![]() |
|
|||
0001 /* SPDX-License-Identifier: GPL-2.0 OR MIT */ 0002 #ifndef __LINUX_OVERFLOW_H 0003 #define __LINUX_OVERFLOW_H 0004 0005 #include <linux/compiler.h> 0006 #include <linux/limits.h> 0007 #include <linux/const.h> 0008 0009 /* 0010 * We need to compute the minimum and maximum values representable in a given 0011 * type. These macros may also be useful elsewhere. It would seem more obvious 0012 * to do something like: 0013 * 0014 * #define type_min(T) (T)(is_signed_type(T) ? (T)1 << (8*sizeof(T)-1) : 0) 0015 * #define type_max(T) (T)(is_signed_type(T) ? ((T)1 << (8*sizeof(T)-1)) - 1 : ~(T)0) 0016 * 0017 * Unfortunately, the middle expressions, strictly speaking, have 0018 * undefined behaviour, and at least some versions of gcc warn about 0019 * the type_max expression (but not if -fsanitize=undefined is in 0020 * effect; in that case, the warning is deferred to runtime...). 0021 * 0022 * The slightly excessive casting in type_min is to make sure the 0023 * macros also produce sensible values for the exotic type _Bool. [The 0024 * overflow checkers only almost work for _Bool, but that's 0025 * a-feature-not-a-bug, since people shouldn't be doing arithmetic on 0026 * _Bools. Besides, the gcc builtins don't allow _Bool* as third 0027 * argument.] 0028 * 0029 * Idea stolen from 0030 * https://mail-index.netbsd.org/tech-misc/2007/02/05/0000.html - 0031 * credit to Christian Biere. 0032 */ 0033 #define __type_half_max(type) ((type)1 << (8*sizeof(type) - 1 - is_signed_type(type))) 0034 #define type_max(T) ((T)((__type_half_max(T) - 1) + __type_half_max(T))) 0035 #define type_min(T) ((T)((T)-type_max(T)-(T)1)) 0036 0037 /* 0038 * Avoids triggering -Wtype-limits compilation warning, 0039 * while using unsigned data types to check a < 0. 0040 */ 0041 #define is_non_negative(a) ((a) > 0 || (a) == 0) 0042 #define is_negative(a) (!(is_non_negative(a))) 0043 0044 /* 0045 * Allows for effectively applying __must_check to a macro so we can have 0046 * both the type-agnostic benefits of the macros while also being able to 0047 * enforce that the return value is, in fact, checked. 0048 */ 0049 static inline bool __must_check __must_check_overflow(bool overflow) 0050 { 0051 return unlikely(overflow); 0052 } 0053 0054 /* 0055 * For simplicity and code hygiene, the fallback code below insists on 0056 * a, b and *d having the same type (similar to the min() and max() 0057 * macros), whereas gcc's type-generic overflow checkers accept 0058 * different types. Hence we don't just make check_add_overflow an 0059 * alias for __builtin_add_overflow, but add type checks similar to 0060 * below. 0061 */ 0062 #define check_add_overflow(a, b, d) __must_check_overflow(({ \ 0063 typeof(a) __a = (a); \ 0064 typeof(b) __b = (b); \ 0065 typeof(d) __d = (d); \ 0066 (void) (&__a == &__b); \ 0067 (void) (&__a == __d); \ 0068 __builtin_add_overflow(__a, __b, __d); \ 0069 })) 0070 0071 #define check_sub_overflow(a, b, d) __must_check_overflow(({ \ 0072 typeof(a) __a = (a); \ 0073 typeof(b) __b = (b); \ 0074 typeof(d) __d = (d); \ 0075 (void) (&__a == &__b); \ 0076 (void) (&__a == __d); \ 0077 __builtin_sub_overflow(__a, __b, __d); \ 0078 })) 0079 0080 #define check_mul_overflow(a, b, d) __must_check_overflow(({ \ 0081 typeof(a) __a = (a); \ 0082 typeof(b) __b = (b); \ 0083 typeof(d) __d = (d); \ 0084 (void) (&__a == &__b); \ 0085 (void) (&__a == __d); \ 0086 __builtin_mul_overflow(__a, __b, __d); \ 0087 })) 0088 0089 /** check_shl_overflow() - Calculate a left-shifted value and check overflow 0090 * 0091 * @a: Value to be shifted 0092 * @s: How many bits left to shift 0093 * @d: Pointer to where to store the result 0094 * 0095 * Computes *@d = (@a << @s) 0096 * 0097 * Returns true if '*d' cannot hold the result or when 'a << s' doesn't 0098 * make sense. Example conditions: 0099 * - 'a << s' causes bits to be lost when stored in *d. 0100 * - 's' is garbage (e.g. negative) or so large that the result of 0101 * 'a << s' is guaranteed to be 0. 0102 * - 'a' is negative. 0103 * - 'a << s' sets the sign bit, if any, in '*d'. 0104 * 0105 * '*d' will hold the results of the attempted shift, but is not 0106 * considered "safe for use" if true is returned. 0107 */ 0108 #define check_shl_overflow(a, s, d) __must_check_overflow(({ \ 0109 typeof(a) _a = a; \ 0110 typeof(s) _s = s; \ 0111 typeof(d) _d = d; \ 0112 u64 _a_full = _a; \ 0113 unsigned int _to_shift = \ 0114 is_non_negative(_s) && _s < 8 * sizeof(*d) ? _s : 0; \ 0115 *_d = (_a_full << _to_shift); \ 0116 (_to_shift != _s || is_negative(*_d) || is_negative(_a) || \ 0117 (*_d >> _to_shift) != _a); \ 0118 })) 0119 0120 /** 0121 * size_mul() - Calculate size_t multiplication with saturation at SIZE_MAX 0122 * 0123 * @factor1: first factor 0124 * @factor2: second factor 0125 * 0126 * Returns: calculate @factor1 * @factor2, both promoted to size_t, 0127 * with any overflow causing the return value to be SIZE_MAX. The 0128 * lvalue must be size_t to avoid implicit type conversion. 0129 */ 0130 static inline size_t __must_check size_mul(size_t factor1, size_t factor2) 0131 { 0132 size_t bytes; 0133 0134 if (check_mul_overflow(factor1, factor2, &bytes)) 0135 return SIZE_MAX; 0136 0137 return bytes; 0138 } 0139 0140 /** 0141 * size_add() - Calculate size_t addition with saturation at SIZE_MAX 0142 * 0143 * @addend1: first addend 0144 * @addend2: second addend 0145 * 0146 * Returns: calculate @addend1 + @addend2, both promoted to size_t, 0147 * with any overflow causing the return value to be SIZE_MAX. The 0148 * lvalue must be size_t to avoid implicit type conversion. 0149 */ 0150 static inline size_t __must_check size_add(size_t addend1, size_t addend2) 0151 { 0152 size_t bytes; 0153 0154 if (check_add_overflow(addend1, addend2, &bytes)) 0155 return SIZE_MAX; 0156 0157 return bytes; 0158 } 0159 0160 /** 0161 * size_sub() - Calculate size_t subtraction with saturation at SIZE_MAX 0162 * 0163 * @minuend: value to subtract from 0164 * @subtrahend: value to subtract from @minuend 0165 * 0166 * Returns: calculate @minuend - @subtrahend, both promoted to size_t, 0167 * with any overflow causing the return value to be SIZE_MAX. For 0168 * composition with the size_add() and size_mul() helpers, neither 0169 * argument may be SIZE_MAX (or the result with be forced to SIZE_MAX). 0170 * The lvalue must be size_t to avoid implicit type conversion. 0171 */ 0172 static inline size_t __must_check size_sub(size_t minuend, size_t subtrahend) 0173 { 0174 size_t bytes; 0175 0176 if (minuend == SIZE_MAX || subtrahend == SIZE_MAX || 0177 check_sub_overflow(minuend, subtrahend, &bytes)) 0178 return SIZE_MAX; 0179 0180 return bytes; 0181 } 0182 0183 /** 0184 * array_size() - Calculate size of 2-dimensional array. 0185 * 0186 * @a: dimension one 0187 * @b: dimension two 0188 * 0189 * Calculates size of 2-dimensional array: @a * @b. 0190 * 0191 * Returns: number of bytes needed to represent the array or SIZE_MAX on 0192 * overflow. 0193 */ 0194 #define array_size(a, b) size_mul(a, b) 0195 0196 /** 0197 * array3_size() - Calculate size of 3-dimensional array. 0198 * 0199 * @a: dimension one 0200 * @b: dimension two 0201 * @c: dimension three 0202 * 0203 * Calculates size of 3-dimensional array: @a * @b * @c. 0204 * 0205 * Returns: number of bytes needed to represent the array or SIZE_MAX on 0206 * overflow. 0207 */ 0208 #define array3_size(a, b, c) size_mul(size_mul(a, b), c) 0209 0210 /** 0211 * flex_array_size() - Calculate size of a flexible array member 0212 * within an enclosing structure. 0213 * 0214 * @p: Pointer to the structure. 0215 * @member: Name of the flexible array member. 0216 * @count: Number of elements in the array. 0217 * 0218 * Calculates size of a flexible array of @count number of @member 0219 * elements, at the end of structure @p. 0220 * 0221 * Return: number of bytes needed or SIZE_MAX on overflow. 0222 */ 0223 #define flex_array_size(p, member, count) \ 0224 __builtin_choose_expr(__is_constexpr(count), \ 0225 (count) * sizeof(*(p)->member) + __must_be_array((p)->member), \ 0226 size_mul(count, sizeof(*(p)->member) + __must_be_array((p)->member))) 0227 0228 /** 0229 * struct_size() - Calculate size of structure with trailing flexible array. 0230 * 0231 * @p: Pointer to the structure. 0232 * @member: Name of the array member. 0233 * @count: Number of elements in the array. 0234 * 0235 * Calculates size of memory needed for structure @p followed by an 0236 * array of @count number of @member elements. 0237 * 0238 * Return: number of bytes needed or SIZE_MAX on overflow. 0239 */ 0240 #define struct_size(p, member, count) \ 0241 __builtin_choose_expr(__is_constexpr(count), \ 0242 sizeof(*(p)) + flex_array_size(p, member, count), \ 0243 size_add(sizeof(*(p)), flex_array_size(p, member, count))) 0244 0245 #endif /* __LINUX_OVERFLOW_H */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |