Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0-only */
0002 #ifndef __KVM_HOST_H
0003 #define __KVM_HOST_H
0004 
0005 
0006 #include <linux/types.h>
0007 #include <linux/hardirq.h>
0008 #include <linux/list.h>
0009 #include <linux/mutex.h>
0010 #include <linux/spinlock.h>
0011 #include <linux/signal.h>
0012 #include <linux/sched.h>
0013 #include <linux/sched/stat.h>
0014 #include <linux/bug.h>
0015 #include <linux/minmax.h>
0016 #include <linux/mm.h>
0017 #include <linux/mmu_notifier.h>
0018 #include <linux/preempt.h>
0019 #include <linux/msi.h>
0020 #include <linux/slab.h>
0021 #include <linux/vmalloc.h>
0022 #include <linux/rcupdate.h>
0023 #include <linux/ratelimit.h>
0024 #include <linux/err.h>
0025 #include <linux/irqflags.h>
0026 #include <linux/context_tracking.h>
0027 #include <linux/irqbypass.h>
0028 #include <linux/rcuwait.h>
0029 #include <linux/refcount.h>
0030 #include <linux/nospec.h>
0031 #include <linux/notifier.h>
0032 #include <linux/ftrace.h>
0033 #include <linux/hashtable.h>
0034 #include <linux/instrumentation.h>
0035 #include <linux/interval_tree.h>
0036 #include <linux/rbtree.h>
0037 #include <linux/xarray.h>
0038 #include <asm/signal.h>
0039 
0040 #include <linux/kvm.h>
0041 #include <linux/kvm_para.h>
0042 
0043 #include <linux/kvm_types.h>
0044 
0045 #include <asm/kvm_host.h>
0046 #include <linux/kvm_dirty_ring.h>
0047 
0048 #ifndef KVM_MAX_VCPU_IDS
0049 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
0050 #endif
0051 
0052 /*
0053  * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
0054  * in kvm, other bits are visible for userspace which are defined in
0055  * include/linux/kvm_h.
0056  */
0057 #define KVM_MEMSLOT_INVALID (1UL << 16)
0058 
0059 /*
0060  * Bit 63 of the memslot generation number is an "update in-progress flag",
0061  * e.g. is temporarily set for the duration of install_new_memslots().
0062  * This flag effectively creates a unique generation number that is used to
0063  * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
0064  * i.e. may (or may not) have come from the previous memslots generation.
0065  *
0066  * This is necessary because the actual memslots update is not atomic with
0067  * respect to the generation number update.  Updating the generation number
0068  * first would allow a vCPU to cache a spte from the old memslots using the
0069  * new generation number, and updating the generation number after switching
0070  * to the new memslots would allow cache hits using the old generation number
0071  * to reference the defunct memslots.
0072  *
0073  * This mechanism is used to prevent getting hits in KVM's caches while a
0074  * memslot update is in-progress, and to prevent cache hits *after* updating
0075  * the actual generation number against accesses that were inserted into the
0076  * cache *before* the memslots were updated.
0077  */
0078 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS  BIT_ULL(63)
0079 
0080 /* Two fragments for cross MMIO pages. */
0081 #define KVM_MAX_MMIO_FRAGMENTS  2
0082 
0083 #ifndef KVM_ADDRESS_SPACE_NUM
0084 #define KVM_ADDRESS_SPACE_NUM   1
0085 #endif
0086 
0087 /*
0088  * For the normal pfn, the highest 12 bits should be zero,
0089  * so we can mask bit 62 ~ bit 52  to indicate the error pfn,
0090  * mask bit 63 to indicate the noslot pfn.
0091  */
0092 #define KVM_PFN_ERR_MASK    (0x7ffULL << 52)
0093 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
0094 #define KVM_PFN_NOSLOT      (0x1ULL << 63)
0095 
0096 #define KVM_PFN_ERR_FAULT   (KVM_PFN_ERR_MASK)
0097 #define KVM_PFN_ERR_HWPOISON    (KVM_PFN_ERR_MASK + 1)
0098 #define KVM_PFN_ERR_RO_FAULT    (KVM_PFN_ERR_MASK + 2)
0099 
0100 /*
0101  * error pfns indicate that the gfn is in slot but faild to
0102  * translate it to pfn on host.
0103  */
0104 static inline bool is_error_pfn(kvm_pfn_t pfn)
0105 {
0106     return !!(pfn & KVM_PFN_ERR_MASK);
0107 }
0108 
0109 /*
0110  * error_noslot pfns indicate that the gfn can not be
0111  * translated to pfn - it is not in slot or failed to
0112  * translate it to pfn.
0113  */
0114 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
0115 {
0116     return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
0117 }
0118 
0119 /* noslot pfn indicates that the gfn is not in slot. */
0120 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
0121 {
0122     return pfn == KVM_PFN_NOSLOT;
0123 }
0124 
0125 /*
0126  * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
0127  * provide own defines and kvm_is_error_hva
0128  */
0129 #ifndef KVM_HVA_ERR_BAD
0130 
0131 #define KVM_HVA_ERR_BAD     (PAGE_OFFSET)
0132 #define KVM_HVA_ERR_RO_BAD  (PAGE_OFFSET + PAGE_SIZE)
0133 
0134 static inline bool kvm_is_error_hva(unsigned long addr)
0135 {
0136     return addr >= PAGE_OFFSET;
0137 }
0138 
0139 #endif
0140 
0141 #define KVM_ERR_PTR_BAD_PAGE    (ERR_PTR(-ENOENT))
0142 
0143 static inline bool is_error_page(struct page *page)
0144 {
0145     return IS_ERR(page);
0146 }
0147 
0148 #define KVM_REQUEST_MASK           GENMASK(7,0)
0149 #define KVM_REQUEST_NO_WAKEUP      BIT(8)
0150 #define KVM_REQUEST_WAIT           BIT(9)
0151 #define KVM_REQUEST_NO_ACTION      BIT(10)
0152 /*
0153  * Architecture-independent vcpu->requests bit members
0154  * Bits 4-7 are reserved for more arch-independent bits.
0155  */
0156 #define KVM_REQ_TLB_FLUSH         (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
0157 #define KVM_REQ_VM_DEAD           (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
0158 #define KVM_REQ_UNBLOCK           2
0159 #define KVM_REQ_UNHALT            3
0160 #define KVM_REQUEST_ARCH_BASE     8
0161 
0162 /*
0163  * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
0164  * OUTSIDE_GUEST_MODE.  KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
0165  * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
0166  * on.  A kick only guarantees that the vCPU is on its way out, e.g. a previous
0167  * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
0168  * guarantee the vCPU received an IPI and has actually exited guest mode.
0169  */
0170 #define KVM_REQ_OUTSIDE_GUEST_MODE  (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
0171 
0172 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
0173     BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
0174     (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
0175 })
0176 #define KVM_ARCH_REQ(nr)           KVM_ARCH_REQ_FLAGS(nr, 0)
0177 
0178 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
0179                  unsigned long *vcpu_bitmap);
0180 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
0181 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
0182                       struct kvm_vcpu *except);
0183 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
0184                 unsigned long *vcpu_bitmap);
0185 
0186 #define KVM_USERSPACE_IRQ_SOURCE_ID     0
0187 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID    1
0188 
0189 extern struct mutex kvm_lock;
0190 extern struct list_head vm_list;
0191 
0192 struct kvm_io_range {
0193     gpa_t addr;
0194     int len;
0195     struct kvm_io_device *dev;
0196 };
0197 
0198 #define NR_IOBUS_DEVS 1000
0199 
0200 struct kvm_io_bus {
0201     int dev_count;
0202     int ioeventfd_count;
0203     struct kvm_io_range range[];
0204 };
0205 
0206 enum kvm_bus {
0207     KVM_MMIO_BUS,
0208     KVM_PIO_BUS,
0209     KVM_VIRTIO_CCW_NOTIFY_BUS,
0210     KVM_FAST_MMIO_BUS,
0211     KVM_NR_BUSES
0212 };
0213 
0214 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
0215              int len, const void *val);
0216 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
0217                 gpa_t addr, int len, const void *val, long cookie);
0218 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
0219             int len, void *val);
0220 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
0221                 int len, struct kvm_io_device *dev);
0222 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
0223                   struct kvm_io_device *dev);
0224 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
0225                      gpa_t addr);
0226 
0227 #ifdef CONFIG_KVM_ASYNC_PF
0228 struct kvm_async_pf {
0229     struct work_struct work;
0230     struct list_head link;
0231     struct list_head queue;
0232     struct kvm_vcpu *vcpu;
0233     struct mm_struct *mm;
0234     gpa_t cr2_or_gpa;
0235     unsigned long addr;
0236     struct kvm_arch_async_pf arch;
0237     bool   wakeup_all;
0238     bool notpresent_injected;
0239 };
0240 
0241 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
0242 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
0243 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
0244             unsigned long hva, struct kvm_arch_async_pf *arch);
0245 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
0246 #endif
0247 
0248 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
0249 struct kvm_gfn_range {
0250     struct kvm_memory_slot *slot;
0251     gfn_t start;
0252     gfn_t end;
0253     pte_t pte;
0254     bool may_block;
0255 };
0256 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
0257 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
0258 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
0259 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
0260 #endif
0261 
0262 enum {
0263     OUTSIDE_GUEST_MODE,
0264     IN_GUEST_MODE,
0265     EXITING_GUEST_MODE,
0266     READING_SHADOW_PAGE_TABLES,
0267 };
0268 
0269 #define KVM_UNMAPPED_PAGE   ((void *) 0x500 + POISON_POINTER_DELTA)
0270 
0271 struct kvm_host_map {
0272     /*
0273      * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
0274      * a 'struct page' for it. When using mem= kernel parameter some memory
0275      * can be used as guest memory but they are not managed by host
0276      * kernel).
0277      * If 'pfn' is not managed by the host kernel, this field is
0278      * initialized to KVM_UNMAPPED_PAGE.
0279      */
0280     struct page *page;
0281     void *hva;
0282     kvm_pfn_t pfn;
0283     kvm_pfn_t gfn;
0284 };
0285 
0286 /*
0287  * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
0288  * directly to check for that.
0289  */
0290 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
0291 {
0292     return !!map->hva;
0293 }
0294 
0295 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
0296 {
0297     return single_task_running() && !need_resched() && ktime_before(cur, stop);
0298 }
0299 
0300 /*
0301  * Sometimes a large or cross-page mmio needs to be broken up into separate
0302  * exits for userspace servicing.
0303  */
0304 struct kvm_mmio_fragment {
0305     gpa_t gpa;
0306     void *data;
0307     unsigned len;
0308 };
0309 
0310 struct kvm_vcpu {
0311     struct kvm *kvm;
0312 #ifdef CONFIG_PREEMPT_NOTIFIERS
0313     struct preempt_notifier preempt_notifier;
0314 #endif
0315     int cpu;
0316     int vcpu_id; /* id given by userspace at creation */
0317     int vcpu_idx; /* index in kvm->vcpus array */
0318     int ____srcu_idx; /* Don't use this directly.  You've been warned. */
0319 #ifdef CONFIG_PROVE_RCU
0320     int srcu_depth;
0321 #endif
0322     int mode;
0323     u64 requests;
0324     unsigned long guest_debug;
0325 
0326     struct mutex mutex;
0327     struct kvm_run *run;
0328 
0329 #ifndef __KVM_HAVE_ARCH_WQP
0330     struct rcuwait wait;
0331 #endif
0332     struct pid __rcu *pid;
0333     int sigset_active;
0334     sigset_t sigset;
0335     unsigned int halt_poll_ns;
0336     bool valid_wakeup;
0337 
0338 #ifdef CONFIG_HAS_IOMEM
0339     int mmio_needed;
0340     int mmio_read_completed;
0341     int mmio_is_write;
0342     int mmio_cur_fragment;
0343     int mmio_nr_fragments;
0344     struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
0345 #endif
0346 
0347 #ifdef CONFIG_KVM_ASYNC_PF
0348     struct {
0349         u32 queued;
0350         struct list_head queue;
0351         struct list_head done;
0352         spinlock_t lock;
0353     } async_pf;
0354 #endif
0355 
0356 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
0357     /*
0358      * Cpu relax intercept or pause loop exit optimization
0359      * in_spin_loop: set when a vcpu does a pause loop exit
0360      *  or cpu relax intercepted.
0361      * dy_eligible: indicates whether vcpu is eligible for directed yield.
0362      */
0363     struct {
0364         bool in_spin_loop;
0365         bool dy_eligible;
0366     } spin_loop;
0367 #endif
0368     bool preempted;
0369     bool ready;
0370     struct kvm_vcpu_arch arch;
0371     struct kvm_vcpu_stat stat;
0372     char stats_id[KVM_STATS_NAME_SIZE];
0373     struct kvm_dirty_ring dirty_ring;
0374 
0375     /*
0376      * The most recently used memslot by this vCPU and the slots generation
0377      * for which it is valid.
0378      * No wraparound protection is needed since generations won't overflow in
0379      * thousands of years, even assuming 1M memslot operations per second.
0380      */
0381     struct kvm_memory_slot *last_used_slot;
0382     u64 last_used_slot_gen;
0383 };
0384 
0385 /*
0386  * Start accounting time towards a guest.
0387  * Must be called before entering guest context.
0388  */
0389 static __always_inline void guest_timing_enter_irqoff(void)
0390 {
0391     /*
0392      * This is running in ioctl context so its safe to assume that it's the
0393      * stime pending cputime to flush.
0394      */
0395     instrumentation_begin();
0396     vtime_account_guest_enter();
0397     instrumentation_end();
0398 }
0399 
0400 /*
0401  * Enter guest context and enter an RCU extended quiescent state.
0402  *
0403  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
0404  * unsafe to use any code which may directly or indirectly use RCU, tracing
0405  * (including IRQ flag tracing), or lockdep. All code in this period must be
0406  * non-instrumentable.
0407  */
0408 static __always_inline void guest_context_enter_irqoff(void)
0409 {
0410     /*
0411      * KVM does not hold any references to rcu protected data when it
0412      * switches CPU into a guest mode. In fact switching to a guest mode
0413      * is very similar to exiting to userspace from rcu point of view. In
0414      * addition CPU may stay in a guest mode for quite a long time (up to
0415      * one time slice). Lets treat guest mode as quiescent state, just like
0416      * we do with user-mode execution.
0417      */
0418     if (!context_tracking_guest_enter()) {
0419         instrumentation_begin();
0420         rcu_virt_note_context_switch(smp_processor_id());
0421         instrumentation_end();
0422     }
0423 }
0424 
0425 /*
0426  * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
0427  * guest_state_enter_irqoff().
0428  */
0429 static __always_inline void guest_enter_irqoff(void)
0430 {
0431     guest_timing_enter_irqoff();
0432     guest_context_enter_irqoff();
0433 }
0434 
0435 /**
0436  * guest_state_enter_irqoff - Fixup state when entering a guest
0437  *
0438  * Entry to a guest will enable interrupts, but the kernel state is interrupts
0439  * disabled when this is invoked. Also tell RCU about it.
0440  *
0441  * 1) Trace interrupts on state
0442  * 2) Invoke context tracking if enabled to adjust RCU state
0443  * 3) Tell lockdep that interrupts are enabled
0444  *
0445  * Invoked from architecture specific code before entering a guest.
0446  * Must be called with interrupts disabled and the caller must be
0447  * non-instrumentable.
0448  * The caller has to invoke guest_timing_enter_irqoff() before this.
0449  *
0450  * Note: this is analogous to exit_to_user_mode().
0451  */
0452 static __always_inline void guest_state_enter_irqoff(void)
0453 {
0454     instrumentation_begin();
0455     trace_hardirqs_on_prepare();
0456     lockdep_hardirqs_on_prepare();
0457     instrumentation_end();
0458 
0459     guest_context_enter_irqoff();
0460     lockdep_hardirqs_on(CALLER_ADDR0);
0461 }
0462 
0463 /*
0464  * Exit guest context and exit an RCU extended quiescent state.
0465  *
0466  * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
0467  * unsafe to use any code which may directly or indirectly use RCU, tracing
0468  * (including IRQ flag tracing), or lockdep. All code in this period must be
0469  * non-instrumentable.
0470  */
0471 static __always_inline void guest_context_exit_irqoff(void)
0472 {
0473     context_tracking_guest_exit();
0474 }
0475 
0476 /*
0477  * Stop accounting time towards a guest.
0478  * Must be called after exiting guest context.
0479  */
0480 static __always_inline void guest_timing_exit_irqoff(void)
0481 {
0482     instrumentation_begin();
0483     /* Flush the guest cputime we spent on the guest */
0484     vtime_account_guest_exit();
0485     instrumentation_end();
0486 }
0487 
0488 /*
0489  * Deprecated. Architectures should move to guest_state_exit_irqoff() and
0490  * guest_timing_exit_irqoff().
0491  */
0492 static __always_inline void guest_exit_irqoff(void)
0493 {
0494     guest_context_exit_irqoff();
0495     guest_timing_exit_irqoff();
0496 }
0497 
0498 static inline void guest_exit(void)
0499 {
0500     unsigned long flags;
0501 
0502     local_irq_save(flags);
0503     guest_exit_irqoff();
0504     local_irq_restore(flags);
0505 }
0506 
0507 /**
0508  * guest_state_exit_irqoff - Establish state when returning from guest mode
0509  *
0510  * Entry from a guest disables interrupts, but guest mode is traced as
0511  * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
0512  *
0513  * 1) Tell lockdep that interrupts are disabled
0514  * 2) Invoke context tracking if enabled to reactivate RCU
0515  * 3) Trace interrupts off state
0516  *
0517  * Invoked from architecture specific code after exiting a guest.
0518  * Must be invoked with interrupts disabled and the caller must be
0519  * non-instrumentable.
0520  * The caller has to invoke guest_timing_exit_irqoff() after this.
0521  *
0522  * Note: this is analogous to enter_from_user_mode().
0523  */
0524 static __always_inline void guest_state_exit_irqoff(void)
0525 {
0526     lockdep_hardirqs_off(CALLER_ADDR0);
0527     guest_context_exit_irqoff();
0528 
0529     instrumentation_begin();
0530     trace_hardirqs_off_finish();
0531     instrumentation_end();
0532 }
0533 
0534 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
0535 {
0536     /*
0537      * The memory barrier ensures a previous write to vcpu->requests cannot
0538      * be reordered with the read of vcpu->mode.  It pairs with the general
0539      * memory barrier following the write of vcpu->mode in VCPU RUN.
0540      */
0541     smp_mb__before_atomic();
0542     return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
0543 }
0544 
0545 /*
0546  * Some of the bitops functions do not support too long bitmaps.
0547  * This number must be determined not to exceed such limits.
0548  */
0549 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
0550 
0551 /*
0552  * Since at idle each memslot belongs to two memslot sets it has to contain
0553  * two embedded nodes for each data structure that it forms a part of.
0554  *
0555  * Two memslot sets (one active and one inactive) are necessary so the VM
0556  * continues to run on one memslot set while the other is being modified.
0557  *
0558  * These two memslot sets normally point to the same set of memslots.
0559  * They can, however, be desynchronized when performing a memslot management
0560  * operation by replacing the memslot to be modified by its copy.
0561  * After the operation is complete, both memslot sets once again point to
0562  * the same, common set of memslot data.
0563  *
0564  * The memslots themselves are independent of each other so they can be
0565  * individually added or deleted.
0566  */
0567 struct kvm_memory_slot {
0568     struct hlist_node id_node[2];
0569     struct interval_tree_node hva_node[2];
0570     struct rb_node gfn_node[2];
0571     gfn_t base_gfn;
0572     unsigned long npages;
0573     unsigned long *dirty_bitmap;
0574     struct kvm_arch_memory_slot arch;
0575     unsigned long userspace_addr;
0576     u32 flags;
0577     short id;
0578     u16 as_id;
0579 };
0580 
0581 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
0582 {
0583     return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
0584 }
0585 
0586 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
0587 {
0588     return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
0589 }
0590 
0591 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
0592 {
0593     unsigned long len = kvm_dirty_bitmap_bytes(memslot);
0594 
0595     return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
0596 }
0597 
0598 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
0599 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
0600 #endif
0601 
0602 struct kvm_s390_adapter_int {
0603     u64 ind_addr;
0604     u64 summary_addr;
0605     u64 ind_offset;
0606     u32 summary_offset;
0607     u32 adapter_id;
0608 };
0609 
0610 struct kvm_hv_sint {
0611     u32 vcpu;
0612     u32 sint;
0613 };
0614 
0615 struct kvm_xen_evtchn {
0616     u32 port;
0617     u32 vcpu_id;
0618     int vcpu_idx;
0619     u32 priority;
0620 };
0621 
0622 struct kvm_kernel_irq_routing_entry {
0623     u32 gsi;
0624     u32 type;
0625     int (*set)(struct kvm_kernel_irq_routing_entry *e,
0626            struct kvm *kvm, int irq_source_id, int level,
0627            bool line_status);
0628     union {
0629         struct {
0630             unsigned irqchip;
0631             unsigned pin;
0632         } irqchip;
0633         struct {
0634             u32 address_lo;
0635             u32 address_hi;
0636             u32 data;
0637             u32 flags;
0638             u32 devid;
0639         } msi;
0640         struct kvm_s390_adapter_int adapter;
0641         struct kvm_hv_sint hv_sint;
0642         struct kvm_xen_evtchn xen_evtchn;
0643     };
0644     struct hlist_node link;
0645 };
0646 
0647 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
0648 struct kvm_irq_routing_table {
0649     int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
0650     u32 nr_rt_entries;
0651     /*
0652      * Array indexed by gsi. Each entry contains list of irq chips
0653      * the gsi is connected to.
0654      */
0655     struct hlist_head map[];
0656 };
0657 #endif
0658 
0659 #ifndef KVM_INTERNAL_MEM_SLOTS
0660 #define KVM_INTERNAL_MEM_SLOTS 0
0661 #endif
0662 
0663 #define KVM_MEM_SLOTS_NUM SHRT_MAX
0664 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
0665 
0666 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
0667 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
0668 {
0669     return 0;
0670 }
0671 #endif
0672 
0673 struct kvm_memslots {
0674     u64 generation;
0675     atomic_long_t last_used_slot;
0676     struct rb_root_cached hva_tree;
0677     struct rb_root gfn_tree;
0678     /*
0679      * The mapping table from slot id to memslot.
0680      *
0681      * 7-bit bucket count matches the size of the old id to index array for
0682      * 512 slots, while giving good performance with this slot count.
0683      * Higher bucket counts bring only small performance improvements but
0684      * always result in higher memory usage (even for lower memslot counts).
0685      */
0686     DECLARE_HASHTABLE(id_hash, 7);
0687     int node_idx;
0688 };
0689 
0690 struct kvm {
0691 #ifdef KVM_HAVE_MMU_RWLOCK
0692     rwlock_t mmu_lock;
0693 #else
0694     spinlock_t mmu_lock;
0695 #endif /* KVM_HAVE_MMU_RWLOCK */
0696 
0697     struct mutex slots_lock;
0698 
0699     /*
0700      * Protects the arch-specific fields of struct kvm_memory_slots in
0701      * use by the VM. To be used under the slots_lock (above) or in a
0702      * kvm->srcu critical section where acquiring the slots_lock would
0703      * lead to deadlock with the synchronize_srcu in
0704      * install_new_memslots.
0705      */
0706     struct mutex slots_arch_lock;
0707     struct mm_struct *mm; /* userspace tied to this vm */
0708     unsigned long nr_memslot_pages;
0709     /* The two memslot sets - active and inactive (per address space) */
0710     struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
0711     /* The current active memslot set for each address space */
0712     struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
0713     struct xarray vcpu_array;
0714 
0715     /* Used to wait for completion of MMU notifiers.  */
0716     spinlock_t mn_invalidate_lock;
0717     unsigned long mn_active_invalidate_count;
0718     struct rcuwait mn_memslots_update_rcuwait;
0719 
0720     /* For management / invalidation of gfn_to_pfn_caches */
0721     spinlock_t gpc_lock;
0722     struct list_head gpc_list;
0723 
0724     /*
0725      * created_vcpus is protected by kvm->lock, and is incremented
0726      * at the beginning of KVM_CREATE_VCPU.  online_vcpus is only
0727      * incremented after storing the kvm_vcpu pointer in vcpus,
0728      * and is accessed atomically.
0729      */
0730     atomic_t online_vcpus;
0731     int max_vcpus;
0732     int created_vcpus;
0733     int last_boosted_vcpu;
0734     struct list_head vm_list;
0735     struct mutex lock;
0736     struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
0737 #ifdef CONFIG_HAVE_KVM_EVENTFD
0738     struct {
0739         spinlock_t        lock;
0740         struct list_head  items;
0741         struct list_head  resampler_list;
0742         struct mutex      resampler_lock;
0743     } irqfds;
0744     struct list_head ioeventfds;
0745 #endif
0746     struct kvm_vm_stat stat;
0747     struct kvm_arch arch;
0748     refcount_t users_count;
0749 #ifdef CONFIG_KVM_MMIO
0750     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
0751     spinlock_t ring_lock;
0752     struct list_head coalesced_zones;
0753 #endif
0754 
0755     struct mutex irq_lock;
0756 #ifdef CONFIG_HAVE_KVM_IRQCHIP
0757     /*
0758      * Update side is protected by irq_lock.
0759      */
0760     struct kvm_irq_routing_table __rcu *irq_routing;
0761 #endif
0762 #ifdef CONFIG_HAVE_KVM_IRQFD
0763     struct hlist_head irq_ack_notifier_list;
0764 #endif
0765 
0766 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
0767     struct mmu_notifier mmu_notifier;
0768     unsigned long mmu_invalidate_seq;
0769     long mmu_invalidate_in_progress;
0770     unsigned long mmu_invalidate_range_start;
0771     unsigned long mmu_invalidate_range_end;
0772 #endif
0773     struct list_head devices;
0774     u64 manual_dirty_log_protect;
0775     struct dentry *debugfs_dentry;
0776     struct kvm_stat_data **debugfs_stat_data;
0777     struct srcu_struct srcu;
0778     struct srcu_struct irq_srcu;
0779     pid_t userspace_pid;
0780     unsigned int max_halt_poll_ns;
0781     u32 dirty_ring_size;
0782     bool vm_bugged;
0783     bool vm_dead;
0784 
0785 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
0786     struct notifier_block pm_notifier;
0787 #endif
0788     char stats_id[KVM_STATS_NAME_SIZE];
0789 };
0790 
0791 #define kvm_err(fmt, ...) \
0792     pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
0793 #define kvm_info(fmt, ...) \
0794     pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
0795 #define kvm_debug(fmt, ...) \
0796     pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
0797 #define kvm_debug_ratelimited(fmt, ...) \
0798     pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
0799                  ## __VA_ARGS__)
0800 #define kvm_pr_unimpl(fmt, ...) \
0801     pr_err_ratelimited("kvm [%i]: " fmt, \
0802                task_tgid_nr(current), ## __VA_ARGS__)
0803 
0804 /* The guest did something we don't support. */
0805 #define vcpu_unimpl(vcpu, fmt, ...)                 \
0806     kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt,          \
0807             (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
0808 
0809 #define vcpu_debug(vcpu, fmt, ...)                  \
0810     kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
0811 #define vcpu_debug_ratelimited(vcpu, fmt, ...)              \
0812     kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id,           \
0813                   ## __VA_ARGS__)
0814 #define vcpu_err(vcpu, fmt, ...)                    \
0815     kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
0816 
0817 static inline void kvm_vm_dead(struct kvm *kvm)
0818 {
0819     kvm->vm_dead = true;
0820     kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
0821 }
0822 
0823 static inline void kvm_vm_bugged(struct kvm *kvm)
0824 {
0825     kvm->vm_bugged = true;
0826     kvm_vm_dead(kvm);
0827 }
0828 
0829 
0830 #define KVM_BUG(cond, kvm, fmt...)              \
0831 ({                              \
0832     int __ret = (cond);                 \
0833                                 \
0834     if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt))     \
0835         kvm_vm_bugged(kvm);             \
0836     unlikely(__ret);                    \
0837 })
0838 
0839 #define KVM_BUG_ON(cond, kvm)                   \
0840 ({                              \
0841     int __ret = (cond);                 \
0842                                 \
0843     if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged))       \
0844         kvm_vm_bugged(kvm);             \
0845     unlikely(__ret);                    \
0846 })
0847 
0848 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
0849 {
0850 #ifdef CONFIG_PROVE_RCU
0851     WARN_ONCE(vcpu->srcu_depth++,
0852           "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
0853 #endif
0854     vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
0855 }
0856 
0857 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
0858 {
0859     srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
0860 
0861 #ifdef CONFIG_PROVE_RCU
0862     WARN_ONCE(--vcpu->srcu_depth,
0863           "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
0864 #endif
0865 }
0866 
0867 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
0868 {
0869     return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
0870 }
0871 
0872 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
0873 {
0874     return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
0875                       lockdep_is_held(&kvm->slots_lock) ||
0876                       !refcount_read(&kvm->users_count));
0877 }
0878 
0879 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
0880 {
0881     int num_vcpus = atomic_read(&kvm->online_vcpus);
0882     i = array_index_nospec(i, num_vcpus);
0883 
0884     /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu.  */
0885     smp_rmb();
0886     return xa_load(&kvm->vcpu_array, i);
0887 }
0888 
0889 #define kvm_for_each_vcpu(idx, vcpup, kvm)         \
0890     xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
0891               (atomic_read(&kvm->online_vcpus) - 1))
0892 
0893 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
0894 {
0895     struct kvm_vcpu *vcpu = NULL;
0896     unsigned long i;
0897 
0898     if (id < 0)
0899         return NULL;
0900     if (id < KVM_MAX_VCPUS)
0901         vcpu = kvm_get_vcpu(kvm, id);
0902     if (vcpu && vcpu->vcpu_id == id)
0903         return vcpu;
0904     kvm_for_each_vcpu(i, vcpu, kvm)
0905         if (vcpu->vcpu_id == id)
0906             return vcpu;
0907     return NULL;
0908 }
0909 
0910 void kvm_destroy_vcpus(struct kvm *kvm);
0911 
0912 void vcpu_load(struct kvm_vcpu *vcpu);
0913 void vcpu_put(struct kvm_vcpu *vcpu);
0914 
0915 #ifdef __KVM_HAVE_IOAPIC
0916 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
0917 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
0918 #else
0919 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
0920 {
0921 }
0922 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
0923 {
0924 }
0925 #endif
0926 
0927 #ifdef CONFIG_HAVE_KVM_IRQFD
0928 int kvm_irqfd_init(void);
0929 void kvm_irqfd_exit(void);
0930 #else
0931 static inline int kvm_irqfd_init(void)
0932 {
0933     return 0;
0934 }
0935 
0936 static inline void kvm_irqfd_exit(void)
0937 {
0938 }
0939 #endif
0940 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
0941           struct module *module);
0942 void kvm_exit(void);
0943 
0944 void kvm_get_kvm(struct kvm *kvm);
0945 bool kvm_get_kvm_safe(struct kvm *kvm);
0946 void kvm_put_kvm(struct kvm *kvm);
0947 bool file_is_kvm(struct file *file);
0948 void kvm_put_kvm_no_destroy(struct kvm *kvm);
0949 
0950 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
0951 {
0952     as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
0953     return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
0954             lockdep_is_held(&kvm->slots_lock) ||
0955             !refcount_read(&kvm->users_count));
0956 }
0957 
0958 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
0959 {
0960     return __kvm_memslots(kvm, 0);
0961 }
0962 
0963 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
0964 {
0965     int as_id = kvm_arch_vcpu_memslots_id(vcpu);
0966 
0967     return __kvm_memslots(vcpu->kvm, as_id);
0968 }
0969 
0970 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
0971 {
0972     return RB_EMPTY_ROOT(&slots->gfn_tree);
0973 }
0974 
0975 #define kvm_for_each_memslot(memslot, bkt, slots)                 \
0976     hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
0977         if (WARN_ON_ONCE(!memslot->npages)) {                 \
0978         } else
0979 
0980 static inline
0981 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
0982 {
0983     struct kvm_memory_slot *slot;
0984     int idx = slots->node_idx;
0985 
0986     hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
0987         if (slot->id == id)
0988             return slot;
0989     }
0990 
0991     return NULL;
0992 }
0993 
0994 /* Iterator used for walking memslots that overlap a gfn range. */
0995 struct kvm_memslot_iter {
0996     struct kvm_memslots *slots;
0997     struct rb_node *node;
0998     struct kvm_memory_slot *slot;
0999 };
1000 
1001 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1002 {
1003     iter->node = rb_next(iter->node);
1004     if (!iter->node)
1005         return;
1006 
1007     iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1008 }
1009 
1010 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1011                       struct kvm_memslots *slots,
1012                       gfn_t start)
1013 {
1014     int idx = slots->node_idx;
1015     struct rb_node *tmp;
1016     struct kvm_memory_slot *slot;
1017 
1018     iter->slots = slots;
1019 
1020     /*
1021      * Find the so called "upper bound" of a key - the first node that has
1022      * its key strictly greater than the searched one (the start gfn in our case).
1023      */
1024     iter->node = NULL;
1025     for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1026         slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1027         if (start < slot->base_gfn) {
1028             iter->node = tmp;
1029             tmp = tmp->rb_left;
1030         } else {
1031             tmp = tmp->rb_right;
1032         }
1033     }
1034 
1035     /*
1036      * Find the slot with the lowest gfn that can possibly intersect with
1037      * the range, so we'll ideally have slot start <= range start
1038      */
1039     if (iter->node) {
1040         /*
1041          * A NULL previous node means that the very first slot
1042          * already has a higher start gfn.
1043          * In this case slot start > range start.
1044          */
1045         tmp = rb_prev(iter->node);
1046         if (tmp)
1047             iter->node = tmp;
1048     } else {
1049         /* a NULL node below means no slots */
1050         iter->node = rb_last(&slots->gfn_tree);
1051     }
1052 
1053     if (iter->node) {
1054         iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1055 
1056         /*
1057          * It is possible in the slot start < range start case that the
1058          * found slot ends before or at range start (slot end <= range start)
1059          * and so it does not overlap the requested range.
1060          *
1061          * In such non-overlapping case the next slot (if it exists) will
1062          * already have slot start > range start, otherwise the logic above
1063          * would have found it instead of the current slot.
1064          */
1065         if (iter->slot->base_gfn + iter->slot->npages <= start)
1066             kvm_memslot_iter_next(iter);
1067     }
1068 }
1069 
1070 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1071 {
1072     if (!iter->node)
1073         return false;
1074 
1075     /*
1076      * If this slot starts beyond or at the end of the range so does
1077      * every next one
1078      */
1079     return iter->slot->base_gfn < end;
1080 }
1081 
1082 /* Iterate over each memslot at least partially intersecting [start, end) range */
1083 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end)  \
1084     for (kvm_memslot_iter_start(iter, slots, start);        \
1085          kvm_memslot_iter_is_valid(iter, end);          \
1086          kvm_memslot_iter_next(iter))
1087 
1088 /*
1089  * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1090  * - create a new memory slot
1091  * - delete an existing memory slot
1092  * - modify an existing memory slot
1093  *   -- move it in the guest physical memory space
1094  *   -- just change its flags
1095  *
1096  * Since flags can be changed by some of these operations, the following
1097  * differentiation is the best we can do for __kvm_set_memory_region():
1098  */
1099 enum kvm_mr_change {
1100     KVM_MR_CREATE,
1101     KVM_MR_DELETE,
1102     KVM_MR_MOVE,
1103     KVM_MR_FLAGS_ONLY,
1104 };
1105 
1106 int kvm_set_memory_region(struct kvm *kvm,
1107               const struct kvm_userspace_memory_region *mem);
1108 int __kvm_set_memory_region(struct kvm *kvm,
1109                 const struct kvm_userspace_memory_region *mem);
1110 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1111 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1112 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1113                 const struct kvm_memory_slot *old,
1114                 struct kvm_memory_slot *new,
1115                 enum kvm_mr_change change);
1116 void kvm_arch_commit_memory_region(struct kvm *kvm,
1117                 struct kvm_memory_slot *old,
1118                 const struct kvm_memory_slot *new,
1119                 enum kvm_mr_change change);
1120 /* flush all memory translations */
1121 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1122 /* flush memory translations pointing to 'slot' */
1123 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1124                    struct kvm_memory_slot *slot);
1125 
1126 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1127                 struct page **pages, int nr_pages);
1128 
1129 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1130 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1131 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1132 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1133 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1134                       bool *writable);
1135 void kvm_release_page_clean(struct page *page);
1136 void kvm_release_page_dirty(struct page *page);
1137 
1138 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1139 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1140               bool *writable);
1141 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1142 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1143 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1144                    bool atomic, bool *async, bool write_fault,
1145                    bool *writable, hva_t *hva);
1146 
1147 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1148 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1149 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1150 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1151 
1152 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1153 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1154             int len);
1155 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1156 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1157                void *data, unsigned long len);
1158 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1159                  void *data, unsigned int offset,
1160                  unsigned long len);
1161 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1162              int offset, int len);
1163 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1164             unsigned long len);
1165 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1166                void *data, unsigned long len);
1167 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1168                   void *data, unsigned int offset,
1169                   unsigned long len);
1170 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1171                   gpa_t gpa, unsigned long len);
1172 
1173 #define __kvm_get_guest(kvm, gfn, offset, v)                \
1174 ({                                  \
1175     unsigned long __addr = gfn_to_hva(kvm, gfn);            \
1176     typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1177     int __ret = -EFAULT;                        \
1178                                     \
1179     if (!kvm_is_error_hva(__addr))                  \
1180         __ret = get_user(v, __uaddr);               \
1181     __ret;                              \
1182 })
1183 
1184 #define kvm_get_guest(kvm, gpa, v)                  \
1185 ({                                  \
1186     gpa_t __gpa = gpa;                      \
1187     struct kvm *__kvm = kvm;                    \
1188                                     \
1189     __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT,         \
1190             offset_in_page(__gpa), v);          \
1191 })
1192 
1193 #define __kvm_put_guest(kvm, gfn, offset, v)                \
1194 ({                                  \
1195     unsigned long __addr = gfn_to_hva(kvm, gfn);            \
1196     typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1197     int __ret = -EFAULT;                        \
1198                                     \
1199     if (!kvm_is_error_hva(__addr))                  \
1200         __ret = put_user(v, __uaddr);               \
1201     if (!__ret)                         \
1202         mark_page_dirty(kvm, gfn);              \
1203     __ret;                              \
1204 })
1205 
1206 #define kvm_put_guest(kvm, gpa, v)                  \
1207 ({                                  \
1208     gpa_t __gpa = gpa;                      \
1209     struct kvm *__kvm = kvm;                    \
1210                                     \
1211     __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT,         \
1212             offset_in_page(__gpa), v);          \
1213 })
1214 
1215 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1216 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1217 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1218 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1219 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1220 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1221 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1222 
1223 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1224 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1225 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1226 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1227 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1228 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1229 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1230 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1231 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1232                  int len);
1233 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1234                    unsigned long len);
1235 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1236             unsigned long len);
1237 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1238                   int offset, int len);
1239 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1240              unsigned long len);
1241 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1242 
1243 /**
1244  * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1245  *                             given guest physical address.
1246  *
1247  * @kvm:       pointer to kvm instance.
1248  * @gpc:       struct gfn_to_pfn_cache object.
1249  * @vcpu:      vCPU to be used for marking pages dirty and to be woken on
1250  *         invalidation.
1251  * @usage:     indicates if the resulting host physical PFN is used while
1252  *         the @vcpu is IN_GUEST_MODE (in which case invalidation of 
1253  *         the cache from MMU notifiers---but not for KVM memslot
1254  *         changes!---will also force @vcpu to exit the guest and
1255  *         refresh the cache); and/or if the PFN used directly
1256  *         by KVM (and thus needs a kernel virtual mapping).
1257  * @gpa:       guest physical address to map.
1258  * @len:       sanity check; the range being access must fit a single page.
1259  *
1260  * @return:    0 for success.
1261  *         -EINVAL for a mapping which would cross a page boundary.
1262  *                 -EFAULT for an untranslatable guest physical address.
1263  *
1264  * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1265  * invalidations to be processed.  Callers are required to use
1266  * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before
1267  * accessing the target page.
1268  */
1269 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1270                   struct kvm_vcpu *vcpu, enum pfn_cache_usage usage,
1271                   gpa_t gpa, unsigned long len);
1272 
1273 /**
1274  * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1275  *
1276  * @kvm:       pointer to kvm instance.
1277  * @gpc:       struct gfn_to_pfn_cache object.
1278  * @gpa:       current guest physical address to map.
1279  * @len:       sanity check; the range being access must fit a single page.
1280  *
1281  * @return:    %true if the cache is still valid and the address matches.
1282  *         %false if the cache is not valid.
1283  *
1284  * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1285  * while calling this function, and then continue to hold the lock until the
1286  * access is complete.
1287  *
1288  * Callers in IN_GUEST_MODE may do so without locking, although they should
1289  * still hold a read lock on kvm->scru for the memslot checks.
1290  */
1291 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1292                 gpa_t gpa, unsigned long len);
1293 
1294 /**
1295  * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1296  *
1297  * @kvm:       pointer to kvm instance.
1298  * @gpc:       struct gfn_to_pfn_cache object.
1299  * @gpa:       updated guest physical address to map.
1300  * @len:       sanity check; the range being access must fit a single page.
1301  *
1302  * @return:    0 for success.
1303  *         -EINVAL for a mapping which would cross a page boundary.
1304  *                 -EFAULT for an untranslatable guest physical address.
1305  *
1306  * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1307  * returm from this function does not mean the page can be immediately
1308  * accessed because it may have raced with an invalidation. Callers must
1309  * still lock and check the cache status, as this function does not return
1310  * with the lock still held to permit access.
1311  */
1312 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1313                  gpa_t gpa, unsigned long len);
1314 
1315 /**
1316  * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1317  *
1318  * @kvm:       pointer to kvm instance.
1319  * @gpc:       struct gfn_to_pfn_cache object.
1320  *
1321  * This unmaps the referenced page. The cache is left in the invalid state
1322  * but at least the mapping from GPA to userspace HVA will remain cached
1323  * and can be reused on a subsequent refresh.
1324  */
1325 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1326 
1327 /**
1328  * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1329  *
1330  * @kvm:       pointer to kvm instance.
1331  * @gpc:       struct gfn_to_pfn_cache object.
1332  *
1333  * This removes a cache from the @kvm's list to be processed on MMU notifier
1334  * invocation.
1335  */
1336 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1337 
1338 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1339 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1340 
1341 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1342 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1343 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1344 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1345 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1346 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1347 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1348 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1349 
1350 void kvm_flush_remote_tlbs(struct kvm *kvm);
1351 
1352 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1353 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1354 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1355 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1356 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1357 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1358 #endif
1359 
1360 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
1361                   unsigned long end);
1362 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
1363                 unsigned long end);
1364 
1365 long kvm_arch_dev_ioctl(struct file *filp,
1366             unsigned int ioctl, unsigned long arg);
1367 long kvm_arch_vcpu_ioctl(struct file *filp,
1368              unsigned int ioctl, unsigned long arg);
1369 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1370 
1371 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1372 
1373 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1374                     struct kvm_memory_slot *slot,
1375                     gfn_t gfn_offset,
1376                     unsigned long mask);
1377 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1378 
1379 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1380 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1381                     const struct kvm_memory_slot *memslot);
1382 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1383 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1384 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1385               int *is_dirty, struct kvm_memory_slot **memslot);
1386 #endif
1387 
1388 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1389             bool line_status);
1390 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1391                 struct kvm_enable_cap *cap);
1392 long kvm_arch_vm_ioctl(struct file *filp,
1393                unsigned int ioctl, unsigned long arg);
1394 
1395 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1396 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1397 
1398 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1399                     struct kvm_translation *tr);
1400 
1401 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1402 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1403 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1404                   struct kvm_sregs *sregs);
1405 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1406                   struct kvm_sregs *sregs);
1407 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1408                     struct kvm_mp_state *mp_state);
1409 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1410                     struct kvm_mp_state *mp_state);
1411 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1412                     struct kvm_guest_debug *dbg);
1413 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1414 
1415 int kvm_arch_init(void *opaque);
1416 void kvm_arch_exit(void);
1417 
1418 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1419 
1420 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1421 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1422 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1423 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1424 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1425 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1426 
1427 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1428 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1429 #endif
1430 
1431 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1432 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1433 #else
1434 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1435 #endif
1436 
1437 int kvm_arch_hardware_enable(void);
1438 void kvm_arch_hardware_disable(void);
1439 int kvm_arch_hardware_setup(void *opaque);
1440 void kvm_arch_hardware_unsetup(void);
1441 int kvm_arch_check_processor_compat(void *opaque);
1442 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1443 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1444 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1445 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1446 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1447 int kvm_arch_post_init_vm(struct kvm *kvm);
1448 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1449 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1450 
1451 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1452 /*
1453  * All architectures that want to use vzalloc currently also
1454  * need their own kvm_arch_alloc_vm implementation.
1455  */
1456 static inline struct kvm *kvm_arch_alloc_vm(void)
1457 {
1458     return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1459 }
1460 #endif
1461 
1462 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1463 {
1464     kvfree(kvm);
1465 }
1466 
1467 #ifndef __KVM_HAVE_ARCH_VM_FREE
1468 static inline void kvm_arch_free_vm(struct kvm *kvm)
1469 {
1470     __kvm_arch_free_vm(kvm);
1471 }
1472 #endif
1473 
1474 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1475 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1476 {
1477     return -ENOTSUPP;
1478 }
1479 #endif
1480 
1481 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1482 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1483 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1484 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1485 #else
1486 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1487 {
1488 }
1489 
1490 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1491 {
1492 }
1493 
1494 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1495 {
1496     return false;
1497 }
1498 #endif
1499 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1500 void kvm_arch_start_assignment(struct kvm *kvm);
1501 void kvm_arch_end_assignment(struct kvm *kvm);
1502 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1503 #else
1504 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1505 {
1506 }
1507 
1508 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1509 {
1510 }
1511 
1512 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1513 {
1514     return false;
1515 }
1516 #endif
1517 
1518 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1519 {
1520 #ifdef __KVM_HAVE_ARCH_WQP
1521     return vcpu->arch.waitp;
1522 #else
1523     return &vcpu->wait;
1524 #endif
1525 }
1526 
1527 /*
1528  * Wake a vCPU if necessary, but don't do any stats/metadata updates.  Returns
1529  * true if the vCPU was blocking and was awakened, false otherwise.
1530  */
1531 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1532 {
1533     return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1534 }
1535 
1536 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1537 {
1538     return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1539 }
1540 
1541 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1542 /*
1543  * returns true if the virtual interrupt controller is initialized and
1544  * ready to accept virtual IRQ. On some architectures the virtual interrupt
1545  * controller is dynamically instantiated and this is not always true.
1546  */
1547 bool kvm_arch_intc_initialized(struct kvm *kvm);
1548 #else
1549 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1550 {
1551     return true;
1552 }
1553 #endif
1554 
1555 #ifdef CONFIG_GUEST_PERF_EVENTS
1556 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1557 
1558 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1559 void kvm_unregister_perf_callbacks(void);
1560 #else
1561 static inline void kvm_register_perf_callbacks(void *ign) {}
1562 static inline void kvm_unregister_perf_callbacks(void) {}
1563 #endif /* CONFIG_GUEST_PERF_EVENTS */
1564 
1565 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1566 void kvm_arch_destroy_vm(struct kvm *kvm);
1567 void kvm_arch_sync_events(struct kvm *kvm);
1568 
1569 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1570 
1571 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
1572 bool kvm_is_zone_device_page(struct page *page);
1573 
1574 struct kvm_irq_ack_notifier {
1575     struct hlist_node link;
1576     unsigned gsi;
1577     void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1578 };
1579 
1580 int kvm_irq_map_gsi(struct kvm *kvm,
1581             struct kvm_kernel_irq_routing_entry *entries, int gsi);
1582 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1583 
1584 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1585         bool line_status);
1586 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1587         int irq_source_id, int level, bool line_status);
1588 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1589                    struct kvm *kvm, int irq_source_id,
1590                    int level, bool line_status);
1591 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1592 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1593 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1594 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1595                    struct kvm_irq_ack_notifier *kian);
1596 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1597                    struct kvm_irq_ack_notifier *kian);
1598 int kvm_request_irq_source_id(struct kvm *kvm);
1599 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1600 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1601 
1602 /*
1603  * Returns a pointer to the memslot if it contains gfn.
1604  * Otherwise returns NULL.
1605  */
1606 static inline struct kvm_memory_slot *
1607 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1608 {
1609     if (!slot)
1610         return NULL;
1611 
1612     if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1613         return slot;
1614     else
1615         return NULL;
1616 }
1617 
1618 /*
1619  * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1620  *
1621  * With "approx" set returns the memslot also when the address falls
1622  * in a hole. In that case one of the memslots bordering the hole is
1623  * returned.
1624  */
1625 static inline struct kvm_memory_slot *
1626 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1627 {
1628     struct kvm_memory_slot *slot;
1629     struct rb_node *node;
1630     int idx = slots->node_idx;
1631 
1632     slot = NULL;
1633     for (node = slots->gfn_tree.rb_node; node; ) {
1634         slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1635         if (gfn >= slot->base_gfn) {
1636             if (gfn < slot->base_gfn + slot->npages)
1637                 return slot;
1638             node = node->rb_right;
1639         } else
1640             node = node->rb_left;
1641     }
1642 
1643     return approx ? slot : NULL;
1644 }
1645 
1646 static inline struct kvm_memory_slot *
1647 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1648 {
1649     struct kvm_memory_slot *slot;
1650 
1651     slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1652     slot = try_get_memslot(slot, gfn);
1653     if (slot)
1654         return slot;
1655 
1656     slot = search_memslots(slots, gfn, approx);
1657     if (slot) {
1658         atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1659         return slot;
1660     }
1661 
1662     return NULL;
1663 }
1664 
1665 /*
1666  * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1667  * the lookups in hot paths.  gfn_to_memslot() itself isn't here as an inline
1668  * because that would bloat other code too much.
1669  */
1670 static inline struct kvm_memory_slot *
1671 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1672 {
1673     return ____gfn_to_memslot(slots, gfn, false);
1674 }
1675 
1676 static inline unsigned long
1677 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1678 {
1679     /*
1680      * The index was checked originally in search_memslots.  To avoid
1681      * that a malicious guest builds a Spectre gadget out of e.g. page
1682      * table walks, do not let the processor speculate loads outside
1683      * the guest's registered memslots.
1684      */
1685     unsigned long offset = gfn - slot->base_gfn;
1686     offset = array_index_nospec(offset, slot->npages);
1687     return slot->userspace_addr + offset * PAGE_SIZE;
1688 }
1689 
1690 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1691 {
1692     return gfn_to_memslot(kvm, gfn)->id;
1693 }
1694 
1695 static inline gfn_t
1696 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1697 {
1698     gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1699 
1700     return slot->base_gfn + gfn_offset;
1701 }
1702 
1703 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1704 {
1705     return (gpa_t)gfn << PAGE_SHIFT;
1706 }
1707 
1708 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1709 {
1710     return (gfn_t)(gpa >> PAGE_SHIFT);
1711 }
1712 
1713 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1714 {
1715     return (hpa_t)pfn << PAGE_SHIFT;
1716 }
1717 
1718 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1719 {
1720     unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1721 
1722     return kvm_is_error_hva(hva);
1723 }
1724 
1725 enum kvm_stat_kind {
1726     KVM_STAT_VM,
1727     KVM_STAT_VCPU,
1728 };
1729 
1730 struct kvm_stat_data {
1731     struct kvm *kvm;
1732     const struct _kvm_stats_desc *desc;
1733     enum kvm_stat_kind kind;
1734 };
1735 
1736 struct _kvm_stats_desc {
1737     struct kvm_stats_desc desc;
1738     char name[KVM_STATS_NAME_SIZE];
1739 };
1740 
1741 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz)              \
1742     .flags = type | unit | base |                          \
1743          BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) |          \
1744          BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) |          \
1745          BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK),           \
1746     .exponent = exp,                               \
1747     .size = sz,                                \
1748     .bucket_size = bsz
1749 
1750 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)        \
1751     {                                      \
1752         {                                  \
1753             STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1754             .offset = offsetof(struct kvm_vm_stat, generic.stat)   \
1755         },                                 \
1756         .name = #stat,                             \
1757     }
1758 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz)          \
1759     {                                      \
1760         {                                  \
1761             STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1762             .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1763         },                                 \
1764         .name = #stat,                             \
1765     }
1766 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz)            \
1767     {                                      \
1768         {                                  \
1769             STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1770             .offset = offsetof(struct kvm_vm_stat, stat)           \
1771         },                                 \
1772         .name = #stat,                             \
1773     }
1774 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz)              \
1775     {                                      \
1776         {                                  \
1777             STATS_DESC_COMMON(type, unit, base, exp, sz, bsz),     \
1778             .offset = offsetof(struct kvm_vcpu_stat, stat)         \
1779         },                                 \
1780         .name = #stat,                             \
1781     }
1782 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1783 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz)            \
1784     SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1785 
1786 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent)           \
1787     STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE,             \
1788         unit, base, exponent, 1, 0)
1789 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent)              \
1790     STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT,                \
1791         unit, base, exponent, 1, 0)
1792 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent)             \
1793     STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK,                   \
1794         unit, base, exponent, 1, 0)
1795 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz)     \
1796     STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST,            \
1797         unit, base, exponent, sz, bsz)
1798 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz)         \
1799     STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST,               \
1800         unit, base, exponent, sz, 0)
1801 
1802 /* Cumulative counter, read/write */
1803 #define STATS_DESC_COUNTER(SCOPE, name)                        \
1804     STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE,            \
1805         KVM_STATS_BASE_POW10, 0)
1806 /* Instantaneous counter, read only */
1807 #define STATS_DESC_ICOUNTER(SCOPE, name)                       \
1808     STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE,               \
1809         KVM_STATS_BASE_POW10, 0)
1810 /* Peak counter, read/write */
1811 #define STATS_DESC_PCOUNTER(SCOPE, name)                       \
1812     STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE,              \
1813         KVM_STATS_BASE_POW10, 0)
1814 
1815 /* Instantaneous boolean value, read only */
1816 #define STATS_DESC_IBOOLEAN(SCOPE, name)                       \
1817     STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,            \
1818         KVM_STATS_BASE_POW10, 0)
1819 /* Peak (sticky) boolean value, read/write */
1820 #define STATS_DESC_PBOOLEAN(SCOPE, name)                       \
1821     STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN,               \
1822         KVM_STATS_BASE_POW10, 0)
1823 
1824 /* Cumulative time in nanosecond */
1825 #define STATS_DESC_TIME_NSEC(SCOPE, name)                      \
1826     STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS,         \
1827         KVM_STATS_BASE_POW10, -9)
1828 /* Linear histogram for time in nanosecond */
1829 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz)             \
1830     STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,        \
1831         KVM_STATS_BASE_POW10, -9, sz, bsz)
1832 /* Logarithmic histogram for time in nanosecond */
1833 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz)                  \
1834     STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS,           \
1835         KVM_STATS_BASE_POW10, -9, sz)
1836 
1837 #define KVM_GENERIC_VM_STATS()                             \
1838     STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush),              \
1839     STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1840 
1841 #define KVM_GENERIC_VCPU_STATS()                           \
1842     STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll),            \
1843     STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll),             \
1844     STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid),               \
1845     STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup),                 \
1846     STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns),          \
1847     STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns),             \
1848     STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns),              \
1849     STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist,     \
1850             HALT_POLL_HIST_COUNT),                     \
1851     STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist,        \
1852             HALT_POLL_HIST_COUNT),                     \
1853     STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist,         \
1854             HALT_POLL_HIST_COUNT),                     \
1855     STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1856 
1857 extern struct dentry *kvm_debugfs_dir;
1858 
1859 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1860                const struct _kvm_stats_desc *desc,
1861                void *stats, size_t size_stats,
1862                char __user *user_buffer, size_t size, loff_t *offset);
1863 
1864 /**
1865  * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1866  * statistics data.
1867  *
1868  * @data: start address of the stats data
1869  * @size: the number of bucket of the stats data
1870  * @value: the new value used to update the linear histogram's bucket
1871  * @bucket_size: the size (width) of a bucket
1872  */
1873 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1874                         u64 value, size_t bucket_size)
1875 {
1876     size_t index = div64_u64(value, bucket_size);
1877 
1878     index = min(index, size - 1);
1879     ++data[index];
1880 }
1881 
1882 /**
1883  * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1884  * statistics data.
1885  *
1886  * @data: start address of the stats data
1887  * @size: the number of bucket of the stats data
1888  * @value: the new value used to update the logarithmic histogram's bucket
1889  */
1890 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1891 {
1892     size_t index = fls64(value);
1893 
1894     index = min(index, size - 1);
1895     ++data[index];
1896 }
1897 
1898 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize)              \
1899     kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1900 #define KVM_STATS_LOG_HIST_UPDATE(array, value)                    \
1901     kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1902 
1903 
1904 extern const struct kvm_stats_header kvm_vm_stats_header;
1905 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1906 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1907 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1908 
1909 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1910 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
1911 {
1912     if (unlikely(kvm->mmu_invalidate_in_progress))
1913         return 1;
1914     /*
1915      * Ensure the read of mmu_invalidate_in_progress happens before
1916      * the read of mmu_invalidate_seq.  This interacts with the
1917      * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
1918      * that the caller either sees the old (non-zero) value of
1919      * mmu_invalidate_in_progress or the new (incremented) value of
1920      * mmu_invalidate_seq.
1921      *
1922      * PowerPC Book3s HV KVM calls this under a per-page lock rather
1923      * than under kvm->mmu_lock, for scalability, so can't rely on
1924      * kvm->mmu_lock to keep things ordered.
1925      */
1926     smp_rmb();
1927     if (kvm->mmu_invalidate_seq != mmu_seq)
1928         return 1;
1929     return 0;
1930 }
1931 
1932 static inline int mmu_invalidate_retry_hva(struct kvm *kvm,
1933                        unsigned long mmu_seq,
1934                        unsigned long hva)
1935 {
1936     lockdep_assert_held(&kvm->mmu_lock);
1937     /*
1938      * If mmu_invalidate_in_progress is non-zero, then the range maintained
1939      * by kvm_mmu_notifier_invalidate_range_start contains all addresses
1940      * that might be being invalidated. Note that it may include some false
1941      * positives, due to shortcuts when handing concurrent invalidations.
1942      */
1943     if (unlikely(kvm->mmu_invalidate_in_progress) &&
1944         hva >= kvm->mmu_invalidate_range_start &&
1945         hva < kvm->mmu_invalidate_range_end)
1946         return 1;
1947     if (kvm->mmu_invalidate_seq != mmu_seq)
1948         return 1;
1949     return 0;
1950 }
1951 #endif
1952 
1953 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1954 
1955 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1956 
1957 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1958 int kvm_set_irq_routing(struct kvm *kvm,
1959             const struct kvm_irq_routing_entry *entries,
1960             unsigned nr,
1961             unsigned flags);
1962 int kvm_set_routing_entry(struct kvm *kvm,
1963               struct kvm_kernel_irq_routing_entry *e,
1964               const struct kvm_irq_routing_entry *ue);
1965 void kvm_free_irq_routing(struct kvm *kvm);
1966 
1967 #else
1968 
1969 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1970 
1971 #endif
1972 
1973 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1974 
1975 #ifdef CONFIG_HAVE_KVM_EVENTFD
1976 
1977 void kvm_eventfd_init(struct kvm *kvm);
1978 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1979 
1980 #ifdef CONFIG_HAVE_KVM_IRQFD
1981 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1982 void kvm_irqfd_release(struct kvm *kvm);
1983 void kvm_irq_routing_update(struct kvm *);
1984 #else
1985 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1986 {
1987     return -EINVAL;
1988 }
1989 
1990 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1991 #endif
1992 
1993 #else
1994 
1995 static inline void kvm_eventfd_init(struct kvm *kvm) {}
1996 
1997 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1998 {
1999     return -EINVAL;
2000 }
2001 
2002 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2003 
2004 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2005 static inline void kvm_irq_routing_update(struct kvm *kvm)
2006 {
2007 }
2008 #endif
2009 
2010 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2011 {
2012     return -ENOSYS;
2013 }
2014 
2015 #endif /* CONFIG_HAVE_KVM_EVENTFD */
2016 
2017 void kvm_arch_irq_routing_update(struct kvm *kvm);
2018 
2019 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2020 {
2021     /*
2022      * Ensure the rest of the request is published to kvm_check_request's
2023      * caller.  Paired with the smp_mb__after_atomic in kvm_check_request.
2024      */
2025     smp_wmb();
2026     set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2027 }
2028 
2029 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2030 {
2031     /*
2032      * Request that don't require vCPU action should never be logged in
2033      * vcpu->requests.  The vCPU won't clear the request, so it will stay
2034      * logged indefinitely and prevent the vCPU from entering the guest.
2035      */
2036     BUILD_BUG_ON(!__builtin_constant_p(req) ||
2037              (req & KVM_REQUEST_NO_ACTION));
2038 
2039     __kvm_make_request(req, vcpu);
2040 }
2041 
2042 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2043 {
2044     return READ_ONCE(vcpu->requests);
2045 }
2046 
2047 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2048 {
2049     return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2050 }
2051 
2052 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2053 {
2054     clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2055 }
2056 
2057 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2058 {
2059     if (kvm_test_request(req, vcpu)) {
2060         kvm_clear_request(req, vcpu);
2061 
2062         /*
2063          * Ensure the rest of the request is visible to kvm_check_request's
2064          * caller.  Paired with the smp_wmb in kvm_make_request.
2065          */
2066         smp_mb__after_atomic();
2067         return true;
2068     } else {
2069         return false;
2070     }
2071 }
2072 
2073 extern bool kvm_rebooting;
2074 
2075 extern unsigned int halt_poll_ns;
2076 extern unsigned int halt_poll_ns_grow;
2077 extern unsigned int halt_poll_ns_grow_start;
2078 extern unsigned int halt_poll_ns_shrink;
2079 
2080 struct kvm_device {
2081     const struct kvm_device_ops *ops;
2082     struct kvm *kvm;
2083     void *private;
2084     struct list_head vm_node;
2085 };
2086 
2087 /* create, destroy, and name are mandatory */
2088 struct kvm_device_ops {
2089     const char *name;
2090 
2091     /*
2092      * create is called holding kvm->lock and any operations not suitable
2093      * to do while holding the lock should be deferred to init (see
2094      * below).
2095      */
2096     int (*create)(struct kvm_device *dev, u32 type);
2097 
2098     /*
2099      * init is called after create if create is successful and is called
2100      * outside of holding kvm->lock.
2101      */
2102     void (*init)(struct kvm_device *dev);
2103 
2104     /*
2105      * Destroy is responsible for freeing dev.
2106      *
2107      * Destroy may be called before or after destructors are called
2108      * on emulated I/O regions, depending on whether a reference is
2109      * held by a vcpu or other kvm component that gets destroyed
2110      * after the emulated I/O.
2111      */
2112     void (*destroy)(struct kvm_device *dev);
2113 
2114     /*
2115      * Release is an alternative method to free the device. It is
2116      * called when the device file descriptor is closed. Once
2117      * release is called, the destroy method will not be called
2118      * anymore as the device is removed from the device list of
2119      * the VM. kvm->lock is held.
2120      */
2121     void (*release)(struct kvm_device *dev);
2122 
2123     int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2124     int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2125     int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2126     long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2127               unsigned long arg);
2128     int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2129 };
2130 
2131 void kvm_device_get(struct kvm_device *dev);
2132 void kvm_device_put(struct kvm_device *dev);
2133 struct kvm_device *kvm_device_from_filp(struct file *filp);
2134 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2135 void kvm_unregister_device_ops(u32 type);
2136 
2137 extern struct kvm_device_ops kvm_mpic_ops;
2138 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2139 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2140 
2141 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2142 
2143 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2144 {
2145     vcpu->spin_loop.in_spin_loop = val;
2146 }
2147 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2148 {
2149     vcpu->spin_loop.dy_eligible = val;
2150 }
2151 
2152 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2153 
2154 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2155 {
2156 }
2157 
2158 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2159 {
2160 }
2161 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2162 
2163 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2164 {
2165     return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2166         !(memslot->flags & KVM_MEMSLOT_INVALID));
2167 }
2168 
2169 struct kvm_vcpu *kvm_get_running_vcpu(void);
2170 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2171 
2172 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2173 bool kvm_arch_has_irq_bypass(void);
2174 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2175                struct irq_bypass_producer *);
2176 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2177                struct irq_bypass_producer *);
2178 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2179 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2180 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2181                   uint32_t guest_irq, bool set);
2182 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2183                   struct kvm_kernel_irq_routing_entry *);
2184 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2185 
2186 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2187 /* If we wakeup during the poll time, was it a sucessful poll? */
2188 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2189 {
2190     return vcpu->valid_wakeup;
2191 }
2192 
2193 #else
2194 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2195 {
2196     return true;
2197 }
2198 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2199 
2200 #ifdef CONFIG_HAVE_KVM_NO_POLL
2201 /* Callback that tells if we must not poll */
2202 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2203 #else
2204 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2205 {
2206     return false;
2207 }
2208 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2209 
2210 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2211 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2212                    unsigned int ioctl, unsigned long arg);
2213 #else
2214 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2215                          unsigned int ioctl,
2216                          unsigned long arg)
2217 {
2218     return -ENOIOCTLCMD;
2219 }
2220 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2221 
2222 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2223                         unsigned long start, unsigned long end);
2224 
2225 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2226 
2227 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2228 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2229 #else
2230 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2231 {
2232     return 0;
2233 }
2234 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2235 
2236 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2237 
2238 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2239                 uintptr_t data, const char *name,
2240                 struct task_struct **thread_ptr);
2241 
2242 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2243 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2244 {
2245     vcpu->run->exit_reason = KVM_EXIT_INTR;
2246     vcpu->stat.signal_exits++;
2247 }
2248 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2249 
2250 /*
2251  * This defines how many reserved entries we want to keep before we
2252  * kick the vcpu to the userspace to avoid dirty ring full.  This
2253  * value can be tuned to higher if e.g. PML is enabled on the host.
2254  */
2255 #define  KVM_DIRTY_RING_RSVD_ENTRIES  64
2256 
2257 /* Max number of entries allowed for each kvm dirty ring */
2258 #define  KVM_DIRTY_RING_MAX_ENTRIES  65536
2259 
2260 #endif