![]() |
|
|||
0001 /* SPDX-License-Identifier: GPL-2.0-only */ 0002 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com 0003 */ 0004 #ifndef _LINUX_BPF_VERIFIER_H 0005 #define _LINUX_BPF_VERIFIER_H 1 0006 0007 #include <linux/bpf.h> /* for enum bpf_reg_type */ 0008 #include <linux/btf.h> /* for struct btf and btf_id() */ 0009 #include <linux/filter.h> /* for MAX_BPF_STACK */ 0010 #include <linux/tnum.h> 0011 0012 /* Maximum variable offset umax_value permitted when resolving memory accesses. 0013 * In practice this is far bigger than any realistic pointer offset; this limit 0014 * ensures that umax_value + (int)off + (int)size cannot overflow a u64. 0015 */ 0016 #define BPF_MAX_VAR_OFF (1 << 29) 0017 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures 0018 * that converting umax_value to int cannot overflow. 0019 */ 0020 #define BPF_MAX_VAR_SIZ (1 << 29) 0021 /* size of type_str_buf in bpf_verifier. */ 0022 #define TYPE_STR_BUF_LEN 64 0023 0024 /* Liveness marks, used for registers and spilled-regs (in stack slots). 0025 * Read marks propagate upwards until they find a write mark; they record that 0026 * "one of this state's descendants read this reg" (and therefore the reg is 0027 * relevant for states_equal() checks). 0028 * Write marks collect downwards and do not propagate; they record that "the 0029 * straight-line code that reached this state (from its parent) wrote this reg" 0030 * (and therefore that reads propagated from this state or its descendants 0031 * should not propagate to its parent). 0032 * A state with a write mark can receive read marks; it just won't propagate 0033 * them to its parent, since the write mark is a property, not of the state, 0034 * but of the link between it and its parent. See mark_reg_read() and 0035 * mark_stack_slot_read() in kernel/bpf/verifier.c. 0036 */ 0037 enum bpf_reg_liveness { 0038 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */ 0039 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */ 0040 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */ 0041 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64, 0042 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */ 0043 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */ 0044 }; 0045 0046 struct bpf_reg_state { 0047 /* Ordering of fields matters. See states_equal() */ 0048 enum bpf_reg_type type; 0049 /* Fixed part of pointer offset, pointer types only */ 0050 s32 off; 0051 union { 0052 /* valid when type == PTR_TO_PACKET */ 0053 int range; 0054 0055 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE | 0056 * PTR_TO_MAP_VALUE_OR_NULL 0057 */ 0058 struct { 0059 struct bpf_map *map_ptr; 0060 /* To distinguish map lookups from outer map 0061 * the map_uid is non-zero for registers 0062 * pointing to inner maps. 0063 */ 0064 u32 map_uid; 0065 }; 0066 0067 /* for PTR_TO_BTF_ID */ 0068 struct { 0069 struct btf *btf; 0070 u32 btf_id; 0071 }; 0072 0073 u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */ 0074 0075 /* For dynptr stack slots */ 0076 struct { 0077 enum bpf_dynptr_type type; 0078 /* A dynptr is 16 bytes so it takes up 2 stack slots. 0079 * We need to track which slot is the first slot 0080 * to protect against cases where the user may try to 0081 * pass in an address starting at the second slot of the 0082 * dynptr. 0083 */ 0084 bool first_slot; 0085 } dynptr; 0086 0087 /* Max size from any of the above. */ 0088 struct { 0089 unsigned long raw1; 0090 unsigned long raw2; 0091 } raw; 0092 0093 u32 subprogno; /* for PTR_TO_FUNC */ 0094 }; 0095 /* For PTR_TO_PACKET, used to find other pointers with the same variable 0096 * offset, so they can share range knowledge. 0097 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we 0098 * came from, when one is tested for != NULL. 0099 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation 0100 * for the purpose of tracking that it's freed. 0101 * For PTR_TO_SOCKET this is used to share which pointers retain the 0102 * same reference to the socket, to determine proper reference freeing. 0103 * For stack slots that are dynptrs, this is used to track references to 0104 * the dynptr to determine proper reference freeing. 0105 */ 0106 u32 id; 0107 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned 0108 * from a pointer-cast helper, bpf_sk_fullsock() and 0109 * bpf_tcp_sock(). 0110 * 0111 * Consider the following where "sk" is a reference counted 0112 * pointer returned from "sk = bpf_sk_lookup_tcp();": 0113 * 0114 * 1: sk = bpf_sk_lookup_tcp(); 0115 * 2: if (!sk) { return 0; } 0116 * 3: fullsock = bpf_sk_fullsock(sk); 0117 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; } 0118 * 5: tp = bpf_tcp_sock(fullsock); 0119 * 6: if (!tp) { bpf_sk_release(sk); return 0; } 0120 * 7: bpf_sk_release(sk); 0121 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain 0122 * 0123 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and 0124 * "tp" ptr should be invalidated also. In order to do that, 0125 * the reg holding "fullsock" and "sk" need to remember 0126 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id 0127 * such that the verifier can reset all regs which have 0128 * ref_obj_id matching the sk_reg->id. 0129 * 0130 * sk_reg->ref_obj_id is set to sk_reg->id at line 1. 0131 * sk_reg->id will stay as NULL-marking purpose only. 0132 * After NULL-marking is done, sk_reg->id can be reset to 0. 0133 * 0134 * After "fullsock = bpf_sk_fullsock(sk);" at line 3, 0135 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id. 0136 * 0137 * After "tp = bpf_tcp_sock(fullsock);" at line 5, 0138 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id 0139 * which is the same as sk_reg->ref_obj_id. 0140 * 0141 * From the verifier perspective, if sk, fullsock and tp 0142 * are not NULL, they are the same ptr with different 0143 * reg->type. In particular, bpf_sk_release(tp) is also 0144 * allowed and has the same effect as bpf_sk_release(sk). 0145 */ 0146 u32 ref_obj_id; 0147 /* For scalar types (SCALAR_VALUE), this represents our knowledge of 0148 * the actual value. 0149 * For pointer types, this represents the variable part of the offset 0150 * from the pointed-to object, and is shared with all bpf_reg_states 0151 * with the same id as us. 0152 */ 0153 struct tnum var_off; 0154 /* Used to determine if any memory access using this register will 0155 * result in a bad access. 0156 * These refer to the same value as var_off, not necessarily the actual 0157 * contents of the register. 0158 */ 0159 s64 smin_value; /* minimum possible (s64)value */ 0160 s64 smax_value; /* maximum possible (s64)value */ 0161 u64 umin_value; /* minimum possible (u64)value */ 0162 u64 umax_value; /* maximum possible (u64)value */ 0163 s32 s32_min_value; /* minimum possible (s32)value */ 0164 s32 s32_max_value; /* maximum possible (s32)value */ 0165 u32 u32_min_value; /* minimum possible (u32)value */ 0166 u32 u32_max_value; /* maximum possible (u32)value */ 0167 /* parentage chain for liveness checking */ 0168 struct bpf_reg_state *parent; 0169 /* Inside the callee two registers can be both PTR_TO_STACK like 0170 * R1=fp-8 and R2=fp-8, but one of them points to this function stack 0171 * while another to the caller's stack. To differentiate them 'frameno' 0172 * is used which is an index in bpf_verifier_state->frame[] array 0173 * pointing to bpf_func_state. 0174 */ 0175 u32 frameno; 0176 /* Tracks subreg definition. The stored value is the insn_idx of the 0177 * writing insn. This is safe because subreg_def is used before any insn 0178 * patching which only happens after main verification finished. 0179 */ 0180 s32 subreg_def; 0181 enum bpf_reg_liveness live; 0182 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */ 0183 bool precise; 0184 }; 0185 0186 enum bpf_stack_slot_type { 0187 STACK_INVALID, /* nothing was stored in this stack slot */ 0188 STACK_SPILL, /* register spilled into stack */ 0189 STACK_MISC, /* BPF program wrote some data into this slot */ 0190 STACK_ZERO, /* BPF program wrote constant zero */ 0191 /* A dynptr is stored in this stack slot. The type of dynptr 0192 * is stored in bpf_stack_state->spilled_ptr.dynptr.type 0193 */ 0194 STACK_DYNPTR, 0195 }; 0196 0197 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */ 0198 #define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern) 0199 #define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE) 0200 0201 struct bpf_stack_state { 0202 struct bpf_reg_state spilled_ptr; 0203 u8 slot_type[BPF_REG_SIZE]; 0204 }; 0205 0206 struct bpf_reference_state { 0207 /* Track each reference created with a unique id, even if the same 0208 * instruction creates the reference multiple times (eg, via CALL). 0209 */ 0210 int id; 0211 /* Instruction where the allocation of this reference occurred. This 0212 * is used purely to inform the user of a reference leak. 0213 */ 0214 int insn_idx; 0215 }; 0216 0217 /* state of the program: 0218 * type of all registers and stack info 0219 */ 0220 struct bpf_func_state { 0221 struct bpf_reg_state regs[MAX_BPF_REG]; 0222 /* index of call instruction that called into this func */ 0223 int callsite; 0224 /* stack frame number of this function state from pov of 0225 * enclosing bpf_verifier_state. 0226 * 0 = main function, 1 = first callee. 0227 */ 0228 u32 frameno; 0229 /* subprog number == index within subprog_info 0230 * zero == main subprog 0231 */ 0232 u32 subprogno; 0233 /* Every bpf_timer_start will increment async_entry_cnt. 0234 * It's used to distinguish: 0235 * void foo(void) { for(;;); } 0236 * void foo(void) { bpf_timer_set_callback(,foo); } 0237 */ 0238 u32 async_entry_cnt; 0239 bool in_callback_fn; 0240 bool in_async_callback_fn; 0241 0242 /* The following fields should be last. See copy_func_state() */ 0243 int acquired_refs; 0244 struct bpf_reference_state *refs; 0245 int allocated_stack; 0246 struct bpf_stack_state *stack; 0247 }; 0248 0249 struct bpf_idx_pair { 0250 u32 prev_idx; 0251 u32 idx; 0252 }; 0253 0254 struct bpf_id_pair { 0255 u32 old; 0256 u32 cur; 0257 }; 0258 0259 /* Maximum number of register states that can exist at once */ 0260 #define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) 0261 #define MAX_CALL_FRAMES 8 0262 struct bpf_verifier_state { 0263 /* call stack tracking */ 0264 struct bpf_func_state *frame[MAX_CALL_FRAMES]; 0265 struct bpf_verifier_state *parent; 0266 /* 0267 * 'branches' field is the number of branches left to explore: 0268 * 0 - all possible paths from this state reached bpf_exit or 0269 * were safely pruned 0270 * 1 - at least one path is being explored. 0271 * This state hasn't reached bpf_exit 0272 * 2 - at least two paths are being explored. 0273 * This state is an immediate parent of two children. 0274 * One is fallthrough branch with branches==1 and another 0275 * state is pushed into stack (to be explored later) also with 0276 * branches==1. The parent of this state has branches==1. 0277 * The verifier state tree connected via 'parent' pointer looks like: 0278 * 1 0279 * 1 0280 * 2 -> 1 (first 'if' pushed into stack) 0281 * 1 0282 * 2 -> 1 (second 'if' pushed into stack) 0283 * 1 0284 * 1 0285 * 1 bpf_exit. 0286 * 0287 * Once do_check() reaches bpf_exit, it calls update_branch_counts() 0288 * and the verifier state tree will look: 0289 * 1 0290 * 1 0291 * 2 -> 1 (first 'if' pushed into stack) 0292 * 1 0293 * 1 -> 1 (second 'if' pushed into stack) 0294 * 0 0295 * 0 0296 * 0 bpf_exit. 0297 * After pop_stack() the do_check() will resume at second 'if'. 0298 * 0299 * If is_state_visited() sees a state with branches > 0 it means 0300 * there is a loop. If such state is exactly equal to the current state 0301 * it's an infinite loop. Note states_equal() checks for states 0302 * equivalency, so two states being 'states_equal' does not mean 0303 * infinite loop. The exact comparison is provided by 0304 * states_maybe_looping() function. It's a stronger pre-check and 0305 * much faster than states_equal(). 0306 * 0307 * This algorithm may not find all possible infinite loops or 0308 * loop iteration count may be too high. 0309 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in. 0310 */ 0311 u32 branches; 0312 u32 insn_idx; 0313 u32 curframe; 0314 u32 active_spin_lock; 0315 bool speculative; 0316 0317 /* first and last insn idx of this verifier state */ 0318 u32 first_insn_idx; 0319 u32 last_insn_idx; 0320 /* jmp history recorded from first to last. 0321 * backtracking is using it to go from last to first. 0322 * For most states jmp_history_cnt is [0-3]. 0323 * For loops can go up to ~40. 0324 */ 0325 struct bpf_idx_pair *jmp_history; 0326 u32 jmp_history_cnt; 0327 }; 0328 0329 #define bpf_get_spilled_reg(slot, frame) \ 0330 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \ 0331 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \ 0332 ? &frame->stack[slot].spilled_ptr : NULL) 0333 0334 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */ 0335 #define bpf_for_each_spilled_reg(iter, frame, reg) \ 0336 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \ 0337 iter < frame->allocated_stack / BPF_REG_SIZE; \ 0338 iter++, reg = bpf_get_spilled_reg(iter, frame)) 0339 0340 /* linked list of verifier states used to prune search */ 0341 struct bpf_verifier_state_list { 0342 struct bpf_verifier_state state; 0343 struct bpf_verifier_state_list *next; 0344 int miss_cnt, hit_cnt; 0345 }; 0346 0347 struct bpf_loop_inline_state { 0348 unsigned int initialized:1; /* set to true upon first entry */ 0349 unsigned int fit_for_inline:1; /* true if callback function is the same 0350 * at each call and flags are always zero 0351 */ 0352 u32 callback_subprogno; /* valid when fit_for_inline is true */ 0353 }; 0354 0355 /* Possible states for alu_state member. */ 0356 #define BPF_ALU_SANITIZE_SRC (1U << 0) 0357 #define BPF_ALU_SANITIZE_DST (1U << 1) 0358 #define BPF_ALU_NEG_VALUE (1U << 2) 0359 #define BPF_ALU_NON_POINTER (1U << 3) 0360 #define BPF_ALU_IMMEDIATE (1U << 4) 0361 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \ 0362 BPF_ALU_SANITIZE_DST) 0363 0364 struct bpf_insn_aux_data { 0365 union { 0366 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */ 0367 unsigned long map_ptr_state; /* pointer/poison value for maps */ 0368 s32 call_imm; /* saved imm field of call insn */ 0369 u32 alu_limit; /* limit for add/sub register with pointer */ 0370 struct { 0371 u32 map_index; /* index into used_maps[] */ 0372 u32 map_off; /* offset from value base address */ 0373 }; 0374 struct { 0375 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */ 0376 union { 0377 struct { 0378 struct btf *btf; 0379 u32 btf_id; /* btf_id for struct typed var */ 0380 }; 0381 u32 mem_size; /* mem_size for non-struct typed var */ 0382 }; 0383 } btf_var; 0384 /* if instruction is a call to bpf_loop this field tracks 0385 * the state of the relevant registers to make decision about inlining 0386 */ 0387 struct bpf_loop_inline_state loop_inline_state; 0388 }; 0389 u64 map_key_state; /* constant (32 bit) key tracking for maps */ 0390 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */ 0391 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */ 0392 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */ 0393 bool zext_dst; /* this insn zero extends dst reg */ 0394 u8 alu_state; /* used in combination with alu_limit */ 0395 0396 /* below fields are initialized once */ 0397 unsigned int orig_idx; /* original instruction index */ 0398 bool prune_point; 0399 }; 0400 0401 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */ 0402 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */ 0403 0404 #define BPF_VERIFIER_TMP_LOG_SIZE 1024 0405 0406 struct bpf_verifier_log { 0407 u32 level; 0408 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE]; 0409 char __user *ubuf; 0410 u32 len_used; 0411 u32 len_total; 0412 }; 0413 0414 static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log) 0415 { 0416 return log->len_used >= log->len_total - 1; 0417 } 0418 0419 #define BPF_LOG_LEVEL1 1 0420 #define BPF_LOG_LEVEL2 2 0421 #define BPF_LOG_STATS 4 0422 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2) 0423 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS) 0424 #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */ 0425 #define BPF_LOG_MIN_ALIGNMENT 8U 0426 #define BPF_LOG_ALIGNMENT 40U 0427 0428 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log) 0429 { 0430 return log && 0431 ((log->level && log->ubuf && !bpf_verifier_log_full(log)) || 0432 log->level == BPF_LOG_KERNEL); 0433 } 0434 0435 static inline bool 0436 bpf_verifier_log_attr_valid(const struct bpf_verifier_log *log) 0437 { 0438 return log->len_total >= 128 && log->len_total <= UINT_MAX >> 2 && 0439 log->level && log->ubuf && !(log->level & ~BPF_LOG_MASK); 0440 } 0441 0442 #define BPF_MAX_SUBPROGS 256 0443 0444 struct bpf_subprog_info { 0445 /* 'start' has to be the first field otherwise find_subprog() won't work */ 0446 u32 start; /* insn idx of function entry point */ 0447 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */ 0448 u16 stack_depth; /* max. stack depth used by this function */ 0449 bool has_tail_call; 0450 bool tail_call_reachable; 0451 bool has_ld_abs; 0452 bool is_async_cb; 0453 }; 0454 0455 /* single container for all structs 0456 * one verifier_env per bpf_check() call 0457 */ 0458 struct bpf_verifier_env { 0459 u32 insn_idx; 0460 u32 prev_insn_idx; 0461 struct bpf_prog *prog; /* eBPF program being verified */ 0462 const struct bpf_verifier_ops *ops; 0463 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */ 0464 int stack_size; /* number of states to be processed */ 0465 bool strict_alignment; /* perform strict pointer alignment checks */ 0466 bool test_state_freq; /* test verifier with different pruning frequency */ 0467 struct bpf_verifier_state *cur_state; /* current verifier state */ 0468 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */ 0469 struct bpf_verifier_state_list *free_list; 0470 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */ 0471 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */ 0472 u32 used_map_cnt; /* number of used maps */ 0473 u32 used_btf_cnt; /* number of used BTF objects */ 0474 u32 id_gen; /* used to generate unique reg IDs */ 0475 bool explore_alu_limits; 0476 bool allow_ptr_leaks; 0477 bool allow_uninit_stack; 0478 bool allow_ptr_to_map_access; 0479 bool bpf_capable; 0480 bool bypass_spec_v1; 0481 bool bypass_spec_v4; 0482 bool seen_direct_write; 0483 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */ 0484 const struct bpf_line_info *prev_linfo; 0485 struct bpf_verifier_log log; 0486 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1]; 0487 struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE]; 0488 struct { 0489 int *insn_state; 0490 int *insn_stack; 0491 int cur_stack; 0492 } cfg; 0493 u32 pass_cnt; /* number of times do_check() was called */ 0494 u32 subprog_cnt; 0495 /* number of instructions analyzed by the verifier */ 0496 u32 prev_insn_processed, insn_processed; 0497 /* number of jmps, calls, exits analyzed so far */ 0498 u32 prev_jmps_processed, jmps_processed; 0499 /* total verification time */ 0500 u64 verification_time; 0501 /* maximum number of verifier states kept in 'branching' instructions */ 0502 u32 max_states_per_insn; 0503 /* total number of allocated verifier states */ 0504 u32 total_states; 0505 /* some states are freed during program analysis. 0506 * this is peak number of states. this number dominates kernel 0507 * memory consumption during verification 0508 */ 0509 u32 peak_states; 0510 /* longest register parentage chain walked for liveness marking */ 0511 u32 longest_mark_read_walk; 0512 bpfptr_t fd_array; 0513 0514 /* bit mask to keep track of whether a register has been accessed 0515 * since the last time the function state was printed 0516 */ 0517 u32 scratched_regs; 0518 /* Same as scratched_regs but for stack slots */ 0519 u64 scratched_stack_slots; 0520 u32 prev_log_len, prev_insn_print_len; 0521 /* buffer used in reg_type_str() to generate reg_type string */ 0522 char type_str_buf[TYPE_STR_BUF_LEN]; 0523 }; 0524 0525 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log, 0526 const char *fmt, va_list args); 0527 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env, 0528 const char *fmt, ...); 0529 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log, 0530 const char *fmt, ...); 0531 0532 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env) 0533 { 0534 struct bpf_verifier_state *cur = env->cur_state; 0535 0536 return cur->frame[cur->curframe]; 0537 } 0538 0539 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env) 0540 { 0541 return cur_func(env)->regs; 0542 } 0543 0544 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog); 0545 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env, 0546 int insn_idx, int prev_insn_idx); 0547 int bpf_prog_offload_finalize(struct bpf_verifier_env *env); 0548 void 0549 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off, 0550 struct bpf_insn *insn); 0551 void 0552 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt); 0553 0554 int check_ptr_off_reg(struct bpf_verifier_env *env, 0555 const struct bpf_reg_state *reg, int regno); 0556 int check_func_arg_reg_off(struct bpf_verifier_env *env, 0557 const struct bpf_reg_state *reg, int regno, 0558 enum bpf_arg_type arg_type); 0559 int check_kfunc_mem_size_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 0560 u32 regno); 0561 int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg, 0562 u32 regno, u32 mem_size); 0563 0564 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */ 0565 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog, 0566 struct btf *btf, u32 btf_id) 0567 { 0568 if (tgt_prog) 0569 return ((u64)tgt_prog->aux->id << 32) | btf_id; 0570 else 0571 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id; 0572 } 0573 0574 /* unpack the IDs from the key as constructed above */ 0575 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id) 0576 { 0577 if (obj_id) 0578 *obj_id = key >> 32; 0579 if (btf_id) 0580 *btf_id = key & 0x7FFFFFFF; 0581 } 0582 0583 int bpf_check_attach_target(struct bpf_verifier_log *log, 0584 const struct bpf_prog *prog, 0585 const struct bpf_prog *tgt_prog, 0586 u32 btf_id, 0587 struct bpf_attach_target_info *tgt_info); 0588 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab); 0589 0590 #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0) 0591 0592 /* extract base type from bpf_{arg, return, reg}_type. */ 0593 static inline u32 base_type(u32 type) 0594 { 0595 return type & BPF_BASE_TYPE_MASK; 0596 } 0597 0598 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */ 0599 static inline u32 type_flag(u32 type) 0600 { 0601 return type & ~BPF_BASE_TYPE_MASK; 0602 } 0603 0604 /* only use after check_attach_btf_id() */ 0605 static inline enum bpf_prog_type resolve_prog_type(struct bpf_prog *prog) 0606 { 0607 return prog->type == BPF_PROG_TYPE_EXT ? 0608 prog->aux->dst_prog->type : prog->type; 0609 } 0610 0611 #endif /* _LINUX_BPF_VERIFIER_H */
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |