Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 #ifndef _LINUX_MM_H
0003 #define _LINUX_MM_H
0004 
0005 #include <linux/errno.h>
0006 #include <linux/mmdebug.h>
0007 #include <linux/gfp.h>
0008 #include <linux/bug.h>
0009 #include <linux/list.h>
0010 #include <linux/mmzone.h>
0011 #include <linux/rbtree.h>
0012 #include <linux/atomic.h>
0013 #include <linux/debug_locks.h>
0014 #include <linux/mm_types.h>
0015 #include <linux/mmap_lock.h>
0016 #include <linux/range.h>
0017 #include <linux/pfn.h>
0018 #include <linux/percpu-refcount.h>
0019 #include <linux/bit_spinlock.h>
0020 #include <linux/shrinker.h>
0021 #include <linux/resource.h>
0022 #include <linux/page_ext.h>
0023 #include <linux/err.h>
0024 #include <linux/page-flags.h>
0025 #include <linux/page_ref.h>
0026 #include <linux/overflow.h>
0027 #include <linux/sizes.h>
0028 #include <linux/sched.h>
0029 #include <linux/pgtable.h>
0030 #include <linux/kasan.h>
0031 #include <linux/memremap.h>
0032 
0033 struct mempolicy;
0034 struct anon_vma;
0035 struct anon_vma_chain;
0036 struct user_struct;
0037 struct pt_regs;
0038 
0039 extern int sysctl_page_lock_unfairness;
0040 
0041 void init_mm_internals(void);
0042 
0043 #ifndef CONFIG_NUMA     /* Don't use mapnrs, do it properly */
0044 extern unsigned long max_mapnr;
0045 
0046 static inline void set_max_mapnr(unsigned long limit)
0047 {
0048     max_mapnr = limit;
0049 }
0050 #else
0051 static inline void set_max_mapnr(unsigned long limit) { }
0052 #endif
0053 
0054 extern atomic_long_t _totalram_pages;
0055 static inline unsigned long totalram_pages(void)
0056 {
0057     return (unsigned long)atomic_long_read(&_totalram_pages);
0058 }
0059 
0060 static inline void totalram_pages_inc(void)
0061 {
0062     atomic_long_inc(&_totalram_pages);
0063 }
0064 
0065 static inline void totalram_pages_dec(void)
0066 {
0067     atomic_long_dec(&_totalram_pages);
0068 }
0069 
0070 static inline void totalram_pages_add(long count)
0071 {
0072     atomic_long_add(count, &_totalram_pages);
0073 }
0074 
0075 extern void * high_memory;
0076 extern int page_cluster;
0077 
0078 #ifdef CONFIG_SYSCTL
0079 extern int sysctl_legacy_va_layout;
0080 #else
0081 #define sysctl_legacy_va_layout 0
0082 #endif
0083 
0084 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
0085 extern const int mmap_rnd_bits_min;
0086 extern const int mmap_rnd_bits_max;
0087 extern int mmap_rnd_bits __read_mostly;
0088 #endif
0089 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
0090 extern const int mmap_rnd_compat_bits_min;
0091 extern const int mmap_rnd_compat_bits_max;
0092 extern int mmap_rnd_compat_bits __read_mostly;
0093 #endif
0094 
0095 #include <asm/page.h>
0096 #include <asm/processor.h>
0097 
0098 /*
0099  * Architectures that support memory tagging (assigning tags to memory regions,
0100  * embedding these tags into addresses that point to these memory regions, and
0101  * checking that the memory and the pointer tags match on memory accesses)
0102  * redefine this macro to strip tags from pointers.
0103  * It's defined as noop for architectures that don't support memory tagging.
0104  */
0105 #ifndef untagged_addr
0106 #define untagged_addr(addr) (addr)
0107 #endif
0108 
0109 #ifndef __pa_symbol
0110 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
0111 #endif
0112 
0113 #ifndef page_to_virt
0114 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
0115 #endif
0116 
0117 #ifndef lm_alias
0118 #define lm_alias(x) __va(__pa_symbol(x))
0119 #endif
0120 
0121 /*
0122  * To prevent common memory management code establishing
0123  * a zero page mapping on a read fault.
0124  * This macro should be defined within <asm/pgtable.h>.
0125  * s390 does this to prevent multiplexing of hardware bits
0126  * related to the physical page in case of virtualization.
0127  */
0128 #ifndef mm_forbids_zeropage
0129 #define mm_forbids_zeropage(X)  (0)
0130 #endif
0131 
0132 /*
0133  * On some architectures it is expensive to call memset() for small sizes.
0134  * If an architecture decides to implement their own version of
0135  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
0136  * define their own version of this macro in <asm/pgtable.h>
0137  */
0138 #if BITS_PER_LONG == 64
0139 /* This function must be updated when the size of struct page grows above 80
0140  * or reduces below 56. The idea that compiler optimizes out switch()
0141  * statement, and only leaves move/store instructions. Also the compiler can
0142  * combine write statements if they are both assignments and can be reordered,
0143  * this can result in several of the writes here being dropped.
0144  */
0145 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
0146 static inline void __mm_zero_struct_page(struct page *page)
0147 {
0148     unsigned long *_pp = (void *)page;
0149 
0150      /* Check that struct page is either 56, 64, 72, or 80 bytes */
0151     BUILD_BUG_ON(sizeof(struct page) & 7);
0152     BUILD_BUG_ON(sizeof(struct page) < 56);
0153     BUILD_BUG_ON(sizeof(struct page) > 80);
0154 
0155     switch (sizeof(struct page)) {
0156     case 80:
0157         _pp[9] = 0;
0158         fallthrough;
0159     case 72:
0160         _pp[8] = 0;
0161         fallthrough;
0162     case 64:
0163         _pp[7] = 0;
0164         fallthrough;
0165     case 56:
0166         _pp[6] = 0;
0167         _pp[5] = 0;
0168         _pp[4] = 0;
0169         _pp[3] = 0;
0170         _pp[2] = 0;
0171         _pp[1] = 0;
0172         _pp[0] = 0;
0173     }
0174 }
0175 #else
0176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
0177 #endif
0178 
0179 /*
0180  * Default maximum number of active map areas, this limits the number of vmas
0181  * per mm struct. Users can overwrite this number by sysctl but there is a
0182  * problem.
0183  *
0184  * When a program's coredump is generated as ELF format, a section is created
0185  * per a vma. In ELF, the number of sections is represented in unsigned short.
0186  * This means the number of sections should be smaller than 65535 at coredump.
0187  * Because the kernel adds some informative sections to a image of program at
0188  * generating coredump, we need some margin. The number of extra sections is
0189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
0190  *
0191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
0192  * not a hard limit any more. Although some userspace tools can be surprised by
0193  * that.
0194  */
0195 #define MAPCOUNT_ELF_CORE_MARGIN    (5)
0196 #define DEFAULT_MAX_MAP_COUNT   (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
0197 
0198 extern int sysctl_max_map_count;
0199 
0200 extern unsigned long sysctl_user_reserve_kbytes;
0201 extern unsigned long sysctl_admin_reserve_kbytes;
0202 
0203 extern int sysctl_overcommit_memory;
0204 extern int sysctl_overcommit_ratio;
0205 extern unsigned long sysctl_overcommit_kbytes;
0206 
0207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
0208         loff_t *);
0209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
0210         loff_t *);
0211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
0212         loff_t *);
0213 
0214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
0215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
0216 #define folio_page_idx(folio, p)    (page_to_pfn(p) - folio_pfn(folio))
0217 #else
0218 #define nth_page(page,n) ((page) + (n))
0219 #define folio_page_idx(folio, p)    ((p) - &(folio)->page)
0220 #endif
0221 
0222 /* to align the pointer to the (next) page boundary */
0223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
0224 
0225 /* to align the pointer to the (prev) page boundary */
0226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
0227 
0228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
0229 #define PAGE_ALIGNED(addr)  IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0230 
0231 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
0232 static inline struct folio *lru_to_folio(struct list_head *head)
0233 {
0234     return list_entry((head)->prev, struct folio, lru);
0235 }
0236 
0237 void setup_initial_init_mm(void *start_code, void *end_code,
0238                void *end_data, void *brk);
0239 
0240 /*
0241  * Linux kernel virtual memory manager primitives.
0242  * The idea being to have a "virtual" mm in the same way
0243  * we have a virtual fs - giving a cleaner interface to the
0244  * mm details, and allowing different kinds of memory mappings
0245  * (from shared memory to executable loading to arbitrary
0246  * mmap() functions).
0247  */
0248 
0249 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
0250 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
0251 void vm_area_free(struct vm_area_struct *);
0252 
0253 #ifndef CONFIG_MMU
0254 extern struct rb_root nommu_region_tree;
0255 extern struct rw_semaphore nommu_region_sem;
0256 
0257 extern unsigned int kobjsize(const void *objp);
0258 #endif
0259 
0260 /*
0261  * vm_flags in vm_area_struct, see mm_types.h.
0262  * When changing, update also include/trace/events/mmflags.h
0263  */
0264 #define VM_NONE     0x00000000
0265 
0266 #define VM_READ     0x00000001  /* currently active flags */
0267 #define VM_WRITE    0x00000002
0268 #define VM_EXEC     0x00000004
0269 #define VM_SHARED   0x00000008
0270 
0271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
0272 #define VM_MAYREAD  0x00000010  /* limits for mprotect() etc */
0273 #define VM_MAYWRITE 0x00000020
0274 #define VM_MAYEXEC  0x00000040
0275 #define VM_MAYSHARE 0x00000080
0276 
0277 #define VM_GROWSDOWN    0x00000100  /* general info on the segment */
0278 #define VM_UFFD_MISSING 0x00000200  /* missing pages tracking */
0279 #define VM_PFNMAP   0x00000400  /* Page-ranges managed without "struct page", just pure PFN */
0280 #define VM_UFFD_WP  0x00001000  /* wrprotect pages tracking */
0281 
0282 #define VM_LOCKED   0x00002000
0283 #define VM_IO           0x00004000  /* Memory mapped I/O or similar */
0284 
0285                     /* Used by sys_madvise() */
0286 #define VM_SEQ_READ 0x00008000  /* App will access data sequentially */
0287 #define VM_RAND_READ    0x00010000  /* App will not benefit from clustered reads */
0288 
0289 #define VM_DONTCOPY 0x00020000      /* Do not copy this vma on fork */
0290 #define VM_DONTEXPAND   0x00040000  /* Cannot expand with mremap() */
0291 #define VM_LOCKONFAULT  0x00080000  /* Lock the pages covered when they are faulted in */
0292 #define VM_ACCOUNT  0x00100000  /* Is a VM accounted object */
0293 #define VM_NORESERVE    0x00200000  /* should the VM suppress accounting */
0294 #define VM_HUGETLB  0x00400000  /* Huge TLB Page VM */
0295 #define VM_SYNC     0x00800000  /* Synchronous page faults */
0296 #define VM_ARCH_1   0x01000000  /* Architecture-specific flag */
0297 #define VM_WIPEONFORK   0x02000000  /* Wipe VMA contents in child. */
0298 #define VM_DONTDUMP 0x04000000  /* Do not include in the core dump */
0299 
0300 #ifdef CONFIG_MEM_SOFT_DIRTY
0301 # define VM_SOFTDIRTY   0x08000000  /* Not soft dirty clean area */
0302 #else
0303 # define VM_SOFTDIRTY   0
0304 #endif
0305 
0306 #define VM_MIXEDMAP 0x10000000  /* Can contain "struct page" and pure PFN pages */
0307 #define VM_HUGEPAGE 0x20000000  /* MADV_HUGEPAGE marked this vma */
0308 #define VM_NOHUGEPAGE   0x40000000  /* MADV_NOHUGEPAGE marked this vma */
0309 #define VM_MERGEABLE    0x80000000  /* KSM may merge identical pages */
0310 
0311 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
0312 #define VM_HIGH_ARCH_BIT_0  32  /* bit only usable on 64-bit architectures */
0313 #define VM_HIGH_ARCH_BIT_1  33  /* bit only usable on 64-bit architectures */
0314 #define VM_HIGH_ARCH_BIT_2  34  /* bit only usable on 64-bit architectures */
0315 #define VM_HIGH_ARCH_BIT_3  35  /* bit only usable on 64-bit architectures */
0316 #define VM_HIGH_ARCH_BIT_4  36  /* bit only usable on 64-bit architectures */
0317 #define VM_HIGH_ARCH_0  BIT(VM_HIGH_ARCH_BIT_0)
0318 #define VM_HIGH_ARCH_1  BIT(VM_HIGH_ARCH_BIT_1)
0319 #define VM_HIGH_ARCH_2  BIT(VM_HIGH_ARCH_BIT_2)
0320 #define VM_HIGH_ARCH_3  BIT(VM_HIGH_ARCH_BIT_3)
0321 #define VM_HIGH_ARCH_4  BIT(VM_HIGH_ARCH_BIT_4)
0322 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
0323 
0324 #ifdef CONFIG_ARCH_HAS_PKEYS
0325 # define VM_PKEY_SHIFT  VM_HIGH_ARCH_BIT_0
0326 # define VM_PKEY_BIT0   VM_HIGH_ARCH_0  /* A protection key is a 4-bit value */
0327 # define VM_PKEY_BIT1   VM_HIGH_ARCH_1  /* on x86 and 5-bit value on ppc64   */
0328 # define VM_PKEY_BIT2   VM_HIGH_ARCH_2
0329 # define VM_PKEY_BIT3   VM_HIGH_ARCH_3
0330 #ifdef CONFIG_PPC
0331 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
0332 #else
0333 # define VM_PKEY_BIT4  0
0334 #endif
0335 #endif /* CONFIG_ARCH_HAS_PKEYS */
0336 
0337 #if defined(CONFIG_X86)
0338 # define VM_PAT     VM_ARCH_1   /* PAT reserves whole VMA at once (x86) */
0339 #elif defined(CONFIG_PPC)
0340 # define VM_SAO     VM_ARCH_1   /* Strong Access Ordering (powerpc) */
0341 #elif defined(CONFIG_PARISC)
0342 # define VM_GROWSUP VM_ARCH_1
0343 #elif defined(CONFIG_IA64)
0344 # define VM_GROWSUP VM_ARCH_1
0345 #elif defined(CONFIG_SPARC64)
0346 # define VM_SPARC_ADI   VM_ARCH_1   /* Uses ADI tag for access control */
0347 # define VM_ARCH_CLEAR  VM_SPARC_ADI
0348 #elif defined(CONFIG_ARM64)
0349 # define VM_ARM64_BTI   VM_ARCH_1   /* BTI guarded page, a.k.a. GP bit */
0350 # define VM_ARCH_CLEAR  VM_ARM64_BTI
0351 #elif !defined(CONFIG_MMU)
0352 # define VM_MAPPED_COPY VM_ARCH_1   /* T if mapped copy of data (nommu mmap) */
0353 #endif
0354 
0355 #if defined(CONFIG_ARM64_MTE)
0356 # define VM_MTE     VM_HIGH_ARCH_0  /* Use Tagged memory for access control */
0357 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1  /* Tagged memory permitted */
0358 #else
0359 # define VM_MTE     VM_NONE
0360 # define VM_MTE_ALLOWED VM_NONE
0361 #endif
0362 
0363 #ifndef VM_GROWSUP
0364 # define VM_GROWSUP VM_NONE
0365 #endif
0366 
0367 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
0368 # define VM_UFFD_MINOR_BIT  37
0369 # define VM_UFFD_MINOR      BIT(VM_UFFD_MINOR_BIT)  /* UFFD minor faults */
0370 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
0371 # define VM_UFFD_MINOR      VM_NONE
0372 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
0373 
0374 /* Bits set in the VMA until the stack is in its final location */
0375 #define VM_STACK_INCOMPLETE_SETUP   (VM_RAND_READ | VM_SEQ_READ)
0376 
0377 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
0378 
0379 /* Common data flag combinations */
0380 #define VM_DATA_FLAGS_TSK_EXEC  (VM_READ | VM_WRITE | TASK_EXEC | \
0381                  VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
0382 #define VM_DATA_FLAGS_NON_EXEC  (VM_READ | VM_WRITE | VM_MAYREAD | \
0383                  VM_MAYWRITE | VM_MAYEXEC)
0384 #define VM_DATA_FLAGS_EXEC  (VM_READ | VM_WRITE | VM_EXEC | \
0385                  VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
0386 
0387 #ifndef VM_DATA_DEFAULT_FLAGS       /* arch can override this */
0388 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
0389 #endif
0390 
0391 #ifndef VM_STACK_DEFAULT_FLAGS      /* arch can override this */
0392 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
0393 #endif
0394 
0395 #ifdef CONFIG_STACK_GROWSUP
0396 #define VM_STACK    VM_GROWSUP
0397 #else
0398 #define VM_STACK    VM_GROWSDOWN
0399 #endif
0400 
0401 #define VM_STACK_FLAGS  (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
0402 
0403 /* VMA basic access permission flags */
0404 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
0405 
0406 
0407 /*
0408  * Special vmas that are non-mergable, non-mlock()able.
0409  */
0410 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
0411 
0412 /* This mask prevents VMA from being scanned with khugepaged */
0413 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
0414 
0415 /* This mask defines which mm->def_flags a process can inherit its parent */
0416 #define VM_INIT_DEF_MASK    VM_NOHUGEPAGE
0417 
0418 /* This mask is used to clear all the VMA flags used by mlock */
0419 #define VM_LOCKED_CLEAR_MASK    (~(VM_LOCKED | VM_LOCKONFAULT))
0420 
0421 /* Arch-specific flags to clear when updating VM flags on protection change */
0422 #ifndef VM_ARCH_CLEAR
0423 # define VM_ARCH_CLEAR  VM_NONE
0424 #endif
0425 #define VM_FLAGS_CLEAR  (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
0426 
0427 /*
0428  * mapping from the currently active vm_flags protection bits (the
0429  * low four bits) to a page protection mask..
0430  */
0431 
0432 /*
0433  * The default fault flags that should be used by most of the
0434  * arch-specific page fault handlers.
0435  */
0436 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
0437                  FAULT_FLAG_KILLABLE | \
0438                  FAULT_FLAG_INTERRUPTIBLE)
0439 
0440 /**
0441  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
0442  * @flags: Fault flags.
0443  *
0444  * This is mostly used for places where we want to try to avoid taking
0445  * the mmap_lock for too long a time when waiting for another condition
0446  * to change, in which case we can try to be polite to release the
0447  * mmap_lock in the first round to avoid potential starvation of other
0448  * processes that would also want the mmap_lock.
0449  *
0450  * Return: true if the page fault allows retry and this is the first
0451  * attempt of the fault handling; false otherwise.
0452  */
0453 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
0454 {
0455     return (flags & FAULT_FLAG_ALLOW_RETRY) &&
0456         (!(flags & FAULT_FLAG_TRIED));
0457 }
0458 
0459 #define FAULT_FLAG_TRACE \
0460     { FAULT_FLAG_WRITE,     "WRITE" }, \
0461     { FAULT_FLAG_MKWRITE,       "MKWRITE" }, \
0462     { FAULT_FLAG_ALLOW_RETRY,   "ALLOW_RETRY" }, \
0463     { FAULT_FLAG_RETRY_NOWAIT,  "RETRY_NOWAIT" }, \
0464     { FAULT_FLAG_KILLABLE,      "KILLABLE" }, \
0465     { FAULT_FLAG_TRIED,     "TRIED" }, \
0466     { FAULT_FLAG_USER,      "USER" }, \
0467     { FAULT_FLAG_REMOTE,        "REMOTE" }, \
0468     { FAULT_FLAG_INSTRUCTION,   "INSTRUCTION" }, \
0469     { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
0470 
0471 /*
0472  * vm_fault is filled by the pagefault handler and passed to the vma's
0473  * ->fault function. The vma's ->fault is responsible for returning a bitmask
0474  * of VM_FAULT_xxx flags that give details about how the fault was handled.
0475  *
0476  * MM layer fills up gfp_mask for page allocations but fault handler might
0477  * alter it if its implementation requires a different allocation context.
0478  *
0479  * pgoff should be used in favour of virtual_address, if possible.
0480  */
0481 struct vm_fault {
0482     const struct {
0483         struct vm_area_struct *vma; /* Target VMA */
0484         gfp_t gfp_mask;         /* gfp mask to be used for allocations */
0485         pgoff_t pgoff;          /* Logical page offset based on vma */
0486         unsigned long address;      /* Faulting virtual address - masked */
0487         unsigned long real_address; /* Faulting virtual address - unmasked */
0488     };
0489     enum fault_flag flags;      /* FAULT_FLAG_xxx flags
0490                      * XXX: should really be 'const' */
0491     pmd_t *pmd;         /* Pointer to pmd entry matching
0492                      * the 'address' */
0493     pud_t *pud;         /* Pointer to pud entry matching
0494                      * the 'address'
0495                      */
0496     union {
0497         pte_t orig_pte;     /* Value of PTE at the time of fault */
0498         pmd_t orig_pmd;     /* Value of PMD at the time of fault,
0499                      * used by PMD fault only.
0500                      */
0501     };
0502 
0503     struct page *cow_page;      /* Page handler may use for COW fault */
0504     struct page *page;      /* ->fault handlers should return a
0505                      * page here, unless VM_FAULT_NOPAGE
0506                      * is set (which is also implied by
0507                      * VM_FAULT_ERROR).
0508                      */
0509     /* These three entries are valid only while holding ptl lock */
0510     pte_t *pte;         /* Pointer to pte entry matching
0511                      * the 'address'. NULL if the page
0512                      * table hasn't been allocated.
0513                      */
0514     spinlock_t *ptl;        /* Page table lock.
0515                      * Protects pte page table if 'pte'
0516                      * is not NULL, otherwise pmd.
0517                      */
0518     pgtable_t prealloc_pte;     /* Pre-allocated pte page table.
0519                      * vm_ops->map_pages() sets up a page
0520                      * table from atomic context.
0521                      * do_fault_around() pre-allocates
0522                      * page table to avoid allocation from
0523                      * atomic context.
0524                      */
0525 };
0526 
0527 /* page entry size for vm->huge_fault() */
0528 enum page_entry_size {
0529     PE_SIZE_PTE = 0,
0530     PE_SIZE_PMD,
0531     PE_SIZE_PUD,
0532 };
0533 
0534 /*
0535  * These are the virtual MM functions - opening of an area, closing and
0536  * unmapping it (needed to keep files on disk up-to-date etc), pointer
0537  * to the functions called when a no-page or a wp-page exception occurs.
0538  */
0539 struct vm_operations_struct {
0540     void (*open)(struct vm_area_struct * area);
0541     /**
0542      * @close: Called when the VMA is being removed from the MM.
0543      * Context: User context.  May sleep.  Caller holds mmap_lock.
0544      */
0545     void (*close)(struct vm_area_struct * area);
0546     /* Called any time before splitting to check if it's allowed */
0547     int (*may_split)(struct vm_area_struct *area, unsigned long addr);
0548     int (*mremap)(struct vm_area_struct *area);
0549     /*
0550      * Called by mprotect() to make driver-specific permission
0551      * checks before mprotect() is finalised.   The VMA must not
0552      * be modified.  Returns 0 if eprotect() can proceed.
0553      */
0554     int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
0555             unsigned long end, unsigned long newflags);
0556     vm_fault_t (*fault)(struct vm_fault *vmf);
0557     vm_fault_t (*huge_fault)(struct vm_fault *vmf,
0558             enum page_entry_size pe_size);
0559     vm_fault_t (*map_pages)(struct vm_fault *vmf,
0560             pgoff_t start_pgoff, pgoff_t end_pgoff);
0561     unsigned long (*pagesize)(struct vm_area_struct * area);
0562 
0563     /* notification that a previously read-only page is about to become
0564      * writable, if an error is returned it will cause a SIGBUS */
0565     vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
0566 
0567     /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
0568     vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
0569 
0570     /* called by access_process_vm when get_user_pages() fails, typically
0571      * for use by special VMAs. See also generic_access_phys() for a generic
0572      * implementation useful for any iomem mapping.
0573      */
0574     int (*access)(struct vm_area_struct *vma, unsigned long addr,
0575               void *buf, int len, int write);
0576 
0577     /* Called by the /proc/PID/maps code to ask the vma whether it
0578      * has a special name.  Returning non-NULL will also cause this
0579      * vma to be dumped unconditionally. */
0580     const char *(*name)(struct vm_area_struct *vma);
0581 
0582 #ifdef CONFIG_NUMA
0583     /*
0584      * set_policy() op must add a reference to any non-NULL @new mempolicy
0585      * to hold the policy upon return.  Caller should pass NULL @new to
0586      * remove a policy and fall back to surrounding context--i.e. do not
0587      * install a MPOL_DEFAULT policy, nor the task or system default
0588      * mempolicy.
0589      */
0590     int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
0591 
0592     /*
0593      * get_policy() op must add reference [mpol_get()] to any policy at
0594      * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
0595      * in mm/mempolicy.c will do this automatically.
0596      * get_policy() must NOT add a ref if the policy at (vma,addr) is not
0597      * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
0598      * If no [shared/vma] mempolicy exists at the addr, get_policy() op
0599      * must return NULL--i.e., do not "fallback" to task or system default
0600      * policy.
0601      */
0602     struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
0603                     unsigned long addr);
0604 #endif
0605     /*
0606      * Called by vm_normal_page() for special PTEs to find the
0607      * page for @addr.  This is useful if the default behavior
0608      * (using pte_page()) would not find the correct page.
0609      */
0610     struct page *(*find_special_page)(struct vm_area_struct *vma,
0611                       unsigned long addr);
0612 };
0613 
0614 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
0615 {
0616     static const struct vm_operations_struct dummy_vm_ops = {};
0617 
0618     memset(vma, 0, sizeof(*vma));
0619     vma->vm_mm = mm;
0620     vma->vm_ops = &dummy_vm_ops;
0621     INIT_LIST_HEAD(&vma->anon_vma_chain);
0622 }
0623 
0624 static inline void vma_set_anonymous(struct vm_area_struct *vma)
0625 {
0626     vma->vm_ops = NULL;
0627 }
0628 
0629 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
0630 {
0631     return !vma->vm_ops;
0632 }
0633 
0634 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
0635 {
0636     int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
0637 
0638     if (!maybe_stack)
0639         return false;
0640 
0641     if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
0642                         VM_STACK_INCOMPLETE_SETUP)
0643         return true;
0644 
0645     return false;
0646 }
0647 
0648 static inline bool vma_is_foreign(struct vm_area_struct *vma)
0649 {
0650     if (!current->mm)
0651         return true;
0652 
0653     if (current->mm != vma->vm_mm)
0654         return true;
0655 
0656     return false;
0657 }
0658 
0659 static inline bool vma_is_accessible(struct vm_area_struct *vma)
0660 {
0661     return vma->vm_flags & VM_ACCESS_FLAGS;
0662 }
0663 
0664 #ifdef CONFIG_SHMEM
0665 /*
0666  * The vma_is_shmem is not inline because it is used only by slow
0667  * paths in userfault.
0668  */
0669 bool vma_is_shmem(struct vm_area_struct *vma);
0670 #else
0671 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
0672 #endif
0673 
0674 int vma_is_stack_for_current(struct vm_area_struct *vma);
0675 
0676 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
0677 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
0678 
0679 struct mmu_gather;
0680 struct inode;
0681 
0682 static inline unsigned int compound_order(struct page *page)
0683 {
0684     if (!PageHead(page))
0685         return 0;
0686     return page[1].compound_order;
0687 }
0688 
0689 /**
0690  * folio_order - The allocation order of a folio.
0691  * @folio: The folio.
0692  *
0693  * A folio is composed of 2^order pages.  See get_order() for the definition
0694  * of order.
0695  *
0696  * Return: The order of the folio.
0697  */
0698 static inline unsigned int folio_order(struct folio *folio)
0699 {
0700     return compound_order(&folio->page);
0701 }
0702 
0703 #include <linux/huge_mm.h>
0704 
0705 /*
0706  * Methods to modify the page usage count.
0707  *
0708  * What counts for a page usage:
0709  * - cache mapping   (page->mapping)
0710  * - private data    (page->private)
0711  * - page mapped in a task's page tables, each mapping
0712  *   is counted separately
0713  *
0714  * Also, many kernel routines increase the page count before a critical
0715  * routine so they can be sure the page doesn't go away from under them.
0716  */
0717 
0718 /*
0719  * Drop a ref, return true if the refcount fell to zero (the page has no users)
0720  */
0721 static inline int put_page_testzero(struct page *page)
0722 {
0723     VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
0724     return page_ref_dec_and_test(page);
0725 }
0726 
0727 static inline int folio_put_testzero(struct folio *folio)
0728 {
0729     return put_page_testzero(&folio->page);
0730 }
0731 
0732 /*
0733  * Try to grab a ref unless the page has a refcount of zero, return false if
0734  * that is the case.
0735  * This can be called when MMU is off so it must not access
0736  * any of the virtual mappings.
0737  */
0738 static inline bool get_page_unless_zero(struct page *page)
0739 {
0740     return page_ref_add_unless(page, 1, 0);
0741 }
0742 
0743 extern int page_is_ram(unsigned long pfn);
0744 
0745 enum {
0746     REGION_INTERSECTS,
0747     REGION_DISJOINT,
0748     REGION_MIXED,
0749 };
0750 
0751 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
0752               unsigned long desc);
0753 
0754 /* Support for virtually mapped pages */
0755 struct page *vmalloc_to_page(const void *addr);
0756 unsigned long vmalloc_to_pfn(const void *addr);
0757 
0758 /*
0759  * Determine if an address is within the vmalloc range
0760  *
0761  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
0762  * is no special casing required.
0763  */
0764 
0765 #ifndef is_ioremap_addr
0766 #define is_ioremap_addr(x) is_vmalloc_addr(x)
0767 #endif
0768 
0769 #ifdef CONFIG_MMU
0770 extern bool is_vmalloc_addr(const void *x);
0771 extern int is_vmalloc_or_module_addr(const void *x);
0772 #else
0773 static inline bool is_vmalloc_addr(const void *x)
0774 {
0775     return false;
0776 }
0777 static inline int is_vmalloc_or_module_addr(const void *x)
0778 {
0779     return 0;
0780 }
0781 #endif
0782 
0783 /*
0784  * How many times the entire folio is mapped as a single unit (eg by a
0785  * PMD or PUD entry).  This is probably not what you want, except for
0786  * debugging purposes; look at folio_mapcount() or page_mapcount()
0787  * instead.
0788  */
0789 static inline int folio_entire_mapcount(struct folio *folio)
0790 {
0791     VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
0792     return atomic_read(folio_mapcount_ptr(folio)) + 1;
0793 }
0794 
0795 /*
0796  * Mapcount of compound page as a whole, does not include mapped sub-pages.
0797  *
0798  * Must be called only for compound pages.
0799  */
0800 static inline int compound_mapcount(struct page *page)
0801 {
0802     return folio_entire_mapcount(page_folio(page));
0803 }
0804 
0805 /*
0806  * The atomic page->_mapcount, starts from -1: so that transitions
0807  * both from it and to it can be tracked, using atomic_inc_and_test
0808  * and atomic_add_negative(-1).
0809  */
0810 static inline void page_mapcount_reset(struct page *page)
0811 {
0812     atomic_set(&(page)->_mapcount, -1);
0813 }
0814 
0815 int __page_mapcount(struct page *page);
0816 
0817 /*
0818  * Mapcount of 0-order page; when compound sub-page, includes
0819  * compound_mapcount().
0820  *
0821  * Result is undefined for pages which cannot be mapped into userspace.
0822  * For example SLAB or special types of pages. See function page_has_type().
0823  * They use this place in struct page differently.
0824  */
0825 static inline int page_mapcount(struct page *page)
0826 {
0827     if (unlikely(PageCompound(page)))
0828         return __page_mapcount(page);
0829     return atomic_read(&page->_mapcount) + 1;
0830 }
0831 
0832 int folio_mapcount(struct folio *folio);
0833 
0834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0835 static inline int total_mapcount(struct page *page)
0836 {
0837     return folio_mapcount(page_folio(page));
0838 }
0839 
0840 #else
0841 static inline int total_mapcount(struct page *page)
0842 {
0843     return page_mapcount(page);
0844 }
0845 #endif
0846 
0847 static inline struct page *virt_to_head_page(const void *x)
0848 {
0849     struct page *page = virt_to_page(x);
0850 
0851     return compound_head(page);
0852 }
0853 
0854 static inline struct folio *virt_to_folio(const void *x)
0855 {
0856     struct page *page = virt_to_page(x);
0857 
0858     return page_folio(page);
0859 }
0860 
0861 void __folio_put(struct folio *folio);
0862 
0863 void put_pages_list(struct list_head *pages);
0864 
0865 void split_page(struct page *page, unsigned int order);
0866 void folio_copy(struct folio *dst, struct folio *src);
0867 
0868 unsigned long nr_free_buffer_pages(void);
0869 
0870 /*
0871  * Compound pages have a destructor function.  Provide a
0872  * prototype for that function and accessor functions.
0873  * These are _only_ valid on the head of a compound page.
0874  */
0875 typedef void compound_page_dtor(struct page *);
0876 
0877 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
0878 enum compound_dtor_id {
0879     NULL_COMPOUND_DTOR,
0880     COMPOUND_PAGE_DTOR,
0881 #ifdef CONFIG_HUGETLB_PAGE
0882     HUGETLB_PAGE_DTOR,
0883 #endif
0884 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
0885     TRANSHUGE_PAGE_DTOR,
0886 #endif
0887     NR_COMPOUND_DTORS,
0888 };
0889 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
0890 
0891 static inline void set_compound_page_dtor(struct page *page,
0892         enum compound_dtor_id compound_dtor)
0893 {
0894     VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
0895     page[1].compound_dtor = compound_dtor;
0896 }
0897 
0898 void destroy_large_folio(struct folio *folio);
0899 
0900 static inline int head_compound_pincount(struct page *head)
0901 {
0902     return atomic_read(compound_pincount_ptr(head));
0903 }
0904 
0905 static inline void set_compound_order(struct page *page, unsigned int order)
0906 {
0907     page[1].compound_order = order;
0908 #ifdef CONFIG_64BIT
0909     page[1].compound_nr = 1U << order;
0910 #endif
0911 }
0912 
0913 /* Returns the number of pages in this potentially compound page. */
0914 static inline unsigned long compound_nr(struct page *page)
0915 {
0916     if (!PageHead(page))
0917         return 1;
0918 #ifdef CONFIG_64BIT
0919     return page[1].compound_nr;
0920 #else
0921     return 1UL << compound_order(page);
0922 #endif
0923 }
0924 
0925 /* Returns the number of bytes in this potentially compound page. */
0926 static inline unsigned long page_size(struct page *page)
0927 {
0928     return PAGE_SIZE << compound_order(page);
0929 }
0930 
0931 /* Returns the number of bits needed for the number of bytes in a page */
0932 static inline unsigned int page_shift(struct page *page)
0933 {
0934     return PAGE_SHIFT + compound_order(page);
0935 }
0936 
0937 /**
0938  * thp_order - Order of a transparent huge page.
0939  * @page: Head page of a transparent huge page.
0940  */
0941 static inline unsigned int thp_order(struct page *page)
0942 {
0943     VM_BUG_ON_PGFLAGS(PageTail(page), page);
0944     return compound_order(page);
0945 }
0946 
0947 /**
0948  * thp_nr_pages - The number of regular pages in this huge page.
0949  * @page: The head page of a huge page.
0950  */
0951 static inline int thp_nr_pages(struct page *page)
0952 {
0953     VM_BUG_ON_PGFLAGS(PageTail(page), page);
0954     return compound_nr(page);
0955 }
0956 
0957 /**
0958  * thp_size - Size of a transparent huge page.
0959  * @page: Head page of a transparent huge page.
0960  *
0961  * Return: Number of bytes in this page.
0962  */
0963 static inline unsigned long thp_size(struct page *page)
0964 {
0965     return PAGE_SIZE << thp_order(page);
0966 }
0967 
0968 void free_compound_page(struct page *page);
0969 
0970 #ifdef CONFIG_MMU
0971 /*
0972  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
0973  * servicing faults for write access.  In the normal case, do always want
0974  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
0975  * that do not have writing enabled, when used by access_process_vm.
0976  */
0977 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
0978 {
0979     if (likely(vma->vm_flags & VM_WRITE))
0980         pte = pte_mkwrite(pte);
0981     return pte;
0982 }
0983 
0984 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
0985 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
0986 
0987 vm_fault_t finish_fault(struct vm_fault *vmf);
0988 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
0989 #endif
0990 
0991 /*
0992  * Multiple processes may "see" the same page. E.g. for untouched
0993  * mappings of /dev/null, all processes see the same page full of
0994  * zeroes, and text pages of executables and shared libraries have
0995  * only one copy in memory, at most, normally.
0996  *
0997  * For the non-reserved pages, page_count(page) denotes a reference count.
0998  *   page_count() == 0 means the page is free. page->lru is then used for
0999  *   freelist management in the buddy allocator.
1000  *   page_count() > 0  means the page has been allocated.
1001  *
1002  * Pages are allocated by the slab allocator in order to provide memory
1003  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1004  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1005  * unless a particular usage is carefully commented. (the responsibility of
1006  * freeing the kmalloc memory is the caller's, of course).
1007  *
1008  * A page may be used by anyone else who does a __get_free_page().
1009  * In this case, page_count still tracks the references, and should only
1010  * be used through the normal accessor functions. The top bits of page->flags
1011  * and page->virtual store page management information, but all other fields
1012  * are unused and could be used privately, carefully. The management of this
1013  * page is the responsibility of the one who allocated it, and those who have
1014  * subsequently been given references to it.
1015  *
1016  * The other pages (we may call them "pagecache pages") are completely
1017  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1018  * The following discussion applies only to them.
1019  *
1020  * A pagecache page contains an opaque `private' member, which belongs to the
1021  * page's address_space. Usually, this is the address of a circular list of
1022  * the page's disk buffers. PG_private must be set to tell the VM to call
1023  * into the filesystem to release these pages.
1024  *
1025  * A page may belong to an inode's memory mapping. In this case, page->mapping
1026  * is the pointer to the inode, and page->index is the file offset of the page,
1027  * in units of PAGE_SIZE.
1028  *
1029  * If pagecache pages are not associated with an inode, they are said to be
1030  * anonymous pages. These may become associated with the swapcache, and in that
1031  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1032  *
1033  * In either case (swapcache or inode backed), the pagecache itself holds one
1034  * reference to the page. Setting PG_private should also increment the
1035  * refcount. The each user mapping also has a reference to the page.
1036  *
1037  * The pagecache pages are stored in a per-mapping radix tree, which is
1038  * rooted at mapping->i_pages, and indexed by offset.
1039  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1040  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1041  *
1042  * All pagecache pages may be subject to I/O:
1043  * - inode pages may need to be read from disk,
1044  * - inode pages which have been modified and are MAP_SHARED may need
1045  *   to be written back to the inode on disk,
1046  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1047  *   modified may need to be swapped out to swap space and (later) to be read
1048  *   back into memory.
1049  */
1050 
1051 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1052 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1053 
1054 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1055 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1056 {
1057     if (!static_branch_unlikely(&devmap_managed_key))
1058         return false;
1059     if (!is_zone_device_page(page))
1060         return false;
1061     return __put_devmap_managed_page_refs(page, refs);
1062 }
1063 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1064 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1065 {
1066     return false;
1067 }
1068 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1069 
1070 static inline bool put_devmap_managed_page(struct page *page)
1071 {
1072     return put_devmap_managed_page_refs(page, 1);
1073 }
1074 
1075 /* 127: arbitrary random number, small enough to assemble well */
1076 #define folio_ref_zero_or_close_to_overflow(folio) \
1077     ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1078 
1079 /**
1080  * folio_get - Increment the reference count on a folio.
1081  * @folio: The folio.
1082  *
1083  * Context: May be called in any context, as long as you know that
1084  * you have a refcount on the folio.  If you do not already have one,
1085  * folio_try_get() may be the right interface for you to use.
1086  */
1087 static inline void folio_get(struct folio *folio)
1088 {
1089     VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1090     folio_ref_inc(folio);
1091 }
1092 
1093 static inline void get_page(struct page *page)
1094 {
1095     folio_get(page_folio(page));
1096 }
1097 
1098 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1099 
1100 static inline __must_check bool try_get_page(struct page *page)
1101 {
1102     page = compound_head(page);
1103     if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1104         return false;
1105     page_ref_inc(page);
1106     return true;
1107 }
1108 
1109 /**
1110  * folio_put - Decrement the reference count on a folio.
1111  * @folio: The folio.
1112  *
1113  * If the folio's reference count reaches zero, the memory will be
1114  * released back to the page allocator and may be used by another
1115  * allocation immediately.  Do not access the memory or the struct folio
1116  * after calling folio_put() unless you can be sure that it wasn't the
1117  * last reference.
1118  *
1119  * Context: May be called in process or interrupt context, but not in NMI
1120  * context.  May be called while holding a spinlock.
1121  */
1122 static inline void folio_put(struct folio *folio)
1123 {
1124     if (folio_put_testzero(folio))
1125         __folio_put(folio);
1126 }
1127 
1128 /**
1129  * folio_put_refs - Reduce the reference count on a folio.
1130  * @folio: The folio.
1131  * @refs: The amount to subtract from the folio's reference count.
1132  *
1133  * If the folio's reference count reaches zero, the memory will be
1134  * released back to the page allocator and may be used by another
1135  * allocation immediately.  Do not access the memory or the struct folio
1136  * after calling folio_put_refs() unless you can be sure that these weren't
1137  * the last references.
1138  *
1139  * Context: May be called in process or interrupt context, but not in NMI
1140  * context.  May be called while holding a spinlock.
1141  */
1142 static inline void folio_put_refs(struct folio *folio, int refs)
1143 {
1144     if (folio_ref_sub_and_test(folio, refs))
1145         __folio_put(folio);
1146 }
1147 
1148 void release_pages(struct page **pages, int nr);
1149 
1150 /**
1151  * folios_put - Decrement the reference count on an array of folios.
1152  * @folios: The folios.
1153  * @nr: How many folios there are.
1154  *
1155  * Like folio_put(), but for an array of folios.  This is more efficient
1156  * than writing the loop yourself as it will optimise the locks which
1157  * need to be taken if the folios are freed.
1158  *
1159  * Context: May be called in process or interrupt context, but not in NMI
1160  * context.  May be called while holding a spinlock.
1161  */
1162 static inline void folios_put(struct folio **folios, unsigned int nr)
1163 {
1164     release_pages((struct page **)folios, nr);
1165 }
1166 
1167 static inline void put_page(struct page *page)
1168 {
1169     struct folio *folio = page_folio(page);
1170 
1171     /*
1172      * For some devmap managed pages we need to catch refcount transition
1173      * from 2 to 1:
1174      */
1175     if (put_devmap_managed_page(&folio->page))
1176         return;
1177     folio_put(folio);
1178 }
1179 
1180 /*
1181  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1182  * the page's refcount so that two separate items are tracked: the original page
1183  * reference count, and also a new count of how many pin_user_pages() calls were
1184  * made against the page. ("gup-pinned" is another term for the latter).
1185  *
1186  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1187  * distinct from normal pages. As such, the unpin_user_page() call (and its
1188  * variants) must be used in order to release gup-pinned pages.
1189  *
1190  * Choice of value:
1191  *
1192  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1193  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1194  * simpler, due to the fact that adding an even power of two to the page
1195  * refcount has the effect of using only the upper N bits, for the code that
1196  * counts up using the bias value. This means that the lower bits are left for
1197  * the exclusive use of the original code that increments and decrements by one
1198  * (or at least, by much smaller values than the bias value).
1199  *
1200  * Of course, once the lower bits overflow into the upper bits (and this is
1201  * OK, because subtraction recovers the original values), then visual inspection
1202  * no longer suffices to directly view the separate counts. However, for normal
1203  * applications that don't have huge page reference counts, this won't be an
1204  * issue.
1205  *
1206  * Locking: the lockless algorithm described in folio_try_get_rcu()
1207  * provides safe operation for get_user_pages(), page_mkclean() and
1208  * other calls that race to set up page table entries.
1209  */
1210 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1211 
1212 void unpin_user_page(struct page *page);
1213 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1214                  bool make_dirty);
1215 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1216                       bool make_dirty);
1217 void unpin_user_pages(struct page **pages, unsigned long npages);
1218 
1219 static inline bool is_cow_mapping(vm_flags_t flags)
1220 {
1221     return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1222 }
1223 
1224 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1225 #define SECTION_IN_PAGE_FLAGS
1226 #endif
1227 
1228 /*
1229  * The identification function is mainly used by the buddy allocator for
1230  * determining if two pages could be buddies. We are not really identifying
1231  * the zone since we could be using the section number id if we do not have
1232  * node id available in page flags.
1233  * We only guarantee that it will return the same value for two combinable
1234  * pages in a zone.
1235  */
1236 static inline int page_zone_id(struct page *page)
1237 {
1238     return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1239 }
1240 
1241 #ifdef NODE_NOT_IN_PAGE_FLAGS
1242 extern int page_to_nid(const struct page *page);
1243 #else
1244 static inline int page_to_nid(const struct page *page)
1245 {
1246     struct page *p = (struct page *)page;
1247 
1248     return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1249 }
1250 #endif
1251 
1252 static inline int folio_nid(const struct folio *folio)
1253 {
1254     return page_to_nid(&folio->page);
1255 }
1256 
1257 #ifdef CONFIG_NUMA_BALANCING
1258 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1259 {
1260     return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1261 }
1262 
1263 static inline int cpupid_to_pid(int cpupid)
1264 {
1265     return cpupid & LAST__PID_MASK;
1266 }
1267 
1268 static inline int cpupid_to_cpu(int cpupid)
1269 {
1270     return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1271 }
1272 
1273 static inline int cpupid_to_nid(int cpupid)
1274 {
1275     return cpu_to_node(cpupid_to_cpu(cpupid));
1276 }
1277 
1278 static inline bool cpupid_pid_unset(int cpupid)
1279 {
1280     return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1281 }
1282 
1283 static inline bool cpupid_cpu_unset(int cpupid)
1284 {
1285     return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1286 }
1287 
1288 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1289 {
1290     return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1291 }
1292 
1293 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1294 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1295 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1296 {
1297     return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1298 }
1299 
1300 static inline int page_cpupid_last(struct page *page)
1301 {
1302     return page->_last_cpupid;
1303 }
1304 static inline void page_cpupid_reset_last(struct page *page)
1305 {
1306     page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1307 }
1308 #else
1309 static inline int page_cpupid_last(struct page *page)
1310 {
1311     return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1312 }
1313 
1314 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1315 
1316 static inline void page_cpupid_reset_last(struct page *page)
1317 {
1318     page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1319 }
1320 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1321 #else /* !CONFIG_NUMA_BALANCING */
1322 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1323 {
1324     return page_to_nid(page); /* XXX */
1325 }
1326 
1327 static inline int page_cpupid_last(struct page *page)
1328 {
1329     return page_to_nid(page); /* XXX */
1330 }
1331 
1332 static inline int cpupid_to_nid(int cpupid)
1333 {
1334     return -1;
1335 }
1336 
1337 static inline int cpupid_to_pid(int cpupid)
1338 {
1339     return -1;
1340 }
1341 
1342 static inline int cpupid_to_cpu(int cpupid)
1343 {
1344     return -1;
1345 }
1346 
1347 static inline int cpu_pid_to_cpupid(int nid, int pid)
1348 {
1349     return -1;
1350 }
1351 
1352 static inline bool cpupid_pid_unset(int cpupid)
1353 {
1354     return true;
1355 }
1356 
1357 static inline void page_cpupid_reset_last(struct page *page)
1358 {
1359 }
1360 
1361 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1362 {
1363     return false;
1364 }
1365 #endif /* CONFIG_NUMA_BALANCING */
1366 
1367 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1368 
1369 /*
1370  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1371  * setting tags for all pages to native kernel tag value 0xff, as the default
1372  * value 0x00 maps to 0xff.
1373  */
1374 
1375 static inline u8 page_kasan_tag(const struct page *page)
1376 {
1377     u8 tag = 0xff;
1378 
1379     if (kasan_enabled()) {
1380         tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1381         tag ^= 0xff;
1382     }
1383 
1384     return tag;
1385 }
1386 
1387 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1388 {
1389     unsigned long old_flags, flags;
1390 
1391     if (!kasan_enabled())
1392         return;
1393 
1394     tag ^= 0xff;
1395     old_flags = READ_ONCE(page->flags);
1396     do {
1397         flags = old_flags;
1398         flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1399         flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1400     } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1401 }
1402 
1403 static inline void page_kasan_tag_reset(struct page *page)
1404 {
1405     if (kasan_enabled())
1406         page_kasan_tag_set(page, 0xff);
1407 }
1408 
1409 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1410 
1411 static inline u8 page_kasan_tag(const struct page *page)
1412 {
1413     return 0xff;
1414 }
1415 
1416 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1417 static inline void page_kasan_tag_reset(struct page *page) { }
1418 
1419 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1420 
1421 static inline struct zone *page_zone(const struct page *page)
1422 {
1423     return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1424 }
1425 
1426 static inline pg_data_t *page_pgdat(const struct page *page)
1427 {
1428     return NODE_DATA(page_to_nid(page));
1429 }
1430 
1431 static inline struct zone *folio_zone(const struct folio *folio)
1432 {
1433     return page_zone(&folio->page);
1434 }
1435 
1436 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1437 {
1438     return page_pgdat(&folio->page);
1439 }
1440 
1441 #ifdef SECTION_IN_PAGE_FLAGS
1442 static inline void set_page_section(struct page *page, unsigned long section)
1443 {
1444     page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1445     page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1446 }
1447 
1448 static inline unsigned long page_to_section(const struct page *page)
1449 {
1450     return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1451 }
1452 #endif
1453 
1454 /**
1455  * folio_pfn - Return the Page Frame Number of a folio.
1456  * @folio: The folio.
1457  *
1458  * A folio may contain multiple pages.  The pages have consecutive
1459  * Page Frame Numbers.
1460  *
1461  * Return: The Page Frame Number of the first page in the folio.
1462  */
1463 static inline unsigned long folio_pfn(struct folio *folio)
1464 {
1465     return page_to_pfn(&folio->page);
1466 }
1467 
1468 static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1469 {
1470     return &folio_page(folio, 1)->compound_pincount;
1471 }
1472 
1473 /**
1474  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1475  * @folio: The folio.
1476  *
1477  * This function checks if a folio has been pinned via a call to
1478  * a function in the pin_user_pages() family.
1479  *
1480  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1481  * because it means "definitely not pinned for DMA", but true means "probably
1482  * pinned for DMA, but possibly a false positive due to having at least
1483  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1484  *
1485  * False positives are OK, because: a) it's unlikely for a folio to
1486  * get that many refcounts, and b) all the callers of this routine are
1487  * expected to be able to deal gracefully with a false positive.
1488  *
1489  * For large folios, the result will be exactly correct. That's because
1490  * we have more tracking data available: the compound_pincount is used
1491  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1492  *
1493  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1494  *
1495  * Return: True, if it is likely that the page has been "dma-pinned".
1496  * False, if the page is definitely not dma-pinned.
1497  */
1498 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1499 {
1500     if (folio_test_large(folio))
1501         return atomic_read(folio_pincount_ptr(folio)) > 0;
1502 
1503     /*
1504      * folio_ref_count() is signed. If that refcount overflows, then
1505      * folio_ref_count() returns a negative value, and callers will avoid
1506      * further incrementing the refcount.
1507      *
1508      * Here, for that overflow case, use the sign bit to count a little
1509      * bit higher via unsigned math, and thus still get an accurate result.
1510      */
1511     return ((unsigned int)folio_ref_count(folio)) >=
1512         GUP_PIN_COUNTING_BIAS;
1513 }
1514 
1515 static inline bool page_maybe_dma_pinned(struct page *page)
1516 {
1517     return folio_maybe_dma_pinned(page_folio(page));
1518 }
1519 
1520 /*
1521  * This should most likely only be called during fork() to see whether we
1522  * should break the cow immediately for an anon page on the src mm.
1523  *
1524  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1525  */
1526 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1527                       struct page *page)
1528 {
1529     VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1530 
1531     if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1532         return false;
1533 
1534     return page_maybe_dma_pinned(page);
1535 }
1536 
1537 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1538 #ifdef CONFIG_MIGRATION
1539 static inline bool is_longterm_pinnable_page(struct page *page)
1540 {
1541 #ifdef CONFIG_CMA
1542     int mt = get_pageblock_migratetype(page);
1543 
1544     if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1545         return false;
1546 #endif
1547     /* The zero page may always be pinned */
1548     if (is_zero_pfn(page_to_pfn(page)))
1549         return true;
1550 
1551     /* Coherent device memory must always allow eviction. */
1552     if (is_device_coherent_page(page))
1553         return false;
1554 
1555     /* Otherwise, non-movable zone pages can be pinned. */
1556     return !is_zone_movable_page(page);
1557 }
1558 #else
1559 static inline bool is_longterm_pinnable_page(struct page *page)
1560 {
1561     return true;
1562 }
1563 #endif
1564 
1565 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1566 {
1567     return is_longterm_pinnable_page(&folio->page);
1568 }
1569 
1570 static inline void set_page_zone(struct page *page, enum zone_type zone)
1571 {
1572     page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1573     page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1574 }
1575 
1576 static inline void set_page_node(struct page *page, unsigned long node)
1577 {
1578     page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1579     page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1580 }
1581 
1582 static inline void set_page_links(struct page *page, enum zone_type zone,
1583     unsigned long node, unsigned long pfn)
1584 {
1585     set_page_zone(page, zone);
1586     set_page_node(page, node);
1587 #ifdef SECTION_IN_PAGE_FLAGS
1588     set_page_section(page, pfn_to_section_nr(pfn));
1589 #endif
1590 }
1591 
1592 /**
1593  * folio_nr_pages - The number of pages in the folio.
1594  * @folio: The folio.
1595  *
1596  * Return: A positive power of two.
1597  */
1598 static inline long folio_nr_pages(struct folio *folio)
1599 {
1600     return compound_nr(&folio->page);
1601 }
1602 
1603 /**
1604  * folio_next - Move to the next physical folio.
1605  * @folio: The folio we're currently operating on.
1606  *
1607  * If you have physically contiguous memory which may span more than
1608  * one folio (eg a &struct bio_vec), use this function to move from one
1609  * folio to the next.  Do not use it if the memory is only virtually
1610  * contiguous as the folios are almost certainly not adjacent to each
1611  * other.  This is the folio equivalent to writing ``page++``.
1612  *
1613  * Context: We assume that the folios are refcounted and/or locked at a
1614  * higher level and do not adjust the reference counts.
1615  * Return: The next struct folio.
1616  */
1617 static inline struct folio *folio_next(struct folio *folio)
1618 {
1619     return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1620 }
1621 
1622 /**
1623  * folio_shift - The size of the memory described by this folio.
1624  * @folio: The folio.
1625  *
1626  * A folio represents a number of bytes which is a power-of-two in size.
1627  * This function tells you which power-of-two the folio is.  See also
1628  * folio_size() and folio_order().
1629  *
1630  * Context: The caller should have a reference on the folio to prevent
1631  * it from being split.  It is not necessary for the folio to be locked.
1632  * Return: The base-2 logarithm of the size of this folio.
1633  */
1634 static inline unsigned int folio_shift(struct folio *folio)
1635 {
1636     return PAGE_SHIFT + folio_order(folio);
1637 }
1638 
1639 /**
1640  * folio_size - The number of bytes in a folio.
1641  * @folio: The folio.
1642  *
1643  * Context: The caller should have a reference on the folio to prevent
1644  * it from being split.  It is not necessary for the folio to be locked.
1645  * Return: The number of bytes in this folio.
1646  */
1647 static inline size_t folio_size(struct folio *folio)
1648 {
1649     return PAGE_SIZE << folio_order(folio);
1650 }
1651 
1652 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1653 static inline int arch_make_page_accessible(struct page *page)
1654 {
1655     return 0;
1656 }
1657 #endif
1658 
1659 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1660 static inline int arch_make_folio_accessible(struct folio *folio)
1661 {
1662     int ret;
1663     long i, nr = folio_nr_pages(folio);
1664 
1665     for (i = 0; i < nr; i++) {
1666         ret = arch_make_page_accessible(folio_page(folio, i));
1667         if (ret)
1668             break;
1669     }
1670 
1671     return ret;
1672 }
1673 #endif
1674 
1675 /*
1676  * Some inline functions in vmstat.h depend on page_zone()
1677  */
1678 #include <linux/vmstat.h>
1679 
1680 static __always_inline void *lowmem_page_address(const struct page *page)
1681 {
1682     return page_to_virt(page);
1683 }
1684 
1685 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1686 #define HASHED_PAGE_VIRTUAL
1687 #endif
1688 
1689 #if defined(WANT_PAGE_VIRTUAL)
1690 static inline void *page_address(const struct page *page)
1691 {
1692     return page->virtual;
1693 }
1694 static inline void set_page_address(struct page *page, void *address)
1695 {
1696     page->virtual = address;
1697 }
1698 #define page_address_init()  do { } while(0)
1699 #endif
1700 
1701 #if defined(HASHED_PAGE_VIRTUAL)
1702 void *page_address(const struct page *page);
1703 void set_page_address(struct page *page, void *virtual);
1704 void page_address_init(void);
1705 #endif
1706 
1707 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1708 #define page_address(page) lowmem_page_address(page)
1709 #define set_page_address(page, address)  do { } while(0)
1710 #define page_address_init()  do { } while(0)
1711 #endif
1712 
1713 static inline void *folio_address(const struct folio *folio)
1714 {
1715     return page_address(&folio->page);
1716 }
1717 
1718 extern void *page_rmapping(struct page *page);
1719 extern pgoff_t __page_file_index(struct page *page);
1720 
1721 /*
1722  * Return the pagecache index of the passed page.  Regular pagecache pages
1723  * use ->index whereas swapcache pages use swp_offset(->private)
1724  */
1725 static inline pgoff_t page_index(struct page *page)
1726 {
1727     if (unlikely(PageSwapCache(page)))
1728         return __page_file_index(page);
1729     return page->index;
1730 }
1731 
1732 bool page_mapped(struct page *page);
1733 bool folio_mapped(struct folio *folio);
1734 
1735 /*
1736  * Return true only if the page has been allocated with
1737  * ALLOC_NO_WATERMARKS and the low watermark was not
1738  * met implying that the system is under some pressure.
1739  */
1740 static inline bool page_is_pfmemalloc(const struct page *page)
1741 {
1742     /*
1743      * lru.next has bit 1 set if the page is allocated from the
1744      * pfmemalloc reserves.  Callers may simply overwrite it if
1745      * they do not need to preserve that information.
1746      */
1747     return (uintptr_t)page->lru.next & BIT(1);
1748 }
1749 
1750 /*
1751  * Only to be called by the page allocator on a freshly allocated
1752  * page.
1753  */
1754 static inline void set_page_pfmemalloc(struct page *page)
1755 {
1756     page->lru.next = (void *)BIT(1);
1757 }
1758 
1759 static inline void clear_page_pfmemalloc(struct page *page)
1760 {
1761     page->lru.next = NULL;
1762 }
1763 
1764 /*
1765  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1766  */
1767 extern void pagefault_out_of_memory(void);
1768 
1769 #define offset_in_page(p)   ((unsigned long)(p) & ~PAGE_MASK)
1770 #define offset_in_thp(page, p)  ((unsigned long)(p) & (thp_size(page) - 1))
1771 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1772 
1773 /*
1774  * Flags passed to show_mem() and show_free_areas() to suppress output in
1775  * various contexts.
1776  */
1777 #define SHOW_MEM_FILTER_NODES       (0x0001u)   /* disallowed nodes */
1778 
1779 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1780 
1781 #ifdef CONFIG_MMU
1782 extern bool can_do_mlock(void);
1783 #else
1784 static inline bool can_do_mlock(void) { return false; }
1785 #endif
1786 extern int user_shm_lock(size_t, struct ucounts *);
1787 extern void user_shm_unlock(size_t, struct ucounts *);
1788 
1789 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1790                  pte_t pte);
1791 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1792                 pmd_t pmd);
1793 
1794 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1795           unsigned long size);
1796 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1797             unsigned long size);
1798 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1799         unsigned long start, unsigned long end);
1800 
1801 struct mmu_notifier_range;
1802 
1803 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1804         unsigned long end, unsigned long floor, unsigned long ceiling);
1805 int
1806 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1807 int follow_pte(struct mm_struct *mm, unsigned long address,
1808            pte_t **ptepp, spinlock_t **ptlp);
1809 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1810     unsigned long *pfn);
1811 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1812         unsigned int flags, unsigned long *prot, resource_size_t *phys);
1813 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1814             void *buf, int len, int write);
1815 
1816 extern void truncate_pagecache(struct inode *inode, loff_t new);
1817 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1818 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1819 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1820 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1821 
1822 #ifdef CONFIG_MMU
1823 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1824                   unsigned long address, unsigned int flags,
1825                   struct pt_regs *regs);
1826 extern int fixup_user_fault(struct mm_struct *mm,
1827                 unsigned long address, unsigned int fault_flags,
1828                 bool *unlocked);
1829 void unmap_mapping_pages(struct address_space *mapping,
1830         pgoff_t start, pgoff_t nr, bool even_cows);
1831 void unmap_mapping_range(struct address_space *mapping,
1832         loff_t const holebegin, loff_t const holelen, int even_cows);
1833 #else
1834 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1835                      unsigned long address, unsigned int flags,
1836                      struct pt_regs *regs)
1837 {
1838     /* should never happen if there's no MMU */
1839     BUG();
1840     return VM_FAULT_SIGBUS;
1841 }
1842 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1843         unsigned int fault_flags, bool *unlocked)
1844 {
1845     /* should never happen if there's no MMU */
1846     BUG();
1847     return -EFAULT;
1848 }
1849 static inline void unmap_mapping_pages(struct address_space *mapping,
1850         pgoff_t start, pgoff_t nr, bool even_cows) { }
1851 static inline void unmap_mapping_range(struct address_space *mapping,
1852         loff_t const holebegin, loff_t const holelen, int even_cows) { }
1853 #endif
1854 
1855 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1856         loff_t const holebegin, loff_t const holelen)
1857 {
1858     unmap_mapping_range(mapping, holebegin, holelen, 0);
1859 }
1860 
1861 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1862         void *buf, int len, unsigned int gup_flags);
1863 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1864         void *buf, int len, unsigned int gup_flags);
1865 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1866                   void *buf, int len, unsigned int gup_flags);
1867 
1868 long get_user_pages_remote(struct mm_struct *mm,
1869                 unsigned long start, unsigned long nr_pages,
1870                 unsigned int gup_flags, struct page **pages,
1871                 struct vm_area_struct **vmas, int *locked);
1872 long pin_user_pages_remote(struct mm_struct *mm,
1873                unsigned long start, unsigned long nr_pages,
1874                unsigned int gup_flags, struct page **pages,
1875                struct vm_area_struct **vmas, int *locked);
1876 long get_user_pages(unsigned long start, unsigned long nr_pages,
1877                 unsigned int gup_flags, struct page **pages,
1878                 struct vm_area_struct **vmas);
1879 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1880             unsigned int gup_flags, struct page **pages,
1881             struct vm_area_struct **vmas);
1882 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1883             struct page **pages, unsigned int gup_flags);
1884 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1885             struct page **pages, unsigned int gup_flags);
1886 
1887 int get_user_pages_fast(unsigned long start, int nr_pages,
1888             unsigned int gup_flags, struct page **pages);
1889 int pin_user_pages_fast(unsigned long start, int nr_pages,
1890             unsigned int gup_flags, struct page **pages);
1891 
1892 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1893 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1894             struct task_struct *task, bool bypass_rlim);
1895 
1896 struct kvec;
1897 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1898             struct page **pages);
1899 struct page *get_dump_page(unsigned long addr);
1900 
1901 bool folio_mark_dirty(struct folio *folio);
1902 bool set_page_dirty(struct page *page);
1903 int set_page_dirty_lock(struct page *page);
1904 
1905 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1906 
1907 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1908         unsigned long old_addr, struct vm_area_struct *new_vma,
1909         unsigned long new_addr, unsigned long len,
1910         bool need_rmap_locks);
1911 
1912 /*
1913  * Flags used by change_protection().  For now we make it a bitmap so
1914  * that we can pass in multiple flags just like parameters.  However
1915  * for now all the callers are only use one of the flags at the same
1916  * time.
1917  */
1918 /*
1919  * Whether we should manually check if we can map individual PTEs writable,
1920  * because something (e.g., COW, uffd-wp) blocks that from happening for all
1921  * PTEs automatically in a writable mapping.
1922  */
1923 #define  MM_CP_TRY_CHANGE_WRITABLE     (1UL << 0)
1924 /* Whether this protection change is for NUMA hints */
1925 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1926 /* Whether this change is for write protecting */
1927 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1928 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1929 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1930                         MM_CP_UFFD_WP_RESOLVE)
1931 
1932 extern unsigned long change_protection(struct mmu_gather *tlb,
1933                   struct vm_area_struct *vma, unsigned long start,
1934                   unsigned long end, pgprot_t newprot,
1935                   unsigned long cp_flags);
1936 extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
1937               struct vm_area_struct **pprev, unsigned long start,
1938               unsigned long end, unsigned long newflags);
1939 
1940 /*
1941  * doesn't attempt to fault and will return short.
1942  */
1943 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1944                  unsigned int gup_flags, struct page **pages);
1945 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1946                  unsigned int gup_flags, struct page **pages);
1947 
1948 static inline bool get_user_page_fast_only(unsigned long addr,
1949             unsigned int gup_flags, struct page **pagep)
1950 {
1951     return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1952 }
1953 /*
1954  * per-process(per-mm_struct) statistics.
1955  */
1956 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1957 {
1958     long val = atomic_long_read(&mm->rss_stat.count[member]);
1959 
1960 #ifdef SPLIT_RSS_COUNTING
1961     /*
1962      * counter is updated in asynchronous manner and may go to minus.
1963      * But it's never be expected number for users.
1964      */
1965     if (val < 0)
1966         val = 0;
1967 #endif
1968     return (unsigned long)val;
1969 }
1970 
1971 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1972 
1973 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1974 {
1975     long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1976 
1977     mm_trace_rss_stat(mm, member, count);
1978 }
1979 
1980 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1981 {
1982     long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1983 
1984     mm_trace_rss_stat(mm, member, count);
1985 }
1986 
1987 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1988 {
1989     long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1990 
1991     mm_trace_rss_stat(mm, member, count);
1992 }
1993 
1994 /* Optimized variant when page is already known not to be PageAnon */
1995 static inline int mm_counter_file(struct page *page)
1996 {
1997     if (PageSwapBacked(page))
1998         return MM_SHMEMPAGES;
1999     return MM_FILEPAGES;
2000 }
2001 
2002 static inline int mm_counter(struct page *page)
2003 {
2004     if (PageAnon(page))
2005         return MM_ANONPAGES;
2006     return mm_counter_file(page);
2007 }
2008 
2009 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2010 {
2011     return get_mm_counter(mm, MM_FILEPAGES) +
2012         get_mm_counter(mm, MM_ANONPAGES) +
2013         get_mm_counter(mm, MM_SHMEMPAGES);
2014 }
2015 
2016 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2017 {
2018     return max(mm->hiwater_rss, get_mm_rss(mm));
2019 }
2020 
2021 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2022 {
2023     return max(mm->hiwater_vm, mm->total_vm);
2024 }
2025 
2026 static inline void update_hiwater_rss(struct mm_struct *mm)
2027 {
2028     unsigned long _rss = get_mm_rss(mm);
2029 
2030     if ((mm)->hiwater_rss < _rss)
2031         (mm)->hiwater_rss = _rss;
2032 }
2033 
2034 static inline void update_hiwater_vm(struct mm_struct *mm)
2035 {
2036     if (mm->hiwater_vm < mm->total_vm)
2037         mm->hiwater_vm = mm->total_vm;
2038 }
2039 
2040 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2041 {
2042     mm->hiwater_rss = get_mm_rss(mm);
2043 }
2044 
2045 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2046                      struct mm_struct *mm)
2047 {
2048     unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2049 
2050     if (*maxrss < hiwater_rss)
2051         *maxrss = hiwater_rss;
2052 }
2053 
2054 #if defined(SPLIT_RSS_COUNTING)
2055 void sync_mm_rss(struct mm_struct *mm);
2056 #else
2057 static inline void sync_mm_rss(struct mm_struct *mm)
2058 {
2059 }
2060 #endif
2061 
2062 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2063 static inline int pte_special(pte_t pte)
2064 {
2065     return 0;
2066 }
2067 
2068 static inline pte_t pte_mkspecial(pte_t pte)
2069 {
2070     return pte;
2071 }
2072 #endif
2073 
2074 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2075 static inline int pte_devmap(pte_t pte)
2076 {
2077     return 0;
2078 }
2079 #endif
2080 
2081 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2082 
2083 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2084                    spinlock_t **ptl);
2085 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2086                     spinlock_t **ptl)
2087 {
2088     pte_t *ptep;
2089     __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2090     return ptep;
2091 }
2092 
2093 #ifdef __PAGETABLE_P4D_FOLDED
2094 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2095                         unsigned long address)
2096 {
2097     return 0;
2098 }
2099 #else
2100 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2101 #endif
2102 
2103 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2104 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2105                         unsigned long address)
2106 {
2107     return 0;
2108 }
2109 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2110 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2111 
2112 #else
2113 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2114 
2115 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2116 {
2117     if (mm_pud_folded(mm))
2118         return;
2119     atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2120 }
2121 
2122 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2123 {
2124     if (mm_pud_folded(mm))
2125         return;
2126     atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2127 }
2128 #endif
2129 
2130 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2131 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2132                         unsigned long address)
2133 {
2134     return 0;
2135 }
2136 
2137 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2138 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2139 
2140 #else
2141 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2142 
2143 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2144 {
2145     if (mm_pmd_folded(mm))
2146         return;
2147     atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2148 }
2149 
2150 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2151 {
2152     if (mm_pmd_folded(mm))
2153         return;
2154     atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2155 }
2156 #endif
2157 
2158 #ifdef CONFIG_MMU
2159 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2160 {
2161     atomic_long_set(&mm->pgtables_bytes, 0);
2162 }
2163 
2164 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2165 {
2166     return atomic_long_read(&mm->pgtables_bytes);
2167 }
2168 
2169 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2170 {
2171     atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2172 }
2173 
2174 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2175 {
2176     atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2177 }
2178 #else
2179 
2180 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2181 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2182 {
2183     return 0;
2184 }
2185 
2186 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2187 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2188 #endif
2189 
2190 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2191 int __pte_alloc_kernel(pmd_t *pmd);
2192 
2193 #if defined(CONFIG_MMU)
2194 
2195 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2196         unsigned long address)
2197 {
2198     return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2199         NULL : p4d_offset(pgd, address);
2200 }
2201 
2202 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2203         unsigned long address)
2204 {
2205     return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2206         NULL : pud_offset(p4d, address);
2207 }
2208 
2209 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2210 {
2211     return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2212         NULL: pmd_offset(pud, address);
2213 }
2214 #endif /* CONFIG_MMU */
2215 
2216 #if USE_SPLIT_PTE_PTLOCKS
2217 #if ALLOC_SPLIT_PTLOCKS
2218 void __init ptlock_cache_init(void);
2219 extern bool ptlock_alloc(struct page *page);
2220 extern void ptlock_free(struct page *page);
2221 
2222 static inline spinlock_t *ptlock_ptr(struct page *page)
2223 {
2224     return page->ptl;
2225 }
2226 #else /* ALLOC_SPLIT_PTLOCKS */
2227 static inline void ptlock_cache_init(void)
2228 {
2229 }
2230 
2231 static inline bool ptlock_alloc(struct page *page)
2232 {
2233     return true;
2234 }
2235 
2236 static inline void ptlock_free(struct page *page)
2237 {
2238 }
2239 
2240 static inline spinlock_t *ptlock_ptr(struct page *page)
2241 {
2242     return &page->ptl;
2243 }
2244 #endif /* ALLOC_SPLIT_PTLOCKS */
2245 
2246 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2247 {
2248     return ptlock_ptr(pmd_page(*pmd));
2249 }
2250 
2251 static inline bool ptlock_init(struct page *page)
2252 {
2253     /*
2254      * prep_new_page() initialize page->private (and therefore page->ptl)
2255      * with 0. Make sure nobody took it in use in between.
2256      *
2257      * It can happen if arch try to use slab for page table allocation:
2258      * slab code uses page->slab_cache, which share storage with page->ptl.
2259      */
2260     VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2261     if (!ptlock_alloc(page))
2262         return false;
2263     spin_lock_init(ptlock_ptr(page));
2264     return true;
2265 }
2266 
2267 #else   /* !USE_SPLIT_PTE_PTLOCKS */
2268 /*
2269  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2270  */
2271 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2272 {
2273     return &mm->page_table_lock;
2274 }
2275 static inline void ptlock_cache_init(void) {}
2276 static inline bool ptlock_init(struct page *page) { return true; }
2277 static inline void ptlock_free(struct page *page) {}
2278 #endif /* USE_SPLIT_PTE_PTLOCKS */
2279 
2280 static inline void pgtable_init(void)
2281 {
2282     ptlock_cache_init();
2283     pgtable_cache_init();
2284 }
2285 
2286 static inline bool pgtable_pte_page_ctor(struct page *page)
2287 {
2288     if (!ptlock_init(page))
2289         return false;
2290     __SetPageTable(page);
2291     inc_lruvec_page_state(page, NR_PAGETABLE);
2292     return true;
2293 }
2294 
2295 static inline void pgtable_pte_page_dtor(struct page *page)
2296 {
2297     ptlock_free(page);
2298     __ClearPageTable(page);
2299     dec_lruvec_page_state(page, NR_PAGETABLE);
2300 }
2301 
2302 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2303 ({                          \
2304     spinlock_t *__ptl = pte_lockptr(mm, pmd);   \
2305     pte_t *__pte = pte_offset_map(pmd, address);    \
2306     *(ptlp) = __ptl;                \
2307     spin_lock(__ptl);               \
2308     __pte;                      \
2309 })
2310 
2311 #define pte_unmap_unlock(pte, ptl)  do {        \
2312     spin_unlock(ptl);               \
2313     pte_unmap(pte);                 \
2314 } while (0)
2315 
2316 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2317 
2318 #define pte_alloc_map(mm, pmd, address)         \
2319     (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2320 
2321 #define pte_alloc_map_lock(mm, pmd, address, ptlp)  \
2322     (pte_alloc(mm, pmd) ?           \
2323          NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2324 
2325 #define pte_alloc_kernel(pmd, address)          \
2326     ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2327         NULL: pte_offset_kernel(pmd, address))
2328 
2329 #if USE_SPLIT_PMD_PTLOCKS
2330 
2331 static struct page *pmd_to_page(pmd_t *pmd)
2332 {
2333     unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2334     return virt_to_page((void *)((unsigned long) pmd & mask));
2335 }
2336 
2337 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2338 {
2339     return ptlock_ptr(pmd_to_page(pmd));
2340 }
2341 
2342 static inline bool pmd_ptlock_init(struct page *page)
2343 {
2344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2345     page->pmd_huge_pte = NULL;
2346 #endif
2347     return ptlock_init(page);
2348 }
2349 
2350 static inline void pmd_ptlock_free(struct page *page)
2351 {
2352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2353     VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2354 #endif
2355     ptlock_free(page);
2356 }
2357 
2358 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2359 
2360 #else
2361 
2362 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2363 {
2364     return &mm->page_table_lock;
2365 }
2366 
2367 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2368 static inline void pmd_ptlock_free(struct page *page) {}
2369 
2370 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2371 
2372 #endif
2373 
2374 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2375 {
2376     spinlock_t *ptl = pmd_lockptr(mm, pmd);
2377     spin_lock(ptl);
2378     return ptl;
2379 }
2380 
2381 static inline bool pgtable_pmd_page_ctor(struct page *page)
2382 {
2383     if (!pmd_ptlock_init(page))
2384         return false;
2385     __SetPageTable(page);
2386     inc_lruvec_page_state(page, NR_PAGETABLE);
2387     return true;
2388 }
2389 
2390 static inline void pgtable_pmd_page_dtor(struct page *page)
2391 {
2392     pmd_ptlock_free(page);
2393     __ClearPageTable(page);
2394     dec_lruvec_page_state(page, NR_PAGETABLE);
2395 }
2396 
2397 /*
2398  * No scalability reason to split PUD locks yet, but follow the same pattern
2399  * as the PMD locks to make it easier if we decide to.  The VM should not be
2400  * considered ready to switch to split PUD locks yet; there may be places
2401  * which need to be converted from page_table_lock.
2402  */
2403 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2404 {
2405     return &mm->page_table_lock;
2406 }
2407 
2408 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2409 {
2410     spinlock_t *ptl = pud_lockptr(mm, pud);
2411 
2412     spin_lock(ptl);
2413     return ptl;
2414 }
2415 
2416 extern void __init pagecache_init(void);
2417 extern void free_initmem(void);
2418 
2419 /*
2420  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2421  * into the buddy system. The freed pages will be poisoned with pattern
2422  * "poison" if it's within range [0, UCHAR_MAX].
2423  * Return pages freed into the buddy system.
2424  */
2425 extern unsigned long free_reserved_area(void *start, void *end,
2426                     int poison, const char *s);
2427 
2428 extern void adjust_managed_page_count(struct page *page, long count);
2429 extern void mem_init_print_info(void);
2430 
2431 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2432 
2433 /* Free the reserved page into the buddy system, so it gets managed. */
2434 static inline void free_reserved_page(struct page *page)
2435 {
2436     ClearPageReserved(page);
2437     init_page_count(page);
2438     __free_page(page);
2439     adjust_managed_page_count(page, 1);
2440 }
2441 #define free_highmem_page(page) free_reserved_page(page)
2442 
2443 static inline void mark_page_reserved(struct page *page)
2444 {
2445     SetPageReserved(page);
2446     adjust_managed_page_count(page, -1);
2447 }
2448 
2449 /*
2450  * Default method to free all the __init memory into the buddy system.
2451  * The freed pages will be poisoned with pattern "poison" if it's within
2452  * range [0, UCHAR_MAX].
2453  * Return pages freed into the buddy system.
2454  */
2455 static inline unsigned long free_initmem_default(int poison)
2456 {
2457     extern char __init_begin[], __init_end[];
2458 
2459     return free_reserved_area(&__init_begin, &__init_end,
2460                   poison, "unused kernel image (initmem)");
2461 }
2462 
2463 static inline unsigned long get_num_physpages(void)
2464 {
2465     int nid;
2466     unsigned long phys_pages = 0;
2467 
2468     for_each_online_node(nid)
2469         phys_pages += node_present_pages(nid);
2470 
2471     return phys_pages;
2472 }
2473 
2474 /*
2475  * Using memblock node mappings, an architecture may initialise its
2476  * zones, allocate the backing mem_map and account for memory holes in an
2477  * architecture independent manner.
2478  *
2479  * An architecture is expected to register range of page frames backed by
2480  * physical memory with memblock_add[_node]() before calling
2481  * free_area_init() passing in the PFN each zone ends at. At a basic
2482  * usage, an architecture is expected to do something like
2483  *
2484  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2485  *                           max_highmem_pfn};
2486  * for_each_valid_physical_page_range()
2487  *  memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2488  * free_area_init(max_zone_pfns);
2489  */
2490 void free_area_init(unsigned long *max_zone_pfn);
2491 unsigned long node_map_pfn_alignment(void);
2492 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2493                         unsigned long end_pfn);
2494 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2495                         unsigned long end_pfn);
2496 extern void get_pfn_range_for_nid(unsigned int nid,
2497             unsigned long *start_pfn, unsigned long *end_pfn);
2498 extern unsigned long find_min_pfn_with_active_regions(void);
2499 
2500 #ifndef CONFIG_NUMA
2501 static inline int early_pfn_to_nid(unsigned long pfn)
2502 {
2503     return 0;
2504 }
2505 #else
2506 /* please see mm/page_alloc.c */
2507 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2508 #endif
2509 
2510 extern void set_dma_reserve(unsigned long new_dma_reserve);
2511 extern void memmap_init_range(unsigned long, int, unsigned long,
2512         unsigned long, unsigned long, enum meminit_context,
2513         struct vmem_altmap *, int migratetype);
2514 extern void setup_per_zone_wmarks(void);
2515 extern void calculate_min_free_kbytes(void);
2516 extern int __meminit init_per_zone_wmark_min(void);
2517 extern void mem_init(void);
2518 extern void __init mmap_init(void);
2519 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2520 extern long si_mem_available(void);
2521 extern void si_meminfo(struct sysinfo * val);
2522 extern void si_meminfo_node(struct sysinfo *val, int nid);
2523 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2524 extern unsigned long arch_reserved_kernel_pages(void);
2525 #endif
2526 
2527 extern __printf(3, 4)
2528 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2529 
2530 extern void setup_per_cpu_pageset(void);
2531 
2532 /* page_alloc.c */
2533 extern int min_free_kbytes;
2534 extern int watermark_boost_factor;
2535 extern int watermark_scale_factor;
2536 extern bool arch_has_descending_max_zone_pfns(void);
2537 
2538 /* nommu.c */
2539 extern atomic_long_t mmap_pages_allocated;
2540 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2541 
2542 /* interval_tree.c */
2543 void vma_interval_tree_insert(struct vm_area_struct *node,
2544                   struct rb_root_cached *root);
2545 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2546                     struct vm_area_struct *prev,
2547                     struct rb_root_cached *root);
2548 void vma_interval_tree_remove(struct vm_area_struct *node,
2549                   struct rb_root_cached *root);
2550 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2551                 unsigned long start, unsigned long last);
2552 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2553                 unsigned long start, unsigned long last);
2554 
2555 #define vma_interval_tree_foreach(vma, root, start, last)       \
2556     for (vma = vma_interval_tree_iter_first(root, start, last); \
2557          vma; vma = vma_interval_tree_iter_next(vma, start, last))
2558 
2559 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2560                    struct rb_root_cached *root);
2561 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2562                    struct rb_root_cached *root);
2563 struct anon_vma_chain *
2564 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2565                   unsigned long start, unsigned long last);
2566 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2567     struct anon_vma_chain *node, unsigned long start, unsigned long last);
2568 #ifdef CONFIG_DEBUG_VM_RB
2569 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2570 #endif
2571 
2572 #define anon_vma_interval_tree_foreach(avc, root, start, last)       \
2573     for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2574          avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2575 
2576 /* mmap.c */
2577 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2578 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2579     unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2580     struct vm_area_struct *expand);
2581 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2582     unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2583 {
2584     return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2585 }
2586 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2587     struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2588     unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2589     struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2590 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2591 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2592     unsigned long addr, int new_below);
2593 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2594     unsigned long addr, int new_below);
2595 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2596 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2597     struct rb_node **, struct rb_node *);
2598 extern void unlink_file_vma(struct vm_area_struct *);
2599 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2600     unsigned long addr, unsigned long len, pgoff_t pgoff,
2601     bool *need_rmap_locks);
2602 extern void exit_mmap(struct mm_struct *);
2603 
2604 static inline int check_data_rlimit(unsigned long rlim,
2605                     unsigned long new,
2606                     unsigned long start,
2607                     unsigned long end_data,
2608                     unsigned long start_data)
2609 {
2610     if (rlim < RLIM_INFINITY) {
2611         if (((new - start) + (end_data - start_data)) > rlim)
2612             return -ENOSPC;
2613     }
2614 
2615     return 0;
2616 }
2617 
2618 extern int mm_take_all_locks(struct mm_struct *mm);
2619 extern void mm_drop_all_locks(struct mm_struct *mm);
2620 
2621 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2622 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2623 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2624 extern struct file *get_task_exe_file(struct task_struct *task);
2625 
2626 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2627 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2628 
2629 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2630                    const struct vm_special_mapping *sm);
2631 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2632                    unsigned long addr, unsigned long len,
2633                    unsigned long flags,
2634                    const struct vm_special_mapping *spec);
2635 /* This is an obsolete alternative to _install_special_mapping. */
2636 extern int install_special_mapping(struct mm_struct *mm,
2637                    unsigned long addr, unsigned long len,
2638                    unsigned long flags, struct page **pages);
2639 
2640 unsigned long randomize_stack_top(unsigned long stack_top);
2641 unsigned long randomize_page(unsigned long start, unsigned long range);
2642 
2643 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2644 
2645 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2646     unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2647     struct list_head *uf);
2648 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2649     unsigned long len, unsigned long prot, unsigned long flags,
2650     unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2651 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2652                struct list_head *uf, bool downgrade);
2653 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2654              struct list_head *uf);
2655 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2656 
2657 #ifdef CONFIG_MMU
2658 extern int __mm_populate(unsigned long addr, unsigned long len,
2659              int ignore_errors);
2660 static inline void mm_populate(unsigned long addr, unsigned long len)
2661 {
2662     /* Ignore errors */
2663     (void) __mm_populate(addr, len, 1);
2664 }
2665 #else
2666 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2667 #endif
2668 
2669 /* These take the mm semaphore themselves */
2670 extern int __must_check vm_brk(unsigned long, unsigned long);
2671 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2672 extern int vm_munmap(unsigned long, size_t);
2673 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2674         unsigned long, unsigned long,
2675         unsigned long, unsigned long);
2676 
2677 struct vm_unmapped_area_info {
2678 #define VM_UNMAPPED_AREA_TOPDOWN 1
2679     unsigned long flags;
2680     unsigned long length;
2681     unsigned long low_limit;
2682     unsigned long high_limit;
2683     unsigned long align_mask;
2684     unsigned long align_offset;
2685 };
2686 
2687 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2688 
2689 /* truncate.c */
2690 extern void truncate_inode_pages(struct address_space *, loff_t);
2691 extern void truncate_inode_pages_range(struct address_space *,
2692                        loff_t lstart, loff_t lend);
2693 extern void truncate_inode_pages_final(struct address_space *);
2694 
2695 /* generic vm_area_ops exported for stackable file systems */
2696 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2697 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2698         pgoff_t start_pgoff, pgoff_t end_pgoff);
2699 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2700 
2701 extern unsigned long stack_guard_gap;
2702 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2703 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2704 
2705 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2706 extern int expand_downwards(struct vm_area_struct *vma,
2707         unsigned long address);
2708 #if VM_GROWSUP
2709 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2710 #else
2711   #define expand_upwards(vma, address) (0)
2712 #endif
2713 
2714 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2715 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2716 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2717                          struct vm_area_struct **pprev);
2718 
2719 /**
2720  * find_vma_intersection() - Look up the first VMA which intersects the interval
2721  * @mm: The process address space.
2722  * @start_addr: The inclusive start user address.
2723  * @end_addr: The exclusive end user address.
2724  *
2725  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
2726  * start_addr < end_addr.
2727  */
2728 static inline
2729 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2730                          unsigned long start_addr,
2731                          unsigned long end_addr)
2732 {
2733     struct vm_area_struct *vma = find_vma(mm, start_addr);
2734 
2735     if (vma && end_addr <= vma->vm_start)
2736         vma = NULL;
2737     return vma;
2738 }
2739 
2740 /**
2741  * vma_lookup() - Find a VMA at a specific address
2742  * @mm: The process address space.
2743  * @addr: The user address.
2744  *
2745  * Return: The vm_area_struct at the given address, %NULL otherwise.
2746  */
2747 static inline
2748 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2749 {
2750     struct vm_area_struct *vma = find_vma(mm, addr);
2751 
2752     if (vma && addr < vma->vm_start)
2753         vma = NULL;
2754 
2755     return vma;
2756 }
2757 
2758 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2759 {
2760     unsigned long vm_start = vma->vm_start;
2761 
2762     if (vma->vm_flags & VM_GROWSDOWN) {
2763         vm_start -= stack_guard_gap;
2764         if (vm_start > vma->vm_start)
2765             vm_start = 0;
2766     }
2767     return vm_start;
2768 }
2769 
2770 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2771 {
2772     unsigned long vm_end = vma->vm_end;
2773 
2774     if (vma->vm_flags & VM_GROWSUP) {
2775         vm_end += stack_guard_gap;
2776         if (vm_end < vma->vm_end)
2777             vm_end = -PAGE_SIZE;
2778     }
2779     return vm_end;
2780 }
2781 
2782 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2783 {
2784     return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2785 }
2786 
2787 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2788 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2789                 unsigned long vm_start, unsigned long vm_end)
2790 {
2791     struct vm_area_struct *vma = find_vma(mm, vm_start);
2792 
2793     if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2794         vma = NULL;
2795 
2796     return vma;
2797 }
2798 
2799 static inline bool range_in_vma(struct vm_area_struct *vma,
2800                 unsigned long start, unsigned long end)
2801 {
2802     return (vma && vma->vm_start <= start && end <= vma->vm_end);
2803 }
2804 
2805 #ifdef CONFIG_MMU
2806 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2807 void vma_set_page_prot(struct vm_area_struct *vma);
2808 #else
2809 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2810 {
2811     return __pgprot(0);
2812 }
2813 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2814 {
2815     vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2816 }
2817 #endif
2818 
2819 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2820 
2821 #ifdef CONFIG_NUMA_BALANCING
2822 unsigned long change_prot_numa(struct vm_area_struct *vma,
2823             unsigned long start, unsigned long end);
2824 #endif
2825 
2826 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2827 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2828             unsigned long pfn, unsigned long size, pgprot_t);
2829 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2830         unsigned long pfn, unsigned long size, pgprot_t prot);
2831 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2832 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2833             struct page **pages, unsigned long *num);
2834 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2835                 unsigned long num);
2836 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2837                 unsigned long num);
2838 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2839             unsigned long pfn);
2840 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2841             unsigned long pfn, pgprot_t pgprot);
2842 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2843             pfn_t pfn);
2844 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2845             pfn_t pfn, pgprot_t pgprot);
2846 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2847         unsigned long addr, pfn_t pfn);
2848 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2849 
2850 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2851                 unsigned long addr, struct page *page)
2852 {
2853     int err = vm_insert_page(vma, addr, page);
2854 
2855     if (err == -ENOMEM)
2856         return VM_FAULT_OOM;
2857     if (err < 0 && err != -EBUSY)
2858         return VM_FAULT_SIGBUS;
2859 
2860     return VM_FAULT_NOPAGE;
2861 }
2862 
2863 #ifndef io_remap_pfn_range
2864 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2865                      unsigned long addr, unsigned long pfn,
2866                      unsigned long size, pgprot_t prot)
2867 {
2868     return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2869 }
2870 #endif
2871 
2872 static inline vm_fault_t vmf_error(int err)
2873 {
2874     if (err == -ENOMEM)
2875         return VM_FAULT_OOM;
2876     return VM_FAULT_SIGBUS;
2877 }
2878 
2879 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2880              unsigned int foll_flags);
2881 
2882 #define FOLL_WRITE  0x01    /* check pte is writable */
2883 #define FOLL_TOUCH  0x02    /* mark page accessed */
2884 #define FOLL_GET    0x04    /* do get_page on page */
2885 #define FOLL_DUMP   0x08    /* give error on hole if it would be zero */
2886 #define FOLL_FORCE  0x10    /* get_user_pages read/write w/o permission */
2887 #define FOLL_NOWAIT 0x20    /* if a disk transfer is needed, start the IO
2888                  * and return without waiting upon it */
2889 #define FOLL_NOFAULT    0x80    /* do not fault in pages */
2890 #define FOLL_HWPOISON   0x100   /* check page is hwpoisoned */
2891 #define FOLL_NUMA   0x200   /* force NUMA hinting page fault */
2892 #define FOLL_MIGRATION  0x400   /* wait for page to replace migration entry */
2893 #define FOLL_TRIED  0x800   /* a retry, previous pass started an IO */
2894 #define FOLL_REMOTE 0x2000  /* we are working on non-current tsk/mm */
2895 #define FOLL_ANON   0x8000  /* don't do file mappings */
2896 #define FOLL_LONGTERM   0x10000 /* mapping lifetime is indefinite: see below */
2897 #define FOLL_SPLIT_PMD  0x20000 /* split huge pmd before returning */
2898 #define FOLL_PIN    0x40000 /* pages must be released via unpin_user_page */
2899 #define FOLL_FAST_ONLY  0x80000 /* gup_fast: prevent fall-back to slow gup */
2900 
2901 /*
2902  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2903  * other. Here is what they mean, and how to use them:
2904  *
2905  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2906  * period _often_ under userspace control.  This is in contrast to
2907  * iov_iter_get_pages(), whose usages are transient.
2908  *
2909  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2910  * lifetime enforced by the filesystem and we need guarantees that longterm
2911  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2912  * the filesystem.  Ideas for this coordination include revoking the longterm
2913  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2914  * added after the problem with filesystems was found FS DAX VMAs are
2915  * specifically failed.  Filesystem pages are still subject to bugs and use of
2916  * FOLL_LONGTERM should be avoided on those pages.
2917  *
2918  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2919  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2920  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2921  * is due to an incompatibility with the FS DAX check and
2922  * FAULT_FLAG_ALLOW_RETRY.
2923  *
2924  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2925  * that region.  And so, CMA attempts to migrate the page before pinning, when
2926  * FOLL_LONGTERM is specified.
2927  *
2928  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2929  * but an additional pin counting system) will be invoked. This is intended for
2930  * anything that gets a page reference and then touches page data (for example,
2931  * Direct IO). This lets the filesystem know that some non-file-system entity is
2932  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2933  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2934  * a call to unpin_user_page().
2935  *
2936  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2937  * and separate refcounting mechanisms, however, and that means that each has
2938  * its own acquire and release mechanisms:
2939  *
2940  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2941  *
2942  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2943  *
2944  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2945  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2946  * calls applied to them, and that's perfectly OK. This is a constraint on the
2947  * callers, not on the pages.)
2948  *
2949  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2950  * directly by the caller. That's in order to help avoid mismatches when
2951  * releasing pages: get_user_pages*() pages must be released via put_page(),
2952  * while pin_user_pages*() pages must be released via unpin_user_page().
2953  *
2954  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2955  */
2956 
2957 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2958 {
2959     if (vm_fault & VM_FAULT_OOM)
2960         return -ENOMEM;
2961     if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2962         return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2963     if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2964         return -EFAULT;
2965     return 0;
2966 }
2967 
2968 /*
2969  * Indicates for which pages that are write-protected in the page table,
2970  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
2971  * GUP pin will remain consistent with the pages mapped into the page tables
2972  * of the MM.
2973  *
2974  * Temporary unmapping of PageAnonExclusive() pages or clearing of
2975  * PageAnonExclusive() has to protect against concurrent GUP:
2976  * * Ordinary GUP: Using the PT lock
2977  * * GUP-fast and fork(): mm->write_protect_seq
2978  * * GUP-fast and KSM or temporary unmapping (swap, migration):
2979  *   clear/invalidate+flush of the page table entry
2980  *
2981  * Must be called with the (sub)page that's actually referenced via the
2982  * page table entry, which might not necessarily be the head page for a
2983  * PTE-mapped THP.
2984  */
2985 static inline bool gup_must_unshare(unsigned int flags, struct page *page)
2986 {
2987     /*
2988      * FOLL_WRITE is implicitly handled correctly as the page table entry
2989      * has to be writable -- and if it references (part of) an anonymous
2990      * folio, that part is required to be marked exclusive.
2991      */
2992     if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
2993         return false;
2994     /*
2995      * Note: PageAnon(page) is stable until the page is actually getting
2996      * freed.
2997      */
2998     if (!PageAnon(page))
2999         return false;
3000     /*
3001      * Note that PageKsm() pages cannot be exclusive, and consequently,
3002      * cannot get pinned.
3003      */
3004     return !PageAnonExclusive(page);
3005 }
3006 
3007 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3008 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3009                    unsigned long size, pte_fn_t fn, void *data);
3010 extern int apply_to_existing_page_range(struct mm_struct *mm,
3011                    unsigned long address, unsigned long size,
3012                    pte_fn_t fn, void *data);
3013 
3014 extern void init_mem_debugging_and_hardening(void);
3015 #ifdef CONFIG_PAGE_POISONING
3016 extern void __kernel_poison_pages(struct page *page, int numpages);
3017 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3018 extern bool _page_poisoning_enabled_early;
3019 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3020 static inline bool page_poisoning_enabled(void)
3021 {
3022     return _page_poisoning_enabled_early;
3023 }
3024 /*
3025  * For use in fast paths after init_mem_debugging() has run, or when a
3026  * false negative result is not harmful when called too early.
3027  */
3028 static inline bool page_poisoning_enabled_static(void)
3029 {
3030     return static_branch_unlikely(&_page_poisoning_enabled);
3031 }
3032 static inline void kernel_poison_pages(struct page *page, int numpages)
3033 {
3034     if (page_poisoning_enabled_static())
3035         __kernel_poison_pages(page, numpages);
3036 }
3037 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3038 {
3039     if (page_poisoning_enabled_static())
3040         __kernel_unpoison_pages(page, numpages);
3041 }
3042 #else
3043 static inline bool page_poisoning_enabled(void) { return false; }
3044 static inline bool page_poisoning_enabled_static(void) { return false; }
3045 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3046 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3047 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3048 #endif
3049 
3050 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3051 static inline bool want_init_on_alloc(gfp_t flags)
3052 {
3053     if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3054                 &init_on_alloc))
3055         return true;
3056     return flags & __GFP_ZERO;
3057 }
3058 
3059 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3060 static inline bool want_init_on_free(void)
3061 {
3062     return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3063                    &init_on_free);
3064 }
3065 
3066 extern bool _debug_pagealloc_enabled_early;
3067 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3068 
3069 static inline bool debug_pagealloc_enabled(void)
3070 {
3071     return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3072         _debug_pagealloc_enabled_early;
3073 }
3074 
3075 /*
3076  * For use in fast paths after init_debug_pagealloc() has run, or when a
3077  * false negative result is not harmful when called too early.
3078  */
3079 static inline bool debug_pagealloc_enabled_static(void)
3080 {
3081     if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3082         return false;
3083 
3084     return static_branch_unlikely(&_debug_pagealloc_enabled);
3085 }
3086 
3087 #ifdef CONFIG_DEBUG_PAGEALLOC
3088 /*
3089  * To support DEBUG_PAGEALLOC architecture must ensure that
3090  * __kernel_map_pages() never fails
3091  */
3092 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3093 
3094 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3095 {
3096     if (debug_pagealloc_enabled_static())
3097         __kernel_map_pages(page, numpages, 1);
3098 }
3099 
3100 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3101 {
3102     if (debug_pagealloc_enabled_static())
3103         __kernel_map_pages(page, numpages, 0);
3104 }
3105 #else   /* CONFIG_DEBUG_PAGEALLOC */
3106 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3107 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3108 #endif  /* CONFIG_DEBUG_PAGEALLOC */
3109 
3110 #ifdef __HAVE_ARCH_GATE_AREA
3111 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3112 extern int in_gate_area_no_mm(unsigned long addr);
3113 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3114 #else
3115 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3116 {
3117     return NULL;
3118 }
3119 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3120 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3121 {
3122     return 0;
3123 }
3124 #endif  /* __HAVE_ARCH_GATE_AREA */
3125 
3126 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3127 
3128 #ifdef CONFIG_SYSCTL
3129 extern int sysctl_drop_caches;
3130 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3131         loff_t *);
3132 #endif
3133 
3134 void drop_slab(void);
3135 
3136 #ifndef CONFIG_MMU
3137 #define randomize_va_space 0
3138 #else
3139 extern int randomize_va_space;
3140 #endif
3141 
3142 const char * arch_vma_name(struct vm_area_struct *vma);
3143 #ifdef CONFIG_MMU
3144 void print_vma_addr(char *prefix, unsigned long rip);
3145 #else
3146 static inline void print_vma_addr(char *prefix, unsigned long rip)
3147 {
3148 }
3149 #endif
3150 
3151 void *sparse_buffer_alloc(unsigned long size);
3152 struct page * __populate_section_memmap(unsigned long pfn,
3153         unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3154         struct dev_pagemap *pgmap);
3155 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3156 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3157 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3158 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3159 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3160                 struct vmem_altmap *altmap, struct page *reuse);
3161 void *vmemmap_alloc_block(unsigned long size, int node);
3162 struct vmem_altmap;
3163 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3164                   struct vmem_altmap *altmap);
3165 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3166 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3167                    int node, struct vmem_altmap *altmap);
3168 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3169         struct vmem_altmap *altmap);
3170 void vmemmap_populate_print_last(void);
3171 #ifdef CONFIG_MEMORY_HOTPLUG
3172 void vmemmap_free(unsigned long start, unsigned long end,
3173         struct vmem_altmap *altmap);
3174 #endif
3175 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3176                   unsigned long nr_pages);
3177 
3178 enum mf_flags {
3179     MF_COUNT_INCREASED = 1 << 0,
3180     MF_ACTION_REQUIRED = 1 << 1,
3181     MF_MUST_KILL = 1 << 2,
3182     MF_SOFT_OFFLINE = 1 << 3,
3183     MF_UNPOISON = 1 << 4,
3184     MF_SW_SIMULATED = 1 << 5,
3185     MF_NO_RETRY = 1 << 6,
3186 };
3187 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3188               unsigned long count, int mf_flags);
3189 extern int memory_failure(unsigned long pfn, int flags);
3190 extern void memory_failure_queue(unsigned long pfn, int flags);
3191 extern void memory_failure_queue_kick(int cpu);
3192 extern int unpoison_memory(unsigned long pfn);
3193 extern int sysctl_memory_failure_early_kill;
3194 extern int sysctl_memory_failure_recovery;
3195 extern void shake_page(struct page *p);
3196 extern atomic_long_t num_poisoned_pages __read_mostly;
3197 extern int soft_offline_page(unsigned long pfn, int flags);
3198 #ifdef CONFIG_MEMORY_FAILURE
3199 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3200 #else
3201 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3202 {
3203     return 0;
3204 }
3205 #endif
3206 
3207 #ifndef arch_memory_failure
3208 static inline int arch_memory_failure(unsigned long pfn, int flags)
3209 {
3210     return -ENXIO;
3211 }
3212 #endif
3213 
3214 #ifndef arch_is_platform_page
3215 static inline bool arch_is_platform_page(u64 paddr)
3216 {
3217     return false;
3218 }
3219 #endif
3220 
3221 /*
3222  * Error handlers for various types of pages.
3223  */
3224 enum mf_result {
3225     MF_IGNORED, /* Error: cannot be handled */
3226     MF_FAILED,  /* Error: handling failed */
3227     MF_DELAYED, /* Will be handled later */
3228     MF_RECOVERED,   /* Successfully recovered */
3229 };
3230 
3231 enum mf_action_page_type {
3232     MF_MSG_KERNEL,
3233     MF_MSG_KERNEL_HIGH_ORDER,
3234     MF_MSG_SLAB,
3235     MF_MSG_DIFFERENT_COMPOUND,
3236     MF_MSG_HUGE,
3237     MF_MSG_FREE_HUGE,
3238     MF_MSG_UNMAP_FAILED,
3239     MF_MSG_DIRTY_SWAPCACHE,
3240     MF_MSG_CLEAN_SWAPCACHE,
3241     MF_MSG_DIRTY_MLOCKED_LRU,
3242     MF_MSG_CLEAN_MLOCKED_LRU,
3243     MF_MSG_DIRTY_UNEVICTABLE_LRU,
3244     MF_MSG_CLEAN_UNEVICTABLE_LRU,
3245     MF_MSG_DIRTY_LRU,
3246     MF_MSG_CLEAN_LRU,
3247     MF_MSG_TRUNCATED_LRU,
3248     MF_MSG_BUDDY,
3249     MF_MSG_DAX,
3250     MF_MSG_UNSPLIT_THP,
3251     MF_MSG_UNKNOWN,
3252 };
3253 
3254 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3255 extern void clear_huge_page(struct page *page,
3256                 unsigned long addr_hint,
3257                 unsigned int pages_per_huge_page);
3258 extern void copy_user_huge_page(struct page *dst, struct page *src,
3259                 unsigned long addr_hint,
3260                 struct vm_area_struct *vma,
3261                 unsigned int pages_per_huge_page);
3262 extern long copy_huge_page_from_user(struct page *dst_page,
3263                 const void __user *usr_src,
3264                 unsigned int pages_per_huge_page,
3265                 bool allow_pagefault);
3266 
3267 /**
3268  * vma_is_special_huge - Are transhuge page-table entries considered special?
3269  * @vma: Pointer to the struct vm_area_struct to consider
3270  *
3271  * Whether transhuge page-table entries are considered "special" following
3272  * the definition in vm_normal_page().
3273  *
3274  * Return: true if transhuge page-table entries should be considered special,
3275  * false otherwise.
3276  */
3277 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3278 {
3279     return vma_is_dax(vma) || (vma->vm_file &&
3280                    (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3281 }
3282 
3283 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3284 
3285 #ifdef CONFIG_DEBUG_PAGEALLOC
3286 extern unsigned int _debug_guardpage_minorder;
3287 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3288 
3289 static inline unsigned int debug_guardpage_minorder(void)
3290 {
3291     return _debug_guardpage_minorder;
3292 }
3293 
3294 static inline bool debug_guardpage_enabled(void)
3295 {
3296     return static_branch_unlikely(&_debug_guardpage_enabled);
3297 }
3298 
3299 static inline bool page_is_guard(struct page *page)
3300 {
3301     if (!debug_guardpage_enabled())
3302         return false;
3303 
3304     return PageGuard(page);
3305 }
3306 #else
3307 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3308 static inline bool debug_guardpage_enabled(void) { return false; }
3309 static inline bool page_is_guard(struct page *page) { return false; }
3310 #endif /* CONFIG_DEBUG_PAGEALLOC */
3311 
3312 #if MAX_NUMNODES > 1
3313 void __init setup_nr_node_ids(void);
3314 #else
3315 static inline void setup_nr_node_ids(void) {}
3316 #endif
3317 
3318 extern int memcmp_pages(struct page *page1, struct page *page2);
3319 
3320 static inline int pages_identical(struct page *page1, struct page *page2)
3321 {
3322     return !memcmp_pages(page1, page2);
3323 }
3324 
3325 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3326 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3327                         pgoff_t first_index, pgoff_t nr,
3328                         pgoff_t bitmap_pgoff,
3329                         unsigned long *bitmap,
3330                         pgoff_t *start,
3331                         pgoff_t *end);
3332 
3333 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3334                       pgoff_t first_index, pgoff_t nr);
3335 #endif
3336 
3337 extern int sysctl_nr_trim_pages;
3338 
3339 #ifdef CONFIG_PRINTK
3340 void mem_dump_obj(void *object);
3341 #else
3342 static inline void mem_dump_obj(void *object) {}
3343 #endif
3344 
3345 /**
3346  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3347  * @seals: the seals to check
3348  * @vma: the vma to operate on
3349  *
3350  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3351  * the vma flags.  Return 0 if check pass, or <0 for errors.
3352  */
3353 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3354 {
3355     if (seals & F_SEAL_FUTURE_WRITE) {
3356         /*
3357          * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3358          * "future write" seal active.
3359          */
3360         if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3361             return -EPERM;
3362 
3363         /*
3364          * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3365          * MAP_SHARED and read-only, take care to not allow mprotect to
3366          * revert protections on such mappings. Do this only for shared
3367          * mappings. For private mappings, don't need to mask
3368          * VM_MAYWRITE as we still want them to be COW-writable.
3369          */
3370         if (vma->vm_flags & VM_SHARED)
3371             vma->vm_flags &= ~(VM_MAYWRITE);
3372     }
3373 
3374     return 0;
3375 }
3376 
3377 #ifdef CONFIG_ANON_VMA_NAME
3378 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3379               unsigned long len_in,
3380               struct anon_vma_name *anon_name);
3381 #else
3382 static inline int
3383 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3384               unsigned long len_in, struct anon_vma_name *anon_name) {
3385     return 0;
3386 }
3387 #endif
3388 
3389 /*
3390  * Whether to drop the pte markers, for example, the uffd-wp information for
3391  * file-backed memory.  This should only be specified when we will completely
3392  * drop the page in the mm, either by truncation or unmapping of the vma.  By
3393  * default, the flag is not set.
3394  */
3395 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
3396 
3397 #endif /* _LINUX_MM_H */