Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0 */
0002 /*
0003  * Linux Socket Filter Data Structures
0004  */
0005 #ifndef __LINUX_FILTER_H__
0006 #define __LINUX_FILTER_H__
0007 
0008 #include <linux/atomic.h>
0009 #include <linux/bpf.h>
0010 #include <linux/refcount.h>
0011 #include <linux/compat.h>
0012 #include <linux/skbuff.h>
0013 #include <linux/linkage.h>
0014 #include <linux/printk.h>
0015 #include <linux/workqueue.h>
0016 #include <linux/sched.h>
0017 #include <linux/capability.h>
0018 #include <linux/set_memory.h>
0019 #include <linux/kallsyms.h>
0020 #include <linux/if_vlan.h>
0021 #include <linux/vmalloc.h>
0022 #include <linux/sockptr.h>
0023 #include <crypto/sha1.h>
0024 #include <linux/u64_stats_sync.h>
0025 
0026 #include <net/sch_generic.h>
0027 
0028 #include <asm/byteorder.h>
0029 #include <uapi/linux/filter.h>
0030 
0031 struct sk_buff;
0032 struct sock;
0033 struct seccomp_data;
0034 struct bpf_prog_aux;
0035 struct xdp_rxq_info;
0036 struct xdp_buff;
0037 struct sock_reuseport;
0038 struct ctl_table;
0039 struct ctl_table_header;
0040 
0041 /* ArgX, context and stack frame pointer register positions. Note,
0042  * Arg1, Arg2, Arg3, etc are used as argument mappings of function
0043  * calls in BPF_CALL instruction.
0044  */
0045 #define BPF_REG_ARG1    BPF_REG_1
0046 #define BPF_REG_ARG2    BPF_REG_2
0047 #define BPF_REG_ARG3    BPF_REG_3
0048 #define BPF_REG_ARG4    BPF_REG_4
0049 #define BPF_REG_ARG5    BPF_REG_5
0050 #define BPF_REG_CTX BPF_REG_6
0051 #define BPF_REG_FP  BPF_REG_10
0052 
0053 /* Additional register mappings for converted user programs. */
0054 #define BPF_REG_A   BPF_REG_0
0055 #define BPF_REG_X   BPF_REG_7
0056 #define BPF_REG_TMP BPF_REG_2   /* scratch reg */
0057 #define BPF_REG_D   BPF_REG_8   /* data, callee-saved */
0058 #define BPF_REG_H   BPF_REG_9   /* hlen, callee-saved */
0059 
0060 /* Kernel hidden auxiliary/helper register. */
0061 #define BPF_REG_AX      MAX_BPF_REG
0062 #define MAX_BPF_EXT_REG     (MAX_BPF_REG + 1)
0063 #define MAX_BPF_JIT_REG     MAX_BPF_EXT_REG
0064 
0065 /* unused opcode to mark special call to bpf_tail_call() helper */
0066 #define BPF_TAIL_CALL   0xf0
0067 
0068 /* unused opcode to mark special load instruction. Same as BPF_ABS */
0069 #define BPF_PROBE_MEM   0x20
0070 
0071 /* unused opcode to mark call to interpreter with arguments */
0072 #define BPF_CALL_ARGS   0xe0
0073 
0074 /* unused opcode to mark speculation barrier for mitigating
0075  * Speculative Store Bypass
0076  */
0077 #define BPF_NOSPEC  0xc0
0078 
0079 /* As per nm, we expose JITed images as text (code) section for
0080  * kallsyms. That way, tools like perf can find it to match
0081  * addresses.
0082  */
0083 #define BPF_SYM_ELF_TYPE    't'
0084 
0085 /* BPF program can access up to 512 bytes of stack space. */
0086 #define MAX_BPF_STACK   512
0087 
0088 /* Helper macros for filter block array initializers. */
0089 
0090 /* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
0091 
0092 #define BPF_ALU64_REG(OP, DST, SRC)             \
0093     ((struct bpf_insn) {                    \
0094         .code  = BPF_ALU64 | BPF_OP(OP) | BPF_X,    \
0095         .dst_reg = DST,                 \
0096         .src_reg = SRC,                 \
0097         .off   = 0,                 \
0098         .imm   = 0 })
0099 
0100 #define BPF_ALU32_REG(OP, DST, SRC)             \
0101     ((struct bpf_insn) {                    \
0102         .code  = BPF_ALU | BPF_OP(OP) | BPF_X,      \
0103         .dst_reg = DST,                 \
0104         .src_reg = SRC,                 \
0105         .off   = 0,                 \
0106         .imm   = 0 })
0107 
0108 /* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
0109 
0110 #define BPF_ALU64_IMM(OP, DST, IMM)             \
0111     ((struct bpf_insn) {                    \
0112         .code  = BPF_ALU64 | BPF_OP(OP) | BPF_K,    \
0113         .dst_reg = DST,                 \
0114         .src_reg = 0,                   \
0115         .off   = 0,                 \
0116         .imm   = IMM })
0117 
0118 #define BPF_ALU32_IMM(OP, DST, IMM)             \
0119     ((struct bpf_insn) {                    \
0120         .code  = BPF_ALU | BPF_OP(OP) | BPF_K,      \
0121         .dst_reg = DST,                 \
0122         .src_reg = 0,                   \
0123         .off   = 0,                 \
0124         .imm   = IMM })
0125 
0126 /* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
0127 
0128 #define BPF_ENDIAN(TYPE, DST, LEN)              \
0129     ((struct bpf_insn) {                    \
0130         .code  = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
0131         .dst_reg = DST,                 \
0132         .src_reg = 0,                   \
0133         .off   = 0,                 \
0134         .imm   = LEN })
0135 
0136 /* Short form of mov, dst_reg = src_reg */
0137 
0138 #define BPF_MOV64_REG(DST, SRC)                 \
0139     ((struct bpf_insn) {                    \
0140         .code  = BPF_ALU64 | BPF_MOV | BPF_X,       \
0141         .dst_reg = DST,                 \
0142         .src_reg = SRC,                 \
0143         .off   = 0,                 \
0144         .imm   = 0 })
0145 
0146 #define BPF_MOV32_REG(DST, SRC)                 \
0147     ((struct bpf_insn) {                    \
0148         .code  = BPF_ALU | BPF_MOV | BPF_X,     \
0149         .dst_reg = DST,                 \
0150         .src_reg = SRC,                 \
0151         .off   = 0,                 \
0152         .imm   = 0 })
0153 
0154 /* Short form of mov, dst_reg = imm32 */
0155 
0156 #define BPF_MOV64_IMM(DST, IMM)                 \
0157     ((struct bpf_insn) {                    \
0158         .code  = BPF_ALU64 | BPF_MOV | BPF_K,       \
0159         .dst_reg = DST,                 \
0160         .src_reg = 0,                   \
0161         .off   = 0,                 \
0162         .imm   = IMM })
0163 
0164 #define BPF_MOV32_IMM(DST, IMM)                 \
0165     ((struct bpf_insn) {                    \
0166         .code  = BPF_ALU | BPF_MOV | BPF_K,     \
0167         .dst_reg = DST,                 \
0168         .src_reg = 0,                   \
0169         .off   = 0,                 \
0170         .imm   = IMM })
0171 
0172 /* Special form of mov32, used for doing explicit zero extension on dst. */
0173 #define BPF_ZEXT_REG(DST)                   \
0174     ((struct bpf_insn) {                    \
0175         .code  = BPF_ALU | BPF_MOV | BPF_X,     \
0176         .dst_reg = DST,                 \
0177         .src_reg = DST,                 \
0178         .off   = 0,                 \
0179         .imm   = 1 })
0180 
0181 static inline bool insn_is_zext(const struct bpf_insn *insn)
0182 {
0183     return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
0184 }
0185 
0186 /* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
0187 #define BPF_LD_IMM64(DST, IMM)                  \
0188     BPF_LD_IMM64_RAW(DST, 0, IMM)
0189 
0190 #define BPF_LD_IMM64_RAW(DST, SRC, IMM)             \
0191     ((struct bpf_insn) {                    \
0192         .code  = BPF_LD | BPF_DW | BPF_IMM,     \
0193         .dst_reg = DST,                 \
0194         .src_reg = SRC,                 \
0195         .off   = 0,                 \
0196         .imm   = (__u32) (IMM) }),          \
0197     ((struct bpf_insn) {                    \
0198         .code  = 0, /* zero is reserved opcode */   \
0199         .dst_reg = 0,                   \
0200         .src_reg = 0,                   \
0201         .off   = 0,                 \
0202         .imm   = ((__u64) (IMM)) >> 32 })
0203 
0204 /* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
0205 #define BPF_LD_MAP_FD(DST, MAP_FD)              \
0206     BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
0207 
0208 /* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
0209 
0210 #define BPF_MOV64_RAW(TYPE, DST, SRC, IMM)          \
0211     ((struct bpf_insn) {                    \
0212         .code  = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE),   \
0213         .dst_reg = DST,                 \
0214         .src_reg = SRC,                 \
0215         .off   = 0,                 \
0216         .imm   = IMM })
0217 
0218 #define BPF_MOV32_RAW(TYPE, DST, SRC, IMM)          \
0219     ((struct bpf_insn) {                    \
0220         .code  = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
0221         .dst_reg = DST,                 \
0222         .src_reg = SRC,                 \
0223         .off   = 0,                 \
0224         .imm   = IMM })
0225 
0226 /* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
0227 
0228 #define BPF_LD_ABS(SIZE, IMM)                   \
0229     ((struct bpf_insn) {                    \
0230         .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
0231         .dst_reg = 0,                   \
0232         .src_reg = 0,                   \
0233         .off   = 0,                 \
0234         .imm   = IMM })
0235 
0236 /* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
0237 
0238 #define BPF_LD_IND(SIZE, SRC, IMM)              \
0239     ((struct bpf_insn) {                    \
0240         .code  = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
0241         .dst_reg = 0,                   \
0242         .src_reg = SRC,                 \
0243         .off   = 0,                 \
0244         .imm   = IMM })
0245 
0246 /* Memory load, dst_reg = *(uint *) (src_reg + off16) */
0247 
0248 #define BPF_LDX_MEM(SIZE, DST, SRC, OFF)            \
0249     ((struct bpf_insn) {                    \
0250         .code  = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM,    \
0251         .dst_reg = DST,                 \
0252         .src_reg = SRC,                 \
0253         .off   = OFF,                   \
0254         .imm   = 0 })
0255 
0256 /* Memory store, *(uint *) (dst_reg + off16) = src_reg */
0257 
0258 #define BPF_STX_MEM(SIZE, DST, SRC, OFF)            \
0259     ((struct bpf_insn) {                    \
0260         .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM,    \
0261         .dst_reg = DST,                 \
0262         .src_reg = SRC,                 \
0263         .off   = OFF,                   \
0264         .imm   = 0 })
0265 
0266 
0267 /*
0268  * Atomic operations:
0269  *
0270  *   BPF_ADD                  *(uint *) (dst_reg + off16) += src_reg
0271  *   BPF_AND                  *(uint *) (dst_reg + off16) &= src_reg
0272  *   BPF_OR                   *(uint *) (dst_reg + off16) |= src_reg
0273  *   BPF_XOR                  *(uint *) (dst_reg + off16) ^= src_reg
0274  *   BPF_ADD | BPF_FETCH      src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
0275  *   BPF_AND | BPF_FETCH      src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
0276  *   BPF_OR | BPF_FETCH       src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
0277  *   BPF_XOR | BPF_FETCH      src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
0278  *   BPF_XCHG                 src_reg = atomic_xchg(dst_reg + off16, src_reg)
0279  *   BPF_CMPXCHG              r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
0280  */
0281 
0282 #define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF)          \
0283     ((struct bpf_insn) {                    \
0284         .code  = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
0285         .dst_reg = DST,                 \
0286         .src_reg = SRC,                 \
0287         .off   = OFF,                   \
0288         .imm   = OP })
0289 
0290 /* Legacy alias */
0291 #define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
0292 
0293 /* Memory store, *(uint *) (dst_reg + off16) = imm32 */
0294 
0295 #define BPF_ST_MEM(SIZE, DST, OFF, IMM)             \
0296     ((struct bpf_insn) {                    \
0297         .code  = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
0298         .dst_reg = DST,                 \
0299         .src_reg = 0,                   \
0300         .off   = OFF,                   \
0301         .imm   = IMM })
0302 
0303 /* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
0304 
0305 #define BPF_JMP_REG(OP, DST, SRC, OFF)              \
0306     ((struct bpf_insn) {                    \
0307         .code  = BPF_JMP | BPF_OP(OP) | BPF_X,      \
0308         .dst_reg = DST,                 \
0309         .src_reg = SRC,                 \
0310         .off   = OFF,                   \
0311         .imm   = 0 })
0312 
0313 /* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
0314 
0315 #define BPF_JMP_IMM(OP, DST, IMM, OFF)              \
0316     ((struct bpf_insn) {                    \
0317         .code  = BPF_JMP | BPF_OP(OP) | BPF_K,      \
0318         .dst_reg = DST,                 \
0319         .src_reg = 0,                   \
0320         .off   = OFF,                   \
0321         .imm   = IMM })
0322 
0323 /* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
0324 
0325 #define BPF_JMP32_REG(OP, DST, SRC, OFF)            \
0326     ((struct bpf_insn) {                    \
0327         .code  = BPF_JMP32 | BPF_OP(OP) | BPF_X,    \
0328         .dst_reg = DST,                 \
0329         .src_reg = SRC,                 \
0330         .off   = OFF,                   \
0331         .imm   = 0 })
0332 
0333 /* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
0334 
0335 #define BPF_JMP32_IMM(OP, DST, IMM, OFF)            \
0336     ((struct bpf_insn) {                    \
0337         .code  = BPF_JMP32 | BPF_OP(OP) | BPF_K,    \
0338         .dst_reg = DST,                 \
0339         .src_reg = 0,                   \
0340         .off   = OFF,                   \
0341         .imm   = IMM })
0342 
0343 /* Unconditional jumps, goto pc + off16 */
0344 
0345 #define BPF_JMP_A(OFF)                      \
0346     ((struct bpf_insn) {                    \
0347         .code  = BPF_JMP | BPF_JA,          \
0348         .dst_reg = 0,                   \
0349         .src_reg = 0,                   \
0350         .off   = OFF,                   \
0351         .imm   = 0 })
0352 
0353 /* Relative call */
0354 
0355 #define BPF_CALL_REL(TGT)                   \
0356     ((struct bpf_insn) {                    \
0357         .code  = BPF_JMP | BPF_CALL,            \
0358         .dst_reg = 0,                   \
0359         .src_reg = BPF_PSEUDO_CALL,         \
0360         .off   = 0,                 \
0361         .imm   = TGT })
0362 
0363 /* Convert function address to BPF immediate */
0364 
0365 #define BPF_CALL_IMM(x) ((void *)(x) - (void *)__bpf_call_base)
0366 
0367 #define BPF_EMIT_CALL(FUNC)                 \
0368     ((struct bpf_insn) {                    \
0369         .code  = BPF_JMP | BPF_CALL,            \
0370         .dst_reg = 0,                   \
0371         .src_reg = 0,                   \
0372         .off   = 0,                 \
0373         .imm   = BPF_CALL_IMM(FUNC) })
0374 
0375 /* Raw code statement block */
0376 
0377 #define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM)          \
0378     ((struct bpf_insn) {                    \
0379         .code  = CODE,                  \
0380         .dst_reg = DST,                 \
0381         .src_reg = SRC,                 \
0382         .off   = OFF,                   \
0383         .imm   = IMM })
0384 
0385 /* Program exit */
0386 
0387 #define BPF_EXIT_INSN()                     \
0388     ((struct bpf_insn) {                    \
0389         .code  = BPF_JMP | BPF_EXIT,            \
0390         .dst_reg = 0,                   \
0391         .src_reg = 0,                   \
0392         .off   = 0,                 \
0393         .imm   = 0 })
0394 
0395 /* Speculation barrier */
0396 
0397 #define BPF_ST_NOSPEC()                     \
0398     ((struct bpf_insn) {                    \
0399         .code  = BPF_ST | BPF_NOSPEC,           \
0400         .dst_reg = 0,                   \
0401         .src_reg = 0,                   \
0402         .off   = 0,                 \
0403         .imm   = 0 })
0404 
0405 /* Internal classic blocks for direct assignment */
0406 
0407 #define __BPF_STMT(CODE, K)                 \
0408     ((struct sock_filter) BPF_STMT(CODE, K))
0409 
0410 #define __BPF_JUMP(CODE, K, JT, JF)             \
0411     ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
0412 
0413 #define bytes_to_bpf_size(bytes)                \
0414 ({                              \
0415     int bpf_size = -EINVAL;                 \
0416                                 \
0417     if (bytes == sizeof(u8))                \
0418         bpf_size = BPF_B;               \
0419     else if (bytes == sizeof(u16))              \
0420         bpf_size = BPF_H;               \
0421     else if (bytes == sizeof(u32))              \
0422         bpf_size = BPF_W;               \
0423     else if (bytes == sizeof(u64))              \
0424         bpf_size = BPF_DW;              \
0425                                 \
0426     bpf_size;                       \
0427 })
0428 
0429 #define bpf_size_to_bytes(bpf_size)             \
0430 ({                              \
0431     int bytes = -EINVAL;                    \
0432                                 \
0433     if (bpf_size == BPF_B)                  \
0434         bytes = sizeof(u8);             \
0435     else if (bpf_size == BPF_H)             \
0436         bytes = sizeof(u16);                \
0437     else if (bpf_size == BPF_W)             \
0438         bytes = sizeof(u32);                \
0439     else if (bpf_size == BPF_DW)                \
0440         bytes = sizeof(u64);                \
0441                                 \
0442     bytes;                          \
0443 })
0444 
0445 #define BPF_SIZEOF(type)                    \
0446     ({                          \
0447         const int __size = bytes_to_bpf_size(sizeof(type)); \
0448         BUILD_BUG_ON(__size < 0);           \
0449         __size;                     \
0450     })
0451 
0452 #define BPF_FIELD_SIZEOF(type, field)               \
0453     ({                          \
0454         const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
0455         BUILD_BUG_ON(__size < 0);           \
0456         __size;                     \
0457     })
0458 
0459 #define BPF_LDST_BYTES(insn)                    \
0460     ({                          \
0461         const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
0462         WARN_ON(__size < 0);                \
0463         __size;                     \
0464     })
0465 
0466 #define __BPF_MAP_0(m, v, ...) v
0467 #define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
0468 #define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
0469 #define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
0470 #define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
0471 #define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
0472 
0473 #define __BPF_REG_0(...) __BPF_PAD(5)
0474 #define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
0475 #define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
0476 #define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
0477 #define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
0478 #define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
0479 
0480 #define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
0481 #define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
0482 
0483 #define __BPF_CAST(t, a)                               \
0484     (__force t)                                \
0485     (__force                                   \
0486      typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long),      \
0487                       (unsigned long)0, (t)0))) a
0488 #define __BPF_V void
0489 #define __BPF_N
0490 
0491 #define __BPF_DECL_ARGS(t, a) t   a
0492 #define __BPF_DECL_REGS(t, a) u64 a
0493 
0494 #define __BPF_PAD(n)                                   \
0495     __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2,       \
0496           u64, __ur_3, u64, __ur_4, u64, __ur_5)
0497 
0498 #define BPF_CALL_x(x, name, ...)                           \
0499     static __always_inline                             \
0500     u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__));   \
0501     typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
0502     u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__));         \
0503     u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__))          \
0504     {                                      \
0505         return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
0506     }                                      \
0507     static __always_inline                             \
0508     u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
0509 
0510 #define BPF_CALL_0(name, ...)   BPF_CALL_x(0, name, __VA_ARGS__)
0511 #define BPF_CALL_1(name, ...)   BPF_CALL_x(1, name, __VA_ARGS__)
0512 #define BPF_CALL_2(name, ...)   BPF_CALL_x(2, name, __VA_ARGS__)
0513 #define BPF_CALL_3(name, ...)   BPF_CALL_x(3, name, __VA_ARGS__)
0514 #define BPF_CALL_4(name, ...)   BPF_CALL_x(4, name, __VA_ARGS__)
0515 #define BPF_CALL_5(name, ...)   BPF_CALL_x(5, name, __VA_ARGS__)
0516 
0517 #define bpf_ctx_range(TYPE, MEMBER)                     \
0518     offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
0519 #define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2)              \
0520     offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
0521 #if BITS_PER_LONG == 64
0522 # define bpf_ctx_range_ptr(TYPE, MEMBER)                    \
0523     offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
0524 #else
0525 # define bpf_ctx_range_ptr(TYPE, MEMBER)                    \
0526     offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
0527 #endif /* BITS_PER_LONG == 64 */
0528 
0529 #define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE)                \
0530     ({                                  \
0531         BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE));     \
0532         *(PTR_SIZE) = (SIZE);                       \
0533         offsetof(TYPE, MEMBER);                     \
0534     })
0535 
0536 /* A struct sock_filter is architecture independent. */
0537 struct compat_sock_fprog {
0538     u16     len;
0539     compat_uptr_t   filter; /* struct sock_filter * */
0540 };
0541 
0542 struct sock_fprog_kern {
0543     u16         len;
0544     struct sock_filter  *filter;
0545 };
0546 
0547 /* Some arches need doubleword alignment for their instructions and/or data */
0548 #define BPF_IMAGE_ALIGNMENT 8
0549 
0550 struct bpf_binary_header {
0551     u32 size;
0552     u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
0553 };
0554 
0555 struct bpf_prog_stats {
0556     u64_stats_t cnt;
0557     u64_stats_t nsecs;
0558     u64_stats_t misses;
0559     struct u64_stats_sync syncp;
0560 } __aligned(2 * sizeof(u64));
0561 
0562 struct sk_filter {
0563     refcount_t  refcnt;
0564     struct rcu_head rcu;
0565     struct bpf_prog *prog;
0566 };
0567 
0568 DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
0569 
0570 typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx,
0571                       const struct bpf_insn *insnsi,
0572                       unsigned int (*bpf_func)(const void *,
0573                                    const struct bpf_insn *));
0574 
0575 static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog,
0576                       const void *ctx,
0577                       bpf_dispatcher_fn dfunc)
0578 {
0579     u32 ret;
0580 
0581     cant_migrate();
0582     if (static_branch_unlikely(&bpf_stats_enabled_key)) {
0583         struct bpf_prog_stats *stats;
0584         u64 start = sched_clock();
0585         unsigned long flags;
0586 
0587         ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
0588         stats = this_cpu_ptr(prog->stats);
0589         flags = u64_stats_update_begin_irqsave(&stats->syncp);
0590         u64_stats_inc(&stats->cnt);
0591         u64_stats_add(&stats->nsecs, sched_clock() - start);
0592         u64_stats_update_end_irqrestore(&stats->syncp, flags);
0593     } else {
0594         ret = dfunc(ctx, prog->insnsi, prog->bpf_func);
0595     }
0596     return ret;
0597 }
0598 
0599 static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx)
0600 {
0601     return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func);
0602 }
0603 
0604 /*
0605  * Use in preemptible and therefore migratable context to make sure that
0606  * the execution of the BPF program runs on one CPU.
0607  *
0608  * This uses migrate_disable/enable() explicitly to document that the
0609  * invocation of a BPF program does not require reentrancy protection
0610  * against a BPF program which is invoked from a preempting task.
0611  */
0612 static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
0613                       const void *ctx)
0614 {
0615     u32 ret;
0616 
0617     migrate_disable();
0618     ret = bpf_prog_run(prog, ctx);
0619     migrate_enable();
0620     return ret;
0621 }
0622 
0623 #define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
0624 
0625 struct bpf_skb_data_end {
0626     struct qdisc_skb_cb qdisc_cb;
0627     void *data_meta;
0628     void *data_end;
0629 };
0630 
0631 struct bpf_nh_params {
0632     u32 nh_family;
0633     union {
0634         u32 ipv4_nh;
0635         struct in6_addr ipv6_nh;
0636     };
0637 };
0638 
0639 struct bpf_redirect_info {
0640     u32 flags;
0641     u32 tgt_index;
0642     void *tgt_value;
0643     struct bpf_map *map;
0644     u32 map_id;
0645     enum bpf_map_type map_type;
0646     u32 kern_flags;
0647     struct bpf_nh_params nh;
0648 };
0649 
0650 DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
0651 
0652 /* flags for bpf_redirect_info kern_flags */
0653 #define BPF_RI_F_RF_NO_DIRECT   BIT(0)  /* no napi_direct on return_frame */
0654 
0655 /* Compute the linear packet data range [data, data_end) which
0656  * will be accessed by various program types (cls_bpf, act_bpf,
0657  * lwt, ...). Subsystems allowing direct data access must (!)
0658  * ensure that cb[] area can be written to when BPF program is
0659  * invoked (otherwise cb[] save/restore is necessary).
0660  */
0661 static inline void bpf_compute_data_pointers(struct sk_buff *skb)
0662 {
0663     struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
0664 
0665     BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
0666     cb->data_meta = skb->data - skb_metadata_len(skb);
0667     cb->data_end  = skb->data + skb_headlen(skb);
0668 }
0669 
0670 /* Similar to bpf_compute_data_pointers(), except that save orginal
0671  * data in cb->data and cb->meta_data for restore.
0672  */
0673 static inline void bpf_compute_and_save_data_end(
0674     struct sk_buff *skb, void **saved_data_end)
0675 {
0676     struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
0677 
0678     *saved_data_end = cb->data_end;
0679     cb->data_end  = skb->data + skb_headlen(skb);
0680 }
0681 
0682 /* Restore data saved by bpf_compute_data_pointers(). */
0683 static inline void bpf_restore_data_end(
0684     struct sk_buff *skb, void *saved_data_end)
0685 {
0686     struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
0687 
0688     cb->data_end = saved_data_end;
0689 }
0690 
0691 static inline u8 *bpf_skb_cb(const struct sk_buff *skb)
0692 {
0693     /* eBPF programs may read/write skb->cb[] area to transfer meta
0694      * data between tail calls. Since this also needs to work with
0695      * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
0696      *
0697      * In some socket filter cases, the cb unfortunately needs to be
0698      * saved/restored so that protocol specific skb->cb[] data won't
0699      * be lost. In any case, due to unpriviledged eBPF programs
0700      * attached to sockets, we need to clear the bpf_skb_cb() area
0701      * to not leak previous contents to user space.
0702      */
0703     BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
0704     BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
0705              sizeof_field(struct qdisc_skb_cb, data));
0706 
0707     return qdisc_skb_cb(skb)->data;
0708 }
0709 
0710 /* Must be invoked with migration disabled */
0711 static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
0712                      const void *ctx)
0713 {
0714     const struct sk_buff *skb = ctx;
0715     u8 *cb_data = bpf_skb_cb(skb);
0716     u8 cb_saved[BPF_SKB_CB_LEN];
0717     u32 res;
0718 
0719     if (unlikely(prog->cb_access)) {
0720         memcpy(cb_saved, cb_data, sizeof(cb_saved));
0721         memset(cb_data, 0, sizeof(cb_saved));
0722     }
0723 
0724     res = bpf_prog_run(prog, skb);
0725 
0726     if (unlikely(prog->cb_access))
0727         memcpy(cb_data, cb_saved, sizeof(cb_saved));
0728 
0729     return res;
0730 }
0731 
0732 static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
0733                        struct sk_buff *skb)
0734 {
0735     u32 res;
0736 
0737     migrate_disable();
0738     res = __bpf_prog_run_save_cb(prog, skb);
0739     migrate_enable();
0740     return res;
0741 }
0742 
0743 static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
0744                     struct sk_buff *skb)
0745 {
0746     u8 *cb_data = bpf_skb_cb(skb);
0747     u32 res;
0748 
0749     if (unlikely(prog->cb_access))
0750         memset(cb_data, 0, BPF_SKB_CB_LEN);
0751 
0752     res = bpf_prog_run_pin_on_cpu(prog, skb);
0753     return res;
0754 }
0755 
0756 DECLARE_BPF_DISPATCHER(xdp)
0757 
0758 DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key);
0759 
0760 u32 xdp_master_redirect(struct xdp_buff *xdp);
0761 
0762 static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
0763                         struct xdp_buff *xdp)
0764 {
0765     /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus
0766      * under local_bh_disable(), which provides the needed RCU protection
0767      * for accessing map entries.
0768      */
0769     u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
0770 
0771     if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) {
0772         if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev))
0773             act = xdp_master_redirect(xdp);
0774     }
0775 
0776     return act;
0777 }
0778 
0779 void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
0780 
0781 static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
0782 {
0783     return prog->len * sizeof(struct bpf_insn);
0784 }
0785 
0786 static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
0787 {
0788     return round_up(bpf_prog_insn_size(prog) +
0789             sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
0790 }
0791 
0792 static inline unsigned int bpf_prog_size(unsigned int proglen)
0793 {
0794     return max(sizeof(struct bpf_prog),
0795            offsetof(struct bpf_prog, insns[proglen]));
0796 }
0797 
0798 static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
0799 {
0800     /* When classic BPF programs have been loaded and the arch
0801      * does not have a classic BPF JIT (anymore), they have been
0802      * converted via bpf_migrate_filter() to eBPF and thus always
0803      * have an unspec program type.
0804      */
0805     return prog->type == BPF_PROG_TYPE_UNSPEC;
0806 }
0807 
0808 static inline u32 bpf_ctx_off_adjust_machine(u32 size)
0809 {
0810     const u32 size_machine = sizeof(unsigned long);
0811 
0812     if (size > size_machine && size % size_machine == 0)
0813         size = size_machine;
0814 
0815     return size;
0816 }
0817 
0818 static inline bool
0819 bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
0820 {
0821     return size <= size_default && (size & (size - 1)) == 0;
0822 }
0823 
0824 static inline u8
0825 bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
0826 {
0827     u8 access_off = off & (size_default - 1);
0828 
0829 #ifdef __LITTLE_ENDIAN
0830     return access_off;
0831 #else
0832     return size_default - (access_off + size);
0833 #endif
0834 }
0835 
0836 #define bpf_ctx_wide_access_ok(off, size, type, field)          \
0837     (size == sizeof(__u64) &&                   \
0838     off >= offsetof(type, field) &&                 \
0839     off + sizeof(__u64) <= offsetofend(type, field) &&      \
0840     off % sizeof(__u64) == 0)
0841 
0842 #define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
0843 
0844 static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
0845 {
0846 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
0847     if (!fp->jited) {
0848         set_vm_flush_reset_perms(fp);
0849         set_memory_ro((unsigned long)fp, fp->pages);
0850     }
0851 #endif
0852 }
0853 
0854 static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
0855 {
0856     set_vm_flush_reset_perms(hdr);
0857     set_memory_ro((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
0858     set_memory_x((unsigned long)hdr, hdr->size >> PAGE_SHIFT);
0859 }
0860 
0861 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
0862 static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
0863 {
0864     return sk_filter_trim_cap(sk, skb, 1);
0865 }
0866 
0867 struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
0868 void bpf_prog_free(struct bpf_prog *fp);
0869 
0870 bool bpf_opcode_in_insntable(u8 code);
0871 
0872 void bpf_prog_free_linfo(struct bpf_prog *prog);
0873 void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
0874                    const u32 *insn_to_jit_off);
0875 int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
0876 void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
0877 
0878 struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
0879 struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
0880 struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
0881                   gfp_t gfp_extra_flags);
0882 void __bpf_prog_free(struct bpf_prog *fp);
0883 
0884 static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
0885 {
0886     __bpf_prog_free(fp);
0887 }
0888 
0889 typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
0890                        unsigned int flen);
0891 
0892 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
0893 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
0894                   bpf_aux_classic_check_t trans, bool save_orig);
0895 void bpf_prog_destroy(struct bpf_prog *fp);
0896 
0897 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
0898 int sk_attach_bpf(u32 ufd, struct sock *sk);
0899 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
0900 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
0901 void sk_reuseport_prog_free(struct bpf_prog *prog);
0902 int sk_detach_filter(struct sock *sk);
0903 int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
0904           unsigned int len);
0905 
0906 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
0907 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
0908 
0909 u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
0910 #define __bpf_call_base_args \
0911     ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
0912      (void *)__bpf_call_base)
0913 
0914 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
0915 void bpf_jit_compile(struct bpf_prog *prog);
0916 bool bpf_jit_needs_zext(void);
0917 bool bpf_jit_supports_subprog_tailcalls(void);
0918 bool bpf_jit_supports_kfunc_call(void);
0919 bool bpf_helper_changes_pkt_data(void *func);
0920 
0921 static inline bool bpf_dump_raw_ok(const struct cred *cred)
0922 {
0923     /* Reconstruction of call-sites is dependent on kallsyms,
0924      * thus make dump the same restriction.
0925      */
0926     return kallsyms_show_value(cred);
0927 }
0928 
0929 struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
0930                        const struct bpf_insn *patch, u32 len);
0931 int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
0932 
0933 void bpf_clear_redirect_map(struct bpf_map *map);
0934 
0935 static inline bool xdp_return_frame_no_direct(void)
0936 {
0937     struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
0938 
0939     return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
0940 }
0941 
0942 static inline void xdp_set_return_frame_no_direct(void)
0943 {
0944     struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
0945 
0946     ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
0947 }
0948 
0949 static inline void xdp_clear_return_frame_no_direct(void)
0950 {
0951     struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
0952 
0953     ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
0954 }
0955 
0956 static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
0957                  unsigned int pktlen)
0958 {
0959     unsigned int len;
0960 
0961     if (unlikely(!(fwd->flags & IFF_UP)))
0962         return -ENETDOWN;
0963 
0964     len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
0965     if (pktlen > len)
0966         return -EMSGSIZE;
0967 
0968     return 0;
0969 }
0970 
0971 /* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
0972  * same cpu context. Further for best results no more than a single map
0973  * for the do_redirect/do_flush pair should be used. This limitation is
0974  * because we only track one map and force a flush when the map changes.
0975  * This does not appear to be a real limitation for existing software.
0976  */
0977 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
0978                 struct xdp_buff *xdp, struct bpf_prog *prog);
0979 int xdp_do_redirect(struct net_device *dev,
0980             struct xdp_buff *xdp,
0981             struct bpf_prog *prog);
0982 int xdp_do_redirect_frame(struct net_device *dev,
0983               struct xdp_buff *xdp,
0984               struct xdp_frame *xdpf,
0985               struct bpf_prog *prog);
0986 void xdp_do_flush(void);
0987 
0988 /* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
0989  * it is no longer only flushing maps. Keep this define for compatibility
0990  * until all drivers are updated - do not use xdp_do_flush_map() in new code!
0991  */
0992 #define xdp_do_flush_map xdp_do_flush
0993 
0994 void bpf_warn_invalid_xdp_action(struct net_device *dev, struct bpf_prog *prog, u32 act);
0995 
0996 #ifdef CONFIG_INET
0997 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
0998                   struct bpf_prog *prog, struct sk_buff *skb,
0999                   struct sock *migrating_sk,
1000                   u32 hash);
1001 #else
1002 static inline struct sock *
1003 bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1004              struct bpf_prog *prog, struct sk_buff *skb,
1005              struct sock *migrating_sk,
1006              u32 hash)
1007 {
1008     return NULL;
1009 }
1010 #endif
1011 
1012 #ifdef CONFIG_BPF_JIT
1013 extern int bpf_jit_enable;
1014 extern int bpf_jit_harden;
1015 extern int bpf_jit_kallsyms;
1016 extern long bpf_jit_limit;
1017 extern long bpf_jit_limit_max;
1018 
1019 typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1020 
1021 struct bpf_binary_header *
1022 bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1023              unsigned int alignment,
1024              bpf_jit_fill_hole_t bpf_fill_ill_insns);
1025 void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1026 u64 bpf_jit_alloc_exec_limit(void);
1027 void *bpf_jit_alloc_exec(unsigned long size);
1028 void bpf_jit_free_exec(void *addr);
1029 void bpf_jit_free(struct bpf_prog *fp);
1030 struct bpf_binary_header *
1031 bpf_jit_binary_pack_hdr(const struct bpf_prog *fp);
1032 
1033 static inline bool bpf_prog_kallsyms_verify_off(const struct bpf_prog *fp)
1034 {
1035     return list_empty(&fp->aux->ksym.lnode) ||
1036            fp->aux->ksym.lnode.prev == LIST_POISON2;
1037 }
1038 
1039 struct bpf_binary_header *
1040 bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **ro_image,
1041               unsigned int alignment,
1042               struct bpf_binary_header **rw_hdr,
1043               u8 **rw_image,
1044               bpf_jit_fill_hole_t bpf_fill_ill_insns);
1045 int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1046                  struct bpf_binary_header *ro_header,
1047                  struct bpf_binary_header *rw_header);
1048 void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1049                   struct bpf_binary_header *rw_header);
1050 
1051 int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1052                 struct bpf_jit_poke_descriptor *poke);
1053 
1054 int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1055               const struct bpf_insn *insn, bool extra_pass,
1056               u64 *func_addr, bool *func_addr_fixed);
1057 
1058 struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1059 void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1060 
1061 static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1062                 u32 pass, void *image)
1063 {
1064     pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1065            proglen, pass, image, current->comm, task_pid_nr(current));
1066 
1067     if (image)
1068         print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1069                    16, 1, image, proglen, false);
1070 }
1071 
1072 static inline bool bpf_jit_is_ebpf(void)
1073 {
1074 # ifdef CONFIG_HAVE_EBPF_JIT
1075     return true;
1076 # else
1077     return false;
1078 # endif
1079 }
1080 
1081 static inline bool ebpf_jit_enabled(void)
1082 {
1083     return bpf_jit_enable && bpf_jit_is_ebpf();
1084 }
1085 
1086 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1087 {
1088     return fp->jited && bpf_jit_is_ebpf();
1089 }
1090 
1091 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1092 {
1093     /* These are the prerequisites, should someone ever have the
1094      * idea to call blinding outside of them, we make sure to
1095      * bail out.
1096      */
1097     if (!bpf_jit_is_ebpf())
1098         return false;
1099     if (!prog->jit_requested)
1100         return false;
1101     if (!bpf_jit_harden)
1102         return false;
1103     if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1104         return false;
1105 
1106     return true;
1107 }
1108 
1109 static inline bool bpf_jit_kallsyms_enabled(void)
1110 {
1111     /* There are a couple of corner cases where kallsyms should
1112      * not be enabled f.e. on hardening.
1113      */
1114     if (bpf_jit_harden)
1115         return false;
1116     if (!bpf_jit_kallsyms)
1117         return false;
1118     if (bpf_jit_kallsyms == 1)
1119         return true;
1120 
1121     return false;
1122 }
1123 
1124 const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1125                  unsigned long *off, char *sym);
1126 bool is_bpf_text_address(unsigned long addr);
1127 int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1128             char *sym);
1129 
1130 static inline const char *
1131 bpf_address_lookup(unsigned long addr, unsigned long *size,
1132            unsigned long *off, char **modname, char *sym)
1133 {
1134     const char *ret = __bpf_address_lookup(addr, size, off, sym);
1135 
1136     if (ret && modname)
1137         *modname = NULL;
1138     return ret;
1139 }
1140 
1141 void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1142 void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1143 
1144 #else /* CONFIG_BPF_JIT */
1145 
1146 static inline bool ebpf_jit_enabled(void)
1147 {
1148     return false;
1149 }
1150 
1151 static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1152 {
1153     return false;
1154 }
1155 
1156 static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1157 {
1158     return false;
1159 }
1160 
1161 static inline int
1162 bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1163                 struct bpf_jit_poke_descriptor *poke)
1164 {
1165     return -ENOTSUPP;
1166 }
1167 
1168 static inline void bpf_jit_free(struct bpf_prog *fp)
1169 {
1170     bpf_prog_unlock_free(fp);
1171 }
1172 
1173 static inline bool bpf_jit_kallsyms_enabled(void)
1174 {
1175     return false;
1176 }
1177 
1178 static inline const char *
1179 __bpf_address_lookup(unsigned long addr, unsigned long *size,
1180              unsigned long *off, char *sym)
1181 {
1182     return NULL;
1183 }
1184 
1185 static inline bool is_bpf_text_address(unsigned long addr)
1186 {
1187     return false;
1188 }
1189 
1190 static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1191                   char *type, char *sym)
1192 {
1193     return -ERANGE;
1194 }
1195 
1196 static inline const char *
1197 bpf_address_lookup(unsigned long addr, unsigned long *size,
1198            unsigned long *off, char **modname, char *sym)
1199 {
1200     return NULL;
1201 }
1202 
1203 static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1204 {
1205 }
1206 
1207 static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1208 {
1209 }
1210 
1211 #endif /* CONFIG_BPF_JIT */
1212 
1213 void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1214 
1215 #define BPF_ANC     BIT(15)
1216 
1217 static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1218 {
1219     switch (first->code) {
1220     case BPF_RET | BPF_K:
1221     case BPF_LD | BPF_W | BPF_LEN:
1222         return false;
1223 
1224     case BPF_LD | BPF_W | BPF_ABS:
1225     case BPF_LD | BPF_H | BPF_ABS:
1226     case BPF_LD | BPF_B | BPF_ABS:
1227         if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1228             return true;
1229         return false;
1230 
1231     default:
1232         return true;
1233     }
1234 }
1235 
1236 static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1237 {
1238     BUG_ON(ftest->code & BPF_ANC);
1239 
1240     switch (ftest->code) {
1241     case BPF_LD | BPF_W | BPF_ABS:
1242     case BPF_LD | BPF_H | BPF_ABS:
1243     case BPF_LD | BPF_B | BPF_ABS:
1244 #define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE:    \
1245                 return BPF_ANC | SKF_AD_##CODE
1246         switch (ftest->k) {
1247         BPF_ANCILLARY(PROTOCOL);
1248         BPF_ANCILLARY(PKTTYPE);
1249         BPF_ANCILLARY(IFINDEX);
1250         BPF_ANCILLARY(NLATTR);
1251         BPF_ANCILLARY(NLATTR_NEST);
1252         BPF_ANCILLARY(MARK);
1253         BPF_ANCILLARY(QUEUE);
1254         BPF_ANCILLARY(HATYPE);
1255         BPF_ANCILLARY(RXHASH);
1256         BPF_ANCILLARY(CPU);
1257         BPF_ANCILLARY(ALU_XOR_X);
1258         BPF_ANCILLARY(VLAN_TAG);
1259         BPF_ANCILLARY(VLAN_TAG_PRESENT);
1260         BPF_ANCILLARY(PAY_OFFSET);
1261         BPF_ANCILLARY(RANDOM);
1262         BPF_ANCILLARY(VLAN_TPID);
1263         }
1264         fallthrough;
1265     default:
1266         return ftest->code;
1267     }
1268 }
1269 
1270 void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1271                        int k, unsigned int size);
1272 
1273 static inline int bpf_tell_extensions(void)
1274 {
1275     return SKF_AD_MAX;
1276 }
1277 
1278 struct bpf_sock_addr_kern {
1279     struct sock *sk;
1280     struct sockaddr *uaddr;
1281     /* Temporary "register" to make indirect stores to nested structures
1282      * defined above. We need three registers to make such a store, but
1283      * only two (src and dst) are available at convert_ctx_access time
1284      */
1285     u64 tmp_reg;
1286     void *t_ctx;    /* Attach type specific context. */
1287 };
1288 
1289 struct bpf_sock_ops_kern {
1290     struct  sock *sk;
1291     union {
1292         u32 args[4];
1293         u32 reply;
1294         u32 replylong[4];
1295     };
1296     struct sk_buff  *syn_skb;
1297     struct sk_buff  *skb;
1298     void    *skb_data_end;
1299     u8  op;
1300     u8  is_fullsock;
1301     u8  remaining_opt_len;
1302     u64 temp;           /* temp and everything after is not
1303                      * initialized to 0 before calling
1304                      * the BPF program. New fields that
1305                      * should be initialized to 0 should
1306                      * be inserted before temp.
1307                      * temp is scratch storage used by
1308                      * sock_ops_convert_ctx_access
1309                      * as temporary storage of a register.
1310                      */
1311 };
1312 
1313 struct bpf_sysctl_kern {
1314     struct ctl_table_header *head;
1315     struct ctl_table *table;
1316     void *cur_val;
1317     size_t cur_len;
1318     void *new_val;
1319     size_t new_len;
1320     int new_updated;
1321     int write;
1322     loff_t *ppos;
1323     /* Temporary "register" for indirect stores to ppos. */
1324     u64 tmp_reg;
1325 };
1326 
1327 #define BPF_SOCKOPT_KERN_BUF_SIZE   32
1328 struct bpf_sockopt_buf {
1329     u8      data[BPF_SOCKOPT_KERN_BUF_SIZE];
1330 };
1331 
1332 struct bpf_sockopt_kern {
1333     struct sock *sk;
1334     u8      *optval;
1335     u8      *optval_end;
1336     s32     level;
1337     s32     optname;
1338     s32     optlen;
1339     /* for retval in struct bpf_cg_run_ctx */
1340     struct task_struct *current_task;
1341     /* Temporary "register" for indirect stores to ppos. */
1342     u64     tmp_reg;
1343 };
1344 
1345 int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1346 
1347 struct bpf_sk_lookup_kern {
1348     u16     family;
1349     u16     protocol;
1350     __be16      sport;
1351     u16     dport;
1352     struct {
1353         __be32 saddr;
1354         __be32 daddr;
1355     } v4;
1356     struct {
1357         const struct in6_addr *saddr;
1358         const struct in6_addr *daddr;
1359     } v6;
1360     struct sock *selected_sk;
1361     u32     ingress_ifindex;
1362     bool        no_reuseport;
1363 };
1364 
1365 extern struct static_key_false bpf_sk_lookup_enabled;
1366 
1367 /* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1368  *
1369  * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1370  * SK_DROP. Their meaning is as follows:
1371  *
1372  *  SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1373  *  SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1374  *  SK_DROP                           : terminate lookup with -ECONNREFUSED
1375  *
1376  * This macro aggregates return values and selected sockets from
1377  * multiple BPF programs according to following rules in order:
1378  *
1379  *  1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1380  *     macro result is SK_PASS and last ctx.selected_sk is used.
1381  *  2. If any program returned SK_DROP return value,
1382  *     macro result is SK_DROP.
1383  *  3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1384  *
1385  * Caller must ensure that the prog array is non-NULL, and that the
1386  * array as well as the programs it contains remain valid.
1387  */
1388 #define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func)          \
1389     ({                              \
1390         struct bpf_sk_lookup_kern *_ctx = &(ctx);       \
1391         struct bpf_prog_array_item *_item;          \
1392         struct sock *_selected_sk = NULL;           \
1393         bool _no_reuseport = false;             \
1394         struct bpf_prog *_prog;                 \
1395         bool _all_pass = true;                  \
1396         u32 _ret;                       \
1397                                     \
1398         migrate_disable();                  \
1399         _item = &(array)->items[0];             \
1400         while ((_prog = READ_ONCE(_item->prog))) {      \
1401             /* restore most recent selection */     \
1402             _ctx->selected_sk = _selected_sk;       \
1403             _ctx->no_reuseport = _no_reuseport;     \
1404                                     \
1405             _ret = func(_prog, _ctx);           \
1406             if (_ret == SK_PASS && _ctx->selected_sk) { \
1407                 /* remember last non-NULL socket */ \
1408                 _selected_sk = _ctx->selected_sk;   \
1409                 _no_reuseport = _ctx->no_reuseport; \
1410             } else if (_ret == SK_DROP && _all_pass) {  \
1411                 _all_pass = false;          \
1412             }                       \
1413             _item++;                    \
1414         }                           \
1415         _ctx->selected_sk = _selected_sk;           \
1416         _ctx->no_reuseport = _no_reuseport;         \
1417         migrate_enable();                   \
1418         _all_pass || _selected_sk ? SK_PASS : SK_DROP;      \
1419      })
1420 
1421 static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1422                     const __be32 saddr, const __be16 sport,
1423                     const __be32 daddr, const u16 dport,
1424                     const int ifindex, struct sock **psk)
1425 {
1426     struct bpf_prog_array *run_array;
1427     struct sock *selected_sk = NULL;
1428     bool no_reuseport = false;
1429 
1430     rcu_read_lock();
1431     run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1432     if (run_array) {
1433         struct bpf_sk_lookup_kern ctx = {
1434             .family     = AF_INET,
1435             .protocol   = protocol,
1436             .v4.saddr   = saddr,
1437             .v4.daddr   = daddr,
1438             .sport      = sport,
1439             .dport      = dport,
1440             .ingress_ifindex    = ifindex,
1441         };
1442         u32 act;
1443 
1444         act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1445         if (act == SK_PASS) {
1446             selected_sk = ctx.selected_sk;
1447             no_reuseport = ctx.no_reuseport;
1448         } else {
1449             selected_sk = ERR_PTR(-ECONNREFUSED);
1450         }
1451     }
1452     rcu_read_unlock();
1453     *psk = selected_sk;
1454     return no_reuseport;
1455 }
1456 
1457 #if IS_ENABLED(CONFIG_IPV6)
1458 static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1459                     const struct in6_addr *saddr,
1460                     const __be16 sport,
1461                     const struct in6_addr *daddr,
1462                     const u16 dport,
1463                     const int ifindex, struct sock **psk)
1464 {
1465     struct bpf_prog_array *run_array;
1466     struct sock *selected_sk = NULL;
1467     bool no_reuseport = false;
1468 
1469     rcu_read_lock();
1470     run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1471     if (run_array) {
1472         struct bpf_sk_lookup_kern ctx = {
1473             .family     = AF_INET6,
1474             .protocol   = protocol,
1475             .v6.saddr   = saddr,
1476             .v6.daddr   = daddr,
1477             .sport      = sport,
1478             .dport      = dport,
1479             .ingress_ifindex    = ifindex,
1480         };
1481         u32 act;
1482 
1483         act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run);
1484         if (act == SK_PASS) {
1485             selected_sk = ctx.selected_sk;
1486             no_reuseport = ctx.no_reuseport;
1487         } else {
1488             selected_sk = ERR_PTR(-ECONNREFUSED);
1489         }
1490     }
1491     rcu_read_unlock();
1492     *psk = selected_sk;
1493     return no_reuseport;
1494 }
1495 #endif /* IS_ENABLED(CONFIG_IPV6) */
1496 
1497 static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex,
1498                           u64 flags, const u64 flag_mask,
1499                           void *lookup_elem(struct bpf_map *map, u32 key))
1500 {
1501     struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1502     const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX;
1503 
1504     /* Lower bits of the flags are used as return code on lookup failure */
1505     if (unlikely(flags & ~(action_mask | flag_mask)))
1506         return XDP_ABORTED;
1507 
1508     ri->tgt_value = lookup_elem(map, ifindex);
1509     if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) {
1510         /* If the lookup fails we want to clear out the state in the
1511          * redirect_info struct completely, so that if an eBPF program
1512          * performs multiple lookups, the last one always takes
1513          * precedence.
1514          */
1515         ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1516         ri->map_type = BPF_MAP_TYPE_UNSPEC;
1517         return flags & action_mask;
1518     }
1519 
1520     ri->tgt_index = ifindex;
1521     ri->map_id = map->id;
1522     ri->map_type = map->map_type;
1523 
1524     if (flags & BPF_F_BROADCAST) {
1525         WRITE_ONCE(ri->map, map);
1526         ri->flags = flags;
1527     } else {
1528         WRITE_ONCE(ri->map, NULL);
1529         ri->flags = 0;
1530     }
1531 
1532     return XDP_REDIRECT;
1533 }
1534 
1535 #endif /* __LINUX_FILTER_H__ */