Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 /*
0003  * KCSAN access checks and modifiers. These can be used to explicitly check
0004  * uninstrumented accesses, or change KCSAN checking behaviour of accesses.
0005  *
0006  * Copyright (C) 2019, Google LLC.
0007  */
0008 
0009 #ifndef _LINUX_KCSAN_CHECKS_H
0010 #define _LINUX_KCSAN_CHECKS_H
0011 
0012 /* Note: Only include what is already included by compiler.h. */
0013 #include <linux/compiler_attributes.h>
0014 #include <linux/types.h>
0015 
0016 /* Access types -- if KCSAN_ACCESS_WRITE is not set, the access is a read. */
0017 #define KCSAN_ACCESS_WRITE  (1 << 0) /* Access is a write. */
0018 #define KCSAN_ACCESS_COMPOUND   (1 << 1) /* Compounded read-write instrumentation. */
0019 #define KCSAN_ACCESS_ATOMIC (1 << 2) /* Access is atomic. */
0020 /* The following are special, and never due to compiler instrumentation. */
0021 #define KCSAN_ACCESS_ASSERT (1 << 3) /* Access is an assertion. */
0022 #define KCSAN_ACCESS_SCOPED (1 << 4) /* Access is a scoped access. */
0023 
0024 /*
0025  * __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
0026  * even in compilation units that selectively disable KCSAN, but must use KCSAN
0027  * to validate access to an address. Never use these in header files!
0028  */
0029 #ifdef CONFIG_KCSAN
0030 /**
0031  * __kcsan_check_access - check generic access for races
0032  *
0033  * @ptr: address of access
0034  * @size: size of access
0035  * @type: access type modifier
0036  */
0037 void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
0038 
0039 /*
0040  * See definition of __tsan_atomic_signal_fence() in kernel/kcsan/core.c.
0041  * Note: The mappings are arbitrary, and do not reflect any real mappings of C11
0042  * memory orders to the LKMM memory orders and vice-versa!
0043  */
0044 #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_mb  __ATOMIC_SEQ_CST
0045 #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_wmb __ATOMIC_ACQ_REL
0046 #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_rmb __ATOMIC_ACQUIRE
0047 #define __KCSAN_BARRIER_TO_SIGNAL_FENCE_release __ATOMIC_RELEASE
0048 
0049 /**
0050  * __kcsan_mb - full memory barrier instrumentation
0051  */
0052 void __kcsan_mb(void);
0053 
0054 /**
0055  * __kcsan_wmb - write memory barrier instrumentation
0056  */
0057 void __kcsan_wmb(void);
0058 
0059 /**
0060  * __kcsan_rmb - read memory barrier instrumentation
0061  */
0062 void __kcsan_rmb(void);
0063 
0064 /**
0065  * __kcsan_release - release barrier instrumentation
0066  */
0067 void __kcsan_release(void);
0068 
0069 /**
0070  * kcsan_disable_current - disable KCSAN for the current context
0071  *
0072  * Supports nesting.
0073  */
0074 void kcsan_disable_current(void);
0075 
0076 /**
0077  * kcsan_enable_current - re-enable KCSAN for the current context
0078  *
0079  * Supports nesting.
0080  */
0081 void kcsan_enable_current(void);
0082 void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
0083 
0084 /**
0085  * kcsan_nestable_atomic_begin - begin nestable atomic region
0086  *
0087  * Accesses within the atomic region may appear to race with other accesses but
0088  * should be considered atomic.
0089  */
0090 void kcsan_nestable_atomic_begin(void);
0091 
0092 /**
0093  * kcsan_nestable_atomic_end - end nestable atomic region
0094  */
0095 void kcsan_nestable_atomic_end(void);
0096 
0097 /**
0098  * kcsan_flat_atomic_begin - begin flat atomic region
0099  *
0100  * Accesses within the atomic region may appear to race with other accesses but
0101  * should be considered atomic.
0102  */
0103 void kcsan_flat_atomic_begin(void);
0104 
0105 /**
0106  * kcsan_flat_atomic_end - end flat atomic region
0107  */
0108 void kcsan_flat_atomic_end(void);
0109 
0110 /**
0111  * kcsan_atomic_next - consider following accesses as atomic
0112  *
0113  * Force treating the next n memory accesses for the current context as atomic
0114  * operations.
0115  *
0116  * @n: number of following memory accesses to treat as atomic.
0117  */
0118 void kcsan_atomic_next(int n);
0119 
0120 /**
0121  * kcsan_set_access_mask - set access mask
0122  *
0123  * Set the access mask for all accesses for the current context if non-zero.
0124  * Only value changes to bits set in the mask will be reported.
0125  *
0126  * @mask: bitmask
0127  */
0128 void kcsan_set_access_mask(unsigned long mask);
0129 
0130 /* Scoped access information. */
0131 struct kcsan_scoped_access {
0132     union {
0133         struct list_head list; /* scoped_accesses list */
0134         /*
0135          * Not an entry in scoped_accesses list; stack depth from where
0136          * the access was initialized.
0137          */
0138         int stack_depth;
0139     };
0140 
0141     /* Access information. */
0142     const volatile void *ptr;
0143     size_t size;
0144     int type;
0145     /* Location where scoped access was set up. */
0146     unsigned long ip;
0147 };
0148 /*
0149  * Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
0150  * out of scope; relies on attribute "cleanup", which is supported by all
0151  * compilers that support KCSAN.
0152  */
0153 #define __kcsan_cleanup_scoped                                                 \
0154     __maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
0155 
0156 /**
0157  * kcsan_begin_scoped_access - begin scoped access
0158  *
0159  * Begin scoped access and initialize @sa, which will cause KCSAN to
0160  * continuously check the memory range in the current thread until
0161  * kcsan_end_scoped_access() is called for @sa.
0162  *
0163  * Scoped accesses are implemented by appending @sa to an internal list for the
0164  * current execution context, and then checked on every call into the KCSAN
0165  * runtime.
0166  *
0167  * @ptr: address of access
0168  * @size: size of access
0169  * @type: access type modifier
0170  * @sa: struct kcsan_scoped_access to use for the scope of the access
0171  */
0172 struct kcsan_scoped_access *
0173 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
0174               struct kcsan_scoped_access *sa);
0175 
0176 /**
0177  * kcsan_end_scoped_access - end scoped access
0178  *
0179  * End a scoped access, which will stop KCSAN checking the memory range.
0180  * Requires that kcsan_begin_scoped_access() was previously called once for @sa.
0181  *
0182  * @sa: a previously initialized struct kcsan_scoped_access
0183  */
0184 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
0185 
0186 
0187 #else /* CONFIG_KCSAN */
0188 
0189 static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
0190                     int type) { }
0191 
0192 static inline void __kcsan_mb(void)         { }
0193 static inline void __kcsan_wmb(void)            { }
0194 static inline void __kcsan_rmb(void)            { }
0195 static inline void __kcsan_release(void)        { }
0196 static inline void kcsan_disable_current(void)      { }
0197 static inline void kcsan_enable_current(void)       { }
0198 static inline void kcsan_enable_current_nowarn(void)    { }
0199 static inline void kcsan_nestable_atomic_begin(void)    { }
0200 static inline void kcsan_nestable_atomic_end(void)  { }
0201 static inline void kcsan_flat_atomic_begin(void)    { }
0202 static inline void kcsan_flat_atomic_end(void)      { }
0203 static inline void kcsan_atomic_next(int n)     { }
0204 static inline void kcsan_set_access_mask(unsigned long mask) { }
0205 
0206 struct kcsan_scoped_access { };
0207 #define __kcsan_cleanup_scoped __maybe_unused
0208 static inline struct kcsan_scoped_access *
0209 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
0210               struct kcsan_scoped_access *sa) { return sa; }
0211 static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
0212 
0213 #endif /* CONFIG_KCSAN */
0214 
0215 #ifdef __SANITIZE_THREAD__
0216 /*
0217  * Only calls into the runtime when the particular compilation unit has KCSAN
0218  * instrumentation enabled. May be used in header files.
0219  */
0220 #define kcsan_check_access __kcsan_check_access
0221 
0222 /*
0223  * Only use these to disable KCSAN for accesses in the current compilation unit;
0224  * calls into libraries may still perform KCSAN checks.
0225  */
0226 #define __kcsan_disable_current kcsan_disable_current
0227 #define __kcsan_enable_current kcsan_enable_current_nowarn
0228 #else /* __SANITIZE_THREAD__ */
0229 static inline void kcsan_check_access(const volatile void *ptr, size_t size,
0230                       int type) { }
0231 static inline void __kcsan_enable_current(void)  { }
0232 static inline void __kcsan_disable_current(void) { }
0233 #endif /* __SANITIZE_THREAD__ */
0234 
0235 #if defined(CONFIG_KCSAN_WEAK_MEMORY) && defined(__SANITIZE_THREAD__)
0236 /*
0237  * Normal barrier instrumentation is not done via explicit calls, but by mapping
0238  * to a repurposed __atomic_signal_fence(), which normally does not generate any
0239  * real instructions, but is still intercepted by fsanitize=thread. This means,
0240  * like any other compile-time instrumentation, barrier instrumentation can be
0241  * disabled with the __no_kcsan function attribute.
0242  *
0243  * Also see definition of __tsan_atomic_signal_fence() in kernel/kcsan/core.c.
0244  *
0245  * These are all macros, like <asm/barrier.h>, since some architectures use them
0246  * in non-static inline functions.
0247  */
0248 #define __KCSAN_BARRIER_TO_SIGNAL_FENCE(name)                   \
0249     do {                                    \
0250         barrier();                          \
0251         __atomic_signal_fence(__KCSAN_BARRIER_TO_SIGNAL_FENCE_##name);  \
0252         barrier();                          \
0253     } while (0)
0254 #define kcsan_mb()  __KCSAN_BARRIER_TO_SIGNAL_FENCE(mb)
0255 #define kcsan_wmb() __KCSAN_BARRIER_TO_SIGNAL_FENCE(wmb)
0256 #define kcsan_rmb() __KCSAN_BARRIER_TO_SIGNAL_FENCE(rmb)
0257 #define kcsan_release() __KCSAN_BARRIER_TO_SIGNAL_FENCE(release)
0258 #elif defined(CONFIG_KCSAN_WEAK_MEMORY) && defined(__KCSAN_INSTRUMENT_BARRIERS__)
0259 #define kcsan_mb    __kcsan_mb
0260 #define kcsan_wmb   __kcsan_wmb
0261 #define kcsan_rmb   __kcsan_rmb
0262 #define kcsan_release   __kcsan_release
0263 #else /* CONFIG_KCSAN_WEAK_MEMORY && ... */
0264 #define kcsan_mb()  do { } while (0)
0265 #define kcsan_wmb() do { } while (0)
0266 #define kcsan_rmb() do { } while (0)
0267 #define kcsan_release() do { } while (0)
0268 #endif /* CONFIG_KCSAN_WEAK_MEMORY && ... */
0269 
0270 /**
0271  * __kcsan_check_read - check regular read access for races
0272  *
0273  * @ptr: address of access
0274  * @size: size of access
0275  */
0276 #define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
0277 
0278 /**
0279  * __kcsan_check_write - check regular write access for races
0280  *
0281  * @ptr: address of access
0282  * @size: size of access
0283  */
0284 #define __kcsan_check_write(ptr, size)                                         \
0285     __kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
0286 
0287 /**
0288  * __kcsan_check_read_write - check regular read-write access for races
0289  *
0290  * @ptr: address of access
0291  * @size: size of access
0292  */
0293 #define __kcsan_check_read_write(ptr, size)                                    \
0294     __kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
0295 
0296 /**
0297  * kcsan_check_read - check regular read access for races
0298  *
0299  * @ptr: address of access
0300  * @size: size of access
0301  */
0302 #define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
0303 
0304 /**
0305  * kcsan_check_write - check regular write access for races
0306  *
0307  * @ptr: address of access
0308  * @size: size of access
0309  */
0310 #define kcsan_check_write(ptr, size)                                           \
0311     kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
0312 
0313 /**
0314  * kcsan_check_read_write - check regular read-write access for races
0315  *
0316  * @ptr: address of access
0317  * @size: size of access
0318  */
0319 #define kcsan_check_read_write(ptr, size)                                      \
0320     kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
0321 
0322 /*
0323  * Check for atomic accesses: if atomic accesses are not ignored, this simply
0324  * aliases to kcsan_check_access(), otherwise becomes a no-op.
0325  */
0326 #ifdef CONFIG_KCSAN_IGNORE_ATOMICS
0327 #define kcsan_check_atomic_read(...)        do { } while (0)
0328 #define kcsan_check_atomic_write(...)       do { } while (0)
0329 #define kcsan_check_atomic_read_write(...)  do { } while (0)
0330 #else
0331 #define kcsan_check_atomic_read(ptr, size)                                     \
0332     kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC)
0333 #define kcsan_check_atomic_write(ptr, size)                                    \
0334     kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE)
0335 #define kcsan_check_atomic_read_write(ptr, size)                               \
0336     kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND)
0337 #endif
0338 
0339 /**
0340  * ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var
0341  *
0342  * Assert that there are no concurrent writes to @var; other readers are
0343  * allowed. This assertion can be used to specify properties of concurrent code,
0344  * where violation cannot be detected as a normal data race.
0345  *
0346  * For example, if we only have a single writer, but multiple concurrent
0347  * readers, to avoid data races, all these accesses must be marked; even
0348  * concurrent marked writes racing with the single writer are bugs.
0349  * Unfortunately, due to being marked, they are no longer data races. For cases
0350  * like these, we can use the macro as follows:
0351  *
0352  * .. code-block:: c
0353  *
0354  *  void writer(void) {
0355  *      spin_lock(&update_foo_lock);
0356  *      ASSERT_EXCLUSIVE_WRITER(shared_foo);
0357  *      WRITE_ONCE(shared_foo, ...);
0358  *      spin_unlock(&update_foo_lock);
0359  *  }
0360  *  void reader(void) {
0361  *      // update_foo_lock does not need to be held!
0362  *      ... = READ_ONCE(shared_foo);
0363  *  }
0364  *
0365  * Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
0366  * checking if a clear scope where no concurrent writes are expected exists.
0367  *
0368  * @var: variable to assert on
0369  */
0370 #define ASSERT_EXCLUSIVE_WRITER(var)                                           \
0371     __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
0372 
0373 /*
0374  * Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
0375  * expected to be unique for the scope in which instances of kcsan_scoped_access
0376  * are declared.
0377  */
0378 #define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
0379 #define __ASSERT_EXCLUSIVE_SCOPED(var, type, id)                               \
0380     struct kcsan_scoped_access __kcsan_scoped_name(id, _)                  \
0381         __kcsan_cleanup_scoped;                                        \
0382     struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p)          \
0383         __maybe_unused = kcsan_begin_scoped_access(                    \
0384             &(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type),     \
0385             &__kcsan_scoped_name(id, _))
0386 
0387 /**
0388  * ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
0389  *
0390  * Scoped variant of ASSERT_EXCLUSIVE_WRITER().
0391  *
0392  * Assert that there are no concurrent writes to @var for the duration of the
0393  * scope in which it is introduced. This provides a better way to fully cover
0394  * the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
0395  * increases the likelihood for KCSAN to detect racing accesses.
0396  *
0397  * For example, it allows finding race-condition bugs that only occur due to
0398  * state changes within the scope itself:
0399  *
0400  * .. code-block:: c
0401  *
0402  *  void writer(void) {
0403  *      spin_lock(&update_foo_lock);
0404  *      {
0405  *          ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
0406  *          WRITE_ONCE(shared_foo, 42);
0407  *          ...
0408  *          // shared_foo should still be 42 here!
0409  *      }
0410  *      spin_unlock(&update_foo_lock);
0411  *  }
0412  *  void buggy(void) {
0413  *      if (READ_ONCE(shared_foo) == 42)
0414  *          WRITE_ONCE(shared_foo, 1); // bug!
0415  *  }
0416  *
0417  * @var: variable to assert on
0418  */
0419 #define ASSERT_EXCLUSIVE_WRITER_SCOPED(var)                                    \
0420     __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
0421 
0422 /**
0423  * ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
0424  *
0425  * Assert that there are no concurrent accesses to @var (no readers nor
0426  * writers). This assertion can be used to specify properties of concurrent
0427  * code, where violation cannot be detected as a normal data race.
0428  *
0429  * For example, where exclusive access is expected after determining no other
0430  * users of an object are left, but the object is not actually freed. We can
0431  * check that this property actually holds as follows:
0432  *
0433  * .. code-block:: c
0434  *
0435  *  if (refcount_dec_and_test(&obj->refcnt)) {
0436  *      ASSERT_EXCLUSIVE_ACCESS(*obj);
0437  *      do_some_cleanup(obj);
0438  *      release_for_reuse(obj);
0439  *  }
0440  *
0441  * Note:
0442  *
0443  * 1. ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
0444  *    checking if a clear scope where no concurrent accesses are expected exists.
0445  *
0446  * 2. For cases where the object is freed, `KASAN <kasan.html>`_ is a better
0447  *    fit to detect use-after-free bugs.
0448  *
0449  * @var: variable to assert on
0450  */
0451 #define ASSERT_EXCLUSIVE_ACCESS(var)                                           \
0452     __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
0453 
0454 /**
0455  * ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
0456  *
0457  * Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
0458  *
0459  * Assert that there are no concurrent accesses to @var (no readers nor writers)
0460  * for the entire duration of the scope in which it is introduced. This provides
0461  * a better way to fully cover the enclosing scope, compared to multiple
0462  * ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
0463  * racing accesses.
0464  *
0465  * @var: variable to assert on
0466  */
0467 #define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var)                                    \
0468     __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
0469 
0470 /**
0471  * ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
0472  *
0473  * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
0474  *
0475  * Assert that there are no concurrent writes to a subset of bits in @var;
0476  * concurrent readers are permitted. This assertion captures more detailed
0477  * bit-level properties, compared to the other (word granularity) assertions.
0478  * Only the bits set in @mask are checked for concurrent modifications, while
0479  * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
0480  * are ignored.
0481  *
0482  * Use this for variables, where some bits must not be modified concurrently,
0483  * yet other bits are expected to be modified concurrently.
0484  *
0485  * For example, variables where, after initialization, some bits are read-only,
0486  * but other bits may still be modified concurrently. A reader may wish to
0487  * assert that this is true as follows:
0488  *
0489  * .. code-block:: c
0490  *
0491  *  ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
0492  *  foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
0493  *
0494  * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
0495  * to access the masked bits only, and KCSAN optimistically assumes it is
0496  * therefore safe, even in the presence of data races, and marking it with
0497  * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
0498  * it may still be advisable to do so, since we cannot reason about all compiler
0499  * optimizations when it comes to bit manipulations (on the reader and writer
0500  * side). If you are sure nothing can go wrong, we can write the above simply
0501  * as:
0502  *
0503  * .. code-block:: c
0504  *
0505  *  ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
0506  *  foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
0507  *
0508  * Another example, where this may be used, is when certain bits of @var may
0509  * only be modified when holding the appropriate lock, but other bits may still
0510  * be modified concurrently. Writers, where other bits may change concurrently,
0511  * could use the assertion as follows:
0512  *
0513  * .. code-block:: c
0514  *
0515  *  spin_lock(&foo_lock);
0516  *  ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
0517  *  old_flags = flags;
0518  *  new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
0519  *  if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
0520  *  spin_unlock(&foo_lock);
0521  *
0522  * @var: variable to assert on
0523  * @mask: only check for modifications to bits set in @mask
0524  */
0525 #define ASSERT_EXCLUSIVE_BITS(var, mask)                                       \
0526     do {                                                                   \
0527         kcsan_set_access_mask(mask);                                   \
0528         __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\
0529         kcsan_set_access_mask(0);                                      \
0530         kcsan_atomic_next(1);                                          \
0531     } while (0)
0532 
0533 #endif /* _LINUX_KCSAN_CHECKS_H */