![]() |
|
|||
0001 /* SPDX-License-Identifier: GPL-2.0 */ 0002 #ifndef _LINUX_RCULIST_H 0003 #define _LINUX_RCULIST_H 0004 0005 #ifdef __KERNEL__ 0006 0007 /* 0008 * RCU-protected list version 0009 */ 0010 #include <linux/list.h> 0011 #include <linux/rcupdate.h> 0012 0013 /* 0014 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers 0015 * @list: list to be initialized 0016 * 0017 * You should instead use INIT_LIST_HEAD() for normal initialization and 0018 * cleanup tasks, when readers have no access to the list being initialized. 0019 * However, if the list being initialized is visible to readers, you 0020 * need to keep the compiler from being too mischievous. 0021 */ 0022 static inline void INIT_LIST_HEAD_RCU(struct list_head *list) 0023 { 0024 WRITE_ONCE(list->next, list); 0025 WRITE_ONCE(list->prev, list); 0026 } 0027 0028 /* 0029 * return the ->next pointer of a list_head in an rcu safe 0030 * way, we must not access it directly 0031 */ 0032 #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next))) 0033 0034 /** 0035 * list_tail_rcu - returns the prev pointer of the head of the list 0036 * @head: the head of the list 0037 * 0038 * Note: This should only be used with the list header, and even then 0039 * only if list_del() and similar primitives are not also used on the 0040 * list header. 0041 */ 0042 #define list_tail_rcu(head) (*((struct list_head __rcu **)(&(head)->prev))) 0043 0044 /* 0045 * Check during list traversal that we are within an RCU reader 0046 */ 0047 0048 #define check_arg_count_one(dummy) 0049 0050 #ifdef CONFIG_PROVE_RCU_LIST 0051 #define __list_check_rcu(dummy, cond, extra...) \ 0052 ({ \ 0053 check_arg_count_one(extra); \ 0054 RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(), \ 0055 "RCU-list traversed in non-reader section!"); \ 0056 }) 0057 0058 #define __list_check_srcu(cond) \ 0059 ({ \ 0060 RCU_LOCKDEP_WARN(!(cond), \ 0061 "RCU-list traversed without holding the required lock!");\ 0062 }) 0063 #else 0064 #define __list_check_rcu(dummy, cond, extra...) \ 0065 ({ check_arg_count_one(extra); }) 0066 0067 #define __list_check_srcu(cond) ({ }) 0068 #endif 0069 0070 /* 0071 * Insert a new entry between two known consecutive entries. 0072 * 0073 * This is only for internal list manipulation where we know 0074 * the prev/next entries already! 0075 */ 0076 static inline void __list_add_rcu(struct list_head *new, 0077 struct list_head *prev, struct list_head *next) 0078 { 0079 if (!__list_add_valid(new, prev, next)) 0080 return; 0081 0082 new->next = next; 0083 new->prev = prev; 0084 rcu_assign_pointer(list_next_rcu(prev), new); 0085 next->prev = new; 0086 } 0087 0088 /** 0089 * list_add_rcu - add a new entry to rcu-protected list 0090 * @new: new entry to be added 0091 * @head: list head to add it after 0092 * 0093 * Insert a new entry after the specified head. 0094 * This is good for implementing stacks. 0095 * 0096 * The caller must take whatever precautions are necessary 0097 * (such as holding appropriate locks) to avoid racing 0098 * with another list-mutation primitive, such as list_add_rcu() 0099 * or list_del_rcu(), running on this same list. 0100 * However, it is perfectly legal to run concurrently with 0101 * the _rcu list-traversal primitives, such as 0102 * list_for_each_entry_rcu(). 0103 */ 0104 static inline void list_add_rcu(struct list_head *new, struct list_head *head) 0105 { 0106 __list_add_rcu(new, head, head->next); 0107 } 0108 0109 /** 0110 * list_add_tail_rcu - add a new entry to rcu-protected list 0111 * @new: new entry to be added 0112 * @head: list head to add it before 0113 * 0114 * Insert a new entry before the specified head. 0115 * This is useful for implementing queues. 0116 * 0117 * The caller must take whatever precautions are necessary 0118 * (such as holding appropriate locks) to avoid racing 0119 * with another list-mutation primitive, such as list_add_tail_rcu() 0120 * or list_del_rcu(), running on this same list. 0121 * However, it is perfectly legal to run concurrently with 0122 * the _rcu list-traversal primitives, such as 0123 * list_for_each_entry_rcu(). 0124 */ 0125 static inline void list_add_tail_rcu(struct list_head *new, 0126 struct list_head *head) 0127 { 0128 __list_add_rcu(new, head->prev, head); 0129 } 0130 0131 /** 0132 * list_del_rcu - deletes entry from list without re-initialization 0133 * @entry: the element to delete from the list. 0134 * 0135 * Note: list_empty() on entry does not return true after this, 0136 * the entry is in an undefined state. It is useful for RCU based 0137 * lockfree traversal. 0138 * 0139 * In particular, it means that we can not poison the forward 0140 * pointers that may still be used for walking the list. 0141 * 0142 * The caller must take whatever precautions are necessary 0143 * (such as holding appropriate locks) to avoid racing 0144 * with another list-mutation primitive, such as list_del_rcu() 0145 * or list_add_rcu(), running on this same list. 0146 * However, it is perfectly legal to run concurrently with 0147 * the _rcu list-traversal primitives, such as 0148 * list_for_each_entry_rcu(). 0149 * 0150 * Note that the caller is not permitted to immediately free 0151 * the newly deleted entry. Instead, either synchronize_rcu() 0152 * or call_rcu() must be used to defer freeing until an RCU 0153 * grace period has elapsed. 0154 */ 0155 static inline void list_del_rcu(struct list_head *entry) 0156 { 0157 __list_del_entry(entry); 0158 entry->prev = LIST_POISON2; 0159 } 0160 0161 /** 0162 * hlist_del_init_rcu - deletes entry from hash list with re-initialization 0163 * @n: the element to delete from the hash list. 0164 * 0165 * Note: list_unhashed() on the node return true after this. It is 0166 * useful for RCU based read lockfree traversal if the writer side 0167 * must know if the list entry is still hashed or already unhashed. 0168 * 0169 * In particular, it means that we can not poison the forward pointers 0170 * that may still be used for walking the hash list and we can only 0171 * zero the pprev pointer so list_unhashed() will return true after 0172 * this. 0173 * 0174 * The caller must take whatever precautions are necessary (such as 0175 * holding appropriate locks) to avoid racing with another 0176 * list-mutation primitive, such as hlist_add_head_rcu() or 0177 * hlist_del_rcu(), running on this same list. However, it is 0178 * perfectly legal to run concurrently with the _rcu list-traversal 0179 * primitives, such as hlist_for_each_entry_rcu(). 0180 */ 0181 static inline void hlist_del_init_rcu(struct hlist_node *n) 0182 { 0183 if (!hlist_unhashed(n)) { 0184 __hlist_del(n); 0185 WRITE_ONCE(n->pprev, NULL); 0186 } 0187 } 0188 0189 /** 0190 * list_replace_rcu - replace old entry by new one 0191 * @old : the element to be replaced 0192 * @new : the new element to insert 0193 * 0194 * The @old entry will be replaced with the @new entry atomically. 0195 * Note: @old should not be empty. 0196 */ 0197 static inline void list_replace_rcu(struct list_head *old, 0198 struct list_head *new) 0199 { 0200 new->next = old->next; 0201 new->prev = old->prev; 0202 rcu_assign_pointer(list_next_rcu(new->prev), new); 0203 new->next->prev = new; 0204 old->prev = LIST_POISON2; 0205 } 0206 0207 /** 0208 * __list_splice_init_rcu - join an RCU-protected list into an existing list. 0209 * @list: the RCU-protected list to splice 0210 * @prev: points to the last element of the existing list 0211 * @next: points to the first element of the existing list 0212 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 0213 * 0214 * The list pointed to by @prev and @next can be RCU-read traversed 0215 * concurrently with this function. 0216 * 0217 * Note that this function blocks. 0218 * 0219 * Important note: the caller must take whatever action is necessary to prevent 0220 * any other updates to the existing list. In principle, it is possible to 0221 * modify the list as soon as sync() begins execution. If this sort of thing 0222 * becomes necessary, an alternative version based on call_rcu() could be 0223 * created. But only if -really- needed -- there is no shortage of RCU API 0224 * members. 0225 */ 0226 static inline void __list_splice_init_rcu(struct list_head *list, 0227 struct list_head *prev, 0228 struct list_head *next, 0229 void (*sync)(void)) 0230 { 0231 struct list_head *first = list->next; 0232 struct list_head *last = list->prev; 0233 0234 /* 0235 * "first" and "last" tracking list, so initialize it. RCU readers 0236 * have access to this list, so we must use INIT_LIST_HEAD_RCU() 0237 * instead of INIT_LIST_HEAD(). 0238 */ 0239 0240 INIT_LIST_HEAD_RCU(list); 0241 0242 /* 0243 * At this point, the list body still points to the source list. 0244 * Wait for any readers to finish using the list before splicing 0245 * the list body into the new list. Any new readers will see 0246 * an empty list. 0247 */ 0248 0249 sync(); 0250 ASSERT_EXCLUSIVE_ACCESS(*first); 0251 ASSERT_EXCLUSIVE_ACCESS(*last); 0252 0253 /* 0254 * Readers are finished with the source list, so perform splice. 0255 * The order is important if the new list is global and accessible 0256 * to concurrent RCU readers. Note that RCU readers are not 0257 * permitted to traverse the prev pointers without excluding 0258 * this function. 0259 */ 0260 0261 last->next = next; 0262 rcu_assign_pointer(list_next_rcu(prev), first); 0263 first->prev = prev; 0264 next->prev = last; 0265 } 0266 0267 /** 0268 * list_splice_init_rcu - splice an RCU-protected list into an existing list, 0269 * designed for stacks. 0270 * @list: the RCU-protected list to splice 0271 * @head: the place in the existing list to splice the first list into 0272 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 0273 */ 0274 static inline void list_splice_init_rcu(struct list_head *list, 0275 struct list_head *head, 0276 void (*sync)(void)) 0277 { 0278 if (!list_empty(list)) 0279 __list_splice_init_rcu(list, head, head->next, sync); 0280 } 0281 0282 /** 0283 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing 0284 * list, designed for queues. 0285 * @list: the RCU-protected list to splice 0286 * @head: the place in the existing list to splice the first list into 0287 * @sync: synchronize_rcu, synchronize_rcu_expedited, ... 0288 */ 0289 static inline void list_splice_tail_init_rcu(struct list_head *list, 0290 struct list_head *head, 0291 void (*sync)(void)) 0292 { 0293 if (!list_empty(list)) 0294 __list_splice_init_rcu(list, head->prev, head, sync); 0295 } 0296 0297 /** 0298 * list_entry_rcu - get the struct for this entry 0299 * @ptr: the &struct list_head pointer. 0300 * @type: the type of the struct this is embedded in. 0301 * @member: the name of the list_head within the struct. 0302 * 0303 * This primitive may safely run concurrently with the _rcu list-mutation 0304 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 0305 */ 0306 #define list_entry_rcu(ptr, type, member) \ 0307 container_of(READ_ONCE(ptr), type, member) 0308 0309 /* 0310 * Where are list_empty_rcu() and list_first_entry_rcu()? 0311 * 0312 * They do not exist because they would lead to subtle race conditions: 0313 * 0314 * if (!list_empty_rcu(mylist)) { 0315 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member); 0316 * do_something(bar); 0317 * } 0318 * 0319 * The list might be non-empty when list_empty_rcu() checks it, but it 0320 * might have become empty by the time that list_first_entry_rcu() rereads 0321 * the ->next pointer, which would result in a SEGV. 0322 * 0323 * When not using RCU, it is OK for list_first_entry() to re-read that 0324 * pointer because both functions should be protected by some lock that 0325 * blocks writers. 0326 * 0327 * When using RCU, list_empty() uses READ_ONCE() to fetch the 0328 * RCU-protected ->next pointer and then compares it to the address of the 0329 * list head. However, it neither dereferences this pointer nor provides 0330 * this pointer to its caller. Thus, READ_ONCE() suffices (that is, 0331 * rcu_dereference() is not needed), which means that list_empty() can be 0332 * used anywhere you would want to use list_empty_rcu(). Just don't 0333 * expect anything useful to happen if you do a subsequent lockless 0334 * call to list_first_entry_rcu()!!! 0335 * 0336 * See list_first_or_null_rcu for an alternative. 0337 */ 0338 0339 /** 0340 * list_first_or_null_rcu - get the first element from a list 0341 * @ptr: the list head to take the element from. 0342 * @type: the type of the struct this is embedded in. 0343 * @member: the name of the list_head within the struct. 0344 * 0345 * Note that if the list is empty, it returns NULL. 0346 * 0347 * This primitive may safely run concurrently with the _rcu list-mutation 0348 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 0349 */ 0350 #define list_first_or_null_rcu(ptr, type, member) \ 0351 ({ \ 0352 struct list_head *__ptr = (ptr); \ 0353 struct list_head *__next = READ_ONCE(__ptr->next); \ 0354 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \ 0355 }) 0356 0357 /** 0358 * list_next_or_null_rcu - get the first element from a list 0359 * @head: the head for the list. 0360 * @ptr: the list head to take the next element from. 0361 * @type: the type of the struct this is embedded in. 0362 * @member: the name of the list_head within the struct. 0363 * 0364 * Note that if the ptr is at the end of the list, NULL is returned. 0365 * 0366 * This primitive may safely run concurrently with the _rcu list-mutation 0367 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock(). 0368 */ 0369 #define list_next_or_null_rcu(head, ptr, type, member) \ 0370 ({ \ 0371 struct list_head *__head = (head); \ 0372 struct list_head *__ptr = (ptr); \ 0373 struct list_head *__next = READ_ONCE(__ptr->next); \ 0374 likely(__next != __head) ? list_entry_rcu(__next, type, \ 0375 member) : NULL; \ 0376 }) 0377 0378 /** 0379 * list_for_each_entry_rcu - iterate over rcu list of given type 0380 * @pos: the type * to use as a loop cursor. 0381 * @head: the head for your list. 0382 * @member: the name of the list_head within the struct. 0383 * @cond: optional lockdep expression if called from non-RCU protection. 0384 * 0385 * This list-traversal primitive may safely run concurrently with 0386 * the _rcu list-mutation primitives such as list_add_rcu() 0387 * as long as the traversal is guarded by rcu_read_lock(). 0388 */ 0389 #define list_for_each_entry_rcu(pos, head, member, cond...) \ 0390 for (__list_check_rcu(dummy, ## cond, 0), \ 0391 pos = list_entry_rcu((head)->next, typeof(*pos), member); \ 0392 &pos->member != (head); \ 0393 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 0394 0395 /** 0396 * list_for_each_entry_srcu - iterate over rcu list of given type 0397 * @pos: the type * to use as a loop cursor. 0398 * @head: the head for your list. 0399 * @member: the name of the list_head within the struct. 0400 * @cond: lockdep expression for the lock required to traverse the list. 0401 * 0402 * This list-traversal primitive may safely run concurrently with 0403 * the _rcu list-mutation primitives such as list_add_rcu() 0404 * as long as the traversal is guarded by srcu_read_lock(). 0405 * The lockdep expression srcu_read_lock_held() can be passed as the 0406 * cond argument from read side. 0407 */ 0408 #define list_for_each_entry_srcu(pos, head, member, cond) \ 0409 for (__list_check_srcu(cond), \ 0410 pos = list_entry_rcu((head)->next, typeof(*pos), member); \ 0411 &pos->member != (head); \ 0412 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 0413 0414 /** 0415 * list_entry_lockless - get the struct for this entry 0416 * @ptr: the &struct list_head pointer. 0417 * @type: the type of the struct this is embedded in. 0418 * @member: the name of the list_head within the struct. 0419 * 0420 * This primitive may safely run concurrently with the _rcu 0421 * list-mutation primitives such as list_add_rcu(), but requires some 0422 * implicit RCU read-side guarding. One example is running within a special 0423 * exception-time environment where preemption is disabled and where lockdep 0424 * cannot be invoked. Another example is when items are added to the list, 0425 * but never deleted. 0426 */ 0427 #define list_entry_lockless(ptr, type, member) \ 0428 container_of((typeof(ptr))READ_ONCE(ptr), type, member) 0429 0430 /** 0431 * list_for_each_entry_lockless - iterate over rcu list of given type 0432 * @pos: the type * to use as a loop cursor. 0433 * @head: the head for your list. 0434 * @member: the name of the list_struct within the struct. 0435 * 0436 * This primitive may safely run concurrently with the _rcu 0437 * list-mutation primitives such as list_add_rcu(), but requires some 0438 * implicit RCU read-side guarding. One example is running within a special 0439 * exception-time environment where preemption is disabled and where lockdep 0440 * cannot be invoked. Another example is when items are added to the list, 0441 * but never deleted. 0442 */ 0443 #define list_for_each_entry_lockless(pos, head, member) \ 0444 for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \ 0445 &pos->member != (head); \ 0446 pos = list_entry_lockless(pos->member.next, typeof(*pos), member)) 0447 0448 /** 0449 * list_for_each_entry_continue_rcu - continue iteration over list of given type 0450 * @pos: the type * to use as a loop cursor. 0451 * @head: the head for your list. 0452 * @member: the name of the list_head within the struct. 0453 * 0454 * Continue to iterate over list of given type, continuing after 0455 * the current position which must have been in the list when the RCU read 0456 * lock was taken. 0457 * This would typically require either that you obtained the node from a 0458 * previous walk of the list in the same RCU read-side critical section, or 0459 * that you held some sort of non-RCU reference (such as a reference count) 0460 * to keep the node alive *and* in the list. 0461 * 0462 * This iterator is similar to list_for_each_entry_from_rcu() except 0463 * this starts after the given position and that one starts at the given 0464 * position. 0465 */ 0466 #define list_for_each_entry_continue_rcu(pos, head, member) \ 0467 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \ 0468 &pos->member != (head); \ 0469 pos = list_entry_rcu(pos->member.next, typeof(*pos), member)) 0470 0471 /** 0472 * list_for_each_entry_from_rcu - iterate over a list from current point 0473 * @pos: the type * to use as a loop cursor. 0474 * @head: the head for your list. 0475 * @member: the name of the list_node within the struct. 0476 * 0477 * Iterate over the tail of a list starting from a given position, 0478 * which must have been in the list when the RCU read lock was taken. 0479 * This would typically require either that you obtained the node from a 0480 * previous walk of the list in the same RCU read-side critical section, or 0481 * that you held some sort of non-RCU reference (such as a reference count) 0482 * to keep the node alive *and* in the list. 0483 * 0484 * This iterator is similar to list_for_each_entry_continue_rcu() except 0485 * this starts from the given position and that one starts from the position 0486 * after the given position. 0487 */ 0488 #define list_for_each_entry_from_rcu(pos, head, member) \ 0489 for (; &(pos)->member != (head); \ 0490 pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member)) 0491 0492 /** 0493 * hlist_del_rcu - deletes entry from hash list without re-initialization 0494 * @n: the element to delete from the hash list. 0495 * 0496 * Note: list_unhashed() on entry does not return true after this, 0497 * the entry is in an undefined state. It is useful for RCU based 0498 * lockfree traversal. 0499 * 0500 * In particular, it means that we can not poison the forward 0501 * pointers that may still be used for walking the hash list. 0502 * 0503 * The caller must take whatever precautions are necessary 0504 * (such as holding appropriate locks) to avoid racing 0505 * with another list-mutation primitive, such as hlist_add_head_rcu() 0506 * or hlist_del_rcu(), running on this same list. 0507 * However, it is perfectly legal to run concurrently with 0508 * the _rcu list-traversal primitives, such as 0509 * hlist_for_each_entry(). 0510 */ 0511 static inline void hlist_del_rcu(struct hlist_node *n) 0512 { 0513 __hlist_del(n); 0514 WRITE_ONCE(n->pprev, LIST_POISON2); 0515 } 0516 0517 /** 0518 * hlist_replace_rcu - replace old entry by new one 0519 * @old : the element to be replaced 0520 * @new : the new element to insert 0521 * 0522 * The @old entry will be replaced with the @new entry atomically. 0523 */ 0524 static inline void hlist_replace_rcu(struct hlist_node *old, 0525 struct hlist_node *new) 0526 { 0527 struct hlist_node *next = old->next; 0528 0529 new->next = next; 0530 WRITE_ONCE(new->pprev, old->pprev); 0531 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new); 0532 if (next) 0533 WRITE_ONCE(new->next->pprev, &new->next); 0534 WRITE_ONCE(old->pprev, LIST_POISON2); 0535 } 0536 0537 /** 0538 * hlists_swap_heads_rcu - swap the lists the hlist heads point to 0539 * @left: The hlist head on the left 0540 * @right: The hlist head on the right 0541 * 0542 * The lists start out as [@left ][node1 ... ] and 0543 * [@right ][node2 ... ] 0544 * The lists end up as [@left ][node2 ... ] 0545 * [@right ][node1 ... ] 0546 */ 0547 static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right) 0548 { 0549 struct hlist_node *node1 = left->first; 0550 struct hlist_node *node2 = right->first; 0551 0552 rcu_assign_pointer(left->first, node2); 0553 rcu_assign_pointer(right->first, node1); 0554 WRITE_ONCE(node2->pprev, &left->first); 0555 WRITE_ONCE(node1->pprev, &right->first); 0556 } 0557 0558 /* 0559 * return the first or the next element in an RCU protected hlist 0560 */ 0561 #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first))) 0562 #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next))) 0563 #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev))) 0564 0565 /** 0566 * hlist_add_head_rcu 0567 * @n: the element to add to the hash list. 0568 * @h: the list to add to. 0569 * 0570 * Description: 0571 * Adds the specified element to the specified hlist, 0572 * while permitting racing traversals. 0573 * 0574 * The caller must take whatever precautions are necessary 0575 * (such as holding appropriate locks) to avoid racing 0576 * with another list-mutation primitive, such as hlist_add_head_rcu() 0577 * or hlist_del_rcu(), running on this same list. 0578 * However, it is perfectly legal to run concurrently with 0579 * the _rcu list-traversal primitives, such as 0580 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 0581 * problems on Alpha CPUs. Regardless of the type of CPU, the 0582 * list-traversal primitive must be guarded by rcu_read_lock(). 0583 */ 0584 static inline void hlist_add_head_rcu(struct hlist_node *n, 0585 struct hlist_head *h) 0586 { 0587 struct hlist_node *first = h->first; 0588 0589 n->next = first; 0590 WRITE_ONCE(n->pprev, &h->first); 0591 rcu_assign_pointer(hlist_first_rcu(h), n); 0592 if (first) 0593 WRITE_ONCE(first->pprev, &n->next); 0594 } 0595 0596 /** 0597 * hlist_add_tail_rcu 0598 * @n: the element to add to the hash list. 0599 * @h: the list to add to. 0600 * 0601 * Description: 0602 * Adds the specified element to the specified hlist, 0603 * while permitting racing traversals. 0604 * 0605 * The caller must take whatever precautions are necessary 0606 * (such as holding appropriate locks) to avoid racing 0607 * with another list-mutation primitive, such as hlist_add_head_rcu() 0608 * or hlist_del_rcu(), running on this same list. 0609 * However, it is perfectly legal to run concurrently with 0610 * the _rcu list-traversal primitives, such as 0611 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 0612 * problems on Alpha CPUs. Regardless of the type of CPU, the 0613 * list-traversal primitive must be guarded by rcu_read_lock(). 0614 */ 0615 static inline void hlist_add_tail_rcu(struct hlist_node *n, 0616 struct hlist_head *h) 0617 { 0618 struct hlist_node *i, *last = NULL; 0619 0620 /* Note: write side code, so rcu accessors are not needed. */ 0621 for (i = h->first; i; i = i->next) 0622 last = i; 0623 0624 if (last) { 0625 n->next = last->next; 0626 WRITE_ONCE(n->pprev, &last->next); 0627 rcu_assign_pointer(hlist_next_rcu(last), n); 0628 } else { 0629 hlist_add_head_rcu(n, h); 0630 } 0631 } 0632 0633 /** 0634 * hlist_add_before_rcu 0635 * @n: the new element to add to the hash list. 0636 * @next: the existing element to add the new element before. 0637 * 0638 * Description: 0639 * Adds the specified element to the specified hlist 0640 * before the specified node while permitting racing traversals. 0641 * 0642 * The caller must take whatever precautions are necessary 0643 * (such as holding appropriate locks) to avoid racing 0644 * with another list-mutation primitive, such as hlist_add_head_rcu() 0645 * or hlist_del_rcu(), running on this same list. 0646 * However, it is perfectly legal to run concurrently with 0647 * the _rcu list-traversal primitives, such as 0648 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 0649 * problems on Alpha CPUs. 0650 */ 0651 static inline void hlist_add_before_rcu(struct hlist_node *n, 0652 struct hlist_node *next) 0653 { 0654 WRITE_ONCE(n->pprev, next->pprev); 0655 n->next = next; 0656 rcu_assign_pointer(hlist_pprev_rcu(n), n); 0657 WRITE_ONCE(next->pprev, &n->next); 0658 } 0659 0660 /** 0661 * hlist_add_behind_rcu 0662 * @n: the new element to add to the hash list. 0663 * @prev: the existing element to add the new element after. 0664 * 0665 * Description: 0666 * Adds the specified element to the specified hlist 0667 * after the specified node while permitting racing traversals. 0668 * 0669 * The caller must take whatever precautions are necessary 0670 * (such as holding appropriate locks) to avoid racing 0671 * with another list-mutation primitive, such as hlist_add_head_rcu() 0672 * or hlist_del_rcu(), running on this same list. 0673 * However, it is perfectly legal to run concurrently with 0674 * the _rcu list-traversal primitives, such as 0675 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 0676 * problems on Alpha CPUs. 0677 */ 0678 static inline void hlist_add_behind_rcu(struct hlist_node *n, 0679 struct hlist_node *prev) 0680 { 0681 n->next = prev->next; 0682 WRITE_ONCE(n->pprev, &prev->next); 0683 rcu_assign_pointer(hlist_next_rcu(prev), n); 0684 if (n->next) 0685 WRITE_ONCE(n->next->pprev, &n->next); 0686 } 0687 0688 #define __hlist_for_each_rcu(pos, head) \ 0689 for (pos = rcu_dereference(hlist_first_rcu(head)); \ 0690 pos; \ 0691 pos = rcu_dereference(hlist_next_rcu(pos))) 0692 0693 /** 0694 * hlist_for_each_entry_rcu - iterate over rcu list of given type 0695 * @pos: the type * to use as a loop cursor. 0696 * @head: the head for your list. 0697 * @member: the name of the hlist_node within the struct. 0698 * @cond: optional lockdep expression if called from non-RCU protection. 0699 * 0700 * This list-traversal primitive may safely run concurrently with 0701 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 0702 * as long as the traversal is guarded by rcu_read_lock(). 0703 */ 0704 #define hlist_for_each_entry_rcu(pos, head, member, cond...) \ 0705 for (__list_check_rcu(dummy, ## cond, 0), \ 0706 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ 0707 typeof(*(pos)), member); \ 0708 pos; \ 0709 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ 0710 &(pos)->member)), typeof(*(pos)), member)) 0711 0712 /** 0713 * hlist_for_each_entry_srcu - iterate over rcu list of given type 0714 * @pos: the type * to use as a loop cursor. 0715 * @head: the head for your list. 0716 * @member: the name of the hlist_node within the struct. 0717 * @cond: lockdep expression for the lock required to traverse the list. 0718 * 0719 * This list-traversal primitive may safely run concurrently with 0720 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 0721 * as long as the traversal is guarded by srcu_read_lock(). 0722 * The lockdep expression srcu_read_lock_held() can be passed as the 0723 * cond argument from read side. 0724 */ 0725 #define hlist_for_each_entry_srcu(pos, head, member, cond) \ 0726 for (__list_check_srcu(cond), \ 0727 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\ 0728 typeof(*(pos)), member); \ 0729 pos; \ 0730 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\ 0731 &(pos)->member)), typeof(*(pos)), member)) 0732 0733 /** 0734 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing) 0735 * @pos: the type * to use as a loop cursor. 0736 * @head: the head for your list. 0737 * @member: the name of the hlist_node within the struct. 0738 * 0739 * This list-traversal primitive may safely run concurrently with 0740 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 0741 * as long as the traversal is guarded by rcu_read_lock(). 0742 * 0743 * This is the same as hlist_for_each_entry_rcu() except that it does 0744 * not do any RCU debugging or tracing. 0745 */ 0746 #define hlist_for_each_entry_rcu_notrace(pos, head, member) \ 0747 for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\ 0748 typeof(*(pos)), member); \ 0749 pos; \ 0750 pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\ 0751 &(pos)->member)), typeof(*(pos)), member)) 0752 0753 /** 0754 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type 0755 * @pos: the type * to use as a loop cursor. 0756 * @head: the head for your list. 0757 * @member: the name of the hlist_node within the struct. 0758 * 0759 * This list-traversal primitive may safely run concurrently with 0760 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 0761 * as long as the traversal is guarded by rcu_read_lock(). 0762 */ 0763 #define hlist_for_each_entry_rcu_bh(pos, head, member) \ 0764 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\ 0765 typeof(*(pos)), member); \ 0766 pos; \ 0767 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\ 0768 &(pos)->member)), typeof(*(pos)), member)) 0769 0770 /** 0771 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point 0772 * @pos: the type * to use as a loop cursor. 0773 * @member: the name of the hlist_node within the struct. 0774 */ 0775 #define hlist_for_each_entry_continue_rcu(pos, member) \ 0776 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 0777 &(pos)->member)), typeof(*(pos)), member); \ 0778 pos; \ 0779 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 0780 &(pos)->member)), typeof(*(pos)), member)) 0781 0782 /** 0783 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point 0784 * @pos: the type * to use as a loop cursor. 0785 * @member: the name of the hlist_node within the struct. 0786 */ 0787 #define hlist_for_each_entry_continue_rcu_bh(pos, member) \ 0788 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 0789 &(pos)->member)), typeof(*(pos)), member); \ 0790 pos; \ 0791 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \ 0792 &(pos)->member)), typeof(*(pos)), member)) 0793 0794 /** 0795 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point 0796 * @pos: the type * to use as a loop cursor. 0797 * @member: the name of the hlist_node within the struct. 0798 */ 0799 #define hlist_for_each_entry_from_rcu(pos, member) \ 0800 for (; pos; \ 0801 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \ 0802 &(pos)->member)), typeof(*(pos)), member)) 0803 0804 #endif /* __KERNEL__ */ 0805 #endif
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |