Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 #ifndef _LINUX_PGTABLE_H
0003 #define _LINUX_PGTABLE_H
0004 
0005 #include <linux/pfn.h>
0006 #include <asm/pgtable.h>
0007 
0008 #ifndef __ASSEMBLY__
0009 #ifdef CONFIG_MMU
0010 
0011 #include <linux/mm_types.h>
0012 #include <linux/bug.h>
0013 #include <linux/errno.h>
0014 #include <asm-generic/pgtable_uffd.h>
0015 #include <linux/page_table_check.h>
0016 
0017 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
0018     defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
0019 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
0020 #endif
0021 
0022 /*
0023  * On almost all architectures and configurations, 0 can be used as the
0024  * upper ceiling to free_pgtables(): on many architectures it has the same
0025  * effect as using TASK_SIZE.  However, there is one configuration which
0026  * must impose a more careful limit, to avoid freeing kernel pgtables.
0027  */
0028 #ifndef USER_PGTABLES_CEILING
0029 #define USER_PGTABLES_CEILING   0UL
0030 #endif
0031 
0032 /*
0033  * This defines the first usable user address. Platforms
0034  * can override its value with custom FIRST_USER_ADDRESS
0035  * defined in their respective <asm/pgtable.h>.
0036  */
0037 #ifndef FIRST_USER_ADDRESS
0038 #define FIRST_USER_ADDRESS  0UL
0039 #endif
0040 
0041 /*
0042  * This defines the generic helper for accessing PMD page
0043  * table page. Although platforms can still override this
0044  * via their respective <asm/pgtable.h>.
0045  */
0046 #ifndef pmd_pgtable
0047 #define pmd_pgtable(pmd) pmd_page(pmd)
0048 #endif
0049 
0050 /*
0051  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
0052  *
0053  * The pXx_index() functions return the index of the entry in the page
0054  * table page which would control the given virtual address
0055  *
0056  * As these functions may be used by the same code for different levels of
0057  * the page table folding, they are always available, regardless of
0058  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
0059  * because in such cases PTRS_PER_PxD equals 1.
0060  */
0061 
0062 static inline unsigned long pte_index(unsigned long address)
0063 {
0064     return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
0065 }
0066 #define pte_index pte_index
0067 
0068 #ifndef pmd_index
0069 static inline unsigned long pmd_index(unsigned long address)
0070 {
0071     return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
0072 }
0073 #define pmd_index pmd_index
0074 #endif
0075 
0076 #ifndef pud_index
0077 static inline unsigned long pud_index(unsigned long address)
0078 {
0079     return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
0080 }
0081 #define pud_index pud_index
0082 #endif
0083 
0084 #ifndef pgd_index
0085 /* Must be a compile-time constant, so implement it as a macro */
0086 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
0087 #endif
0088 
0089 #ifndef pte_offset_kernel
0090 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
0091 {
0092     return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
0093 }
0094 #define pte_offset_kernel pte_offset_kernel
0095 #endif
0096 
0097 #if defined(CONFIG_HIGHPTE)
0098 #define pte_offset_map(dir, address)                \
0099     ((pte_t *)kmap_atomic(pmd_page(*(dir))) +       \
0100      pte_index((address)))
0101 #define pte_unmap(pte) kunmap_atomic((pte))
0102 #else
0103 #define pte_offset_map(dir, address)    pte_offset_kernel((dir), (address))
0104 #define pte_unmap(pte) ((void)(pte))    /* NOP */
0105 #endif
0106 
0107 /* Find an entry in the second-level page table.. */
0108 #ifndef pmd_offset
0109 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
0110 {
0111     return pud_pgtable(*pud) + pmd_index(address);
0112 }
0113 #define pmd_offset pmd_offset
0114 #endif
0115 
0116 #ifndef pud_offset
0117 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
0118 {
0119     return p4d_pgtable(*p4d) + pud_index(address);
0120 }
0121 #define pud_offset pud_offset
0122 #endif
0123 
0124 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
0125 {
0126     return (pgd + pgd_index(address));
0127 };
0128 
0129 /*
0130  * a shortcut to get a pgd_t in a given mm
0131  */
0132 #ifndef pgd_offset
0133 #define pgd_offset(mm, address)     pgd_offset_pgd((mm)->pgd, (address))
0134 #endif
0135 
0136 /*
0137  * a shortcut which implies the use of the kernel's pgd, instead
0138  * of a process's
0139  */
0140 #ifndef pgd_offset_k
0141 #define pgd_offset_k(address)       pgd_offset(&init_mm, (address))
0142 #endif
0143 
0144 /*
0145  * In many cases it is known that a virtual address is mapped at PMD or PTE
0146  * level, so instead of traversing all the page table levels, we can get a
0147  * pointer to the PMD entry in user or kernel page table or translate a virtual
0148  * address to the pointer in the PTE in the kernel page tables with simple
0149  * helpers.
0150  */
0151 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
0152 {
0153     return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
0154 }
0155 
0156 static inline pmd_t *pmd_off_k(unsigned long va)
0157 {
0158     return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
0159 }
0160 
0161 static inline pte_t *virt_to_kpte(unsigned long vaddr)
0162 {
0163     pmd_t *pmd = pmd_off_k(vaddr);
0164 
0165     return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
0166 }
0167 
0168 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
0169 extern int ptep_set_access_flags(struct vm_area_struct *vma,
0170                  unsigned long address, pte_t *ptep,
0171                  pte_t entry, int dirty);
0172 #endif
0173 
0174 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
0175 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0176 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
0177                  unsigned long address, pmd_t *pmdp,
0178                  pmd_t entry, int dirty);
0179 extern int pudp_set_access_flags(struct vm_area_struct *vma,
0180                  unsigned long address, pud_t *pudp,
0181                  pud_t entry, int dirty);
0182 #else
0183 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
0184                     unsigned long address, pmd_t *pmdp,
0185                     pmd_t entry, int dirty)
0186 {
0187     BUILD_BUG();
0188     return 0;
0189 }
0190 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
0191                     unsigned long address, pud_t *pudp,
0192                     pud_t entry, int dirty)
0193 {
0194     BUILD_BUG();
0195     return 0;
0196 }
0197 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
0198 #endif
0199 
0200 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
0201 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
0202                         unsigned long address,
0203                         pte_t *ptep)
0204 {
0205     pte_t pte = *ptep;
0206     int r = 1;
0207     if (!pte_young(pte))
0208         r = 0;
0209     else
0210         set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
0211     return r;
0212 }
0213 #endif
0214 
0215 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
0216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0217 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
0218                         unsigned long address,
0219                         pmd_t *pmdp)
0220 {
0221     pmd_t pmd = *pmdp;
0222     int r = 1;
0223     if (!pmd_young(pmd))
0224         r = 0;
0225     else
0226         set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
0227     return r;
0228 }
0229 #else
0230 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
0231                         unsigned long address,
0232                         pmd_t *pmdp)
0233 {
0234     BUILD_BUG();
0235     return 0;
0236 }
0237 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
0238 #endif
0239 
0240 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
0241 int ptep_clear_flush_young(struct vm_area_struct *vma,
0242                unsigned long address, pte_t *ptep);
0243 #endif
0244 
0245 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
0246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0247 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
0248                   unsigned long address, pmd_t *pmdp);
0249 #else
0250 /*
0251  * Despite relevant to THP only, this API is called from generic rmap code
0252  * under PageTransHuge(), hence needs a dummy implementation for !THP
0253  */
0254 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
0255                      unsigned long address, pmd_t *pmdp)
0256 {
0257     BUILD_BUG();
0258     return 0;
0259 }
0260 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
0261 #endif
0262 
0263 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
0264 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
0265                        unsigned long address,
0266                        pte_t *ptep)
0267 {
0268     pte_t pte = *ptep;
0269     pte_clear(mm, address, ptep);
0270     page_table_check_pte_clear(mm, address, pte);
0271     return pte;
0272 }
0273 #endif
0274 
0275 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
0276                   pte_t *ptep)
0277 {
0278     ptep_get_and_clear(mm, addr, ptep);
0279 }
0280 
0281 #ifndef __HAVE_ARCH_PTEP_GET
0282 static inline pte_t ptep_get(pte_t *ptep)
0283 {
0284     return READ_ONCE(*ptep);
0285 }
0286 #endif
0287 
0288 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
0289 /*
0290  * WARNING: only to be used in the get_user_pages_fast() implementation.
0291  *
0292  * With get_user_pages_fast(), we walk down the pagetables without taking any
0293  * locks.  For this we would like to load the pointers atomically, but sometimes
0294  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
0295  * we do have is the guarantee that a PTE will only either go from not present
0296  * to present, or present to not present or both -- it will not switch to a
0297  * completely different present page without a TLB flush in between; something
0298  * that we are blocking by holding interrupts off.
0299  *
0300  * Setting ptes from not present to present goes:
0301  *
0302  *   ptep->pte_high = h;
0303  *   smp_wmb();
0304  *   ptep->pte_low = l;
0305  *
0306  * And present to not present goes:
0307  *
0308  *   ptep->pte_low = 0;
0309  *   smp_wmb();
0310  *   ptep->pte_high = 0;
0311  *
0312  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
0313  * We load pte_high *after* loading pte_low, which ensures we don't see an older
0314  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
0315  * picked up a changed pte high. We might have gotten rubbish values from
0316  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
0317  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
0318  * operates on present ptes we're safe.
0319  */
0320 static inline pte_t ptep_get_lockless(pte_t *ptep)
0321 {
0322     pte_t pte;
0323 
0324     do {
0325         pte.pte_low = ptep->pte_low;
0326         smp_rmb();
0327         pte.pte_high = ptep->pte_high;
0328         smp_rmb();
0329     } while (unlikely(pte.pte_low != ptep->pte_low));
0330 
0331     return pte;
0332 }
0333 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0334 /*
0335  * We require that the PTE can be read atomically.
0336  */
0337 static inline pte_t ptep_get_lockless(pte_t *ptep)
0338 {
0339     return ptep_get(ptep);
0340 }
0341 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0342 
0343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0344 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
0345 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
0346                         unsigned long address,
0347                         pmd_t *pmdp)
0348 {
0349     pmd_t pmd = *pmdp;
0350 
0351     pmd_clear(pmdp);
0352     page_table_check_pmd_clear(mm, address, pmd);
0353 
0354     return pmd;
0355 }
0356 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
0357 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
0358 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
0359                         unsigned long address,
0360                         pud_t *pudp)
0361 {
0362     pud_t pud = *pudp;
0363 
0364     pud_clear(pudp);
0365     page_table_check_pud_clear(mm, address, pud);
0366 
0367     return pud;
0368 }
0369 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
0370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
0371 
0372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0373 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
0374 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
0375                         unsigned long address, pmd_t *pmdp,
0376                         int full)
0377 {
0378     return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
0379 }
0380 #endif
0381 
0382 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
0383 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
0384                         unsigned long address, pud_t *pudp,
0385                         int full)
0386 {
0387     return pudp_huge_get_and_clear(mm, address, pudp);
0388 }
0389 #endif
0390 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
0391 
0392 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
0393 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
0394                         unsigned long address, pte_t *ptep,
0395                         int full)
0396 {
0397     pte_t pte;
0398     pte = ptep_get_and_clear(mm, address, ptep);
0399     return pte;
0400 }
0401 #endif
0402 
0403 
0404 /*
0405  * If two threads concurrently fault at the same page, the thread that
0406  * won the race updates the PTE and its local TLB/Cache. The other thread
0407  * gives up, simply does nothing, and continues; on architectures where
0408  * software can update TLB,  local TLB can be updated here to avoid next page
0409  * fault. This function updates TLB only, do nothing with cache or others.
0410  * It is the difference with function update_mmu_cache.
0411  */
0412 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
0413 static inline void update_mmu_tlb(struct vm_area_struct *vma,
0414                 unsigned long address, pte_t *ptep)
0415 {
0416 }
0417 #define __HAVE_ARCH_UPDATE_MMU_TLB
0418 #endif
0419 
0420 /*
0421  * Some architectures may be able to avoid expensive synchronization
0422  * primitives when modifications are made to PTE's which are already
0423  * not present, or in the process of an address space destruction.
0424  */
0425 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
0426 static inline void pte_clear_not_present_full(struct mm_struct *mm,
0427                           unsigned long address,
0428                           pte_t *ptep,
0429                           int full)
0430 {
0431     pte_clear(mm, address, ptep);
0432 }
0433 #endif
0434 
0435 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
0436 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
0437                   unsigned long address,
0438                   pte_t *ptep);
0439 #endif
0440 
0441 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
0442 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
0443                   unsigned long address,
0444                   pmd_t *pmdp);
0445 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
0446                   unsigned long address,
0447                   pud_t *pudp);
0448 #endif
0449 
0450 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
0451 struct mm_struct;
0452 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
0453 {
0454     pte_t old_pte = *ptep;
0455     set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
0456 }
0457 #endif
0458 
0459 /*
0460  * On some architectures hardware does not set page access bit when accessing
0461  * memory page, it is responsibility of software setting this bit. It brings
0462  * out extra page fault penalty to track page access bit. For optimization page
0463  * access bit can be set during all page fault flow on these arches.
0464  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
0465  * where software maintains page access bit.
0466  */
0467 #ifndef pte_sw_mkyoung
0468 static inline pte_t pte_sw_mkyoung(pte_t pte)
0469 {
0470     return pte;
0471 }
0472 #define pte_sw_mkyoung  pte_sw_mkyoung
0473 #endif
0474 
0475 #ifndef pte_savedwrite
0476 #define pte_savedwrite pte_write
0477 #endif
0478 
0479 #ifndef pte_mk_savedwrite
0480 #define pte_mk_savedwrite pte_mkwrite
0481 #endif
0482 
0483 #ifndef pte_clear_savedwrite
0484 #define pte_clear_savedwrite pte_wrprotect
0485 #endif
0486 
0487 #ifndef pmd_savedwrite
0488 #define pmd_savedwrite pmd_write
0489 #endif
0490 
0491 #ifndef pmd_mk_savedwrite
0492 #define pmd_mk_savedwrite pmd_mkwrite
0493 #endif
0494 
0495 #ifndef pmd_clear_savedwrite
0496 #define pmd_clear_savedwrite pmd_wrprotect
0497 #endif
0498 
0499 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
0500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0501 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
0502                       unsigned long address, pmd_t *pmdp)
0503 {
0504     pmd_t old_pmd = *pmdp;
0505     set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
0506 }
0507 #else
0508 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
0509                       unsigned long address, pmd_t *pmdp)
0510 {
0511     BUILD_BUG();
0512 }
0513 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
0514 #endif
0515 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
0516 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
0517 static inline void pudp_set_wrprotect(struct mm_struct *mm,
0518                       unsigned long address, pud_t *pudp)
0519 {
0520     pud_t old_pud = *pudp;
0521 
0522     set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
0523 }
0524 #else
0525 static inline void pudp_set_wrprotect(struct mm_struct *mm,
0526                       unsigned long address, pud_t *pudp)
0527 {
0528     BUILD_BUG();
0529 }
0530 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
0531 #endif
0532 
0533 #ifndef pmdp_collapse_flush
0534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0535 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
0536                  unsigned long address, pmd_t *pmdp);
0537 #else
0538 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
0539                     unsigned long address,
0540                     pmd_t *pmdp)
0541 {
0542     BUILD_BUG();
0543     return *pmdp;
0544 }
0545 #define pmdp_collapse_flush pmdp_collapse_flush
0546 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
0547 #endif
0548 
0549 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
0550 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
0551                        pgtable_t pgtable);
0552 #endif
0553 
0554 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
0555 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
0556 #endif
0557 
0558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0559 /*
0560  * This is an implementation of pmdp_establish() that is only suitable for an
0561  * architecture that doesn't have hardware dirty/accessed bits. In this case we
0562  * can't race with CPU which sets these bits and non-atomic approach is fine.
0563  */
0564 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
0565         unsigned long address, pmd_t *pmdp, pmd_t pmd)
0566 {
0567     pmd_t old_pmd = *pmdp;
0568     set_pmd_at(vma->vm_mm, address, pmdp, pmd);
0569     return old_pmd;
0570 }
0571 #endif
0572 
0573 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
0574 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
0575                 pmd_t *pmdp);
0576 #endif
0577 
0578 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
0579 
0580 /*
0581  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
0582  * hugepage mapping in the page tables. This function is similar to
0583  * pmdp_invalidate(), but should only be used if the access and dirty bits would
0584  * not be cleared by the software in the new PMD value. The function ensures
0585  * that hardware changes of the access and dirty bits updates would not be lost.
0586  *
0587  * Doing so can allow in certain architectures to avoid a TLB flush in most
0588  * cases. Yet, another TLB flush might be necessary later if the PMD update
0589  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
0590  * even when a TLB flush is needed because of the update, the caller may be able
0591  * to batch these TLB flushing operations, so fewer TLB flush operations are
0592  * needed.
0593  */
0594 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
0595                 unsigned long address, pmd_t *pmdp);
0596 #endif
0597 
0598 #ifndef __HAVE_ARCH_PTE_SAME
0599 static inline int pte_same(pte_t pte_a, pte_t pte_b)
0600 {
0601     return pte_val(pte_a) == pte_val(pte_b);
0602 }
0603 #endif
0604 
0605 #ifndef __HAVE_ARCH_PTE_UNUSED
0606 /*
0607  * Some architectures provide facilities to virtualization guests
0608  * so that they can flag allocated pages as unused. This allows the
0609  * host to transparently reclaim unused pages. This function returns
0610  * whether the pte's page is unused.
0611  */
0612 static inline int pte_unused(pte_t pte)
0613 {
0614     return 0;
0615 }
0616 #endif
0617 
0618 #ifndef pte_access_permitted
0619 #define pte_access_permitted(pte, write) \
0620     (pte_present(pte) && (!(write) || pte_write(pte)))
0621 #endif
0622 
0623 #ifndef pmd_access_permitted
0624 #define pmd_access_permitted(pmd, write) \
0625     (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
0626 #endif
0627 
0628 #ifndef pud_access_permitted
0629 #define pud_access_permitted(pud, write) \
0630     (pud_present(pud) && (!(write) || pud_write(pud)))
0631 #endif
0632 
0633 #ifndef p4d_access_permitted
0634 #define p4d_access_permitted(p4d, write) \
0635     (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
0636 #endif
0637 
0638 #ifndef pgd_access_permitted
0639 #define pgd_access_permitted(pgd, write) \
0640     (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
0641 #endif
0642 
0643 #ifndef __HAVE_ARCH_PMD_SAME
0644 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
0645 {
0646     return pmd_val(pmd_a) == pmd_val(pmd_b);
0647 }
0648 
0649 static inline int pud_same(pud_t pud_a, pud_t pud_b)
0650 {
0651     return pud_val(pud_a) == pud_val(pud_b);
0652 }
0653 #endif
0654 
0655 #ifndef __HAVE_ARCH_P4D_SAME
0656 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
0657 {
0658     return p4d_val(p4d_a) == p4d_val(p4d_b);
0659 }
0660 #endif
0661 
0662 #ifndef __HAVE_ARCH_PGD_SAME
0663 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
0664 {
0665     return pgd_val(pgd_a) == pgd_val(pgd_b);
0666 }
0667 #endif
0668 
0669 /*
0670  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
0671  * TLB flush will be required as a result of the "set". For example, use
0672  * in scenarios where it is known ahead of time that the routine is
0673  * setting non-present entries, or re-setting an existing entry to the
0674  * same value. Otherwise, use the typical "set" helpers and flush the
0675  * TLB.
0676  */
0677 #define set_pte_safe(ptep, pte) \
0678 ({ \
0679     WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
0680     set_pte(ptep, pte); \
0681 })
0682 
0683 #define set_pmd_safe(pmdp, pmd) \
0684 ({ \
0685     WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
0686     set_pmd(pmdp, pmd); \
0687 })
0688 
0689 #define set_pud_safe(pudp, pud) \
0690 ({ \
0691     WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
0692     set_pud(pudp, pud); \
0693 })
0694 
0695 #define set_p4d_safe(p4dp, p4d) \
0696 ({ \
0697     WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
0698     set_p4d(p4dp, p4d); \
0699 })
0700 
0701 #define set_pgd_safe(pgdp, pgd) \
0702 ({ \
0703     WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
0704     set_pgd(pgdp, pgd); \
0705 })
0706 
0707 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
0708 /*
0709  * Some architectures support metadata associated with a page. When a
0710  * page is being swapped out, this metadata must be saved so it can be
0711  * restored when the page is swapped back in. SPARC M7 and newer
0712  * processors support an ADI (Application Data Integrity) tag for the
0713  * page as metadata for the page. arch_do_swap_page() can restore this
0714  * metadata when a page is swapped back in.
0715  */
0716 static inline void arch_do_swap_page(struct mm_struct *mm,
0717                      struct vm_area_struct *vma,
0718                      unsigned long addr,
0719                      pte_t pte, pte_t oldpte)
0720 {
0721 
0722 }
0723 #endif
0724 
0725 #ifndef __HAVE_ARCH_UNMAP_ONE
0726 /*
0727  * Some architectures support metadata associated with a page. When a
0728  * page is being swapped out, this metadata must be saved so it can be
0729  * restored when the page is swapped back in. SPARC M7 and newer
0730  * processors support an ADI (Application Data Integrity) tag for the
0731  * page as metadata for the page. arch_unmap_one() can save this
0732  * metadata on a swap-out of a page.
0733  */
0734 static inline int arch_unmap_one(struct mm_struct *mm,
0735                   struct vm_area_struct *vma,
0736                   unsigned long addr,
0737                   pte_t orig_pte)
0738 {
0739     return 0;
0740 }
0741 #endif
0742 
0743 /*
0744  * Allow architectures to preserve additional metadata associated with
0745  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
0746  * prototypes must be defined in the arch-specific asm/pgtable.h file.
0747  */
0748 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
0749 static inline int arch_prepare_to_swap(struct page *page)
0750 {
0751     return 0;
0752 }
0753 #endif
0754 
0755 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
0756 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
0757 {
0758 }
0759 
0760 static inline void arch_swap_invalidate_area(int type)
0761 {
0762 }
0763 #endif
0764 
0765 #ifndef __HAVE_ARCH_SWAP_RESTORE
0766 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
0767 {
0768 }
0769 #endif
0770 
0771 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
0772 #define pgd_offset_gate(mm, addr)   pgd_offset(mm, addr)
0773 #endif
0774 
0775 #ifndef __HAVE_ARCH_MOVE_PTE
0776 #define move_pte(pte, prot, old_addr, new_addr) (pte)
0777 #endif
0778 
0779 #ifndef pte_accessible
0780 # define pte_accessible(mm, pte)    ((void)(pte), 1)
0781 #endif
0782 
0783 #ifndef flush_tlb_fix_spurious_fault
0784 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
0785 #endif
0786 
0787 /*
0788  * When walking page tables, get the address of the next boundary,
0789  * or the end address of the range if that comes earlier.  Although no
0790  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
0791  */
0792 
0793 #define pgd_addr_end(addr, end)                     \
0794 ({  unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;  \
0795     (__boundary - 1 < (end) - 1)? __boundary: (end);        \
0796 })
0797 
0798 #ifndef p4d_addr_end
0799 #define p4d_addr_end(addr, end)                     \
0800 ({  unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;  \
0801     (__boundary - 1 < (end) - 1)? __boundary: (end);        \
0802 })
0803 #endif
0804 
0805 #ifndef pud_addr_end
0806 #define pud_addr_end(addr, end)                     \
0807 ({  unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;  \
0808     (__boundary - 1 < (end) - 1)? __boundary: (end);        \
0809 })
0810 #endif
0811 
0812 #ifndef pmd_addr_end
0813 #define pmd_addr_end(addr, end)                     \
0814 ({  unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;  \
0815     (__boundary - 1 < (end) - 1)? __boundary: (end);        \
0816 })
0817 #endif
0818 
0819 /*
0820  * When walking page tables, we usually want to skip any p?d_none entries;
0821  * and any p?d_bad entries - reporting the error before resetting to none.
0822  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
0823  */
0824 void pgd_clear_bad(pgd_t *);
0825 
0826 #ifndef __PAGETABLE_P4D_FOLDED
0827 void p4d_clear_bad(p4d_t *);
0828 #else
0829 #define p4d_clear_bad(p4d)        do { } while (0)
0830 #endif
0831 
0832 #ifndef __PAGETABLE_PUD_FOLDED
0833 void pud_clear_bad(pud_t *);
0834 #else
0835 #define pud_clear_bad(p4d)        do { } while (0)
0836 #endif
0837 
0838 void pmd_clear_bad(pmd_t *);
0839 
0840 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
0841 {
0842     if (pgd_none(*pgd))
0843         return 1;
0844     if (unlikely(pgd_bad(*pgd))) {
0845         pgd_clear_bad(pgd);
0846         return 1;
0847     }
0848     return 0;
0849 }
0850 
0851 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
0852 {
0853     if (p4d_none(*p4d))
0854         return 1;
0855     if (unlikely(p4d_bad(*p4d))) {
0856         p4d_clear_bad(p4d);
0857         return 1;
0858     }
0859     return 0;
0860 }
0861 
0862 static inline int pud_none_or_clear_bad(pud_t *pud)
0863 {
0864     if (pud_none(*pud))
0865         return 1;
0866     if (unlikely(pud_bad(*pud))) {
0867         pud_clear_bad(pud);
0868         return 1;
0869     }
0870     return 0;
0871 }
0872 
0873 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
0874 {
0875     if (pmd_none(*pmd))
0876         return 1;
0877     if (unlikely(pmd_bad(*pmd))) {
0878         pmd_clear_bad(pmd);
0879         return 1;
0880     }
0881     return 0;
0882 }
0883 
0884 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
0885                          unsigned long addr,
0886                          pte_t *ptep)
0887 {
0888     /*
0889      * Get the current pte state, but zero it out to make it
0890      * non-present, preventing the hardware from asynchronously
0891      * updating it.
0892      */
0893     return ptep_get_and_clear(vma->vm_mm, addr, ptep);
0894 }
0895 
0896 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
0897                          unsigned long addr,
0898                          pte_t *ptep, pte_t pte)
0899 {
0900     /*
0901      * The pte is non-present, so there's no hardware state to
0902      * preserve.
0903      */
0904     set_pte_at(vma->vm_mm, addr, ptep, pte);
0905 }
0906 
0907 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
0908 /*
0909  * Start a pte protection read-modify-write transaction, which
0910  * protects against asynchronous hardware modifications to the pte.
0911  * The intention is not to prevent the hardware from making pte
0912  * updates, but to prevent any updates it may make from being lost.
0913  *
0914  * This does not protect against other software modifications of the
0915  * pte; the appropriate pte lock must be held over the transaction.
0916  *
0917  * Note that this interface is intended to be batchable, meaning that
0918  * ptep_modify_prot_commit may not actually update the pte, but merely
0919  * queue the update to be done at some later time.  The update must be
0920  * actually committed before the pte lock is released, however.
0921  */
0922 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
0923                        unsigned long addr,
0924                        pte_t *ptep)
0925 {
0926     return __ptep_modify_prot_start(vma, addr, ptep);
0927 }
0928 
0929 /*
0930  * Commit an update to a pte, leaving any hardware-controlled bits in
0931  * the PTE unmodified.
0932  */
0933 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
0934                        unsigned long addr,
0935                        pte_t *ptep, pte_t old_pte, pte_t pte)
0936 {
0937     __ptep_modify_prot_commit(vma, addr, ptep, pte);
0938 }
0939 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
0940 #endif /* CONFIG_MMU */
0941 
0942 /*
0943  * No-op macros that just return the current protection value. Defined here
0944  * because these macros can be used even if CONFIG_MMU is not defined.
0945  */
0946 
0947 #ifndef pgprot_nx
0948 #define pgprot_nx(prot) (prot)
0949 #endif
0950 
0951 #ifndef pgprot_noncached
0952 #define pgprot_noncached(prot)  (prot)
0953 #endif
0954 
0955 #ifndef pgprot_writecombine
0956 #define pgprot_writecombine pgprot_noncached
0957 #endif
0958 
0959 #ifndef pgprot_writethrough
0960 #define pgprot_writethrough pgprot_noncached
0961 #endif
0962 
0963 #ifndef pgprot_device
0964 #define pgprot_device pgprot_noncached
0965 #endif
0966 
0967 #ifndef pgprot_mhp
0968 #define pgprot_mhp(prot)    (prot)
0969 #endif
0970 
0971 #ifdef CONFIG_MMU
0972 #ifndef pgprot_modify
0973 #define pgprot_modify pgprot_modify
0974 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
0975 {
0976     if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
0977         newprot = pgprot_noncached(newprot);
0978     if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
0979         newprot = pgprot_writecombine(newprot);
0980     if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
0981         newprot = pgprot_device(newprot);
0982     return newprot;
0983 }
0984 #endif
0985 #endif /* CONFIG_MMU */
0986 
0987 #ifndef pgprot_encrypted
0988 #define pgprot_encrypted(prot)  (prot)
0989 #endif
0990 
0991 #ifndef pgprot_decrypted
0992 #define pgprot_decrypted(prot)  (prot)
0993 #endif
0994 
0995 /*
0996  * A facility to provide lazy MMU batching.  This allows PTE updates and
0997  * page invalidations to be delayed until a call to leave lazy MMU mode
0998  * is issued.  Some architectures may benefit from doing this, and it is
0999  * beneficial for both shadow and direct mode hypervisors, which may batch
1000  * the PTE updates which happen during this window.  Note that using this
1001  * interface requires that read hazards be removed from the code.  A read
1002  * hazard could result in the direct mode hypervisor case, since the actual
1003  * write to the page tables may not yet have taken place, so reads though
1004  * a raw PTE pointer after it has been modified are not guaranteed to be
1005  * up to date.  This mode can only be entered and left under the protection of
1006  * the page table locks for all page tables which may be modified.  In the UP
1007  * case, this is required so that preemption is disabled, and in the SMP case,
1008  * it must synchronize the delayed page table writes properly on other CPUs.
1009  */
1010 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1011 #define arch_enter_lazy_mmu_mode()  do {} while (0)
1012 #define arch_leave_lazy_mmu_mode()  do {} while (0)
1013 #define arch_flush_lazy_mmu_mode()  do {} while (0)
1014 #endif
1015 
1016 /*
1017  * A facility to provide batching of the reload of page tables and
1018  * other process state with the actual context switch code for
1019  * paravirtualized guests.  By convention, only one of the batched
1020  * update (lazy) modes (CPU, MMU) should be active at any given time,
1021  * entry should never be nested, and entry and exits should always be
1022  * paired.  This is for sanity of maintaining and reasoning about the
1023  * kernel code.  In this case, the exit (end of the context switch) is
1024  * in architecture-specific code, and so doesn't need a generic
1025  * definition.
1026  */
1027 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1028 #define arch_start_context_switch(prev) do {} while (0)
1029 #endif
1030 
1031 /*
1032  * When replacing an anonymous page by a real (!non) swap entry, we clear
1033  * PG_anon_exclusive from the page and instead remember whether the flag was
1034  * set in the swp pte. During fork(), we have to mark the entry as !exclusive
1035  * (possibly shared). On swapin, we use that information to restore
1036  * PG_anon_exclusive, which is very helpful in cases where we might have
1037  * additional (e.g., FOLL_GET) references on a page and wouldn't be able to
1038  * detect exclusivity.
1039  *
1040  * These functions don't apply to non-swap entries (e.g., migration, hwpoison,
1041  * ...).
1042  */
1043 #ifndef __HAVE_ARCH_PTE_SWP_EXCLUSIVE
1044 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1045 {
1046     return pte;
1047 }
1048 
1049 static inline int pte_swp_exclusive(pte_t pte)
1050 {
1051     return false;
1052 }
1053 
1054 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1055 {
1056     return pte;
1057 }
1058 #endif
1059 
1060 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1061 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1062 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1063 {
1064     return pmd;
1065 }
1066 
1067 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1068 {
1069     return 0;
1070 }
1071 
1072 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1073 {
1074     return pmd;
1075 }
1076 #endif
1077 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1078 static inline int pte_soft_dirty(pte_t pte)
1079 {
1080     return 0;
1081 }
1082 
1083 static inline int pmd_soft_dirty(pmd_t pmd)
1084 {
1085     return 0;
1086 }
1087 
1088 static inline pte_t pte_mksoft_dirty(pte_t pte)
1089 {
1090     return pte;
1091 }
1092 
1093 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1094 {
1095     return pmd;
1096 }
1097 
1098 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1099 {
1100     return pte;
1101 }
1102 
1103 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1104 {
1105     return pmd;
1106 }
1107 
1108 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1109 {
1110     return pte;
1111 }
1112 
1113 static inline int pte_swp_soft_dirty(pte_t pte)
1114 {
1115     return 0;
1116 }
1117 
1118 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1119 {
1120     return pte;
1121 }
1122 
1123 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1124 {
1125     return pmd;
1126 }
1127 
1128 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1129 {
1130     return 0;
1131 }
1132 
1133 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1134 {
1135     return pmd;
1136 }
1137 #endif
1138 
1139 #ifndef __HAVE_PFNMAP_TRACKING
1140 /*
1141  * Interfaces that can be used by architecture code to keep track of
1142  * memory type of pfn mappings specified by the remap_pfn_range,
1143  * vmf_insert_pfn.
1144  */
1145 
1146 /*
1147  * track_pfn_remap is called when a _new_ pfn mapping is being established
1148  * by remap_pfn_range() for physical range indicated by pfn and size.
1149  */
1150 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1151                   unsigned long pfn, unsigned long addr,
1152                   unsigned long size)
1153 {
1154     return 0;
1155 }
1156 
1157 /*
1158  * track_pfn_insert is called when a _new_ single pfn is established
1159  * by vmf_insert_pfn().
1160  */
1161 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1162                     pfn_t pfn)
1163 {
1164 }
1165 
1166 /*
1167  * track_pfn_copy is called when vma that is covering the pfnmap gets
1168  * copied through copy_page_range().
1169  */
1170 static inline int track_pfn_copy(struct vm_area_struct *vma)
1171 {
1172     return 0;
1173 }
1174 
1175 /*
1176  * untrack_pfn is called while unmapping a pfnmap for a region.
1177  * untrack can be called for a specific region indicated by pfn and size or
1178  * can be for the entire vma (in which case pfn, size are zero).
1179  */
1180 static inline void untrack_pfn(struct vm_area_struct *vma,
1181                    unsigned long pfn, unsigned long size)
1182 {
1183 }
1184 
1185 /*
1186  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1187  */
1188 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1189 {
1190 }
1191 #else
1192 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1193                unsigned long pfn, unsigned long addr,
1194                unsigned long size);
1195 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1196                  pfn_t pfn);
1197 extern int track_pfn_copy(struct vm_area_struct *vma);
1198 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1199             unsigned long size);
1200 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1201 #endif
1202 
1203 #ifdef CONFIG_MMU
1204 #ifdef __HAVE_COLOR_ZERO_PAGE
1205 static inline int is_zero_pfn(unsigned long pfn)
1206 {
1207     extern unsigned long zero_pfn;
1208     unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1209     return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1210 }
1211 
1212 #define my_zero_pfn(addr)   page_to_pfn(ZERO_PAGE(addr))
1213 
1214 #else
1215 static inline int is_zero_pfn(unsigned long pfn)
1216 {
1217     extern unsigned long zero_pfn;
1218     return pfn == zero_pfn;
1219 }
1220 
1221 static inline unsigned long my_zero_pfn(unsigned long addr)
1222 {
1223     extern unsigned long zero_pfn;
1224     return zero_pfn;
1225 }
1226 #endif
1227 #else
1228 static inline int is_zero_pfn(unsigned long pfn)
1229 {
1230     return 0;
1231 }
1232 
1233 static inline unsigned long my_zero_pfn(unsigned long addr)
1234 {
1235     return 0;
1236 }
1237 #endif /* CONFIG_MMU */
1238 
1239 #ifdef CONFIG_MMU
1240 
1241 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1242 static inline int pmd_trans_huge(pmd_t pmd)
1243 {
1244     return 0;
1245 }
1246 #ifndef pmd_write
1247 static inline int pmd_write(pmd_t pmd)
1248 {
1249     BUG();
1250     return 0;
1251 }
1252 #endif /* pmd_write */
1253 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1254 
1255 #ifndef pud_write
1256 static inline int pud_write(pud_t pud)
1257 {
1258     BUG();
1259     return 0;
1260 }
1261 #endif /* pud_write */
1262 
1263 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1264 static inline int pmd_devmap(pmd_t pmd)
1265 {
1266     return 0;
1267 }
1268 static inline int pud_devmap(pud_t pud)
1269 {
1270     return 0;
1271 }
1272 static inline int pgd_devmap(pgd_t pgd)
1273 {
1274     return 0;
1275 }
1276 #endif
1277 
1278 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1279     (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1280      !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
1281 static inline int pud_trans_huge(pud_t pud)
1282 {
1283     return 0;
1284 }
1285 #endif
1286 
1287 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
1288 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1289 {
1290     pud_t pudval = READ_ONCE(*pud);
1291 
1292     if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1293         return 1;
1294     if (unlikely(pud_bad(pudval))) {
1295         pud_clear_bad(pud);
1296         return 1;
1297     }
1298     return 0;
1299 }
1300 
1301 /* See pmd_trans_unstable for discussion. */
1302 static inline int pud_trans_unstable(pud_t *pud)
1303 {
1304 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&         \
1305     defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1306     return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1307 #else
1308     return 0;
1309 #endif
1310 }
1311 
1312 #ifndef pmd_read_atomic
1313 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1314 {
1315     /*
1316      * Depend on compiler for an atomic pmd read. NOTE: this is
1317      * only going to work, if the pmdval_t isn't larger than
1318      * an unsigned long.
1319      */
1320     return *pmdp;
1321 }
1322 #endif
1323 
1324 #ifndef arch_needs_pgtable_deposit
1325 #define arch_needs_pgtable_deposit() (false)
1326 #endif
1327 /*
1328  * This function is meant to be used by sites walking pagetables with
1329  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1330  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1331  * into a null pmd and the transhuge page fault can convert a null pmd
1332  * into an hugepmd or into a regular pmd (if the hugepage allocation
1333  * fails). While holding the mmap_lock in read mode the pmd becomes
1334  * stable and stops changing under us only if it's not null and not a
1335  * transhuge pmd. When those races occurs and this function makes a
1336  * difference vs the standard pmd_none_or_clear_bad, the result is
1337  * undefined so behaving like if the pmd was none is safe (because it
1338  * can return none anyway). The compiler level barrier() is critically
1339  * important to compute the two checks atomically on the same pmdval.
1340  *
1341  * For 32bit kernels with a 64bit large pmd_t this automatically takes
1342  * care of reading the pmd atomically to avoid SMP race conditions
1343  * against pmd_populate() when the mmap_lock is hold for reading by the
1344  * caller (a special atomic read not done by "gcc" as in the generic
1345  * version above, is also needed when THP is disabled because the page
1346  * fault can populate the pmd from under us).
1347  */
1348 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1349 {
1350     pmd_t pmdval = pmd_read_atomic(pmd);
1351     /*
1352      * The barrier will stabilize the pmdval in a register or on
1353      * the stack so that it will stop changing under the code.
1354      *
1355      * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1356      * pmd_read_atomic is allowed to return a not atomic pmdval
1357      * (for example pointing to an hugepage that has never been
1358      * mapped in the pmd). The below checks will only care about
1359      * the low part of the pmd with 32bit PAE x86 anyway, with the
1360      * exception of pmd_none(). So the important thing is that if
1361      * the low part of the pmd is found null, the high part will
1362      * be also null or the pmd_none() check below would be
1363      * confused.
1364      */
1365 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1366     barrier();
1367 #endif
1368     /*
1369      * !pmd_present() checks for pmd migration entries
1370      *
1371      * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1372      * But using that requires moving current function and pmd_trans_unstable()
1373      * to linux/swapops.h to resolve dependency, which is too much code move.
1374      *
1375      * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1376      * because !pmd_present() pages can only be under migration not swapped
1377      * out.
1378      *
1379      * pmd_none() is preserved for future condition checks on pmd migration
1380      * entries and not confusing with this function name, although it is
1381      * redundant with !pmd_present().
1382      */
1383     if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1384         (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1385         return 1;
1386     if (unlikely(pmd_bad(pmdval))) {
1387         pmd_clear_bad(pmd);
1388         return 1;
1389     }
1390     return 0;
1391 }
1392 
1393 /*
1394  * This is a noop if Transparent Hugepage Support is not built into
1395  * the kernel. Otherwise it is equivalent to
1396  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1397  * places that already verified the pmd is not none and they want to
1398  * walk ptes while holding the mmap sem in read mode (write mode don't
1399  * need this). If THP is not enabled, the pmd can't go away under the
1400  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1401  * run a pmd_trans_unstable before walking the ptes after
1402  * split_huge_pmd returns (because it may have run when the pmd become
1403  * null, but then a page fault can map in a THP and not a regular page).
1404  */
1405 static inline int pmd_trans_unstable(pmd_t *pmd)
1406 {
1407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1408     return pmd_none_or_trans_huge_or_clear_bad(pmd);
1409 #else
1410     return 0;
1411 #endif
1412 }
1413 
1414 /*
1415  * the ordering of these checks is important for pmds with _page_devmap set.
1416  * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1417  * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1418  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1419  */
1420 static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1421 {
1422     return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1423 }
1424 
1425 #ifndef CONFIG_NUMA_BALANCING
1426 /*
1427  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1428  * the only case the kernel cares is for NUMA balancing and is only ever set
1429  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1430  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1431  * is the responsibility of the caller to distinguish between PROT_NONE
1432  * protections and NUMA hinting fault protections.
1433  */
1434 static inline int pte_protnone(pte_t pte)
1435 {
1436     return 0;
1437 }
1438 
1439 static inline int pmd_protnone(pmd_t pmd)
1440 {
1441     return 0;
1442 }
1443 #endif /* CONFIG_NUMA_BALANCING */
1444 
1445 #endif /* CONFIG_MMU */
1446 
1447 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1448 
1449 #ifndef __PAGETABLE_P4D_FOLDED
1450 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1451 void p4d_clear_huge(p4d_t *p4d);
1452 #else
1453 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1454 {
1455     return 0;
1456 }
1457 static inline void p4d_clear_huge(p4d_t *p4d) { }
1458 #endif /* !__PAGETABLE_P4D_FOLDED */
1459 
1460 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1461 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1462 int pud_clear_huge(pud_t *pud);
1463 int pmd_clear_huge(pmd_t *pmd);
1464 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1465 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1466 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1467 #else   /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1468 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1469 {
1470     return 0;
1471 }
1472 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1473 {
1474     return 0;
1475 }
1476 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1477 {
1478     return 0;
1479 }
1480 static inline void p4d_clear_huge(p4d_t *p4d) { }
1481 static inline int pud_clear_huge(pud_t *pud)
1482 {
1483     return 0;
1484 }
1485 static inline int pmd_clear_huge(pmd_t *pmd)
1486 {
1487     return 0;
1488 }
1489 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1490 {
1491     return 0;
1492 }
1493 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1494 {
1495     return 0;
1496 }
1497 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1498 {
1499     return 0;
1500 }
1501 #endif  /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1502 
1503 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1505 /*
1506  * ARCHes with special requirements for evicting THP backing TLB entries can
1507  * implement this. Otherwise also, it can help optimize normal TLB flush in
1508  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1509  * entire TLB if flush span is greater than a threshold, which will
1510  * likely be true for a single huge page. Thus a single THP flush will
1511  * invalidate the entire TLB which is not desirable.
1512  * e.g. see arch/arc: flush_pmd_tlb_range
1513  */
1514 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1515 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1516 #else
1517 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1518 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1519 #endif
1520 #endif
1521 
1522 struct file;
1523 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1524             unsigned long size, pgprot_t *vma_prot);
1525 
1526 #ifndef CONFIG_X86_ESPFIX64
1527 static inline void init_espfix_bsp(void) { }
1528 #endif
1529 
1530 extern void __init pgtable_cache_init(void);
1531 
1532 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1533 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1534 {
1535     return true;
1536 }
1537 
1538 static inline bool arch_has_pfn_modify_check(void)
1539 {
1540     return false;
1541 }
1542 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1543 
1544 /*
1545  * Architecture PAGE_KERNEL_* fallbacks
1546  *
1547  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1548  * because they really don't support them, or the port needs to be updated to
1549  * reflect the required functionality. Below are a set of relatively safe
1550  * fallbacks, as best effort, which we can count on in lieu of the architectures
1551  * not defining them on their own yet.
1552  */
1553 
1554 #ifndef PAGE_KERNEL_RO
1555 # define PAGE_KERNEL_RO PAGE_KERNEL
1556 #endif
1557 
1558 #ifndef PAGE_KERNEL_EXEC
1559 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1560 #endif
1561 
1562 /*
1563  * Page Table Modification bits for pgtbl_mod_mask.
1564  *
1565  * These are used by the p?d_alloc_track*() set of functions an in the generic
1566  * vmalloc/ioremap code to track at which page-table levels entries have been
1567  * modified. Based on that the code can better decide when vmalloc and ioremap
1568  * mapping changes need to be synchronized to other page-tables in the system.
1569  */
1570 #define     __PGTBL_PGD_MODIFIED    0
1571 #define     __PGTBL_P4D_MODIFIED    1
1572 #define     __PGTBL_PUD_MODIFIED    2
1573 #define     __PGTBL_PMD_MODIFIED    3
1574 #define     __PGTBL_PTE_MODIFIED    4
1575 
1576 #define     PGTBL_PGD_MODIFIED  BIT(__PGTBL_PGD_MODIFIED)
1577 #define     PGTBL_P4D_MODIFIED  BIT(__PGTBL_P4D_MODIFIED)
1578 #define     PGTBL_PUD_MODIFIED  BIT(__PGTBL_PUD_MODIFIED)
1579 #define     PGTBL_PMD_MODIFIED  BIT(__PGTBL_PMD_MODIFIED)
1580 #define     PGTBL_PTE_MODIFIED  BIT(__PGTBL_PTE_MODIFIED)
1581 
1582 /* Page-Table Modification Mask */
1583 typedef unsigned int pgtbl_mod_mask;
1584 
1585 #endif /* !__ASSEMBLY__ */
1586 
1587 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1588 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1589 /*
1590  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1591  * with physical address space extension, but falls back to
1592  * BITS_PER_LONG otherwise.
1593  */
1594 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1595 #else
1596 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1597 #endif
1598 #endif
1599 
1600 #ifndef has_transparent_hugepage
1601 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1602 #define has_transparent_hugepage() 1
1603 #else
1604 #define has_transparent_hugepage() 0
1605 #endif
1606 #endif
1607 
1608 /*
1609  * On some architectures it depends on the mm if the p4d/pud or pmd
1610  * layer of the page table hierarchy is folded or not.
1611  */
1612 #ifndef mm_p4d_folded
1613 #define mm_p4d_folded(mm)   __is_defined(__PAGETABLE_P4D_FOLDED)
1614 #endif
1615 
1616 #ifndef mm_pud_folded
1617 #define mm_pud_folded(mm)   __is_defined(__PAGETABLE_PUD_FOLDED)
1618 #endif
1619 
1620 #ifndef mm_pmd_folded
1621 #define mm_pmd_folded(mm)   __is_defined(__PAGETABLE_PMD_FOLDED)
1622 #endif
1623 
1624 #ifndef p4d_offset_lockless
1625 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1626 #endif
1627 #ifndef pud_offset_lockless
1628 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1629 #endif
1630 #ifndef pmd_offset_lockless
1631 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1632 #endif
1633 
1634 /*
1635  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1636  * This differs from p?d_huge() by the fact that they are always available (if
1637  * the architecture supports large pages at the appropriate level) even
1638  * if CONFIG_HUGETLB_PAGE is not defined.
1639  * Only meaningful when called on a valid entry.
1640  */
1641 #ifndef pgd_leaf
1642 #define pgd_leaf(x) 0
1643 #endif
1644 #ifndef p4d_leaf
1645 #define p4d_leaf(x) 0
1646 #endif
1647 #ifndef pud_leaf
1648 #define pud_leaf(x) 0
1649 #endif
1650 #ifndef pmd_leaf
1651 #define pmd_leaf(x) 0
1652 #endif
1653 
1654 #ifndef pgd_leaf_size
1655 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1656 #endif
1657 #ifndef p4d_leaf_size
1658 #define p4d_leaf_size(x) P4D_SIZE
1659 #endif
1660 #ifndef pud_leaf_size
1661 #define pud_leaf_size(x) PUD_SIZE
1662 #endif
1663 #ifndef pmd_leaf_size
1664 #define pmd_leaf_size(x) PMD_SIZE
1665 #endif
1666 #ifndef pte_leaf_size
1667 #define pte_leaf_size(x) PAGE_SIZE
1668 #endif
1669 
1670 /*
1671  * Some architectures have MMUs that are configurable or selectable at boot
1672  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1673  * helps to have a static maximum value.
1674  */
1675 
1676 #ifndef MAX_PTRS_PER_PTE
1677 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1678 #endif
1679 
1680 #ifndef MAX_PTRS_PER_PMD
1681 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1682 #endif
1683 
1684 #ifndef MAX_PTRS_PER_PUD
1685 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1686 #endif
1687 
1688 #ifndef MAX_PTRS_PER_P4D
1689 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1690 #endif
1691 
1692 /* description of effects of mapping type and prot in current implementation.
1693  * this is due to the limited x86 page protection hardware.  The expected
1694  * behavior is in parens:
1695  *
1696  * map_type prot
1697  *      PROT_NONE   PROT_READ   PROT_WRITE  PROT_EXEC
1698  * MAP_SHARED   r: (no) no  r: (yes) yes    r: (no) yes r: (no) yes
1699  *      w: (no) no  w: (no) no  w: (yes) yes    w: (no) no
1700  *      x: (no) no  x: (no) yes x: (no) yes x: (yes) yes
1701  *
1702  * MAP_PRIVATE  r: (no) no  r: (yes) yes    r: (no) yes r: (no) yes
1703  *      w: (no) no  w: (no) no  w: (copy) copy  w: (no) no
1704  *      x: (no) no  x: (no) yes x: (no) yes x: (yes) yes
1705  *
1706  * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1707  * MAP_PRIVATE (with Enhanced PAN supported):
1708  *                              r: (no) no
1709  *                              w: (no) no
1710  *                              x: (yes) yes
1711  */
1712 #define DECLARE_VM_GET_PAGE_PROT                    \
1713 pgprot_t vm_get_page_prot(unsigned long vm_flags)           \
1714 {                                   \
1715         return protection_map[vm_flags &            \
1716             (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)];    \
1717 }                                   \
1718 EXPORT_SYMBOL(vm_get_page_prot);
1719 
1720 #endif /* _LINUX_PGTABLE_H */