![]() |
|
|||
0001 /* SPDX-License-Identifier: GPL-2.0-or-later */ 0002 /* 0003 * Symmetric key ciphers. 0004 * 0005 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au> 0006 */ 0007 0008 #ifndef _CRYPTO_SKCIPHER_H 0009 #define _CRYPTO_SKCIPHER_H 0010 0011 #include <linux/container_of.h> 0012 #include <linux/crypto.h> 0013 #include <linux/slab.h> 0014 #include <linux/string.h> 0015 #include <linux/types.h> 0016 0017 struct scatterlist; 0018 0019 /** 0020 * struct skcipher_request - Symmetric key cipher request 0021 * @cryptlen: Number of bytes to encrypt or decrypt 0022 * @iv: Initialisation Vector 0023 * @src: Source SG list 0024 * @dst: Destination SG list 0025 * @base: Underlying async request 0026 * @__ctx: Start of private context data 0027 */ 0028 struct skcipher_request { 0029 unsigned int cryptlen; 0030 0031 u8 *iv; 0032 0033 struct scatterlist *src; 0034 struct scatterlist *dst; 0035 0036 struct crypto_async_request base; 0037 0038 void *__ctx[] CRYPTO_MINALIGN_ATTR; 0039 }; 0040 0041 struct crypto_skcipher { 0042 unsigned int reqsize; 0043 0044 struct crypto_tfm base; 0045 }; 0046 0047 struct crypto_sync_skcipher { 0048 struct crypto_skcipher base; 0049 }; 0050 0051 /** 0052 * struct skcipher_alg - symmetric key cipher definition 0053 * @min_keysize: Minimum key size supported by the transformation. This is the 0054 * smallest key length supported by this transformation algorithm. 0055 * This must be set to one of the pre-defined values as this is 0056 * not hardware specific. Possible values for this field can be 0057 * found via git grep "_MIN_KEY_SIZE" include/crypto/ 0058 * @max_keysize: Maximum key size supported by the transformation. This is the 0059 * largest key length supported by this transformation algorithm. 0060 * This must be set to one of the pre-defined values as this is 0061 * not hardware specific. Possible values for this field can be 0062 * found via git grep "_MAX_KEY_SIZE" include/crypto/ 0063 * @setkey: Set key for the transformation. This function is used to either 0064 * program a supplied key into the hardware or store the key in the 0065 * transformation context for programming it later. Note that this 0066 * function does modify the transformation context. This function can 0067 * be called multiple times during the existence of the transformation 0068 * object, so one must make sure the key is properly reprogrammed into 0069 * the hardware. This function is also responsible for checking the key 0070 * length for validity. In case a software fallback was put in place in 0071 * the @cra_init call, this function might need to use the fallback if 0072 * the algorithm doesn't support all of the key sizes. 0073 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt 0074 * the supplied scatterlist containing the blocks of data. The crypto 0075 * API consumer is responsible for aligning the entries of the 0076 * scatterlist properly and making sure the chunks are correctly 0077 * sized. In case a software fallback was put in place in the 0078 * @cra_init call, this function might need to use the fallback if 0079 * the algorithm doesn't support all of the key sizes. In case the 0080 * key was stored in transformation context, the key might need to be 0081 * re-programmed into the hardware in this function. This function 0082 * shall not modify the transformation context, as this function may 0083 * be called in parallel with the same transformation object. 0084 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt 0085 * and the conditions are exactly the same. 0086 * @init: Initialize the cryptographic transformation object. This function 0087 * is used to initialize the cryptographic transformation object. 0088 * This function is called only once at the instantiation time, right 0089 * after the transformation context was allocated. In case the 0090 * cryptographic hardware has some special requirements which need to 0091 * be handled by software, this function shall check for the precise 0092 * requirement of the transformation and put any software fallbacks 0093 * in place. 0094 * @exit: Deinitialize the cryptographic transformation object. This is a 0095 * counterpart to @init, used to remove various changes set in 0096 * @init. 0097 * @ivsize: IV size applicable for transformation. The consumer must provide an 0098 * IV of exactly that size to perform the encrypt or decrypt operation. 0099 * @chunksize: Equal to the block size except for stream ciphers such as 0100 * CTR where it is set to the underlying block size. 0101 * @walksize: Equal to the chunk size except in cases where the algorithm is 0102 * considerably more efficient if it can operate on multiple chunks 0103 * in parallel. Should be a multiple of chunksize. 0104 * @base: Definition of a generic crypto algorithm. 0105 * 0106 * All fields except @ivsize are mandatory and must be filled. 0107 */ 0108 struct skcipher_alg { 0109 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key, 0110 unsigned int keylen); 0111 int (*encrypt)(struct skcipher_request *req); 0112 int (*decrypt)(struct skcipher_request *req); 0113 int (*init)(struct crypto_skcipher *tfm); 0114 void (*exit)(struct crypto_skcipher *tfm); 0115 0116 unsigned int min_keysize; 0117 unsigned int max_keysize; 0118 unsigned int ivsize; 0119 unsigned int chunksize; 0120 unsigned int walksize; 0121 0122 struct crypto_alg base; 0123 }; 0124 0125 #define MAX_SYNC_SKCIPHER_REQSIZE 384 0126 /* 0127 * This performs a type-check against the "tfm" argument to make sure 0128 * all users have the correct skcipher tfm for doing on-stack requests. 0129 */ 0130 #define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \ 0131 char __##name##_desc[sizeof(struct skcipher_request) + \ 0132 MAX_SYNC_SKCIPHER_REQSIZE + \ 0133 (!(sizeof((struct crypto_sync_skcipher *)1 == \ 0134 (typeof(tfm))1))) \ 0135 ] CRYPTO_MINALIGN_ATTR; \ 0136 struct skcipher_request *name = (void *)__##name##_desc 0137 0138 /** 0139 * DOC: Symmetric Key Cipher API 0140 * 0141 * Symmetric key cipher API is used with the ciphers of type 0142 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto). 0143 * 0144 * Asynchronous cipher operations imply that the function invocation for a 0145 * cipher request returns immediately before the completion of the operation. 0146 * The cipher request is scheduled as a separate kernel thread and therefore 0147 * load-balanced on the different CPUs via the process scheduler. To allow 0148 * the kernel crypto API to inform the caller about the completion of a cipher 0149 * request, the caller must provide a callback function. That function is 0150 * invoked with the cipher handle when the request completes. 0151 * 0152 * To support the asynchronous operation, additional information than just the 0153 * cipher handle must be supplied to the kernel crypto API. That additional 0154 * information is given by filling in the skcipher_request data structure. 0155 * 0156 * For the symmetric key cipher API, the state is maintained with the tfm 0157 * cipher handle. A single tfm can be used across multiple calls and in 0158 * parallel. For asynchronous block cipher calls, context data supplied and 0159 * only used by the caller can be referenced the request data structure in 0160 * addition to the IV used for the cipher request. The maintenance of such 0161 * state information would be important for a crypto driver implementer to 0162 * have, because when calling the callback function upon completion of the 0163 * cipher operation, that callback function may need some information about 0164 * which operation just finished if it invoked multiple in parallel. This 0165 * state information is unused by the kernel crypto API. 0166 */ 0167 0168 static inline struct crypto_skcipher *__crypto_skcipher_cast( 0169 struct crypto_tfm *tfm) 0170 { 0171 return container_of(tfm, struct crypto_skcipher, base); 0172 } 0173 0174 /** 0175 * crypto_alloc_skcipher() - allocate symmetric key cipher handle 0176 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 0177 * skcipher cipher 0178 * @type: specifies the type of the cipher 0179 * @mask: specifies the mask for the cipher 0180 * 0181 * Allocate a cipher handle for an skcipher. The returned struct 0182 * crypto_skcipher is the cipher handle that is required for any subsequent 0183 * API invocation for that skcipher. 0184 * 0185 * Return: allocated cipher handle in case of success; IS_ERR() is true in case 0186 * of an error, PTR_ERR() returns the error code. 0187 */ 0188 struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name, 0189 u32 type, u32 mask); 0190 0191 struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name, 0192 u32 type, u32 mask); 0193 0194 static inline struct crypto_tfm *crypto_skcipher_tfm( 0195 struct crypto_skcipher *tfm) 0196 { 0197 return &tfm->base; 0198 } 0199 0200 /** 0201 * crypto_free_skcipher() - zeroize and free cipher handle 0202 * @tfm: cipher handle to be freed 0203 * 0204 * If @tfm is a NULL or error pointer, this function does nothing. 0205 */ 0206 static inline void crypto_free_skcipher(struct crypto_skcipher *tfm) 0207 { 0208 crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm)); 0209 } 0210 0211 static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm) 0212 { 0213 crypto_free_skcipher(&tfm->base); 0214 } 0215 0216 /** 0217 * crypto_has_skcipher() - Search for the availability of an skcipher. 0218 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the 0219 * skcipher 0220 * @type: specifies the type of the skcipher 0221 * @mask: specifies the mask for the skcipher 0222 * 0223 * Return: true when the skcipher is known to the kernel crypto API; false 0224 * otherwise 0225 */ 0226 int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask); 0227 0228 static inline const char *crypto_skcipher_driver_name( 0229 struct crypto_skcipher *tfm) 0230 { 0231 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm)); 0232 } 0233 0234 static inline struct skcipher_alg *crypto_skcipher_alg( 0235 struct crypto_skcipher *tfm) 0236 { 0237 return container_of(crypto_skcipher_tfm(tfm)->__crt_alg, 0238 struct skcipher_alg, base); 0239 } 0240 0241 static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg) 0242 { 0243 return alg->ivsize; 0244 } 0245 0246 /** 0247 * crypto_skcipher_ivsize() - obtain IV size 0248 * @tfm: cipher handle 0249 * 0250 * The size of the IV for the skcipher referenced by the cipher handle is 0251 * returned. This IV size may be zero if the cipher does not need an IV. 0252 * 0253 * Return: IV size in bytes 0254 */ 0255 static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm) 0256 { 0257 return crypto_skcipher_alg(tfm)->ivsize; 0258 } 0259 0260 static inline unsigned int crypto_sync_skcipher_ivsize( 0261 struct crypto_sync_skcipher *tfm) 0262 { 0263 return crypto_skcipher_ivsize(&tfm->base); 0264 } 0265 0266 /** 0267 * crypto_skcipher_blocksize() - obtain block size of cipher 0268 * @tfm: cipher handle 0269 * 0270 * The block size for the skcipher referenced with the cipher handle is 0271 * returned. The caller may use that information to allocate appropriate 0272 * memory for the data returned by the encryption or decryption operation 0273 * 0274 * Return: block size of cipher 0275 */ 0276 static inline unsigned int crypto_skcipher_blocksize( 0277 struct crypto_skcipher *tfm) 0278 { 0279 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm)); 0280 } 0281 0282 static inline unsigned int crypto_skcipher_alg_chunksize( 0283 struct skcipher_alg *alg) 0284 { 0285 return alg->chunksize; 0286 } 0287 0288 /** 0289 * crypto_skcipher_chunksize() - obtain chunk size 0290 * @tfm: cipher handle 0291 * 0292 * The block size is set to one for ciphers such as CTR. However, 0293 * you still need to provide incremental updates in multiples of 0294 * the underlying block size as the IV does not have sub-block 0295 * granularity. This is known in this API as the chunk size. 0296 * 0297 * Return: chunk size in bytes 0298 */ 0299 static inline unsigned int crypto_skcipher_chunksize( 0300 struct crypto_skcipher *tfm) 0301 { 0302 return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm)); 0303 } 0304 0305 static inline unsigned int crypto_sync_skcipher_blocksize( 0306 struct crypto_sync_skcipher *tfm) 0307 { 0308 return crypto_skcipher_blocksize(&tfm->base); 0309 } 0310 0311 static inline unsigned int crypto_skcipher_alignmask( 0312 struct crypto_skcipher *tfm) 0313 { 0314 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm)); 0315 } 0316 0317 static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm) 0318 { 0319 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm)); 0320 } 0321 0322 static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm, 0323 u32 flags) 0324 { 0325 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags); 0326 } 0327 0328 static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm, 0329 u32 flags) 0330 { 0331 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags); 0332 } 0333 0334 static inline u32 crypto_sync_skcipher_get_flags( 0335 struct crypto_sync_skcipher *tfm) 0336 { 0337 return crypto_skcipher_get_flags(&tfm->base); 0338 } 0339 0340 static inline void crypto_sync_skcipher_set_flags( 0341 struct crypto_sync_skcipher *tfm, u32 flags) 0342 { 0343 crypto_skcipher_set_flags(&tfm->base, flags); 0344 } 0345 0346 static inline void crypto_sync_skcipher_clear_flags( 0347 struct crypto_sync_skcipher *tfm, u32 flags) 0348 { 0349 crypto_skcipher_clear_flags(&tfm->base, flags); 0350 } 0351 0352 /** 0353 * crypto_skcipher_setkey() - set key for cipher 0354 * @tfm: cipher handle 0355 * @key: buffer holding the key 0356 * @keylen: length of the key in bytes 0357 * 0358 * The caller provided key is set for the skcipher referenced by the cipher 0359 * handle. 0360 * 0361 * Note, the key length determines the cipher type. Many block ciphers implement 0362 * different cipher modes depending on the key size, such as AES-128 vs AES-192 0363 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128 0364 * is performed. 0365 * 0366 * Return: 0 if the setting of the key was successful; < 0 if an error occurred 0367 */ 0368 int crypto_skcipher_setkey(struct crypto_skcipher *tfm, 0369 const u8 *key, unsigned int keylen); 0370 0371 static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm, 0372 const u8 *key, unsigned int keylen) 0373 { 0374 return crypto_skcipher_setkey(&tfm->base, key, keylen); 0375 } 0376 0377 static inline unsigned int crypto_skcipher_min_keysize( 0378 struct crypto_skcipher *tfm) 0379 { 0380 return crypto_skcipher_alg(tfm)->min_keysize; 0381 } 0382 0383 static inline unsigned int crypto_skcipher_max_keysize( 0384 struct crypto_skcipher *tfm) 0385 { 0386 return crypto_skcipher_alg(tfm)->max_keysize; 0387 } 0388 0389 /** 0390 * crypto_skcipher_reqtfm() - obtain cipher handle from request 0391 * @req: skcipher_request out of which the cipher handle is to be obtained 0392 * 0393 * Return the crypto_skcipher handle when furnishing an skcipher_request 0394 * data structure. 0395 * 0396 * Return: crypto_skcipher handle 0397 */ 0398 static inline struct crypto_skcipher *crypto_skcipher_reqtfm( 0399 struct skcipher_request *req) 0400 { 0401 return __crypto_skcipher_cast(req->base.tfm); 0402 } 0403 0404 static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm( 0405 struct skcipher_request *req) 0406 { 0407 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 0408 0409 return container_of(tfm, struct crypto_sync_skcipher, base); 0410 } 0411 0412 /** 0413 * crypto_skcipher_encrypt() - encrypt plaintext 0414 * @req: reference to the skcipher_request handle that holds all information 0415 * needed to perform the cipher operation 0416 * 0417 * Encrypt plaintext data using the skcipher_request handle. That data 0418 * structure and how it is filled with data is discussed with the 0419 * skcipher_request_* functions. 0420 * 0421 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 0422 */ 0423 int crypto_skcipher_encrypt(struct skcipher_request *req); 0424 0425 /** 0426 * crypto_skcipher_decrypt() - decrypt ciphertext 0427 * @req: reference to the skcipher_request handle that holds all information 0428 * needed to perform the cipher operation 0429 * 0430 * Decrypt ciphertext data using the skcipher_request handle. That data 0431 * structure and how it is filled with data is discussed with the 0432 * skcipher_request_* functions. 0433 * 0434 * Return: 0 if the cipher operation was successful; < 0 if an error occurred 0435 */ 0436 int crypto_skcipher_decrypt(struct skcipher_request *req); 0437 0438 /** 0439 * DOC: Symmetric Key Cipher Request Handle 0440 * 0441 * The skcipher_request data structure contains all pointers to data 0442 * required for the symmetric key cipher operation. This includes the cipher 0443 * handle (which can be used by multiple skcipher_request instances), pointer 0444 * to plaintext and ciphertext, asynchronous callback function, etc. It acts 0445 * as a handle to the skcipher_request_* API calls in a similar way as 0446 * skcipher handle to the crypto_skcipher_* API calls. 0447 */ 0448 0449 /** 0450 * crypto_skcipher_reqsize() - obtain size of the request data structure 0451 * @tfm: cipher handle 0452 * 0453 * Return: number of bytes 0454 */ 0455 static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm) 0456 { 0457 return tfm->reqsize; 0458 } 0459 0460 /** 0461 * skcipher_request_set_tfm() - update cipher handle reference in request 0462 * @req: request handle to be modified 0463 * @tfm: cipher handle that shall be added to the request handle 0464 * 0465 * Allow the caller to replace the existing skcipher handle in the request 0466 * data structure with a different one. 0467 */ 0468 static inline void skcipher_request_set_tfm(struct skcipher_request *req, 0469 struct crypto_skcipher *tfm) 0470 { 0471 req->base.tfm = crypto_skcipher_tfm(tfm); 0472 } 0473 0474 static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req, 0475 struct crypto_sync_skcipher *tfm) 0476 { 0477 skcipher_request_set_tfm(req, &tfm->base); 0478 } 0479 0480 static inline struct skcipher_request *skcipher_request_cast( 0481 struct crypto_async_request *req) 0482 { 0483 return container_of(req, struct skcipher_request, base); 0484 } 0485 0486 /** 0487 * skcipher_request_alloc() - allocate request data structure 0488 * @tfm: cipher handle to be registered with the request 0489 * @gfp: memory allocation flag that is handed to kmalloc by the API call. 0490 * 0491 * Allocate the request data structure that must be used with the skcipher 0492 * encrypt and decrypt API calls. During the allocation, the provided skcipher 0493 * handle is registered in the request data structure. 0494 * 0495 * Return: allocated request handle in case of success, or NULL if out of memory 0496 */ 0497 static inline struct skcipher_request *skcipher_request_alloc( 0498 struct crypto_skcipher *tfm, gfp_t gfp) 0499 { 0500 struct skcipher_request *req; 0501 0502 req = kmalloc(sizeof(struct skcipher_request) + 0503 crypto_skcipher_reqsize(tfm), gfp); 0504 0505 if (likely(req)) 0506 skcipher_request_set_tfm(req, tfm); 0507 0508 return req; 0509 } 0510 0511 /** 0512 * skcipher_request_free() - zeroize and free request data structure 0513 * @req: request data structure cipher handle to be freed 0514 */ 0515 static inline void skcipher_request_free(struct skcipher_request *req) 0516 { 0517 kfree_sensitive(req); 0518 } 0519 0520 static inline void skcipher_request_zero(struct skcipher_request *req) 0521 { 0522 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); 0523 0524 memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm)); 0525 } 0526 0527 /** 0528 * skcipher_request_set_callback() - set asynchronous callback function 0529 * @req: request handle 0530 * @flags: specify zero or an ORing of the flags 0531 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and 0532 * increase the wait queue beyond the initial maximum size; 0533 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep 0534 * @compl: callback function pointer to be registered with the request handle 0535 * @data: The data pointer refers to memory that is not used by the kernel 0536 * crypto API, but provided to the callback function for it to use. Here, 0537 * the caller can provide a reference to memory the callback function can 0538 * operate on. As the callback function is invoked asynchronously to the 0539 * related functionality, it may need to access data structures of the 0540 * related functionality which can be referenced using this pointer. The 0541 * callback function can access the memory via the "data" field in the 0542 * crypto_async_request data structure provided to the callback function. 0543 * 0544 * This function allows setting the callback function that is triggered once the 0545 * cipher operation completes. 0546 * 0547 * The callback function is registered with the skcipher_request handle and 0548 * must comply with the following template:: 0549 * 0550 * void callback_function(struct crypto_async_request *req, int error) 0551 */ 0552 static inline void skcipher_request_set_callback(struct skcipher_request *req, 0553 u32 flags, 0554 crypto_completion_t compl, 0555 void *data) 0556 { 0557 req->base.complete = compl; 0558 req->base.data = data; 0559 req->base.flags = flags; 0560 } 0561 0562 /** 0563 * skcipher_request_set_crypt() - set data buffers 0564 * @req: request handle 0565 * @src: source scatter / gather list 0566 * @dst: destination scatter / gather list 0567 * @cryptlen: number of bytes to process from @src 0568 * @iv: IV for the cipher operation which must comply with the IV size defined 0569 * by crypto_skcipher_ivsize 0570 * 0571 * This function allows setting of the source data and destination data 0572 * scatter / gather lists. 0573 * 0574 * For encryption, the source is treated as the plaintext and the 0575 * destination is the ciphertext. For a decryption operation, the use is 0576 * reversed - the source is the ciphertext and the destination is the plaintext. 0577 */ 0578 static inline void skcipher_request_set_crypt( 0579 struct skcipher_request *req, 0580 struct scatterlist *src, struct scatterlist *dst, 0581 unsigned int cryptlen, void *iv) 0582 { 0583 req->src = src; 0584 req->dst = dst; 0585 req->cryptlen = cryptlen; 0586 req->iv = iv; 0587 } 0588 0589 #endif /* _CRYPTO_SKCIPHER_H */ 0590
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |