Back to home page

OSCL-LXR

 
 

    


0001 /* SPDX-License-Identifier: GPL-2.0-only */
0002 /*
0003  * sha256_base.h - core logic for SHA-256 implementations
0004  *
0005  * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org>
0006  */
0007 
0008 #ifndef _CRYPTO_SHA256_BASE_H
0009 #define _CRYPTO_SHA256_BASE_H
0010 
0011 #include <crypto/internal/hash.h>
0012 #include <crypto/sha2.h>
0013 #include <linux/crypto.h>
0014 #include <linux/module.h>
0015 #include <linux/string.h>
0016 
0017 #include <asm/unaligned.h>
0018 
0019 typedef void (sha256_block_fn)(struct sha256_state *sst, u8 const *src,
0020                    int blocks);
0021 
0022 static inline int sha224_base_init(struct shash_desc *desc)
0023 {
0024     struct sha256_state *sctx = shash_desc_ctx(desc);
0025 
0026     sha224_init(sctx);
0027     return 0;
0028 }
0029 
0030 static inline int sha256_base_init(struct shash_desc *desc)
0031 {
0032     struct sha256_state *sctx = shash_desc_ctx(desc);
0033 
0034     sha256_init(sctx);
0035     return 0;
0036 }
0037 
0038 static inline int sha256_base_do_update(struct shash_desc *desc,
0039                     const u8 *data,
0040                     unsigned int len,
0041                     sha256_block_fn *block_fn)
0042 {
0043     struct sha256_state *sctx = shash_desc_ctx(desc);
0044     unsigned int partial = sctx->count % SHA256_BLOCK_SIZE;
0045 
0046     sctx->count += len;
0047 
0048     if (unlikely((partial + len) >= SHA256_BLOCK_SIZE)) {
0049         int blocks;
0050 
0051         if (partial) {
0052             int p = SHA256_BLOCK_SIZE - partial;
0053 
0054             memcpy(sctx->buf + partial, data, p);
0055             data += p;
0056             len -= p;
0057 
0058             block_fn(sctx, sctx->buf, 1);
0059         }
0060 
0061         blocks = len / SHA256_BLOCK_SIZE;
0062         len %= SHA256_BLOCK_SIZE;
0063 
0064         if (blocks) {
0065             block_fn(sctx, data, blocks);
0066             data += blocks * SHA256_BLOCK_SIZE;
0067         }
0068         partial = 0;
0069     }
0070     if (len)
0071         memcpy(sctx->buf + partial, data, len);
0072 
0073     return 0;
0074 }
0075 
0076 static inline int sha256_base_do_finalize(struct shash_desc *desc,
0077                       sha256_block_fn *block_fn)
0078 {
0079     const int bit_offset = SHA256_BLOCK_SIZE - sizeof(__be64);
0080     struct sha256_state *sctx = shash_desc_ctx(desc);
0081     __be64 *bits = (__be64 *)(sctx->buf + bit_offset);
0082     unsigned int partial = sctx->count % SHA256_BLOCK_SIZE;
0083 
0084     sctx->buf[partial++] = 0x80;
0085     if (partial > bit_offset) {
0086         memset(sctx->buf + partial, 0x0, SHA256_BLOCK_SIZE - partial);
0087         partial = 0;
0088 
0089         block_fn(sctx, sctx->buf, 1);
0090     }
0091 
0092     memset(sctx->buf + partial, 0x0, bit_offset - partial);
0093     *bits = cpu_to_be64(sctx->count << 3);
0094     block_fn(sctx, sctx->buf, 1);
0095 
0096     return 0;
0097 }
0098 
0099 static inline int sha256_base_finish(struct shash_desc *desc, u8 *out)
0100 {
0101     unsigned int digest_size = crypto_shash_digestsize(desc->tfm);
0102     struct sha256_state *sctx = shash_desc_ctx(desc);
0103     __be32 *digest = (__be32 *)out;
0104     int i;
0105 
0106     for (i = 0; digest_size > 0; i++, digest_size -= sizeof(__be32))
0107         put_unaligned_be32(sctx->state[i], digest++);
0108 
0109     memzero_explicit(sctx, sizeof(*sctx));
0110     return 0;
0111 }
0112 
0113 #endif /* _CRYPTO_SHA256_BASE_H */