Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 #ifndef _LINUX_MMZONE_H
0003 #define _LINUX_MMZONE_H
0004 
0005 #ifndef __ASSEMBLY__
0006 #ifndef __GENERATING_BOUNDS_H
0007 
0008 #include <linux/spinlock.h>
0009 #include <linux/list.h>
0010 #include <linux/wait.h>
0011 #include <linux/bitops.h>
0012 #include <linux/cache.h>
0013 #include <linux/threads.h>
0014 #include <linux/numa.h>
0015 #include <linux/init.h>
0016 #include <linux/seqlock.h>
0017 #include <linux/nodemask.h>
0018 #include <linux/pageblock-flags.h>
0019 #include <linux/page-flags-layout.h>
0020 #include <linux/atomic.h>
0021 #include <linux/mm_types.h>
0022 #include <linux/page-flags.h>
0023 #include <linux/local_lock.h>
0024 #include <asm/page.h>
0025 
0026 /* Free memory management - zoned buddy allocator.  */
0027 #ifndef CONFIG_FORCE_MAX_ZONEORDER
0028 #define MAX_ORDER 11
0029 #else
0030 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
0031 #endif
0032 #define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
0033 
0034 /*
0035  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
0036  * costly to service.  That is between allocation orders which should
0037  * coalesce naturally under reasonable reclaim pressure and those which
0038  * will not.
0039  */
0040 #define PAGE_ALLOC_COSTLY_ORDER 3
0041 
0042 enum migratetype {
0043     MIGRATE_UNMOVABLE,
0044     MIGRATE_MOVABLE,
0045     MIGRATE_RECLAIMABLE,
0046     MIGRATE_PCPTYPES,   /* the number of types on the pcp lists */
0047     MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
0048 #ifdef CONFIG_CMA
0049     /*
0050      * MIGRATE_CMA migration type is designed to mimic the way
0051      * ZONE_MOVABLE works.  Only movable pages can be allocated
0052      * from MIGRATE_CMA pageblocks and page allocator never
0053      * implicitly change migration type of MIGRATE_CMA pageblock.
0054      *
0055      * The way to use it is to change migratetype of a range of
0056      * pageblocks to MIGRATE_CMA which can be done by
0057      * __free_pageblock_cma() function.
0058      */
0059     MIGRATE_CMA,
0060 #endif
0061 #ifdef CONFIG_MEMORY_ISOLATION
0062     MIGRATE_ISOLATE,    /* can't allocate from here */
0063 #endif
0064     MIGRATE_TYPES
0065 };
0066 
0067 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
0068 extern const char * const migratetype_names[MIGRATE_TYPES];
0069 
0070 #ifdef CONFIG_CMA
0071 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
0072 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
0073 #else
0074 #  define is_migrate_cma(migratetype) false
0075 #  define is_migrate_cma_page(_page) false
0076 #endif
0077 
0078 static inline bool is_migrate_movable(int mt)
0079 {
0080     return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
0081 }
0082 
0083 /*
0084  * Check whether a migratetype can be merged with another migratetype.
0085  *
0086  * It is only mergeable when it can fall back to other migratetypes for
0087  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
0088  */
0089 static inline bool migratetype_is_mergeable(int mt)
0090 {
0091     return mt < MIGRATE_PCPTYPES;
0092 }
0093 
0094 #define for_each_migratetype_order(order, type) \
0095     for (order = 0; order < MAX_ORDER; order++) \
0096         for (type = 0; type < MIGRATE_TYPES; type++)
0097 
0098 extern int page_group_by_mobility_disabled;
0099 
0100 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
0101 
0102 #define get_pageblock_migratetype(page)                 \
0103     get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
0104 
0105 struct free_area {
0106     struct list_head    free_list[MIGRATE_TYPES];
0107     unsigned long       nr_free;
0108 };
0109 
0110 static inline struct page *get_page_from_free_area(struct free_area *area,
0111                         int migratetype)
0112 {
0113     return list_first_entry_or_null(&area->free_list[migratetype],
0114                     struct page, lru);
0115 }
0116 
0117 static inline bool free_area_empty(struct free_area *area, int migratetype)
0118 {
0119     return list_empty(&area->free_list[migratetype]);
0120 }
0121 
0122 struct pglist_data;
0123 
0124 /*
0125  * Add a wild amount of padding here to ensure data fall into separate
0126  * cachelines.  There are very few zone structures in the machine, so space
0127  * consumption is not a concern here.
0128  */
0129 #if defined(CONFIG_SMP)
0130 struct zone_padding {
0131     char x[0];
0132 } ____cacheline_internodealigned_in_smp;
0133 #define ZONE_PADDING(name)  struct zone_padding name;
0134 #else
0135 #define ZONE_PADDING(name)
0136 #endif
0137 
0138 #ifdef CONFIG_NUMA
0139 enum numa_stat_item {
0140     NUMA_HIT,       /* allocated in intended node */
0141     NUMA_MISS,      /* allocated in non intended node */
0142     NUMA_FOREIGN,       /* was intended here, hit elsewhere */
0143     NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
0144     NUMA_LOCAL,     /* allocation from local node */
0145     NUMA_OTHER,     /* allocation from other node */
0146     NR_VM_NUMA_EVENT_ITEMS
0147 };
0148 #else
0149 #define NR_VM_NUMA_EVENT_ITEMS 0
0150 #endif
0151 
0152 enum zone_stat_item {
0153     /* First 128 byte cacheline (assuming 64 bit words) */
0154     NR_FREE_PAGES,
0155     NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
0156     NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
0157     NR_ZONE_ACTIVE_ANON,
0158     NR_ZONE_INACTIVE_FILE,
0159     NR_ZONE_ACTIVE_FILE,
0160     NR_ZONE_UNEVICTABLE,
0161     NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
0162     NR_MLOCK,       /* mlock()ed pages found and moved off LRU */
0163     /* Second 128 byte cacheline */
0164     NR_BOUNCE,
0165 #if IS_ENABLED(CONFIG_ZSMALLOC)
0166     NR_ZSPAGES,     /* allocated in zsmalloc */
0167 #endif
0168     NR_FREE_CMA_PAGES,
0169     NR_VM_ZONE_STAT_ITEMS };
0170 
0171 enum node_stat_item {
0172     NR_LRU_BASE,
0173     NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
0174     NR_ACTIVE_ANON,     /*  "     "     "   "       "         */
0175     NR_INACTIVE_FILE,   /*  "     "     "   "       "         */
0176     NR_ACTIVE_FILE,     /*  "     "     "   "       "         */
0177     NR_UNEVICTABLE,     /*  "     "     "   "       "         */
0178     NR_SLAB_RECLAIMABLE_B,
0179     NR_SLAB_UNRECLAIMABLE_B,
0180     NR_ISOLATED_ANON,   /* Temporary isolated pages from anon lru */
0181     NR_ISOLATED_FILE,   /* Temporary isolated pages from file lru */
0182     WORKINGSET_NODES,
0183     WORKINGSET_REFAULT_BASE,
0184     WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
0185     WORKINGSET_REFAULT_FILE,
0186     WORKINGSET_ACTIVATE_BASE,
0187     WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
0188     WORKINGSET_ACTIVATE_FILE,
0189     WORKINGSET_RESTORE_BASE,
0190     WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
0191     WORKINGSET_RESTORE_FILE,
0192     WORKINGSET_NODERECLAIM,
0193     NR_ANON_MAPPED, /* Mapped anonymous pages */
0194     NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
0195                only modified from process context */
0196     NR_FILE_PAGES,
0197     NR_FILE_DIRTY,
0198     NR_WRITEBACK,
0199     NR_WRITEBACK_TEMP,  /* Writeback using temporary buffers */
0200     NR_SHMEM,       /* shmem pages (included tmpfs/GEM pages) */
0201     NR_SHMEM_THPS,
0202     NR_SHMEM_PMDMAPPED,
0203     NR_FILE_THPS,
0204     NR_FILE_PMDMAPPED,
0205     NR_ANON_THPS,
0206     NR_VMSCAN_WRITE,
0207     NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
0208     NR_DIRTIED,     /* page dirtyings since bootup */
0209     NR_WRITTEN,     /* page writings since bootup */
0210     NR_THROTTLED_WRITTEN,   /* NR_WRITTEN while reclaim throttled */
0211     NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */
0212     NR_FOLL_PIN_ACQUIRED,   /* via: pin_user_page(), gup flag: FOLL_PIN */
0213     NR_FOLL_PIN_RELEASED,   /* pages returned via unpin_user_page() */
0214     NR_KERNEL_STACK_KB, /* measured in KiB */
0215 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
0216     NR_KERNEL_SCS_KB,   /* measured in KiB */
0217 #endif
0218     NR_PAGETABLE,       /* used for pagetables */
0219 #ifdef CONFIG_SWAP
0220     NR_SWAPCACHE,
0221 #endif
0222 #ifdef CONFIG_NUMA_BALANCING
0223     PGPROMOTE_SUCCESS,  /* promote successfully */
0224 #endif
0225     NR_VM_NODE_STAT_ITEMS
0226 };
0227 
0228 /*
0229  * Returns true if the item should be printed in THPs (/proc/vmstat
0230  * currently prints number of anon, file and shmem THPs. But the item
0231  * is charged in pages).
0232  */
0233 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
0234 {
0235     if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
0236         return false;
0237 
0238     return item == NR_ANON_THPS ||
0239            item == NR_FILE_THPS ||
0240            item == NR_SHMEM_THPS ||
0241            item == NR_SHMEM_PMDMAPPED ||
0242            item == NR_FILE_PMDMAPPED;
0243 }
0244 
0245 /*
0246  * Returns true if the value is measured in bytes (most vmstat values are
0247  * measured in pages). This defines the API part, the internal representation
0248  * might be different.
0249  */
0250 static __always_inline bool vmstat_item_in_bytes(int idx)
0251 {
0252     /*
0253      * Global and per-node slab counters track slab pages.
0254      * It's expected that changes are multiples of PAGE_SIZE.
0255      * Internally values are stored in pages.
0256      *
0257      * Per-memcg and per-lruvec counters track memory, consumed
0258      * by individual slab objects. These counters are actually
0259      * byte-precise.
0260      */
0261     return (idx == NR_SLAB_RECLAIMABLE_B ||
0262         idx == NR_SLAB_UNRECLAIMABLE_B);
0263 }
0264 
0265 /*
0266  * We do arithmetic on the LRU lists in various places in the code,
0267  * so it is important to keep the active lists LRU_ACTIVE higher in
0268  * the array than the corresponding inactive lists, and to keep
0269  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
0270  *
0271  * This has to be kept in sync with the statistics in zone_stat_item
0272  * above and the descriptions in vmstat_text in mm/vmstat.c
0273  */
0274 #define LRU_BASE 0
0275 #define LRU_ACTIVE 1
0276 #define LRU_FILE 2
0277 
0278 enum lru_list {
0279     LRU_INACTIVE_ANON = LRU_BASE,
0280     LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
0281     LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
0282     LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
0283     LRU_UNEVICTABLE,
0284     NR_LRU_LISTS
0285 };
0286 
0287 enum vmscan_throttle_state {
0288     VMSCAN_THROTTLE_WRITEBACK,
0289     VMSCAN_THROTTLE_ISOLATED,
0290     VMSCAN_THROTTLE_NOPROGRESS,
0291     VMSCAN_THROTTLE_CONGESTED,
0292     NR_VMSCAN_THROTTLE,
0293 };
0294 
0295 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
0296 
0297 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
0298 
0299 static inline bool is_file_lru(enum lru_list lru)
0300 {
0301     return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
0302 }
0303 
0304 static inline bool is_active_lru(enum lru_list lru)
0305 {
0306     return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
0307 }
0308 
0309 #define ANON_AND_FILE 2
0310 
0311 enum lruvec_flags {
0312     LRUVEC_CONGESTED,       /* lruvec has many dirty pages
0313                      * backed by a congested BDI
0314                      */
0315 };
0316 
0317 struct lruvec {
0318     struct list_head        lists[NR_LRU_LISTS];
0319     /* per lruvec lru_lock for memcg */
0320     spinlock_t          lru_lock;
0321     /*
0322      * These track the cost of reclaiming one LRU - file or anon -
0323      * over the other. As the observed cost of reclaiming one LRU
0324      * increases, the reclaim scan balance tips toward the other.
0325      */
0326     unsigned long           anon_cost;
0327     unsigned long           file_cost;
0328     /* Non-resident age, driven by LRU movement */
0329     atomic_long_t           nonresident_age;
0330     /* Refaults at the time of last reclaim cycle */
0331     unsigned long           refaults[ANON_AND_FILE];
0332     /* Various lruvec state flags (enum lruvec_flags) */
0333     unsigned long           flags;
0334 #ifdef CONFIG_MEMCG
0335     struct pglist_data *pgdat;
0336 #endif
0337 };
0338 
0339 /* Isolate unmapped pages */
0340 #define ISOLATE_UNMAPPED    ((__force isolate_mode_t)0x2)
0341 /* Isolate for asynchronous migration */
0342 #define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
0343 /* Isolate unevictable pages */
0344 #define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
0345 
0346 /* LRU Isolation modes. */
0347 typedef unsigned __bitwise isolate_mode_t;
0348 
0349 enum zone_watermarks {
0350     WMARK_MIN,
0351     WMARK_LOW,
0352     WMARK_HIGH,
0353     WMARK_PROMO,
0354     NR_WMARK
0355 };
0356 
0357 /*
0358  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list
0359  * for THP which will usually be GFP_MOVABLE. Even if it is another type,
0360  * it should not contribute to serious fragmentation causing THP allocation
0361  * failures.
0362  */
0363 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0364 #define NR_PCP_THP 1
0365 #else
0366 #define NR_PCP_THP 0
0367 #endif
0368 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
0369 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
0370 
0371 /*
0372  * Shift to encode migratetype and order in the same integer, with order
0373  * in the least significant bits.
0374  */
0375 #define NR_PCP_ORDER_WIDTH 8
0376 #define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1)
0377 
0378 #define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost)
0379 #define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost)
0380 #define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost)
0381 #define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost)
0382 
0383 /* Fields and list protected by pagesets local_lock in page_alloc.c */
0384 struct per_cpu_pages {
0385     spinlock_t lock;    /* Protects lists field */
0386     int count;      /* number of pages in the list */
0387     int high;       /* high watermark, emptying needed */
0388     int batch;      /* chunk size for buddy add/remove */
0389     short free_factor;  /* batch scaling factor during free */
0390 #ifdef CONFIG_NUMA
0391     short expire;       /* When 0, remote pagesets are drained */
0392 #endif
0393 
0394     /* Lists of pages, one per migrate type stored on the pcp-lists */
0395     struct list_head lists[NR_PCP_LISTS];
0396 } ____cacheline_aligned_in_smp;
0397 
0398 struct per_cpu_zonestat {
0399 #ifdef CONFIG_SMP
0400     s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
0401     s8 stat_threshold;
0402 #endif
0403 #ifdef CONFIG_NUMA
0404     /*
0405      * Low priority inaccurate counters that are only folded
0406      * on demand. Use a large type to avoid the overhead of
0407      * folding during refresh_cpu_vm_stats.
0408      */
0409     unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
0410 #endif
0411 };
0412 
0413 struct per_cpu_nodestat {
0414     s8 stat_threshold;
0415     s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
0416 };
0417 
0418 #endif /* !__GENERATING_BOUNDS.H */
0419 
0420 enum zone_type {
0421     /*
0422      * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
0423      * to DMA to all of the addressable memory (ZONE_NORMAL).
0424      * On architectures where this area covers the whole 32 bit address
0425      * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
0426      * DMA addressing constraints. This distinction is important as a 32bit
0427      * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
0428      * platforms may need both zones as they support peripherals with
0429      * different DMA addressing limitations.
0430      */
0431 #ifdef CONFIG_ZONE_DMA
0432     ZONE_DMA,
0433 #endif
0434 #ifdef CONFIG_ZONE_DMA32
0435     ZONE_DMA32,
0436 #endif
0437     /*
0438      * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
0439      * performed on pages in ZONE_NORMAL if the DMA devices support
0440      * transfers to all addressable memory.
0441      */
0442     ZONE_NORMAL,
0443 #ifdef CONFIG_HIGHMEM
0444     /*
0445      * A memory area that is only addressable by the kernel through
0446      * mapping portions into its own address space. This is for example
0447      * used by i386 to allow the kernel to address the memory beyond
0448      * 900MB. The kernel will set up special mappings (page
0449      * table entries on i386) for each page that the kernel needs to
0450      * access.
0451      */
0452     ZONE_HIGHMEM,
0453 #endif
0454     /*
0455      * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
0456      * movable pages with few exceptional cases described below. Main use
0457      * cases for ZONE_MOVABLE are to make memory offlining/unplug more
0458      * likely to succeed, and to locally limit unmovable allocations - e.g.,
0459      * to increase the number of THP/huge pages. Notable special cases are:
0460      *
0461      * 1. Pinned pages: (long-term) pinning of movable pages might
0462      *    essentially turn such pages unmovable. Therefore, we do not allow
0463      *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
0464      *    faulted, they come from the right zone right away. However, it is
0465      *    still possible that address space already has pages in
0466      *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
0467      *    touches that memory before pinning). In such case we migrate them
0468      *    to a different zone. When migration fails - pinning fails.
0469      * 2. memblock allocations: kernelcore/movablecore setups might create
0470      *    situations where ZONE_MOVABLE contains unmovable allocations
0471      *    after boot. Memory offlining and allocations fail early.
0472      * 3. Memory holes: kernelcore/movablecore setups might create very rare
0473      *    situations where ZONE_MOVABLE contains memory holes after boot,
0474      *    for example, if we have sections that are only partially
0475      *    populated. Memory offlining and allocations fail early.
0476      * 4. PG_hwpoison pages: while poisoned pages can be skipped during
0477      *    memory offlining, such pages cannot be allocated.
0478      * 5. Unmovable PG_offline pages: in paravirtualized environments,
0479      *    hotplugged memory blocks might only partially be managed by the
0480      *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
0481      *    parts not manged by the buddy are unmovable PG_offline pages. In
0482      *    some cases (virtio-mem), such pages can be skipped during
0483      *    memory offlining, however, cannot be moved/allocated. These
0484      *    techniques might use alloc_contig_range() to hide previously
0485      *    exposed pages from the buddy again (e.g., to implement some sort
0486      *    of memory unplug in virtio-mem).
0487      * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
0488      *    situations where ZERO_PAGE(0) which is allocated differently
0489      *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
0490      *    cannot be migrated.
0491      * 7. Memory-hotplug: when using memmap_on_memory and onlining the
0492      *    memory to the MOVABLE zone, the vmemmap pages are also placed in
0493      *    such zone. Such pages cannot be really moved around as they are
0494      *    self-stored in the range, but they are treated as movable when
0495      *    the range they describe is about to be offlined.
0496      *
0497      * In general, no unmovable allocations that degrade memory offlining
0498      * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
0499      * have to expect that migrating pages in ZONE_MOVABLE can fail (even
0500      * if has_unmovable_pages() states that there are no unmovable pages,
0501      * there can be false negatives).
0502      */
0503     ZONE_MOVABLE,
0504 #ifdef CONFIG_ZONE_DEVICE
0505     ZONE_DEVICE,
0506 #endif
0507     __MAX_NR_ZONES
0508 
0509 };
0510 
0511 #ifndef __GENERATING_BOUNDS_H
0512 
0513 #define ASYNC_AND_SYNC 2
0514 
0515 struct zone {
0516     /* Read-mostly fields */
0517 
0518     /* zone watermarks, access with *_wmark_pages(zone) macros */
0519     unsigned long _watermark[NR_WMARK];
0520     unsigned long watermark_boost;
0521 
0522     unsigned long nr_reserved_highatomic;
0523 
0524     /*
0525      * We don't know if the memory that we're going to allocate will be
0526      * freeable or/and it will be released eventually, so to avoid totally
0527      * wasting several GB of ram we must reserve some of the lower zone
0528      * memory (otherwise we risk to run OOM on the lower zones despite
0529      * there being tons of freeable ram on the higher zones).  This array is
0530      * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
0531      * changes.
0532      */
0533     long lowmem_reserve[MAX_NR_ZONES];
0534 
0535 #ifdef CONFIG_NUMA
0536     int node;
0537 #endif
0538     struct pglist_data  *zone_pgdat;
0539     struct per_cpu_pages    __percpu *per_cpu_pageset;
0540     struct per_cpu_zonestat __percpu *per_cpu_zonestats;
0541     /*
0542      * the high and batch values are copied to individual pagesets for
0543      * faster access
0544      */
0545     int pageset_high;
0546     int pageset_batch;
0547 
0548 #ifndef CONFIG_SPARSEMEM
0549     /*
0550      * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
0551      * In SPARSEMEM, this map is stored in struct mem_section
0552      */
0553     unsigned long       *pageblock_flags;
0554 #endif /* CONFIG_SPARSEMEM */
0555 
0556     /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
0557     unsigned long       zone_start_pfn;
0558 
0559     /*
0560      * spanned_pages is the total pages spanned by the zone, including
0561      * holes, which is calculated as:
0562      *  spanned_pages = zone_end_pfn - zone_start_pfn;
0563      *
0564      * present_pages is physical pages existing within the zone, which
0565      * is calculated as:
0566      *  present_pages = spanned_pages - absent_pages(pages in holes);
0567      *
0568      * present_early_pages is present pages existing within the zone
0569      * located on memory available since early boot, excluding hotplugged
0570      * memory.
0571      *
0572      * managed_pages is present pages managed by the buddy system, which
0573      * is calculated as (reserved_pages includes pages allocated by the
0574      * bootmem allocator):
0575      *  managed_pages = present_pages - reserved_pages;
0576      *
0577      * cma pages is present pages that are assigned for CMA use
0578      * (MIGRATE_CMA).
0579      *
0580      * So present_pages may be used by memory hotplug or memory power
0581      * management logic to figure out unmanaged pages by checking
0582      * (present_pages - managed_pages). And managed_pages should be used
0583      * by page allocator and vm scanner to calculate all kinds of watermarks
0584      * and thresholds.
0585      *
0586      * Locking rules:
0587      *
0588      * zone_start_pfn and spanned_pages are protected by span_seqlock.
0589      * It is a seqlock because it has to be read outside of zone->lock,
0590      * and it is done in the main allocator path.  But, it is written
0591      * quite infrequently.
0592      *
0593      * The span_seq lock is declared along with zone->lock because it is
0594      * frequently read in proximity to zone->lock.  It's good to
0595      * give them a chance of being in the same cacheline.
0596      *
0597      * Write access to present_pages at runtime should be protected by
0598      * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
0599      * present_pages should use get_online_mems() to get a stable value.
0600      */
0601     atomic_long_t       managed_pages;
0602     unsigned long       spanned_pages;
0603     unsigned long       present_pages;
0604 #if defined(CONFIG_MEMORY_HOTPLUG)
0605     unsigned long       present_early_pages;
0606 #endif
0607 #ifdef CONFIG_CMA
0608     unsigned long       cma_pages;
0609 #endif
0610 
0611     const char      *name;
0612 
0613 #ifdef CONFIG_MEMORY_ISOLATION
0614     /*
0615      * Number of isolated pageblock. It is used to solve incorrect
0616      * freepage counting problem due to racy retrieving migratetype
0617      * of pageblock. Protected by zone->lock.
0618      */
0619     unsigned long       nr_isolate_pageblock;
0620 #endif
0621 
0622 #ifdef CONFIG_MEMORY_HOTPLUG
0623     /* see spanned/present_pages for more description */
0624     seqlock_t       span_seqlock;
0625 #endif
0626 
0627     int initialized;
0628 
0629     /* Write-intensive fields used from the page allocator */
0630     ZONE_PADDING(_pad1_)
0631 
0632     /* free areas of different sizes */
0633     struct free_area    free_area[MAX_ORDER];
0634 
0635     /* zone flags, see below */
0636     unsigned long       flags;
0637 
0638     /* Primarily protects free_area */
0639     spinlock_t      lock;
0640 
0641     /* Write-intensive fields used by compaction and vmstats. */
0642     ZONE_PADDING(_pad2_)
0643 
0644     /*
0645      * When free pages are below this point, additional steps are taken
0646      * when reading the number of free pages to avoid per-cpu counter
0647      * drift allowing watermarks to be breached
0648      */
0649     unsigned long percpu_drift_mark;
0650 
0651 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
0652     /* pfn where compaction free scanner should start */
0653     unsigned long       compact_cached_free_pfn;
0654     /* pfn where compaction migration scanner should start */
0655     unsigned long       compact_cached_migrate_pfn[ASYNC_AND_SYNC];
0656     unsigned long       compact_init_migrate_pfn;
0657     unsigned long       compact_init_free_pfn;
0658 #endif
0659 
0660 #ifdef CONFIG_COMPACTION
0661     /*
0662      * On compaction failure, 1<<compact_defer_shift compactions
0663      * are skipped before trying again. The number attempted since
0664      * last failure is tracked with compact_considered.
0665      * compact_order_failed is the minimum compaction failed order.
0666      */
0667     unsigned int        compact_considered;
0668     unsigned int        compact_defer_shift;
0669     int         compact_order_failed;
0670 #endif
0671 
0672 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
0673     /* Set to true when the PG_migrate_skip bits should be cleared */
0674     bool            compact_blockskip_flush;
0675 #endif
0676 
0677     bool            contiguous;
0678 
0679     ZONE_PADDING(_pad3_)
0680     /* Zone statistics */
0681     atomic_long_t       vm_stat[NR_VM_ZONE_STAT_ITEMS];
0682     atomic_long_t       vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
0683 } ____cacheline_internodealigned_in_smp;
0684 
0685 enum pgdat_flags {
0686     PGDAT_DIRTY,            /* reclaim scanning has recently found
0687                      * many dirty file pages at the tail
0688                      * of the LRU.
0689                      */
0690     PGDAT_WRITEBACK,        /* reclaim scanning has recently found
0691                      * many pages under writeback
0692                      */
0693     PGDAT_RECLAIM_LOCKED,       /* prevents concurrent reclaim */
0694 };
0695 
0696 enum zone_flags {
0697     ZONE_BOOSTED_WATERMARK,     /* zone recently boosted watermarks.
0698                      * Cleared when kswapd is woken.
0699                      */
0700     ZONE_RECLAIM_ACTIVE,        /* kswapd may be scanning the zone. */
0701 };
0702 
0703 static inline unsigned long zone_managed_pages(struct zone *zone)
0704 {
0705     return (unsigned long)atomic_long_read(&zone->managed_pages);
0706 }
0707 
0708 static inline unsigned long zone_cma_pages(struct zone *zone)
0709 {
0710 #ifdef CONFIG_CMA
0711     return zone->cma_pages;
0712 #else
0713     return 0;
0714 #endif
0715 }
0716 
0717 static inline unsigned long zone_end_pfn(const struct zone *zone)
0718 {
0719     return zone->zone_start_pfn + zone->spanned_pages;
0720 }
0721 
0722 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
0723 {
0724     return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
0725 }
0726 
0727 static inline bool zone_is_initialized(struct zone *zone)
0728 {
0729     return zone->initialized;
0730 }
0731 
0732 static inline bool zone_is_empty(struct zone *zone)
0733 {
0734     return zone->spanned_pages == 0;
0735 }
0736 
0737 #ifndef BUILD_VDSO32_64
0738 /*
0739  * The zone field is never updated after free_area_init_core()
0740  * sets it, so none of the operations on it need to be atomic.
0741  */
0742 
0743 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
0744 #define SECTIONS_PGOFF      ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
0745 #define NODES_PGOFF     (SECTIONS_PGOFF - NODES_WIDTH)
0746 #define ZONES_PGOFF     (NODES_PGOFF - ZONES_WIDTH)
0747 #define LAST_CPUPID_PGOFF   (ZONES_PGOFF - LAST_CPUPID_WIDTH)
0748 #define KASAN_TAG_PGOFF     (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
0749 
0750 /*
0751  * Define the bit shifts to access each section.  For non-existent
0752  * sections we define the shift as 0; that plus a 0 mask ensures
0753  * the compiler will optimise away reference to them.
0754  */
0755 #define SECTIONS_PGSHIFT    (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
0756 #define NODES_PGSHIFT       (NODES_PGOFF * (NODES_WIDTH != 0))
0757 #define ZONES_PGSHIFT       (ZONES_PGOFF * (ZONES_WIDTH != 0))
0758 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
0759 #define KASAN_TAG_PGSHIFT   (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
0760 
0761 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
0762 #ifdef NODE_NOT_IN_PAGE_FLAGS
0763 #define ZONEID_SHIFT        (SECTIONS_SHIFT + ZONES_SHIFT)
0764 #define ZONEID_PGOFF        ((SECTIONS_PGOFF < ZONES_PGOFF) ? \
0765                         SECTIONS_PGOFF : ZONES_PGOFF)
0766 #else
0767 #define ZONEID_SHIFT        (NODES_SHIFT + ZONES_SHIFT)
0768 #define ZONEID_PGOFF        ((NODES_PGOFF < ZONES_PGOFF) ? \
0769                         NODES_PGOFF : ZONES_PGOFF)
0770 #endif
0771 
0772 #define ZONEID_PGSHIFT      (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
0773 
0774 #define ZONES_MASK      ((1UL << ZONES_WIDTH) - 1)
0775 #define NODES_MASK      ((1UL << NODES_WIDTH) - 1)
0776 #define SECTIONS_MASK       ((1UL << SECTIONS_WIDTH) - 1)
0777 #define LAST_CPUPID_MASK    ((1UL << LAST_CPUPID_SHIFT) - 1)
0778 #define KASAN_TAG_MASK      ((1UL << KASAN_TAG_WIDTH) - 1)
0779 #define ZONEID_MASK     ((1UL << ZONEID_SHIFT) - 1)
0780 
0781 static inline enum zone_type page_zonenum(const struct page *page)
0782 {
0783     ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
0784     return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
0785 }
0786 
0787 static inline enum zone_type folio_zonenum(const struct folio *folio)
0788 {
0789     return page_zonenum(&folio->page);
0790 }
0791 
0792 #ifdef CONFIG_ZONE_DEVICE
0793 static inline bool is_zone_device_page(const struct page *page)
0794 {
0795     return page_zonenum(page) == ZONE_DEVICE;
0796 }
0797 extern void memmap_init_zone_device(struct zone *, unsigned long,
0798                     unsigned long, struct dev_pagemap *);
0799 #else
0800 static inline bool is_zone_device_page(const struct page *page)
0801 {
0802     return false;
0803 }
0804 #endif
0805 
0806 static inline bool folio_is_zone_device(const struct folio *folio)
0807 {
0808     return is_zone_device_page(&folio->page);
0809 }
0810 
0811 static inline bool is_zone_movable_page(const struct page *page)
0812 {
0813     return page_zonenum(page) == ZONE_MOVABLE;
0814 }
0815 #endif
0816 
0817 /*
0818  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
0819  * intersection with the given zone
0820  */
0821 static inline bool zone_intersects(struct zone *zone,
0822         unsigned long start_pfn, unsigned long nr_pages)
0823 {
0824     if (zone_is_empty(zone))
0825         return false;
0826     if (start_pfn >= zone_end_pfn(zone) ||
0827         start_pfn + nr_pages <= zone->zone_start_pfn)
0828         return false;
0829 
0830     return true;
0831 }
0832 
0833 /*
0834  * The "priority" of VM scanning is how much of the queues we will scan in one
0835  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
0836  * queues ("queue_length >> 12") during an aging round.
0837  */
0838 #define DEF_PRIORITY 12
0839 
0840 /* Maximum number of zones on a zonelist */
0841 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
0842 
0843 enum {
0844     ZONELIST_FALLBACK,  /* zonelist with fallback */
0845 #ifdef CONFIG_NUMA
0846     /*
0847      * The NUMA zonelists are doubled because we need zonelists that
0848      * restrict the allocations to a single node for __GFP_THISNODE.
0849      */
0850     ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
0851 #endif
0852     MAX_ZONELISTS
0853 };
0854 
0855 /*
0856  * This struct contains information about a zone in a zonelist. It is stored
0857  * here to avoid dereferences into large structures and lookups of tables
0858  */
0859 struct zoneref {
0860     struct zone *zone;  /* Pointer to actual zone */
0861     int zone_idx;       /* zone_idx(zoneref->zone) */
0862 };
0863 
0864 /*
0865  * One allocation request operates on a zonelist. A zonelist
0866  * is a list of zones, the first one is the 'goal' of the
0867  * allocation, the other zones are fallback zones, in decreasing
0868  * priority.
0869  *
0870  * To speed the reading of the zonelist, the zonerefs contain the zone index
0871  * of the entry being read. Helper functions to access information given
0872  * a struct zoneref are
0873  *
0874  * zonelist_zone()  - Return the struct zone * for an entry in _zonerefs
0875  * zonelist_zone_idx()  - Return the index of the zone for an entry
0876  * zonelist_node_idx()  - Return the index of the node for an entry
0877  */
0878 struct zonelist {
0879     struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
0880 };
0881 
0882 /*
0883  * The array of struct pages for flatmem.
0884  * It must be declared for SPARSEMEM as well because there are configurations
0885  * that rely on that.
0886  */
0887 extern struct page *mem_map;
0888 
0889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0890 struct deferred_split {
0891     spinlock_t split_queue_lock;
0892     struct list_head split_queue;
0893     unsigned long split_queue_len;
0894 };
0895 #endif
0896 
0897 /*
0898  * On NUMA machines, each NUMA node would have a pg_data_t to describe
0899  * it's memory layout. On UMA machines there is a single pglist_data which
0900  * describes the whole memory.
0901  *
0902  * Memory statistics and page replacement data structures are maintained on a
0903  * per-zone basis.
0904  */
0905 typedef struct pglist_data {
0906     /*
0907      * node_zones contains just the zones for THIS node. Not all of the
0908      * zones may be populated, but it is the full list. It is referenced by
0909      * this node's node_zonelists as well as other node's node_zonelists.
0910      */
0911     struct zone node_zones[MAX_NR_ZONES];
0912 
0913     /*
0914      * node_zonelists contains references to all zones in all nodes.
0915      * Generally the first zones will be references to this node's
0916      * node_zones.
0917      */
0918     struct zonelist node_zonelists[MAX_ZONELISTS];
0919 
0920     int nr_zones; /* number of populated zones in this node */
0921 #ifdef CONFIG_FLATMEM   /* means !SPARSEMEM */
0922     struct page *node_mem_map;
0923 #ifdef CONFIG_PAGE_EXTENSION
0924     struct page_ext *node_page_ext;
0925 #endif
0926 #endif
0927 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
0928     /*
0929      * Must be held any time you expect node_start_pfn,
0930      * node_present_pages, node_spanned_pages or nr_zones to stay constant.
0931      * Also synchronizes pgdat->first_deferred_pfn during deferred page
0932      * init.
0933      *
0934      * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
0935      * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
0936      * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
0937      *
0938      * Nests above zone->lock and zone->span_seqlock
0939      */
0940     spinlock_t node_size_lock;
0941 #endif
0942     unsigned long node_start_pfn;
0943     unsigned long node_present_pages; /* total number of physical pages */
0944     unsigned long node_spanned_pages; /* total size of physical page
0945                          range, including holes */
0946     int node_id;
0947     wait_queue_head_t kswapd_wait;
0948     wait_queue_head_t pfmemalloc_wait;
0949 
0950     /* workqueues for throttling reclaim for different reasons. */
0951     wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
0952 
0953     atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
0954     unsigned long nr_reclaim_start; /* nr pages written while throttled
0955                      * when throttling started. */
0956     struct task_struct *kswapd; /* Protected by
0957                        mem_hotplug_begin/done() */
0958     int kswapd_order;
0959     enum zone_type kswapd_highest_zoneidx;
0960 
0961     int kswapd_failures;        /* Number of 'reclaimed == 0' runs */
0962 
0963 #ifdef CONFIG_COMPACTION
0964     int kcompactd_max_order;
0965     enum zone_type kcompactd_highest_zoneidx;
0966     wait_queue_head_t kcompactd_wait;
0967     struct task_struct *kcompactd;
0968     bool proactive_compact_trigger;
0969 #endif
0970     /*
0971      * This is a per-node reserve of pages that are not available
0972      * to userspace allocations.
0973      */
0974     unsigned long       totalreserve_pages;
0975 
0976 #ifdef CONFIG_NUMA
0977     /*
0978      * node reclaim becomes active if more unmapped pages exist.
0979      */
0980     unsigned long       min_unmapped_pages;
0981     unsigned long       min_slab_pages;
0982 #endif /* CONFIG_NUMA */
0983 
0984     /* Write-intensive fields used by page reclaim */
0985     ZONE_PADDING(_pad1_)
0986 
0987 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0988     /*
0989      * If memory initialisation on large machines is deferred then this
0990      * is the first PFN that needs to be initialised.
0991      */
0992     unsigned long first_deferred_pfn;
0993 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0994 
0995 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0996     struct deferred_split deferred_split_queue;
0997 #endif
0998 
0999     /* Fields commonly accessed by the page reclaim scanner */
1000 
1001     /*
1002      * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1003      *
1004      * Use mem_cgroup_lruvec() to look up lruvecs.
1005      */
1006     struct lruvec       __lruvec;
1007 
1008     unsigned long       flags;
1009 
1010     ZONE_PADDING(_pad2_)
1011 
1012     /* Per-node vmstats */
1013     struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1014     atomic_long_t       vm_stat[NR_VM_NODE_STAT_ITEMS];
1015 } pg_data_t;
1016 
1017 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
1018 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
1019 
1020 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
1021 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1022 
1023 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1024 {
1025     return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1026 }
1027 
1028 static inline bool pgdat_is_empty(pg_data_t *pgdat)
1029 {
1030     return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
1031 }
1032 
1033 #include <linux/memory_hotplug.h>
1034 
1035 void build_all_zonelists(pg_data_t *pgdat);
1036 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1037            enum zone_type highest_zoneidx);
1038 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1039              int highest_zoneidx, unsigned int alloc_flags,
1040              long free_pages);
1041 bool zone_watermark_ok(struct zone *z, unsigned int order,
1042         unsigned long mark, int highest_zoneidx,
1043         unsigned int alloc_flags);
1044 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1045         unsigned long mark, int highest_zoneidx);
1046 /*
1047  * Memory initialization context, use to differentiate memory added by
1048  * the platform statically or via memory hotplug interface.
1049  */
1050 enum meminit_context {
1051     MEMINIT_EARLY,
1052     MEMINIT_HOTPLUG,
1053 };
1054 
1055 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1056                      unsigned long size);
1057 
1058 extern void lruvec_init(struct lruvec *lruvec);
1059 
1060 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1061 {
1062 #ifdef CONFIG_MEMCG
1063     return lruvec->pgdat;
1064 #else
1065     return container_of(lruvec, struct pglist_data, __lruvec);
1066 #endif
1067 }
1068 
1069 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1070 int local_memory_node(int node_id);
1071 #else
1072 static inline int local_memory_node(int node_id) { return node_id; };
1073 #endif
1074 
1075 /*
1076  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1077  */
1078 #define zone_idx(zone)      ((zone) - (zone)->zone_pgdat->node_zones)
1079 
1080 #ifdef CONFIG_ZONE_DEVICE
1081 static inline bool zone_is_zone_device(struct zone *zone)
1082 {
1083     return zone_idx(zone) == ZONE_DEVICE;
1084 }
1085 #else
1086 static inline bool zone_is_zone_device(struct zone *zone)
1087 {
1088     return false;
1089 }
1090 #endif
1091 
1092 /*
1093  * Returns true if a zone has pages managed by the buddy allocator.
1094  * All the reclaim decisions have to use this function rather than
1095  * populated_zone(). If the whole zone is reserved then we can easily
1096  * end up with populated_zone() && !managed_zone().
1097  */
1098 static inline bool managed_zone(struct zone *zone)
1099 {
1100     return zone_managed_pages(zone);
1101 }
1102 
1103 /* Returns true if a zone has memory */
1104 static inline bool populated_zone(struct zone *zone)
1105 {
1106     return zone->present_pages;
1107 }
1108 
1109 #ifdef CONFIG_NUMA
1110 static inline int zone_to_nid(struct zone *zone)
1111 {
1112     return zone->node;
1113 }
1114 
1115 static inline void zone_set_nid(struct zone *zone, int nid)
1116 {
1117     zone->node = nid;
1118 }
1119 #else
1120 static inline int zone_to_nid(struct zone *zone)
1121 {
1122     return 0;
1123 }
1124 
1125 static inline void zone_set_nid(struct zone *zone, int nid) {}
1126 #endif
1127 
1128 extern int movable_zone;
1129 
1130 static inline int is_highmem_idx(enum zone_type idx)
1131 {
1132 #ifdef CONFIG_HIGHMEM
1133     return (idx == ZONE_HIGHMEM ||
1134         (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1135 #else
1136     return 0;
1137 #endif
1138 }
1139 
1140 /**
1141  * is_highmem - helper function to quickly check if a struct zone is a
1142  *              highmem zone or not.  This is an attempt to keep references
1143  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1144  * @zone: pointer to struct zone variable
1145  * Return: 1 for a highmem zone, 0 otherwise
1146  */
1147 static inline int is_highmem(struct zone *zone)
1148 {
1149     return is_highmem_idx(zone_idx(zone));
1150 }
1151 
1152 #ifdef CONFIG_ZONE_DMA
1153 bool has_managed_dma(void);
1154 #else
1155 static inline bool has_managed_dma(void)
1156 {
1157     return false;
1158 }
1159 #endif
1160 
1161 /* These two functions are used to setup the per zone pages min values */
1162 struct ctl_table;
1163 
1164 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *,
1165         loff_t *);
1166 int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *,
1167         size_t *, loff_t *);
1168 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES];
1169 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *,
1170         size_t *, loff_t *);
1171 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int,
1172         void *, size_t *, loff_t *);
1173 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
1174         void *, size_t *, loff_t *);
1175 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
1176         void *, size_t *, loff_t *);
1177 int numa_zonelist_order_handler(struct ctl_table *, int,
1178         void *, size_t *, loff_t *);
1179 extern int percpu_pagelist_high_fraction;
1180 extern char numa_zonelist_order[];
1181 #define NUMA_ZONELIST_ORDER_LEN 16
1182 
1183 #ifndef CONFIG_NUMA
1184 
1185 extern struct pglist_data contig_page_data;
1186 static inline struct pglist_data *NODE_DATA(int nid)
1187 {
1188     return &contig_page_data;
1189 }
1190 
1191 #else /* CONFIG_NUMA */
1192 
1193 #include <asm/mmzone.h>
1194 
1195 #endif /* !CONFIG_NUMA */
1196 
1197 extern struct pglist_data *first_online_pgdat(void);
1198 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1199 extern struct zone *next_zone(struct zone *zone);
1200 
1201 /**
1202  * for_each_online_pgdat - helper macro to iterate over all online nodes
1203  * @pgdat: pointer to a pg_data_t variable
1204  */
1205 #define for_each_online_pgdat(pgdat)            \
1206     for (pgdat = first_online_pgdat();      \
1207          pgdat;                 \
1208          pgdat = next_online_pgdat(pgdat))
1209 /**
1210  * for_each_zone - helper macro to iterate over all memory zones
1211  * @zone: pointer to struct zone variable
1212  *
1213  * The user only needs to declare the zone variable, for_each_zone
1214  * fills it in.
1215  */
1216 #define for_each_zone(zone)                 \
1217     for (zone = (first_online_pgdat())->node_zones; \
1218          zone;                  \
1219          zone = next_zone(zone))
1220 
1221 #define for_each_populated_zone(zone)               \
1222     for (zone = (first_online_pgdat())->node_zones; \
1223          zone;                  \
1224          zone = next_zone(zone))            \
1225         if (!populated_zone(zone))      \
1226             ; /* do nothing */      \
1227         else
1228 
1229 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1230 {
1231     return zoneref->zone;
1232 }
1233 
1234 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1235 {
1236     return zoneref->zone_idx;
1237 }
1238 
1239 static inline int zonelist_node_idx(struct zoneref *zoneref)
1240 {
1241     return zone_to_nid(zoneref->zone);
1242 }
1243 
1244 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1245                     enum zone_type highest_zoneidx,
1246                     nodemask_t *nodes);
1247 
1248 /**
1249  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1250  * @z: The cursor used as a starting point for the search
1251  * @highest_zoneidx: The zone index of the highest zone to return
1252  * @nodes: An optional nodemask to filter the zonelist with
1253  *
1254  * This function returns the next zone at or below a given zone index that is
1255  * within the allowed nodemask using a cursor as the starting point for the
1256  * search. The zoneref returned is a cursor that represents the current zone
1257  * being examined. It should be advanced by one before calling
1258  * next_zones_zonelist again.
1259  *
1260  * Return: the next zone at or below highest_zoneidx within the allowed
1261  * nodemask using a cursor within a zonelist as a starting point
1262  */
1263 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1264                     enum zone_type highest_zoneidx,
1265                     nodemask_t *nodes)
1266 {
1267     if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1268         return z;
1269     return __next_zones_zonelist(z, highest_zoneidx, nodes);
1270 }
1271 
1272 /**
1273  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1274  * @zonelist: The zonelist to search for a suitable zone
1275  * @highest_zoneidx: The zone index of the highest zone to return
1276  * @nodes: An optional nodemask to filter the zonelist with
1277  *
1278  * This function returns the first zone at or below a given zone index that is
1279  * within the allowed nodemask. The zoneref returned is a cursor that can be
1280  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1281  * one before calling.
1282  *
1283  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1284  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1285  * update due to cpuset modification.
1286  *
1287  * Return: Zoneref pointer for the first suitable zone found
1288  */
1289 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1290                     enum zone_type highest_zoneidx,
1291                     nodemask_t *nodes)
1292 {
1293     return next_zones_zonelist(zonelist->_zonerefs,
1294                             highest_zoneidx, nodes);
1295 }
1296 
1297 /**
1298  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1299  * @zone: The current zone in the iterator
1300  * @z: The current pointer within zonelist->_zonerefs being iterated
1301  * @zlist: The zonelist being iterated
1302  * @highidx: The zone index of the highest zone to return
1303  * @nodemask: Nodemask allowed by the allocator
1304  *
1305  * This iterator iterates though all zones at or below a given zone index and
1306  * within a given nodemask
1307  */
1308 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1309     for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);   \
1310         zone;                           \
1311         z = next_zones_zonelist(++z, highidx, nodemask),    \
1312             zone = zonelist_zone(z))
1313 
1314 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1315     for (zone = z->zone;    \
1316         zone;                           \
1317         z = next_zones_zonelist(++z, highidx, nodemask),    \
1318             zone = zonelist_zone(z))
1319 
1320 
1321 /**
1322  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1323  * @zone: The current zone in the iterator
1324  * @z: The current pointer within zonelist->zones being iterated
1325  * @zlist: The zonelist being iterated
1326  * @highidx: The zone index of the highest zone to return
1327  *
1328  * This iterator iterates though all zones at or below a given zone index.
1329  */
1330 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1331     for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1332 
1333 /* Whether the 'nodes' are all movable nodes */
1334 static inline bool movable_only_nodes(nodemask_t *nodes)
1335 {
1336     struct zonelist *zonelist;
1337     struct zoneref *z;
1338     int nid;
1339 
1340     if (nodes_empty(*nodes))
1341         return false;
1342 
1343     /*
1344      * We can chose arbitrary node from the nodemask to get a
1345      * zonelist as they are interlinked. We just need to find
1346      * at least one zone that can satisfy kernel allocations.
1347      */
1348     nid = first_node(*nodes);
1349     zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1350     z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes);
1351     return (!z->zone) ? true : false;
1352 }
1353 
1354 
1355 #ifdef CONFIG_SPARSEMEM
1356 #include <asm/sparsemem.h>
1357 #endif
1358 
1359 #ifdef CONFIG_FLATMEM
1360 #define pfn_to_nid(pfn)     (0)
1361 #endif
1362 
1363 #ifdef CONFIG_SPARSEMEM
1364 
1365 /*
1366  * PA_SECTION_SHIFT     physical address to/from section number
1367  * PFN_SECTION_SHIFT        pfn to/from section number
1368  */
1369 #define PA_SECTION_SHIFT    (SECTION_SIZE_BITS)
1370 #define PFN_SECTION_SHIFT   (SECTION_SIZE_BITS - PAGE_SHIFT)
1371 
1372 #define NR_MEM_SECTIONS     (1UL << SECTIONS_SHIFT)
1373 
1374 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1375 #define PAGE_SECTION_MASK   (~(PAGES_PER_SECTION-1))
1376 
1377 #define SECTION_BLOCKFLAGS_BITS \
1378     ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1379 
1380 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1381 #error Allocator MAX_ORDER exceeds SECTION_SIZE
1382 #endif
1383 
1384 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1385 {
1386     return pfn >> PFN_SECTION_SHIFT;
1387 }
1388 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1389 {
1390     return sec << PFN_SECTION_SHIFT;
1391 }
1392 
1393 #define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1394 #define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1395 
1396 #define SUBSECTION_SHIFT 21
1397 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1398 
1399 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1400 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1401 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1402 
1403 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1404 #error Subsection size exceeds section size
1405 #else
1406 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1407 #endif
1408 
1409 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1410 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1411 
1412 struct mem_section_usage {
1413 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1414     DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1415 #endif
1416     /* See declaration of similar field in struct zone */
1417     unsigned long pageblock_flags[0];
1418 };
1419 
1420 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1421 
1422 struct page;
1423 struct page_ext;
1424 struct mem_section {
1425     /*
1426      * This is, logically, a pointer to an array of struct
1427      * pages.  However, it is stored with some other magic.
1428      * (see sparse.c::sparse_init_one_section())
1429      *
1430      * Additionally during early boot we encode node id of
1431      * the location of the section here to guide allocation.
1432      * (see sparse.c::memory_present())
1433      *
1434      * Making it a UL at least makes someone do a cast
1435      * before using it wrong.
1436      */
1437     unsigned long section_mem_map;
1438 
1439     struct mem_section_usage *usage;
1440 #ifdef CONFIG_PAGE_EXTENSION
1441     /*
1442      * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1443      * section. (see page_ext.h about this.)
1444      */
1445     struct page_ext *page_ext;
1446     unsigned long pad;
1447 #endif
1448     /*
1449      * WARNING: mem_section must be a power-of-2 in size for the
1450      * calculation and use of SECTION_ROOT_MASK to make sense.
1451      */
1452 };
1453 
1454 #ifdef CONFIG_SPARSEMEM_EXTREME
1455 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1456 #else
1457 #define SECTIONS_PER_ROOT   1
1458 #endif
1459 
1460 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1461 #define NR_SECTION_ROOTS    DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1462 #define SECTION_ROOT_MASK   (SECTIONS_PER_ROOT - 1)
1463 
1464 #ifdef CONFIG_SPARSEMEM_EXTREME
1465 extern struct mem_section **mem_section;
1466 #else
1467 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1468 #endif
1469 
1470 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1471 {
1472     return ms->usage->pageblock_flags;
1473 }
1474 
1475 static inline struct mem_section *__nr_to_section(unsigned long nr)
1476 {
1477     unsigned long root = SECTION_NR_TO_ROOT(nr);
1478 
1479     if (unlikely(root >= NR_SECTION_ROOTS))
1480         return NULL;
1481 
1482 #ifdef CONFIG_SPARSEMEM_EXTREME
1483     if (!mem_section || !mem_section[root])
1484         return NULL;
1485 #endif
1486     return &mem_section[root][nr & SECTION_ROOT_MASK];
1487 }
1488 extern size_t mem_section_usage_size(void);
1489 
1490 /*
1491  * We use the lower bits of the mem_map pointer to store
1492  * a little bit of information.  The pointer is calculated
1493  * as mem_map - section_nr_to_pfn(pnum).  The result is
1494  * aligned to the minimum alignment of the two values:
1495  *   1. All mem_map arrays are page-aligned.
1496  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1497  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1498  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1499  *      worst combination is powerpc with 256k pages,
1500  *      which results in PFN_SECTION_SHIFT equal 6.
1501  * To sum it up, at least 6 bits are available on all architectures.
1502  * However, we can exceed 6 bits on some other architectures except
1503  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1504  * with the worst case of 64K pages on arm64) if we make sure the
1505  * exceeded bit is not applicable to powerpc.
1506  */
1507 enum {
1508     SECTION_MARKED_PRESENT_BIT,
1509     SECTION_HAS_MEM_MAP_BIT,
1510     SECTION_IS_ONLINE_BIT,
1511     SECTION_IS_EARLY_BIT,
1512 #ifdef CONFIG_ZONE_DEVICE
1513     SECTION_TAINT_ZONE_DEVICE_BIT,
1514 #endif
1515     SECTION_MAP_LAST_BIT,
1516 };
1517 
1518 #define SECTION_MARKED_PRESENT      BIT(SECTION_MARKED_PRESENT_BIT)
1519 #define SECTION_HAS_MEM_MAP     BIT(SECTION_HAS_MEM_MAP_BIT)
1520 #define SECTION_IS_ONLINE       BIT(SECTION_IS_ONLINE_BIT)
1521 #define SECTION_IS_EARLY        BIT(SECTION_IS_EARLY_BIT)
1522 #ifdef CONFIG_ZONE_DEVICE
1523 #define SECTION_TAINT_ZONE_DEVICE   BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1524 #endif
1525 #define SECTION_MAP_MASK        (~(BIT(SECTION_MAP_LAST_BIT) - 1))
1526 #define SECTION_NID_SHIFT       SECTION_MAP_LAST_BIT
1527 
1528 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1529 {
1530     unsigned long map = section->section_mem_map;
1531     map &= SECTION_MAP_MASK;
1532     return (struct page *)map;
1533 }
1534 
1535 static inline int present_section(struct mem_section *section)
1536 {
1537     return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1538 }
1539 
1540 static inline int present_section_nr(unsigned long nr)
1541 {
1542     return present_section(__nr_to_section(nr));
1543 }
1544 
1545 static inline int valid_section(struct mem_section *section)
1546 {
1547     return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1548 }
1549 
1550 static inline int early_section(struct mem_section *section)
1551 {
1552     return (section && (section->section_mem_map & SECTION_IS_EARLY));
1553 }
1554 
1555 static inline int valid_section_nr(unsigned long nr)
1556 {
1557     return valid_section(__nr_to_section(nr));
1558 }
1559 
1560 static inline int online_section(struct mem_section *section)
1561 {
1562     return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1563 }
1564 
1565 #ifdef CONFIG_ZONE_DEVICE
1566 static inline int online_device_section(struct mem_section *section)
1567 {
1568     unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1569 
1570     return section && ((section->section_mem_map & flags) == flags);
1571 }
1572 #else
1573 static inline int online_device_section(struct mem_section *section)
1574 {
1575     return 0;
1576 }
1577 #endif
1578 
1579 static inline int online_section_nr(unsigned long nr)
1580 {
1581     return online_section(__nr_to_section(nr));
1582 }
1583 
1584 #ifdef CONFIG_MEMORY_HOTPLUG
1585 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1586 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
1587 #endif
1588 
1589 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1590 {
1591     return __nr_to_section(pfn_to_section_nr(pfn));
1592 }
1593 
1594 extern unsigned long __highest_present_section_nr;
1595 
1596 static inline int subsection_map_index(unsigned long pfn)
1597 {
1598     return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
1599 }
1600 
1601 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1602 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1603 {
1604     int idx = subsection_map_index(pfn);
1605 
1606     return test_bit(idx, ms->usage->subsection_map);
1607 }
1608 #else
1609 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
1610 {
1611     return 1;
1612 }
1613 #endif
1614 
1615 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
1616 /**
1617  * pfn_valid - check if there is a valid memory map entry for a PFN
1618  * @pfn: the page frame number to check
1619  *
1620  * Check if there is a valid memory map entry aka struct page for the @pfn.
1621  * Note, that availability of the memory map entry does not imply that
1622  * there is actual usable memory at that @pfn. The struct page may
1623  * represent a hole or an unusable page frame.
1624  *
1625  * Return: 1 for PFNs that have memory map entries and 0 otherwise
1626  */
1627 static inline int pfn_valid(unsigned long pfn)
1628 {
1629     struct mem_section *ms;
1630 
1631     /*
1632      * Ensure the upper PAGE_SHIFT bits are clear in the
1633      * pfn. Else it might lead to false positives when
1634      * some of the upper bits are set, but the lower bits
1635      * match a valid pfn.
1636      */
1637     if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
1638         return 0;
1639 
1640     if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1641         return 0;
1642     ms = __pfn_to_section(pfn);
1643     if (!valid_section(ms))
1644         return 0;
1645     /*
1646      * Traditionally early sections always returned pfn_valid() for
1647      * the entire section-sized span.
1648      */
1649     return early_section(ms) || pfn_section_valid(ms, pfn);
1650 }
1651 #endif
1652 
1653 static inline int pfn_in_present_section(unsigned long pfn)
1654 {
1655     if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1656         return 0;
1657     return present_section(__pfn_to_section(pfn));
1658 }
1659 
1660 static inline unsigned long next_present_section_nr(unsigned long section_nr)
1661 {
1662     while (++section_nr <= __highest_present_section_nr) {
1663         if (present_section_nr(section_nr))
1664             return section_nr;
1665     }
1666 
1667     return -1;
1668 }
1669 
1670 /*
1671  * These are _only_ used during initialisation, therefore they
1672  * can use __initdata ...  They could have names to indicate
1673  * this restriction.
1674  */
1675 #ifdef CONFIG_NUMA
1676 #define pfn_to_nid(pfn)                         \
1677 ({                                  \
1678     unsigned long __pfn_to_nid_pfn = (pfn);             \
1679     page_to_nid(pfn_to_page(__pfn_to_nid_pfn));         \
1680 })
1681 #else
1682 #define pfn_to_nid(pfn)     (0)
1683 #endif
1684 
1685 void sparse_init(void);
1686 #else
1687 #define sparse_init()   do {} while (0)
1688 #define sparse_index_init(_sec, _nid)  do {} while (0)
1689 #define pfn_in_present_section pfn_valid
1690 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
1691 #endif /* CONFIG_SPARSEMEM */
1692 
1693 #endif /* !__GENERATING_BOUNDS.H */
1694 #endif /* !__ASSEMBLY__ */
1695 #endif /* _LINUX_MMZONE_H */