Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 /*
0003  * Macros for manipulating and testing page->flags
0004  */
0005 
0006 #ifndef PAGE_FLAGS_H
0007 #define PAGE_FLAGS_H
0008 
0009 #include <linux/types.h>
0010 #include <linux/bug.h>
0011 #include <linux/mmdebug.h>
0012 #ifndef __GENERATING_BOUNDS_H
0013 #include <linux/mm_types.h>
0014 #include <generated/bounds.h>
0015 #endif /* !__GENERATING_BOUNDS_H */
0016 
0017 /*
0018  * Various page->flags bits:
0019  *
0020  * PG_reserved is set for special pages. The "struct page" of such a page
0021  * should in general not be touched (e.g. set dirty) except by its owner.
0022  * Pages marked as PG_reserved include:
0023  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
0024  *   initrd, HW tables)
0025  * - Pages reserved or allocated early during boot (before the page allocator
0026  *   was initialized). This includes (depending on the architecture) the
0027  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
0028  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
0029  *   be given to the page allocator.
0030  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
0031  *   to read/write these pages might end badly. Don't touch!
0032  * - The zero page(s)
0033  * - Pages not added to the page allocator when onlining a section because
0034  *   they were excluded via the online_page_callback() or because they are
0035  *   PG_hwpoison.
0036  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
0037  *   control pages, vmcoreinfo)
0038  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
0039  *   not marked PG_reserved (as they might be in use by somebody else who does
0040  *   not respect the caching strategy).
0041  * - Pages part of an offline section (struct pages of offline sections should
0042  *   not be trusted as they will be initialized when first onlined).
0043  * - MCA pages on ia64
0044  * - Pages holding CPU notes for POWER Firmware Assisted Dump
0045  * - Device memory (e.g. PMEM, DAX, HMM)
0046  * Some PG_reserved pages will be excluded from the hibernation image.
0047  * PG_reserved does in general not hinder anybody from dumping or swapping
0048  * and is no longer required for remap_pfn_range(). ioremap might require it.
0049  * Consequently, PG_reserved for a page mapped into user space can indicate
0050  * the zero page, the vDSO, MMIO pages or device memory.
0051  *
0052  * The PG_private bitflag is set on pagecache pages if they contain filesystem
0053  * specific data (which is normally at page->private). It can be used by
0054  * private allocations for its own usage.
0055  *
0056  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
0057  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
0058  * is set before writeback starts and cleared when it finishes.
0059  *
0060  * PG_locked also pins a page in pagecache, and blocks truncation of the file
0061  * while it is held.
0062  *
0063  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
0064  * to become unlocked.
0065  *
0066  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
0067  * usually PageAnon or shmem pages but please note that even anonymous pages
0068  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
0069  * a result of MADV_FREE).
0070  *
0071  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
0072  * file-backed pagecache (see mm/vmscan.c).
0073  *
0074  * PG_error is set to indicate that an I/O error occurred on this page.
0075  *
0076  * PG_arch_1 is an architecture specific page state bit.  The generic code
0077  * guarantees that this bit is cleared for a page when it first is entered into
0078  * the page cache.
0079  *
0080  * PG_hwpoison indicates that a page got corrupted in hardware and contains
0081  * data with incorrect ECC bits that triggered a machine check. Accessing is
0082  * not safe since it may cause another machine check. Don't touch!
0083  */
0084 
0085 /*
0086  * Don't use the pageflags directly.  Use the PageFoo macros.
0087  *
0088  * The page flags field is split into two parts, the main flags area
0089  * which extends from the low bits upwards, and the fields area which
0090  * extends from the high bits downwards.
0091  *
0092  *  | FIELD | ... | FLAGS |
0093  *  N-1           ^       0
0094  *               (NR_PAGEFLAGS)
0095  *
0096  * The fields area is reserved for fields mapping zone, node (for NUMA) and
0097  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
0098  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
0099  */
0100 enum pageflags {
0101     PG_locked,      /* Page is locked. Don't touch. */
0102     PG_referenced,
0103     PG_uptodate,
0104     PG_dirty,
0105     PG_lru,
0106     PG_active,
0107     PG_workingset,
0108     PG_waiters,     /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
0109     PG_error,
0110     PG_slab,
0111     PG_owner_priv_1,    /* Owner use. If pagecache, fs may use*/
0112     PG_arch_1,
0113     PG_reserved,
0114     PG_private,     /* If pagecache, has fs-private data */
0115     PG_private_2,       /* If pagecache, has fs aux data */
0116     PG_writeback,       /* Page is under writeback */
0117     PG_head,        /* A head page */
0118     PG_mappedtodisk,    /* Has blocks allocated on-disk */
0119     PG_reclaim,     /* To be reclaimed asap */
0120     PG_swapbacked,      /* Page is backed by RAM/swap */
0121     PG_unevictable,     /* Page is "unevictable"  */
0122 #ifdef CONFIG_MMU
0123     PG_mlocked,     /* Page is vma mlocked */
0124 #endif
0125 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
0126     PG_uncached,        /* Page has been mapped as uncached */
0127 #endif
0128 #ifdef CONFIG_MEMORY_FAILURE
0129     PG_hwpoison,        /* hardware poisoned page. Don't touch */
0130 #endif
0131 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
0132     PG_young,
0133     PG_idle,
0134 #endif
0135 #ifdef CONFIG_64BIT
0136     PG_arch_2,
0137 #endif
0138 #ifdef CONFIG_KASAN_HW_TAGS
0139     PG_skip_kasan_poison,
0140 #endif
0141     __NR_PAGEFLAGS,
0142 
0143     PG_readahead = PG_reclaim,
0144 
0145     /*
0146      * Depending on the way an anonymous folio can be mapped into a page
0147      * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped
0148      * THP), PG_anon_exclusive may be set only for the head page or for
0149      * tail pages of an anonymous folio. For now, we only expect it to be
0150      * set on tail pages for PTE-mapped THP.
0151      */
0152     PG_anon_exclusive = PG_mappedtodisk,
0153 
0154     /* Filesystems */
0155     PG_checked = PG_owner_priv_1,
0156 
0157     /* SwapBacked */
0158     PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
0159 
0160     /* Two page bits are conscripted by FS-Cache to maintain local caching
0161      * state.  These bits are set on pages belonging to the netfs's inodes
0162      * when those inodes are being locally cached.
0163      */
0164     PG_fscache = PG_private_2,  /* page backed by cache */
0165 
0166     /* XEN */
0167     /* Pinned in Xen as a read-only pagetable page. */
0168     PG_pinned = PG_owner_priv_1,
0169     /* Pinned as part of domain save (see xen_mm_pin_all()). */
0170     PG_savepinned = PG_dirty,
0171     /* Has a grant mapping of another (foreign) domain's page. */
0172     PG_foreign = PG_owner_priv_1,
0173     /* Remapped by swiotlb-xen. */
0174     PG_xen_remapped = PG_owner_priv_1,
0175 
0176     /* SLOB */
0177     PG_slob_free = PG_private,
0178 
0179     /* Compound pages. Stored in first tail page's flags */
0180     PG_double_map = PG_workingset,
0181 
0182 #ifdef CONFIG_MEMORY_FAILURE
0183     /*
0184      * Compound pages. Stored in first tail page's flags.
0185      * Indicates that at least one subpage is hwpoisoned in the
0186      * THP.
0187      */
0188     PG_has_hwpoisoned = PG_error,
0189 #endif
0190 
0191     /* non-lru isolated movable page */
0192     PG_isolated = PG_reclaim,
0193 
0194     /* Only valid for buddy pages. Used to track pages that are reported */
0195     PG_reported = PG_uptodate,
0196 
0197 #ifdef CONFIG_MEMORY_HOTPLUG
0198     /* For self-hosted memmap pages */
0199     PG_vmemmap_self_hosted = PG_owner_priv_1,
0200 #endif
0201 };
0202 
0203 #define PAGEFLAGS_MASK      ((1UL << NR_PAGEFLAGS) - 1)
0204 
0205 #ifndef __GENERATING_BOUNDS_H
0206 
0207 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
0208 DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
0209 
0210 /*
0211  * Return the real head page struct iff the @page is a fake head page, otherwise
0212  * return the @page itself. See Documentation/mm/vmemmap_dedup.rst.
0213  */
0214 static __always_inline const struct page *page_fixed_fake_head(const struct page *page)
0215 {
0216     if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key))
0217         return page;
0218 
0219     /*
0220      * Only addresses aligned with PAGE_SIZE of struct page may be fake head
0221      * struct page. The alignment check aims to avoid access the fields (
0222      * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly)
0223      * cold cacheline in some cases.
0224      */
0225     if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) &&
0226         test_bit(PG_head, &page->flags)) {
0227         /*
0228          * We can safely access the field of the @page[1] with PG_head
0229          * because the @page is a compound page composed with at least
0230          * two contiguous pages.
0231          */
0232         unsigned long head = READ_ONCE(page[1].compound_head);
0233 
0234         if (likely(head & 1))
0235             return (const struct page *)(head - 1);
0236     }
0237     return page;
0238 }
0239 #else
0240 static inline const struct page *page_fixed_fake_head(const struct page *page)
0241 {
0242     return page;
0243 }
0244 #endif
0245 
0246 static __always_inline int page_is_fake_head(struct page *page)
0247 {
0248     return page_fixed_fake_head(page) != page;
0249 }
0250 
0251 static inline unsigned long _compound_head(const struct page *page)
0252 {
0253     unsigned long head = READ_ONCE(page->compound_head);
0254 
0255     if (unlikely(head & 1))
0256         return head - 1;
0257     return (unsigned long)page_fixed_fake_head(page);
0258 }
0259 
0260 #define compound_head(page) ((typeof(page))_compound_head(page))
0261 
0262 /**
0263  * page_folio - Converts from page to folio.
0264  * @p: The page.
0265  *
0266  * Every page is part of a folio.  This function cannot be called on a
0267  * NULL pointer.
0268  *
0269  * Context: No reference, nor lock is required on @page.  If the caller
0270  * does not hold a reference, this call may race with a folio split, so
0271  * it should re-check the folio still contains this page after gaining
0272  * a reference on the folio.
0273  * Return: The folio which contains this page.
0274  */
0275 #define page_folio(p)       (_Generic((p),              \
0276     const struct page *:    (const struct folio *)_compound_head(p), \
0277     struct page *:      (struct folio *)_compound_head(p)))
0278 
0279 /**
0280  * folio_page - Return a page from a folio.
0281  * @folio: The folio.
0282  * @n: The page number to return.
0283  *
0284  * @n is relative to the start of the folio.  This function does not
0285  * check that the page number lies within @folio; the caller is presumed
0286  * to have a reference to the page.
0287  */
0288 #define folio_page(folio, n)    nth_page(&(folio)->page, n)
0289 
0290 static __always_inline int PageTail(struct page *page)
0291 {
0292     return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page);
0293 }
0294 
0295 static __always_inline int PageCompound(struct page *page)
0296 {
0297     return test_bit(PG_head, &page->flags) ||
0298            READ_ONCE(page->compound_head) & 1;
0299 }
0300 
0301 #define PAGE_POISON_PATTERN -1l
0302 static inline int PagePoisoned(const struct page *page)
0303 {
0304     return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
0305 }
0306 
0307 #ifdef CONFIG_DEBUG_VM
0308 void page_init_poison(struct page *page, size_t size);
0309 #else
0310 static inline void page_init_poison(struct page *page, size_t size)
0311 {
0312 }
0313 #endif
0314 
0315 static unsigned long *folio_flags(struct folio *folio, unsigned n)
0316 {
0317     struct page *page = &folio->page;
0318 
0319     VM_BUG_ON_PGFLAGS(PageTail(page), page);
0320     VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
0321     return &page[n].flags;
0322 }
0323 
0324 /*
0325  * Page flags policies wrt compound pages
0326  *
0327  * PF_POISONED_CHECK
0328  *     check if this struct page poisoned/uninitialized
0329  *
0330  * PF_ANY:
0331  *     the page flag is relevant for small, head and tail pages.
0332  *
0333  * PF_HEAD:
0334  *     for compound page all operations related to the page flag applied to
0335  *     head page.
0336  *
0337  * PF_ONLY_HEAD:
0338  *     for compound page, callers only ever operate on the head page.
0339  *
0340  * PF_NO_TAIL:
0341  *     modifications of the page flag must be done on small or head pages,
0342  *     checks can be done on tail pages too.
0343  *
0344  * PF_NO_COMPOUND:
0345  *     the page flag is not relevant for compound pages.
0346  *
0347  * PF_SECOND:
0348  *     the page flag is stored in the first tail page.
0349  */
0350 #define PF_POISONED_CHECK(page) ({                  \
0351         VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);        \
0352         page; })
0353 #define PF_ANY(page, enforce)   PF_POISONED_CHECK(page)
0354 #define PF_HEAD(page, enforce)  PF_POISONED_CHECK(compound_head(page))
0355 #define PF_ONLY_HEAD(page, enforce) ({                  \
0356         VM_BUG_ON_PGFLAGS(PageTail(page), page);        \
0357         PF_POISONED_CHECK(page); })
0358 #define PF_NO_TAIL(page, enforce) ({                    \
0359         VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
0360         PF_POISONED_CHECK(compound_head(page)); })
0361 #define PF_NO_COMPOUND(page, enforce) ({                \
0362         VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
0363         PF_POISONED_CHECK(page); })
0364 #define PF_SECOND(page, enforce) ({                 \
0365         VM_BUG_ON_PGFLAGS(!PageHead(page), page);       \
0366         PF_POISONED_CHECK(&page[1]); })
0367 
0368 /* Which page is the flag stored in */
0369 #define FOLIO_PF_ANY        0
0370 #define FOLIO_PF_HEAD       0
0371 #define FOLIO_PF_ONLY_HEAD  0
0372 #define FOLIO_PF_NO_TAIL    0
0373 #define FOLIO_PF_NO_COMPOUND    0
0374 #define FOLIO_PF_SECOND     1
0375 
0376 /*
0377  * Macros to create function definitions for page flags
0378  */
0379 #define TESTPAGEFLAG(uname, lname, policy)              \
0380 static __always_inline bool folio_test_##lname(struct folio *folio) \
0381 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }    \
0382 static __always_inline int Page##uname(struct page *page)       \
0383 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
0384 
0385 #define SETPAGEFLAG(uname, lname, policy)               \
0386 static __always_inline                          \
0387 void folio_set_##lname(struct folio *folio)             \
0388 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }        \
0389 static __always_inline void SetPage##uname(struct page *page)       \
0390 { set_bit(PG_##lname, &policy(page, 1)->flags); }
0391 
0392 #define CLEARPAGEFLAG(uname, lname, policy)             \
0393 static __always_inline                          \
0394 void folio_clear_##lname(struct folio *folio)               \
0395 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }      \
0396 static __always_inline void ClearPage##uname(struct page *page)     \
0397 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
0398 
0399 #define __SETPAGEFLAG(uname, lname, policy)             \
0400 static __always_inline                          \
0401 void __folio_set_##lname(struct folio *folio)               \
0402 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }      \
0403 static __always_inline void __SetPage##uname(struct page *page)     \
0404 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
0405 
0406 #define __CLEARPAGEFLAG(uname, lname, policy)               \
0407 static __always_inline                          \
0408 void __folio_clear_##lname(struct folio *folio)             \
0409 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }    \
0410 static __always_inline void __ClearPage##uname(struct page *page)   \
0411 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
0412 
0413 #define TESTSETFLAG(uname, lname, policy)               \
0414 static __always_inline                          \
0415 bool folio_test_set_##lname(struct folio *folio)            \
0416 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
0417 static __always_inline int TestSetPage##uname(struct page *page)    \
0418 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
0419 
0420 #define TESTCLEARFLAG(uname, lname, policy)             \
0421 static __always_inline                          \
0422 bool folio_test_clear_##lname(struct folio *folio)          \
0423 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
0424 static __always_inline int TestClearPage##uname(struct page *page)  \
0425 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
0426 
0427 #define PAGEFLAG(uname, lname, policy)                  \
0428     TESTPAGEFLAG(uname, lname, policy)              \
0429     SETPAGEFLAG(uname, lname, policy)               \
0430     CLEARPAGEFLAG(uname, lname, policy)
0431 
0432 #define __PAGEFLAG(uname, lname, policy)                \
0433     TESTPAGEFLAG(uname, lname, policy)              \
0434     __SETPAGEFLAG(uname, lname, policy)             \
0435     __CLEARPAGEFLAG(uname, lname, policy)
0436 
0437 #define TESTSCFLAG(uname, lname, policy)                \
0438     TESTSETFLAG(uname, lname, policy)               \
0439     TESTCLEARFLAG(uname, lname, policy)
0440 
0441 #define TESTPAGEFLAG_FALSE(uname, lname)                \
0442 static inline bool folio_test_##lname(const struct folio *folio) { return false; } \
0443 static inline int Page##uname(const struct page *page) { return 0; }
0444 
0445 #define SETPAGEFLAG_NOOP(uname, lname)                  \
0446 static inline void folio_set_##lname(struct folio *folio) { }       \
0447 static inline void SetPage##uname(struct page *page) {  }
0448 
0449 #define CLEARPAGEFLAG_NOOP(uname, lname)                \
0450 static inline void folio_clear_##lname(struct folio *folio) { }     \
0451 static inline void ClearPage##uname(struct page *page) {  }
0452 
0453 #define __CLEARPAGEFLAG_NOOP(uname, lname)              \
0454 static inline void __folio_clear_##lname(struct folio *folio) { }   \
0455 static inline void __ClearPage##uname(struct page *page) {  }
0456 
0457 #define TESTSETFLAG_FALSE(uname, lname)                 \
0458 static inline bool folio_test_set_##lname(struct folio *folio)      \
0459 { return 0; }                               \
0460 static inline int TestSetPage##uname(struct page *page) { return 0; }
0461 
0462 #define TESTCLEARFLAG_FALSE(uname, lname)               \
0463 static inline bool folio_test_clear_##lname(struct folio *folio)    \
0464 { return 0; }                               \
0465 static inline int TestClearPage##uname(struct page *page) { return 0; }
0466 
0467 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)   \
0468     SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
0469 
0470 #define TESTSCFLAG_FALSE(uname, lname)                  \
0471     TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
0472 
0473 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
0474 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
0475 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
0476 PAGEFLAG(Referenced, referenced, PF_HEAD)
0477     TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
0478     __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
0479 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
0480     __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
0481 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
0482     TESTCLEARFLAG(LRU, lru, PF_HEAD)
0483 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
0484     TESTCLEARFLAG(Active, active, PF_HEAD)
0485 PAGEFLAG(Workingset, workingset, PF_HEAD)
0486     TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
0487 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
0488 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
0489 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)     /* Used by some filesystems */
0490 
0491 /* Xen */
0492 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
0493     TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
0494 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
0495 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
0496 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
0497     TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
0498 
0499 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
0500     __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
0501     __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
0502 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
0503     __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
0504     __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
0505 
0506 /*
0507  * Private page markings that may be used by the filesystem that owns the page
0508  * for its own purposes.
0509  * - PG_private and PG_private_2 cause release_folio() and co to be invoked
0510  */
0511 PAGEFLAG(Private, private, PF_ANY)
0512 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
0513 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
0514     TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
0515 
0516 /*
0517  * Only test-and-set exist for PG_writeback.  The unconditional operators are
0518  * risky: they bypass page accounting.
0519  */
0520 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
0521     TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
0522 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
0523 
0524 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
0525 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
0526     TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
0527 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
0528     TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
0529 
0530 #ifdef CONFIG_HIGHMEM
0531 /*
0532  * Must use a macro here due to header dependency issues. page_zone() is not
0533  * available at this point.
0534  */
0535 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
0536 #else
0537 PAGEFLAG_FALSE(HighMem, highmem)
0538 #endif
0539 
0540 #ifdef CONFIG_SWAP
0541 static __always_inline bool folio_test_swapcache(struct folio *folio)
0542 {
0543     return folio_test_swapbacked(folio) &&
0544             test_bit(PG_swapcache, folio_flags(folio, 0));
0545 }
0546 
0547 static __always_inline bool PageSwapCache(struct page *page)
0548 {
0549     return folio_test_swapcache(page_folio(page));
0550 }
0551 
0552 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
0553 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
0554 #else
0555 PAGEFLAG_FALSE(SwapCache, swapcache)
0556 #endif
0557 
0558 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
0559     __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
0560     TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
0561 
0562 #ifdef CONFIG_MMU
0563 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
0564     __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
0565     TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
0566 #else
0567 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
0568     TESTSCFLAG_FALSE(Mlocked, mlocked)
0569 #endif
0570 
0571 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
0572 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
0573 #else
0574 PAGEFLAG_FALSE(Uncached, uncached)
0575 #endif
0576 
0577 #ifdef CONFIG_MEMORY_FAILURE
0578 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
0579 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
0580 #define __PG_HWPOISON (1UL << PG_hwpoison)
0581 #define MAGIC_HWPOISON  0x48575053U /* HWPS */
0582 extern void SetPageHWPoisonTakenOff(struct page *page);
0583 extern void ClearPageHWPoisonTakenOff(struct page *page);
0584 extern bool take_page_off_buddy(struct page *page);
0585 extern bool put_page_back_buddy(struct page *page);
0586 #else
0587 PAGEFLAG_FALSE(HWPoison, hwpoison)
0588 #define __PG_HWPOISON 0
0589 #endif
0590 
0591 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
0592 TESTPAGEFLAG(Young, young, PF_ANY)
0593 SETPAGEFLAG(Young, young, PF_ANY)
0594 TESTCLEARFLAG(Young, young, PF_ANY)
0595 PAGEFLAG(Idle, idle, PF_ANY)
0596 #endif
0597 
0598 #ifdef CONFIG_KASAN_HW_TAGS
0599 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
0600 #else
0601 PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison)
0602 #endif
0603 
0604 /*
0605  * PageReported() is used to track reported free pages within the Buddy
0606  * allocator. We can use the non-atomic version of the test and set
0607  * operations as both should be shielded with the zone lock to prevent
0608  * any possible races on the setting or clearing of the bit.
0609  */
0610 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
0611 
0612 #ifdef CONFIG_MEMORY_HOTPLUG
0613 PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY)
0614 #else
0615 PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted)
0616 #endif
0617 
0618 /*
0619  * On an anonymous page mapped into a user virtual memory area,
0620  * page->mapping points to its anon_vma, not to a struct address_space;
0621  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
0622  *
0623  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
0624  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
0625  * bit; and then page->mapping points, not to an anon_vma, but to a private
0626  * structure which KSM associates with that merged page.  See ksm.h.
0627  *
0628  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
0629  * page and then page->mapping points to a struct movable_operations.
0630  *
0631  * Please note that, confusingly, "page_mapping" refers to the inode
0632  * address_space which maps the page from disk; whereas "page_mapped"
0633  * refers to user virtual address space into which the page is mapped.
0634  */
0635 #define PAGE_MAPPING_ANON   0x1
0636 #define PAGE_MAPPING_MOVABLE    0x2
0637 #define PAGE_MAPPING_KSM    (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
0638 #define PAGE_MAPPING_FLAGS  (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
0639 
0640 /*
0641  * Different with flags above, this flag is used only for fsdax mode.  It
0642  * indicates that this page->mapping is now under reflink case.
0643  */
0644 #define PAGE_MAPPING_DAX_COW    0x1
0645 
0646 static __always_inline bool folio_mapping_flags(struct folio *folio)
0647 {
0648     return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0;
0649 }
0650 
0651 static __always_inline int PageMappingFlags(struct page *page)
0652 {
0653     return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
0654 }
0655 
0656 static __always_inline bool folio_test_anon(struct folio *folio)
0657 {
0658     return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
0659 }
0660 
0661 static __always_inline bool PageAnon(struct page *page)
0662 {
0663     return folio_test_anon(page_folio(page));
0664 }
0665 
0666 static __always_inline bool __folio_test_movable(const struct folio *folio)
0667 {
0668     return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
0669             PAGE_MAPPING_MOVABLE;
0670 }
0671 
0672 static __always_inline int __PageMovable(struct page *page)
0673 {
0674     return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
0675                 PAGE_MAPPING_MOVABLE;
0676 }
0677 
0678 #ifdef CONFIG_KSM
0679 /*
0680  * A KSM page is one of those write-protected "shared pages" or "merged pages"
0681  * which KSM maps into multiple mms, wherever identical anonymous page content
0682  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
0683  * anon_vma, but to that page's node of the stable tree.
0684  */
0685 static __always_inline bool folio_test_ksm(struct folio *folio)
0686 {
0687     return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
0688                 PAGE_MAPPING_KSM;
0689 }
0690 
0691 static __always_inline bool PageKsm(struct page *page)
0692 {
0693     return folio_test_ksm(page_folio(page));
0694 }
0695 #else
0696 TESTPAGEFLAG_FALSE(Ksm, ksm)
0697 #endif
0698 
0699 u64 stable_page_flags(struct page *page);
0700 
0701 /**
0702  * folio_test_uptodate - Is this folio up to date?
0703  * @folio: The folio.
0704  *
0705  * The uptodate flag is set on a folio when every byte in the folio is
0706  * at least as new as the corresponding bytes on storage.  Anonymous
0707  * and CoW folios are always uptodate.  If the folio is not uptodate,
0708  * some of the bytes in it may be; see the is_partially_uptodate()
0709  * address_space operation.
0710  */
0711 static inline bool folio_test_uptodate(struct folio *folio)
0712 {
0713     bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
0714     /*
0715      * Must ensure that the data we read out of the folio is loaded
0716      * _after_ we've loaded folio->flags to check the uptodate bit.
0717      * We can skip the barrier if the folio is not uptodate, because
0718      * we wouldn't be reading anything from it.
0719      *
0720      * See folio_mark_uptodate() for the other side of the story.
0721      */
0722     if (ret)
0723         smp_rmb();
0724 
0725     return ret;
0726 }
0727 
0728 static inline int PageUptodate(struct page *page)
0729 {
0730     return folio_test_uptodate(page_folio(page));
0731 }
0732 
0733 static __always_inline void __folio_mark_uptodate(struct folio *folio)
0734 {
0735     smp_wmb();
0736     __set_bit(PG_uptodate, folio_flags(folio, 0));
0737 }
0738 
0739 static __always_inline void folio_mark_uptodate(struct folio *folio)
0740 {
0741     /*
0742      * Memory barrier must be issued before setting the PG_uptodate bit,
0743      * so that all previous stores issued in order to bring the folio
0744      * uptodate are actually visible before folio_test_uptodate becomes true.
0745      */
0746     smp_wmb();
0747     set_bit(PG_uptodate, folio_flags(folio, 0));
0748 }
0749 
0750 static __always_inline void __SetPageUptodate(struct page *page)
0751 {
0752     __folio_mark_uptodate((struct folio *)page);
0753 }
0754 
0755 static __always_inline void SetPageUptodate(struct page *page)
0756 {
0757     folio_mark_uptodate((struct folio *)page);
0758 }
0759 
0760 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
0761 
0762 bool __folio_start_writeback(struct folio *folio, bool keep_write);
0763 bool set_page_writeback(struct page *page);
0764 
0765 #define folio_start_writeback(folio)            \
0766     __folio_start_writeback(folio, false)
0767 #define folio_start_writeback_keepwrite(folio)  \
0768     __folio_start_writeback(folio, true)
0769 
0770 static inline void set_page_writeback_keepwrite(struct page *page)
0771 {
0772     folio_start_writeback_keepwrite(page_folio(page));
0773 }
0774 
0775 static inline bool test_set_page_writeback(struct page *page)
0776 {
0777     return set_page_writeback(page);
0778 }
0779 
0780 static __always_inline bool folio_test_head(struct folio *folio)
0781 {
0782     return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY));
0783 }
0784 
0785 static __always_inline int PageHead(struct page *page)
0786 {
0787     PF_POISONED_CHECK(page);
0788     return test_bit(PG_head, &page->flags) && !page_is_fake_head(page);
0789 }
0790 
0791 __SETPAGEFLAG(Head, head, PF_ANY)
0792 __CLEARPAGEFLAG(Head, head, PF_ANY)
0793 CLEARPAGEFLAG(Head, head, PF_ANY)
0794 
0795 /**
0796  * folio_test_large() - Does this folio contain more than one page?
0797  * @folio: The folio to test.
0798  *
0799  * Return: True if the folio is larger than one page.
0800  */
0801 static inline bool folio_test_large(struct folio *folio)
0802 {
0803     return folio_test_head(folio);
0804 }
0805 
0806 static __always_inline void set_compound_head(struct page *page, struct page *head)
0807 {
0808     WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
0809 }
0810 
0811 static __always_inline void clear_compound_head(struct page *page)
0812 {
0813     WRITE_ONCE(page->compound_head, 0);
0814 }
0815 
0816 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0817 static inline void ClearPageCompound(struct page *page)
0818 {
0819     BUG_ON(!PageHead(page));
0820     ClearPageHead(page);
0821 }
0822 #endif
0823 
0824 #define PG_head_mask ((1UL << PG_head))
0825 
0826 #ifdef CONFIG_HUGETLB_PAGE
0827 int PageHuge(struct page *page);
0828 int PageHeadHuge(struct page *page);
0829 static inline bool folio_test_hugetlb(struct folio *folio)
0830 {
0831     return PageHeadHuge(&folio->page);
0832 }
0833 #else
0834 TESTPAGEFLAG_FALSE(Huge, hugetlb)
0835 TESTPAGEFLAG_FALSE(HeadHuge, headhuge)
0836 #endif
0837 
0838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0839 /*
0840  * PageHuge() only returns true for hugetlbfs pages, but not for
0841  * normal or transparent huge pages.
0842  *
0843  * PageTransHuge() returns true for both transparent huge and
0844  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
0845  * called only in the core VM paths where hugetlbfs pages can't exist.
0846  */
0847 static inline int PageTransHuge(struct page *page)
0848 {
0849     VM_BUG_ON_PAGE(PageTail(page), page);
0850     return PageHead(page);
0851 }
0852 
0853 static inline bool folio_test_transhuge(struct folio *folio)
0854 {
0855     return folio_test_head(folio);
0856 }
0857 
0858 /*
0859  * PageTransCompound returns true for both transparent huge pages
0860  * and hugetlbfs pages, so it should only be called when it's known
0861  * that hugetlbfs pages aren't involved.
0862  */
0863 static inline int PageTransCompound(struct page *page)
0864 {
0865     return PageCompound(page);
0866 }
0867 
0868 /*
0869  * PageTransTail returns true for both transparent huge pages
0870  * and hugetlbfs pages, so it should only be called when it's known
0871  * that hugetlbfs pages aren't involved.
0872  */
0873 static inline int PageTransTail(struct page *page)
0874 {
0875     return PageTail(page);
0876 }
0877 
0878 /*
0879  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
0880  * as PMDs.
0881  *
0882  * This is required for optimization of rmap operations for THP: we can postpone
0883  * per small page mapcount accounting (and its overhead from atomic operations)
0884  * until the first PMD split.
0885  *
0886  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
0887  * by one. This reference will go away with last compound_mapcount.
0888  *
0889  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
0890  */
0891 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
0892     TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
0893 #else
0894 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
0895 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
0896 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
0897 TESTPAGEFLAG_FALSE(TransTail, transtail)
0898 PAGEFLAG_FALSE(DoubleMap, double_map)
0899     TESTSCFLAG_FALSE(DoubleMap, double_map)
0900 #endif
0901 
0902 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
0903 /*
0904  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
0905  * compound page.
0906  *
0907  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
0908  */
0909 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
0910     TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
0911 #else
0912 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
0913     TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
0914 #endif
0915 
0916 /*
0917  * Check if a page is currently marked HWPoisoned. Note that this check is
0918  * best effort only and inherently racy: there is no way to synchronize with
0919  * failing hardware.
0920  */
0921 static inline bool is_page_hwpoison(struct page *page)
0922 {
0923     if (PageHWPoison(page))
0924         return true;
0925     return PageHuge(page) && PageHWPoison(compound_head(page));
0926 }
0927 
0928 /*
0929  * For pages that are never mapped to userspace (and aren't PageSlab),
0930  * page_type may be used.  Because it is initialised to -1, we invert the
0931  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
0932  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
0933  * low bits so that an underflow or overflow of page_mapcount() won't be
0934  * mistaken for a page type value.
0935  */
0936 
0937 #define PAGE_TYPE_BASE  0xf0000000
0938 /* Reserve      0x0000007f to catch underflows of page_mapcount */
0939 #define PAGE_MAPCOUNT_RESERVE   -128
0940 #define PG_buddy    0x00000080
0941 #define PG_offline  0x00000100
0942 #define PG_table    0x00000200
0943 #define PG_guard    0x00000400
0944 
0945 #define PageType(page, flag)                        \
0946     ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
0947 
0948 static inline int page_has_type(struct page *page)
0949 {
0950     return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
0951 }
0952 
0953 #define PAGE_TYPE_OPS(uname, lname)                 \
0954 static __always_inline int Page##uname(struct page *page)       \
0955 {                                   \
0956     return PageType(page, PG_##lname);              \
0957 }                                   \
0958 static __always_inline void __SetPage##uname(struct page *page)     \
0959 {                                   \
0960     VM_BUG_ON_PAGE(!PageType(page, 0), page);           \
0961     page->page_type &= ~PG_##lname;                 \
0962 }                                   \
0963 static __always_inline void __ClearPage##uname(struct page *page)   \
0964 {                                   \
0965     VM_BUG_ON_PAGE(!Page##uname(page), page);           \
0966     page->page_type |= PG_##lname;                  \
0967 }
0968 
0969 /*
0970  * PageBuddy() indicates that the page is free and in the buddy system
0971  * (see mm/page_alloc.c).
0972  */
0973 PAGE_TYPE_OPS(Buddy, buddy)
0974 
0975 /*
0976  * PageOffline() indicates that the page is logically offline although the
0977  * containing section is online. (e.g. inflated in a balloon driver or
0978  * not onlined when onlining the section).
0979  * The content of these pages is effectively stale. Such pages should not
0980  * be touched (read/write/dump/save) except by their owner.
0981  *
0982  * If a driver wants to allow to offline unmovable PageOffline() pages without
0983  * putting them back to the buddy, it can do so via the memory notifier by
0984  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
0985  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
0986  * pages (now with a reference count of zero) are treated like free pages,
0987  * allowing the containing memory block to get offlined. A driver that
0988  * relies on this feature is aware that re-onlining the memory block will
0989  * require to re-set the pages PageOffline() and not giving them to the
0990  * buddy via online_page_callback_t.
0991  *
0992  * There are drivers that mark a page PageOffline() and expect there won't be
0993  * any further access to page content. PFN walkers that read content of random
0994  * pages should check PageOffline() and synchronize with such drivers using
0995  * page_offline_freeze()/page_offline_thaw().
0996  */
0997 PAGE_TYPE_OPS(Offline, offline)
0998 
0999 extern void page_offline_freeze(void);
1000 extern void page_offline_thaw(void);
1001 extern void page_offline_begin(void);
1002 extern void page_offline_end(void);
1003 
1004 /*
1005  * Marks pages in use as page tables.
1006  */
1007 PAGE_TYPE_OPS(Table, table)
1008 
1009 /*
1010  * Marks guardpages used with debug_pagealloc.
1011  */
1012 PAGE_TYPE_OPS(Guard, guard)
1013 
1014 extern bool is_free_buddy_page(struct page *page);
1015 
1016 PAGEFLAG(Isolated, isolated, PF_ANY);
1017 
1018 static __always_inline int PageAnonExclusive(struct page *page)
1019 {
1020     VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1021     VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1022     return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1023 }
1024 
1025 static __always_inline void SetPageAnonExclusive(struct page *page)
1026 {
1027     VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1028     VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1029     set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1030 }
1031 
1032 static __always_inline void ClearPageAnonExclusive(struct page *page)
1033 {
1034     VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page);
1035     VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1036     clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1037 }
1038 
1039 static __always_inline void __ClearPageAnonExclusive(struct page *page)
1040 {
1041     VM_BUG_ON_PGFLAGS(!PageAnon(page), page);
1042     VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page);
1043     __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags);
1044 }
1045 
1046 #ifdef CONFIG_MMU
1047 #define __PG_MLOCKED        (1UL << PG_mlocked)
1048 #else
1049 #define __PG_MLOCKED        0
1050 #endif
1051 
1052 /*
1053  * Flags checked when a page is freed.  Pages being freed should not have
1054  * these flags set.  If they are, there is a problem.
1055  */
1056 #define PAGE_FLAGS_CHECK_AT_FREE                \
1057     (1UL << PG_lru      | 1UL << PG_locked  |   \
1058      1UL << PG_private  | 1UL << PG_private_2   |   \
1059      1UL << PG_writeback    | 1UL << PG_reserved    |   \
1060      1UL << PG_slab     | 1UL << PG_active  |   \
1061      1UL << PG_unevictable  | __PG_MLOCKED)
1062 
1063 /*
1064  * Flags checked when a page is prepped for return by the page allocator.
1065  * Pages being prepped should not have these flags set.  If they are set,
1066  * there has been a kernel bug or struct page corruption.
1067  *
1068  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
1069  * alloc-free cycle to prevent from reusing the page.
1070  */
1071 #define PAGE_FLAGS_CHECK_AT_PREP    \
1072     (PAGEFLAGS_MASK & ~__PG_HWPOISON)
1073 
1074 #define PAGE_FLAGS_PRIVATE              \
1075     (1UL << PG_private | 1UL << PG_private_2)
1076 /**
1077  * page_has_private - Determine if page has private stuff
1078  * @page: The page to be checked
1079  *
1080  * Determine if a page has private stuff, indicating that release routines
1081  * should be invoked upon it.
1082  */
1083 static inline int page_has_private(struct page *page)
1084 {
1085     return !!(page->flags & PAGE_FLAGS_PRIVATE);
1086 }
1087 
1088 static inline bool folio_has_private(struct folio *folio)
1089 {
1090     return page_has_private(&folio->page);
1091 }
1092 
1093 #undef PF_ANY
1094 #undef PF_HEAD
1095 #undef PF_ONLY_HEAD
1096 #undef PF_NO_TAIL
1097 #undef PF_NO_COMPOUND
1098 #undef PF_SECOND
1099 #endif /* !__GENERATING_BOUNDS_H */
1100 
1101 #endif  /* PAGE_FLAGS_H */