttq_nesting)) { \ 0185 rcu_trc_cmpxchg_need_qs((t), 0, TRC_NEED_QS_CHECKED); \ 0186 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \ 0187 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \ 0188 rcu_tasks_trace_qs_blkd(t); \ 0189 } \ 0190 } while (0) 0191 # else 0192 # define rcu_tasks_trace_qs(t) do { } while (0) 0193 # endif 0194 0195 #define rcu_tasks_qs(t, preempt) \ 0196 do { \ 0197 rcu_tasks_classic_qs((t), (preempt)); \ 0198 rcu_tasks_trace_qs(t); \ 0199 } while (0) 0200 0201 # ifdef CONFIG_TASKS_RUDE_RCU 0202 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 0203 void synchronize_rcu_tasks_rude(void); 0204 # endif 0205 0206 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 0207 void exit_tasks_rcu_start(void); 0208 void exit_tasks_rcu_finish(void); 0209 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 0210 #define rcu_tasks_classic_qs(t, preempt) do { } while (0) 0211 #define rcu_tasks_qs(t, preempt) do { } while (0) 0212 #define rcu_note_voluntary_context_switch(t) do { } while (0) 0213 #define call_rcu_tasks call_rcu 0214 #define synchronize_rcu_tasks synchronize_rcu 0215 static inline void exit_tasks_rcu_start(void) { } 0216 static inline void exit_tasks_rcu_finish(void) { } 0217 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 0218 0219 /** 0220 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 0221 * 0222 * This macro resembles cond_resched(), except that it is defined to 0223 * report potential quiescent states to RCU-tasks even if the cond_resched() 0224 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 0225 */ 0226 #define cond_resched_tasks_rcu_qs() \ 0227 do { \ 0228 rcu_tasks_qs(current, false); \ 0229 cond_resched(); \ 0230 } while (0) 0231 0232 /* 0233 * Infrastructure to implement the synchronize_() primitives in 0234 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 0235 */ 0236 0237 #if defined(CONFIG_TREE_RCU) 0238 #include <linux/rcutree.h> 0239 #elif defined(CONFIG_TINY_RCU) 0240 #include <linux/rcutiny.h> 0241 #else 0242 #error "Unknown RCU implementation specified to kernel configuration" 0243 #endif 0244 0245 /* 0246 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 0247 * are needed for dynamic initialization and destruction of rcu_head 0248 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 0249 * dynamic initialization and destruction of statically allocated rcu_head 0250 * structures. However, rcu_head structures allocated dynamically in the 0251 * heap don't need any initialization. 0252 */ 0253 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 0254 void init_rcu_head(struct rcu_head *head); 0255 void destroy_rcu_head(struct rcu_head *head); 0256 void init_rcu_head_on_stack(struct rcu_head *head); 0257 void destroy_rcu_head_on_stack(struct rcu_head *head); 0258 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 0259 static inline void init_rcu_head(struct rcu_head *head) { } 0260 static inline void destroy_rcu_head(struct rcu_head *head) { } 0261 static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 0262 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 0263 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 0264 0265 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 0266 bool rcu_lockdep_current_cpu_online(void); 0267 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 0268 static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 0269 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 0270 0271 extern struct lockdep_map rcu_lock_map; 0272 extern struct lockdep_map rcu_bh_lock_map; 0273 extern struct lockdep_map rcu_sched_lock_map; 0274 extern struct lockdep_map rcu_callback_map; 0275 0276 #ifdef CONFIG_DEBUG_LOCK_ALLOC 0277 0278 static inline void rcu_lock_acquire(struct lockdep_map *map) 0279 { 0280 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 0281 } 0282 0283 static inline void rcu_lock_release(struct lockdep_map *map) 0284 { 0285 lock_release(map, _THIS_IP_); 0286 } 0287 0288 int debug_lockdep_rcu_enabled(void); 0289 int rcu_read_lock_held(void); 0290 int rcu_read_lock_bh_held(void); 0291 int rcu_read_lock_sched_held(void); 0292 int rcu_read_lock_any_held(void); 0293 0294 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 0295 0296 # define rcu_lock_acquire(a) do { } while (0) 0297 # define rcu_lock_release(a) do { } while (0) 0298 0299 static inline int rcu_read_lock_held(void) 0300 { 0301 return 1; 0302 } 0303 0304 static inline int rcu_read_lock_bh_held(void) 0305 { 0306 return 1; 0307 } 0308 0309 static inline int rcu_read_lock_sched_held(void) 0310 { 0311 return !preemptible(); 0312 } 0313 0314 static inline int rcu_read_lock_any_held(void) 0315 { 0316 return !preemptible(); 0317 } 0318 0319 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 0320 0321 #ifdef CONFIG_PROVE_RCU 0322 0323 /** 0324 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 0325 * @c: condition to check 0326 * @s: informative message 0327 */ 0328 #define RCU_LOCKDEP_WARN(c, s) \ 0329 do { \ 0330 static bool __section(".data.unlikely") __warned; \ 0331 if ((c) && debug_lockdep_rcu_enabled() && !__warned) { \ 0332 __warned = true; \ 0333 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 0334 } \ 0335 } while (0) 0336 0337 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 0338 static inline void rcu_preempt_sleep_check(void) 0339 { 0340 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 0341 "Illegal context switch in RCU read-side critical section"); 0342 } 0343 #else /* #ifdef CONFIG_PROVE_RCU */ 0344 static inline void rcu_preempt_sleep_check(void) { } 0345 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 0346 0347 #define rcu_sleep_check() \ 0348 do { \ 0349 rcu_preempt_sleep_check(); \ 0350 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 0351 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 0352 "Illegal context switch in RCU-bh read-side critical section"); \ 0353 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 0354 "Illegal context switch in RCU-sched read-side critical section"); \ 0355 } while (0) 0356 0357 #else /* #ifdef CONFIG_PROVE_RCU */ 0358 0359 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 0360 #define rcu_sleep_check() do { } while (0) 0361 0362 #endif /* #else #ifdef CONFIG_PROVE_RCU */ 0363 0364 /* 0365 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 0366 * and rcu_assign_pointer(). Some of these could be folded into their 0367 * callers, but they are left separate in order to ease introduction of 0368 * multiple pointers markings to match different RCU implementations 0369 * (e.g., __srcu), should this make sense in the future. 0370 */ 0371 0372 #ifdef __CHECKER__ 0373 #define rcu_check_sparse(p, space) \ 0374 ((void)(((typeof(*p) space *)p) == p)) 0375 #else /* #ifdef __CHECKER__ */ 0376 #define rcu_check_sparse(p, space) 0377 #endif /* #else #ifdef __CHECKER__ */ 0378 0379 #define __unrcu_pointer(p, local) \ 0380 ({ \ 0381 typeof(*p) *local = (typeof(*p) *__force)(p); \ 0382 rcu_check_sparse(p, __rcu); \ 0383 ((typeof(*p) __force __kernel *)(local)); \ 0384 }) 0385 /** 0386 * unrcu_pointer - mark a pointer as not being RCU protected 0387 * @p: pointer needing to lose its __rcu property 0388 * 0389 * Converts @p from an __rcu pointer to a __kernel pointer. 0390 * This allows an __rcu pointer to be used with xchg() and friends. 0391 */ 0392 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu)) 0393 0394 #define __rcu_access_pointer(p, local, space) \ 0395 ({ \ 0396 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 0397 rcu_check_sparse(p, space); \ 0398 ((typeof(*p) __force __kernel *)(local)); \ 0399 }) 0400 #define __rcu_dereference_check(p, local, c, space) \ 0401 ({ \ 0402 /* Dependency order vs. p above. */ \ 0403 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \ 0404 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 0405 rcu_check_sparse(p, space); \ 0406 ((typeof(*p) __force __kernel *)(local)); \ 0407 }) 0408 #define __rcu_dereference_protected(p, local, c, space) \ 0409 ({ \ 0410 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 0411 rcu_check_sparse(p, space); \ 0412 ((typeof(*p) __force __kernel *)(p)); \ 0413 }) 0414 #define __rcu_dereference_raw(p, local) \ 0415 ({ \ 0416 /* Dependency order vs. p above. */ \ 0417 typeof(p) local = READ_ONCE(p); \ 0418 ((typeof(*p) __force __kernel *)(local)); \ 0419 }) 0420 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu)) 0421 0422 /** 0423 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 0424 * @v: The value to statically initialize with. 0425 */ 0426 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 0427 0428 /** 0429 * rcu_assign_pointer() - assign to RCU-protected pointer 0430 * @p: pointer to assign to 0431 * @v: value to assign (publish) 0432 * 0433 * Assigns the specified value to the specified RCU-protected 0434 * pointer, ensuring that any concurrent RCU readers will see 0435 * any prior initialization. 0436 * 0437 * Inserts memory barriers on architectures that require them 0438 * (which is most of them), and also prevents the compiler from 0439 * reordering the code that initializes the structure after the pointer 0440 * assignment. More importantly, this call documents which pointers 0441 * will be dereferenced by RCU read-side code. 0442 * 0443 * In some special cases, you may use RCU_INIT_POINTER() instead 0444 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 0445 * to the fact that it does not constrain either the CPU or the compiler. 0446 * That said, using RCU_INIT_POINTER() when you should have used 0447 * rcu_assign_pointer() is a very bad thing that results in 0448 * impossible-to-diagnose memory corruption. So please be careful. 0449 * See the RCU_INIT_POINTER() comment header for details. 0450 * 0451 * Note that rcu_assign_pointer() evaluates each of its arguments only 0452 * once, appearances notwithstanding. One of the "extra" evaluations 0453 * is in typeof() and the other visible only to sparse (__CHECKER__), 0454 * neither of which actually execute the argument. As with most cpp 0455 * macros, this execute-arguments-only-once property is important, so 0456 * please be careful when making changes to rcu_assign_pointer() and the 0457 * other macros that it invokes. 0458 */ 0459 #define rcu_assign_pointer(p, v) \ 0460 do { \ 0461 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 0462 rcu_check_sparse(p, __rcu); \ 0463 \ 0464 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 0465 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 0466 else \ 0467 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 0468 } while (0) 0469 0470 /** 0471 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 0472 * @rcu_ptr: RCU pointer, whose old value is returned 0473 * @ptr: regular pointer 0474 * @c: the lockdep conditions under which the dereference will take place 0475 * 0476 * Perform a replacement, where @rcu_ptr is an RCU-annotated 0477 * pointer and @c is the lockdep argument that is passed to the 0478 * rcu_dereference_protected() call used to read that pointer. The old 0479 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 0480 */ 0481 #define rcu_replace_pointer(rcu_ptr, ptr, c) \ 0482 ({ \ 0483 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 0484 rcu_assign_pointer((rcu_ptr), (ptr)); \ 0485 __tmp; \ 0486 }) 0487 0488 /** 0489 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 0490 * @p: The pointer to read 0491 * 0492 * Return the value of the specified RCU-protected pointer, but omit the 0493 * lockdep checks for being in an RCU read-side critical section. This is 0494 * useful when the value of this pointer is accessed, but the pointer is 0495 * not dereferenced, for example, when testing an RCU-protected pointer 0496 * against NULL. Although rcu_access_pointer() may also be used in cases 0497 * where update-side locks prevent the value of the pointer from changing, 0498 * you should instead use rcu_dereference_protected() for this use case. 0499 * 0500 * It is also permissible to use rcu_access_pointer() when read-side 0501 * access to the pointer was removed at least one grace period ago, as 0502 * is the case in the context of the RCU callback that is freeing up 0503 * the data, or after a synchronize_rcu() returns. This can be useful 0504 * when tearing down multi-linked structures after a grace period 0505 * has elapsed. 0506 */ 0507 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu) 0508 0509 /** 0510 * rcu_dereference_check() - rcu_dereference with debug checking 0511 * @p: The pointer to read, prior to dereferencing 0512 * @c: The conditions under which the dereference will take place 0513 * 0514 * Do an rcu_dereference(), but check that the conditions under which the 0515 * dereference will take place are correct. Typically the conditions 0516 * indicate the various locking conditions that should be held at that 0517 * point. The check should return true if the conditions are satisfied. 0518 * An implicit check for being in an RCU read-side critical section 0519 * (rcu_read_lock()) is included. 0520 * 0521 * For example: 0522 * 0523 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 0524 * 0525 * could be used to indicate to lockdep that foo->bar may only be dereferenced 0526 * if either rcu_read_lock() is held, or that the lock required to replace 0527 * the bar struct at foo->bar is held. 0528 * 0529 * Note that the list of conditions may also include indications of when a lock 0530 * need not be held, for example during initialisation or destruction of the 0531 * target struct: 0532 * 0533 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 0534 * atomic_read(&foo->usage) == 0); 0535 * 0536 * Inserts memory barriers on architectures that require them 0537 * (currently only the Alpha), prevents the compiler from refetching 0538 * (and from merging fetches), and, more importantly, documents exactly 0539 * which pointers are protected by RCU and checks that the pointer is 0540 * annotated as __rcu. 0541 */ 0542 #define rcu_dereference_check(p, c) \ 0543 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 0544 (c) || rcu_read_lock_held(), __rcu) 0545 0546 /** 0547 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 0548 * @p: The pointer to read, prior to dereferencing 0549 * @c: The conditions under which the dereference will take place 0550 * 0551 * This is the RCU-bh counterpart to rcu_dereference_check(). However, 0552 * please note that starting in v5.0 kernels, vanilla RCU grace periods 0553 * wait for local_bh_disable() regions of code in addition to regions of 0554 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means 0555 * that synchronize_rcu(), call_rcu, and friends all take not only 0556 * rcu_read_lock() but also rcu_read_lock_bh() into account. 0557 */ 0558 #define rcu_dereference_bh_check(p, c) \ 0559 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 0560 (c) || rcu_read_lock_bh_held(), __rcu) 0561 0562 /** 0563 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 0564 * @p: The pointer to read, prior to dereferencing 0565 * @c: The conditions under which the dereference will take place 0566 * 0567 * This is the RCU-sched counterpart to rcu_dereference_check(). 0568 * However, please note that starting in v5.0 kernels, vanilla RCU grace 0569 * periods wait for preempt_disable() regions of code in addition to 0570 * regions of code demarked by rcu_read_lock() and rcu_read_unlock(). 0571 * This means that synchronize_rcu(), call_rcu, and friends all take not 0572 * only rcu_read_lock() but also rcu_read_lock_sched() into account. 0573 */ 0574 #define rcu_dereference_sched_check(p, c) \ 0575 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \ 0576 (c) || rcu_read_lock_sched_held(), \ 0577 __rcu) 0578 0579 /* 0580 * The tracing infrastructure traces RCU (we want that), but unfortunately 0581 * some of the RCU checks causes tracing to lock up the system. 0582 * 0583 * The no-tracing version of rcu_dereference_raw() must not call 0584 * rcu_read_lock_held(). 0585 */ 0586 #define rcu_dereference_raw_check(p) \ 0587 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu) 0588 0589 /** 0590 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 0591 * @p: The pointer to read, prior to dereferencing 0592 * @c: The conditions under which the dereference will take place 0593 * 0594 * Return the value of the specified RCU-protected pointer, but omit 0595 * the READ_ONCE(). This is useful in cases where update-side locks 0596 * prevent the value of the pointer from changing. Please note that this 0597 * primitive does *not* prevent the compiler from repeating this reference 0598 * or combining it with other references, so it should not be used without 0599 * protection of appropriate locks. 0600 * 0601 * This function is only for update-side use. Using this function 0602 * when protected only by rcu_read_lock() will result in infrequent 0603 * but very ugly failures. 0604 */ 0605 #define rcu_dereference_protected(p, c) \ 0606 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu) 0607 0608 0609 /** 0610 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 0611 * @p: The pointer to read, prior to dereferencing 0612 * 0613 * This is a simple wrapper around rcu_dereference_check(). 0614 */ 0615 #define rcu_dereference(p) rcu_dereference_check(p, 0) 0616 0617 /** 0618 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 0619 * @p: The pointer to read, prior to dereferencing 0620 * 0621 * Makes rcu_dereference_check() do the dirty work. 0622 */ 0623 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 0624 0625 /** 0626 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 0627 * @p: The pointer to read, prior to dereferencing 0628 * 0629 * Makes rcu_dereference_check() do the dirty work. 0630 */ 0631 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 0632 0633 /** 0634 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 0635 * @p: The pointer to hand off 0636 * 0637 * This is simply an identity function, but it documents where a pointer 0638 * is handed off from RCU to some other synchronization mechanism, for 0639 * example, reference counting or locking. In C11, it would map to 0640 * kill_dependency(). It could be used as follows:: 0641 * 0642 * rcu_read_lock(); 0643 * p = rcu_dereference(gp); 0644 * long_lived = is_long_lived(p); 0645 * if (long_lived) { 0646 * if (!atomic_inc_not_zero(p->refcnt)) 0647 * long_lived = false; 0648 * else 0649 * p = rcu_pointer_handoff(p); 0650 * } 0651 * rcu_read_unlock(); 0652 */ 0653 #define rcu_pointer_handoff(p) (p) 0654 0655 /** 0656 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 0657 * 0658 * When synchronize_rcu() is invoked on one CPU while other CPUs 0659 * are within RCU read-side critical sections, then the 0660 * synchronize_rcu() is guaranteed to block until after all the other 0661 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 0662 * on one CPU while other CPUs are within RCU read-side critical 0663 * sections, invocation of the corresponding RCU callback is deferred 0664 * until after the all the other CPUs exit their critical sections. 0665 * 0666 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also 0667 * wait for regions of code with preemption disabled, including regions of 0668 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which 0669 * define synchronize_sched(), only code enclosed within rcu_read_lock() 0670 * and rcu_read_unlock() are guaranteed to be waited for. 0671 * 0672 * Note, however, that RCU callbacks are permitted to run concurrently 0673 * with new RCU read-side critical sections. One way that this can happen 0674 * is via the following sequence of events: (1) CPU 0 enters an RCU 0675 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 0676 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 0677 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 0678 * callback is invoked. This is legal, because the RCU read-side critical 0679 * section that was running concurrently with the call_rcu() (and which 0680 * therefore might be referencing something that the corresponding RCU 0681 * callback would free up) has completed before the corresponding 0682 * RCU callback is invoked. 0683 * 0684 * RCU read-side critical sections may be nested. Any deferred actions 0685 * will be deferred until the outermost RCU read-side critical section 0686 * completes. 0687 * 0688 * You can avoid reading and understanding the next paragraph by 0689 * following this rule: don't put anything in an rcu_read_lock() RCU 0690 * read-side critical section that would block in a !PREEMPTION kernel. 0691 * But if you want the full story, read on! 0692 * 0693 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 0694 * it is illegal to block while in an RCU read-side critical section. 0695 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 0696 * kernel builds, RCU read-side critical sections may be preempted, 0697 * but explicit blocking is illegal. Finally, in preemptible RCU 0698 * implementations in real-time (with -rt patchset) kernel builds, RCU 0699 * read-side critical sections may be preempted and they may also block, but 0700 * only when acquiring spinlocks that are subject to priority inheritance. 0701 */ 0702 static __always_inline void rcu_read_lock(void) 0703 { 0704 __rcu_read_lock(); 0705 __acquire(RCU); 0706 rcu_lock_acquire(&rcu_lock_map); 0707 RCU_LOCKDEP_WARN(!rcu_is_watching(), 0708 "rcu_read_lock() used illegally while idle"); 0709 } 0710 0711 /* 0712 * So where is rcu_write_lock()? It does not exist, as there is no 0713 * way for writers to lock out RCU readers. This is a feature, not 0714 * a bug -- this property is what provides RCU's performance benefits. 0715 * Of course, writers must coordinate with each other. The normal 0716 * spinlock primitives work well for this, but any other technique may be 0717 * used as well. RCU does not care how the writers keep out of each 0718 * others' way, as long as they do so. 0719 */ 0720 0721 /** 0722 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 0723 * 0724 * In almost all situations, rcu_read_unlock() is immune from deadlock. 0725 * In recent kernels that have consolidated synchronize_sched() and 0726 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity 0727 * also extends to the scheduler's runqueue and priority-inheritance 0728 * spinlocks, courtesy of the quiescent-state deferral that is carried 0729 * out when rcu_read_unlock() is invoked with interrupts disabled. 0730 * 0731 * See rcu_read_lock() for more information. 0732 */ 0733 static inline void rcu_read_unlock(void) 0734 { 0735 RCU_LOCKDEP_WARN(!rcu_is_watching(), 0736 "rcu_read_unlock() used illegally while idle"); 0737 __release(RCU); 0738 __rcu_read_unlock(); 0739 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 0740 } 0741 0742 /** 0743 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 0744 * 0745 * This is equivalent to rcu_read_lock(), but also disables softirqs. 0746 * Note that anything else that disables softirqs can also serve as an RCU 0747 * read-side critical section. However, please note that this equivalence 0748 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and 0749 * rcu_read_lock_bh() were unrelated. 0750 * 0751 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 0752 * must occur in the same context, for example, it is illegal to invoke 0753 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 0754 * was invoked from some other task. 0755 */ 0756 static inline void rcu_read_lock_bh(void) 0757 { 0758 local_bh_disable(); 0759 __acquire(RCU_BH); 0760 rcu_lock_acquire(&rcu_bh_lock_map); 0761 RCU_LOCKDEP_WARN(!rcu_is_watching(), 0762 "rcu_read_lock_bh() used illegally while idle"); 0763 } 0764 0765 /** 0766 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 0767 * 0768 * See rcu_read_lock_bh() for more information. 0769 */ 0770 static inline void rcu_read_unlock_bh(void) 0771 { 0772 RCU_LOCKDEP_WARN(!rcu_is_watching(), 0773 "rcu_read_unlock_bh() used illegally while idle"); 0774 rcu_lock_release(&rcu_bh_lock_map); 0775 __release(RCU_BH); 0776 local_bh_enable(); 0777 } 0778 0779 /** 0780 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 0781 * 0782 * This is equivalent to rcu_read_lock(), but also disables preemption. 0783 * Read-side critical sections can also be introduced by anything else that 0784 * disables preemption, including local_irq_disable() and friends. However, 0785 * please note that the equivalence to rcu_read_lock() applies only to 0786 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched() 0787 * were unrelated. 0788 * 0789 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 0790 * must occur in the same context, for example, it is illegal to invoke 0791 * rcu_read_unlock_sched() from process context if the matching 0792 * rcu_read_lock_sched() was invoked from an NMI handler. 0793 */ 0794 static inline void rcu_read_lock_sched(void) 0795 { 0796 preempt_disable(); 0797 __acquire(RCU_SCHED); 0798 rcu_lock_acquire(&rcu_sched_lock_map); 0799 RCU_LOCKDEP_WARN(!rcu_is_watching(), 0800 "rcu_read_lock_sched() used illegally while idle"); 0801 } 0802 0803 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 0804 static inline notrace void rcu_read_lock_sched_notrace(void) 0805 { 0806 preempt_disable_notrace(); 0807 __acquire(RCU_SCHED); 0808 } 0809 0810 /** 0811 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 0812 * 0813 * See rcu_read_lock_sched() for more information. 0814 */ 0815 static inline void rcu_read_unlock_sched(void) 0816 { 0817 RCU_LOCKDEP_WARN(!rcu_is_watching(), 0818 "rcu_read_unlock_sched() used illegally while idle"); 0819 rcu_lock_release(&rcu_sched_lock_map); 0820 __release(RCU_SCHED); 0821 preempt_enable(); 0822 } 0823 0824 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 0825 static inline notrace void rcu_read_unlock_sched_notrace(void) 0826 { 0827 __release(RCU_SCHED); 0828 preempt_enable_notrace(); 0829 } 0830 0831 /** 0832 * RCU_INIT_POINTER() - initialize an RCU protected pointer 0833 * @p: The pointer to be initialized. 0834 * @v: The value to initialized the pointer to. 0835 * 0836 * Initialize an RCU-protected pointer in special cases where readers 0837 * do not need ordering constraints on the CPU or the compiler. These 0838 * special cases are: 0839 * 0840 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 0841 * 2. The caller has taken whatever steps are required to prevent 0842 * RCU readers from concurrently accessing this pointer *or* 0843 * 3. The referenced data structure has already been exposed to 0844 * readers either at compile time or via rcu_assign_pointer() *and* 0845 * 0846 * a. You have not made *any* reader-visible changes to 0847 * this structure since then *or* 0848 * b. It is OK for readers accessing this structure from its 0849 * new location to see the old state of the structure. (For 0850 * example, the changes were to statistical counters or to 0851 * other state where exact synchronization is not required.) 0852 * 0853 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 0854 * result in impossible-to-diagnose memory corruption. As in the structures 0855 * will look OK in crash dumps, but any concurrent RCU readers might 0856 * see pre-initialized values of the referenced data structure. So 0857 * please be very careful how you use RCU_INIT_POINTER()!!! 0858 * 0859 * If you are creating an RCU-protected linked structure that is accessed 0860 * by a single external-to-structure RCU-protected pointer, then you may 0861 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 0862 * pointers, but you must use rcu_assign_pointer() to initialize the 0863 * external-to-structure pointer *after* you have completely initialized 0864 * the reader-accessible portions of the linked structure. 0865 * 0866 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 0867 * ordering guarantees for either the CPU or the compiler. 0868 */ 0869 #define RCU_INIT_POINTER(p, v) \ 0870 do { \ 0871 rcu_check_sparse(p, __rcu); \ 0872 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 0873 } while (0) 0874 0875 /** 0876 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 0877 * @p: The pointer to be initialized. 0878 * @v: The value to initialized the pointer to. 0879 * 0880 * GCC-style initialization for an RCU-protected pointer in a structure field. 0881 */ 0882 #define RCU_POINTER_INITIALIZER(p, v) \ 0883 .p = RCU_INITIALIZER(v) 0884 0885 /* 0886 * Does the specified offset indicate that the corresponding rcu_head 0887 * structure can be handled by kvfree_rcu()? 0888 */ 0889 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 0890 0891 /** 0892 * kfree_rcu() - kfree an object after a grace period. 0893 * @ptr: pointer to kfree for both single- and double-argument invocations. 0894 * @rhf: the name of the struct rcu_head within the type of @ptr, 0895 * but only for double-argument invocations. 0896 * 0897 * Many rcu callbacks functions just call kfree() on the base structure. 0898 * These functions are trivial, but their size adds up, and furthermore 0899 * when they are used in a kernel module, that module must invoke the 0900 * high-latency rcu_barrier() function at module-unload time. 0901 * 0902 * The kfree_rcu() function handles this issue. Rather than encoding a 0903 * function address in the embedded rcu_head structure, kfree_rcu() instead 0904 * encodes the offset of the rcu_head structure within the base structure. 0905 * Because the functions are not allowed in the low-order 4096 bytes of 0906 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 0907 * If the offset is larger than 4095 bytes, a compile-time error will 0908 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 0909 * either fall back to use of call_rcu() or rearrange the structure to 0910 * position the rcu_head structure into the first 4096 bytes. 0911 * 0912 * Note that the allowable offset might decrease in the future, for example, 0913 * to allow something like kmem_cache_free_rcu(). 0914 * 0915 * The BUILD_BUG_ON check must not involve any function calls, hence the 0916 * checks are done in macros here. 0917 */ 0918 #define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf) 0919 0920 /** 0921 * kvfree_rcu() - kvfree an object after a grace period. 0922 * 0923 * This macro consists of one or two arguments and it is 0924 * based on whether an object is head-less or not. If it 0925 * has a head then a semantic stays the same as it used 0926 * to be before: 0927 * 0928 * kvfree_rcu(ptr, rhf); 0929 * 0930 * where @ptr is a pointer to kvfree(), @rhf is the name 0931 * of the rcu_head structure within the type of @ptr. 0932 * 0933 * When it comes to head-less variant, only one argument 0934 * is passed and that is just a pointer which has to be 0935 * freed after a grace period. Therefore the semantic is 0936 * 0937 * kvfree_rcu(ptr); 0938 * 0939 * where @ptr is the pointer to be freed by kvfree(). 0940 * 0941 * Please note, head-less way of freeing is permitted to 0942 * use from a context that has to follow might_sleep() 0943 * annotation. Otherwise, please switch and embed the 0944 * rcu_head structure within the type of @ptr. 0945 */ 0946 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ 0947 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) 0948 0949 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME 0950 #define kvfree_rcu_arg_2(ptr, rhf) \ 0951 do { \ 0952 typeof (ptr) ___p = (ptr); \ 0953 \ 0954 if (___p) { \ 0955 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 0956 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \ 0957 (offsetof(typeof(*(ptr)), rhf))); \ 0958 } \ 0959 } while (0) 0960 0961 #define kvfree_rcu_arg_1(ptr) \ 0962 do { \ 0963 typeof(ptr) ___p = (ptr); \ 0964 \ 0965 if (___p) \ 0966 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ 0967 } while (0) 0968 0969 /* 0970 * Place this after a lock-acquisition primitive to guarantee that 0971 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 0972 * if the UNLOCK and LOCK are executed by the same CPU or if the 0973 * UNLOCK and LOCK operate on the same lock variable. 0974 */ 0975 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 0976 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 0977 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 0978 #define smp_mb__after_unlock_lock() do { } while (0) 0979 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 0980 0981 0982 /* Has the specified rcu_head structure been handed to call_rcu()? */ 0983 0984 /** 0985 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 0986 * @rhp: The rcu_head structure to initialize. 0987 * 0988 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 0989 * given rcu_head structure has already been passed to call_rcu(), then 0990 * you must also invoke this rcu_head_init() function on it just after 0991 * allocating that structure. Calls to this function must not race with 0992 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 0993 */ 0994 static inline void rcu_head_init(struct rcu_head *rhp) 0995 { 0996 rhp->func = (rcu_callback_t)~0L; 0997 } 0998 0999 /** 1000 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 1001 * @rhp: The rcu_head structure to test. 1002 * @f: The function passed to call_rcu() along with @rhp. 1003 * 1004 * Returns @true if the @rhp has been passed to call_rcu() with @func, 1005 * and @false otherwise. Emits a warning in any other case, including 1006 * the case where @rhp has already been invoked after a grace period. 1007 * Calls to this function must not race with callback invocation. One way 1008 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 1009 * in an RCU read-side critical section that includes a read-side fetch 1010 * of the pointer to the structure containing @rhp. 1011 */ 1012 static inline bool 1013 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 1014 { 1015 rcu_callback_t func = READ_ONCE(rhp->func); 1016 1017 if (func == f) 1018 return true; 1019 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 1020 return false; 1021 } 1022 1023 /* kernel/ksysfs.c definitions */ 1024 extern int rcu_expedited; 1025 extern int rcu_normal; 1026 1027 #endif /* __LINUX_RCUPDATE_H */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |