Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Simple file system for zoned block devices exposing zones as files.
0004  *
0005  * Copyright (C) 2019 Western Digital Corporation or its affiliates.
0006  */
0007 #include <linux/module.h>
0008 #include <linux/pagemap.h>
0009 #include <linux/magic.h>
0010 #include <linux/iomap.h>
0011 #include <linux/init.h>
0012 #include <linux/slab.h>
0013 #include <linux/blkdev.h>
0014 #include <linux/statfs.h>
0015 #include <linux/writeback.h>
0016 #include <linux/quotaops.h>
0017 #include <linux/seq_file.h>
0018 #include <linux/parser.h>
0019 #include <linux/uio.h>
0020 #include <linux/mman.h>
0021 #include <linux/sched/mm.h>
0022 #include <linux/crc32.h>
0023 #include <linux/task_io_accounting_ops.h>
0024 
0025 #include "zonefs.h"
0026 
0027 #define CREATE_TRACE_POINTS
0028 #include "trace.h"
0029 
0030 /*
0031  * Manage the active zone count. Called with zi->i_truncate_mutex held.
0032  */
0033 static void zonefs_account_active(struct inode *inode)
0034 {
0035     struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
0036     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0037 
0038     lockdep_assert_held(&zi->i_truncate_mutex);
0039 
0040     if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
0041         return;
0042 
0043     /*
0044      * If the zone is active, that is, if it is explicitly open or
0045      * partially written, check if it was already accounted as active.
0046      */
0047     if ((zi->i_flags & ZONEFS_ZONE_OPEN) ||
0048         (zi->i_wpoffset > 0 && zi->i_wpoffset < zi->i_max_size)) {
0049         if (!(zi->i_flags & ZONEFS_ZONE_ACTIVE)) {
0050             zi->i_flags |= ZONEFS_ZONE_ACTIVE;
0051             atomic_inc(&sbi->s_active_seq_files);
0052         }
0053         return;
0054     }
0055 
0056     /* The zone is not active. If it was, update the active count */
0057     if (zi->i_flags & ZONEFS_ZONE_ACTIVE) {
0058         zi->i_flags &= ~ZONEFS_ZONE_ACTIVE;
0059         atomic_dec(&sbi->s_active_seq_files);
0060     }
0061 }
0062 
0063 static inline int zonefs_zone_mgmt(struct inode *inode, enum req_op op)
0064 {
0065     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0066     int ret;
0067 
0068     lockdep_assert_held(&zi->i_truncate_mutex);
0069 
0070     /*
0071      * With ZNS drives, closing an explicitly open zone that has not been
0072      * written will change the zone state to "closed", that is, the zone
0073      * will remain active. Since this can then cause failure of explicit
0074      * open operation on other zones if the drive active zone resources
0075      * are exceeded, make sure that the zone does not remain active by
0076      * resetting it.
0077      */
0078     if (op == REQ_OP_ZONE_CLOSE && !zi->i_wpoffset)
0079         op = REQ_OP_ZONE_RESET;
0080 
0081     trace_zonefs_zone_mgmt(inode, op);
0082     ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
0083                    zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
0084     if (ret) {
0085         zonefs_err(inode->i_sb,
0086                "Zone management operation %s at %llu failed %d\n",
0087                blk_op_str(op), zi->i_zsector, ret);
0088         return ret;
0089     }
0090 
0091     return 0;
0092 }
0093 
0094 static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
0095 {
0096     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0097 
0098     i_size_write(inode, isize);
0099     /*
0100      * A full zone is no longer open/active and does not need
0101      * explicit closing.
0102      */
0103     if (isize >= zi->i_max_size) {
0104         struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
0105 
0106         if (zi->i_flags & ZONEFS_ZONE_ACTIVE)
0107             atomic_dec(&sbi->s_active_seq_files);
0108         zi->i_flags &= ~(ZONEFS_ZONE_OPEN | ZONEFS_ZONE_ACTIVE);
0109     }
0110 }
0111 
0112 static int zonefs_read_iomap_begin(struct inode *inode, loff_t offset,
0113                    loff_t length, unsigned int flags,
0114                    struct iomap *iomap, struct iomap *srcmap)
0115 {
0116     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0117     struct super_block *sb = inode->i_sb;
0118     loff_t isize;
0119 
0120     /*
0121      * All blocks are always mapped below EOF. If reading past EOF,
0122      * act as if there is a hole up to the file maximum size.
0123      */
0124     mutex_lock(&zi->i_truncate_mutex);
0125     iomap->bdev = inode->i_sb->s_bdev;
0126     iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
0127     isize = i_size_read(inode);
0128     if (iomap->offset >= isize) {
0129         iomap->type = IOMAP_HOLE;
0130         iomap->addr = IOMAP_NULL_ADDR;
0131         iomap->length = length;
0132     } else {
0133         iomap->type = IOMAP_MAPPED;
0134         iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
0135         iomap->length = isize - iomap->offset;
0136     }
0137     mutex_unlock(&zi->i_truncate_mutex);
0138 
0139     trace_zonefs_iomap_begin(inode, iomap);
0140 
0141     return 0;
0142 }
0143 
0144 static const struct iomap_ops zonefs_read_iomap_ops = {
0145     .iomap_begin    = zonefs_read_iomap_begin,
0146 };
0147 
0148 static int zonefs_write_iomap_begin(struct inode *inode, loff_t offset,
0149                     loff_t length, unsigned int flags,
0150                     struct iomap *iomap, struct iomap *srcmap)
0151 {
0152     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0153     struct super_block *sb = inode->i_sb;
0154     loff_t isize;
0155 
0156     /* All write I/Os should always be within the file maximum size */
0157     if (WARN_ON_ONCE(offset + length > zi->i_max_size))
0158         return -EIO;
0159 
0160     /*
0161      * Sequential zones can only accept direct writes. This is already
0162      * checked when writes are issued, so warn if we see a page writeback
0163      * operation.
0164      */
0165     if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
0166              !(flags & IOMAP_DIRECT)))
0167         return -EIO;
0168 
0169     /*
0170      * For conventional zones, all blocks are always mapped. For sequential
0171      * zones, all blocks after always mapped below the inode size (zone
0172      * write pointer) and unwriten beyond.
0173      */
0174     mutex_lock(&zi->i_truncate_mutex);
0175     iomap->bdev = inode->i_sb->s_bdev;
0176     iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
0177     iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
0178     isize = i_size_read(inode);
0179     if (iomap->offset >= isize) {
0180         iomap->type = IOMAP_UNWRITTEN;
0181         iomap->length = zi->i_max_size - iomap->offset;
0182     } else {
0183         iomap->type = IOMAP_MAPPED;
0184         iomap->length = isize - iomap->offset;
0185     }
0186     mutex_unlock(&zi->i_truncate_mutex);
0187 
0188     trace_zonefs_iomap_begin(inode, iomap);
0189 
0190     return 0;
0191 }
0192 
0193 static const struct iomap_ops zonefs_write_iomap_ops = {
0194     .iomap_begin    = zonefs_write_iomap_begin,
0195 };
0196 
0197 static int zonefs_read_folio(struct file *unused, struct folio *folio)
0198 {
0199     return iomap_read_folio(folio, &zonefs_read_iomap_ops);
0200 }
0201 
0202 static void zonefs_readahead(struct readahead_control *rac)
0203 {
0204     iomap_readahead(rac, &zonefs_read_iomap_ops);
0205 }
0206 
0207 /*
0208  * Map blocks for page writeback. This is used only on conventional zone files,
0209  * which implies that the page range can only be within the fixed inode size.
0210  */
0211 static int zonefs_write_map_blocks(struct iomap_writepage_ctx *wpc,
0212                    struct inode *inode, loff_t offset)
0213 {
0214     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0215 
0216     if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
0217         return -EIO;
0218     if (WARN_ON_ONCE(offset >= i_size_read(inode)))
0219         return -EIO;
0220 
0221     /* If the mapping is already OK, nothing needs to be done */
0222     if (offset >= wpc->iomap.offset &&
0223         offset < wpc->iomap.offset + wpc->iomap.length)
0224         return 0;
0225 
0226     return zonefs_write_iomap_begin(inode, offset, zi->i_max_size - offset,
0227                     IOMAP_WRITE, &wpc->iomap, NULL);
0228 }
0229 
0230 static const struct iomap_writeback_ops zonefs_writeback_ops = {
0231     .map_blocks     = zonefs_write_map_blocks,
0232 };
0233 
0234 static int zonefs_writepages(struct address_space *mapping,
0235                  struct writeback_control *wbc)
0236 {
0237     struct iomap_writepage_ctx wpc = { };
0238 
0239     return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
0240 }
0241 
0242 static int zonefs_swap_activate(struct swap_info_struct *sis,
0243                 struct file *swap_file, sector_t *span)
0244 {
0245     struct inode *inode = file_inode(swap_file);
0246     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0247 
0248     if (zi->i_ztype != ZONEFS_ZTYPE_CNV) {
0249         zonefs_err(inode->i_sb,
0250                "swap file: not a conventional zone file\n");
0251         return -EINVAL;
0252     }
0253 
0254     return iomap_swapfile_activate(sis, swap_file, span,
0255                        &zonefs_read_iomap_ops);
0256 }
0257 
0258 static const struct address_space_operations zonefs_file_aops = {
0259     .read_folio     = zonefs_read_folio,
0260     .readahead      = zonefs_readahead,
0261     .writepages     = zonefs_writepages,
0262     .dirty_folio        = filemap_dirty_folio,
0263     .release_folio      = iomap_release_folio,
0264     .invalidate_folio   = iomap_invalidate_folio,
0265     .migrate_folio      = filemap_migrate_folio,
0266     .is_partially_uptodate  = iomap_is_partially_uptodate,
0267     .error_remove_page  = generic_error_remove_page,
0268     .direct_IO      = noop_direct_IO,
0269     .swap_activate      = zonefs_swap_activate,
0270 };
0271 
0272 static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
0273 {
0274     struct super_block *sb = inode->i_sb;
0275     struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
0276     loff_t old_isize = i_size_read(inode);
0277     loff_t nr_blocks;
0278 
0279     if (new_isize == old_isize)
0280         return;
0281 
0282     spin_lock(&sbi->s_lock);
0283 
0284     /*
0285      * This may be called for an update after an IO error.
0286      * So beware of the values seen.
0287      */
0288     if (new_isize < old_isize) {
0289         nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
0290         if (sbi->s_used_blocks > nr_blocks)
0291             sbi->s_used_blocks -= nr_blocks;
0292         else
0293             sbi->s_used_blocks = 0;
0294     } else {
0295         sbi->s_used_blocks +=
0296             (new_isize - old_isize) >> sb->s_blocksize_bits;
0297         if (sbi->s_used_blocks > sbi->s_blocks)
0298             sbi->s_used_blocks = sbi->s_blocks;
0299     }
0300 
0301     spin_unlock(&sbi->s_lock);
0302 }
0303 
0304 /*
0305  * Check a zone condition and adjust its file inode access permissions for
0306  * offline and readonly zones. Return the inode size corresponding to the
0307  * amount of readable data in the zone.
0308  */
0309 static loff_t zonefs_check_zone_condition(struct inode *inode,
0310                       struct blk_zone *zone, bool warn,
0311                       bool mount)
0312 {
0313     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0314 
0315     switch (zone->cond) {
0316     case BLK_ZONE_COND_OFFLINE:
0317         /*
0318          * Dead zone: make the inode immutable, disable all accesses
0319          * and set the file size to 0 (zone wp set to zone start).
0320          */
0321         if (warn)
0322             zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
0323                     inode->i_ino);
0324         inode->i_flags |= S_IMMUTABLE;
0325         inode->i_mode &= ~0777;
0326         zone->wp = zone->start;
0327         return 0;
0328     case BLK_ZONE_COND_READONLY:
0329         /*
0330          * The write pointer of read-only zones is invalid. If such a
0331          * zone is found during mount, the file size cannot be retrieved
0332          * so we treat the zone as offline (mount == true case).
0333          * Otherwise, keep the file size as it was when last updated
0334          * so that the user can recover data. In both cases, writes are
0335          * always disabled for the zone.
0336          */
0337         if (warn)
0338             zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
0339                     inode->i_ino);
0340         inode->i_flags |= S_IMMUTABLE;
0341         if (mount) {
0342             zone->cond = BLK_ZONE_COND_OFFLINE;
0343             inode->i_mode &= ~0777;
0344             zone->wp = zone->start;
0345             return 0;
0346         }
0347         inode->i_mode &= ~0222;
0348         return i_size_read(inode);
0349     case BLK_ZONE_COND_FULL:
0350         /* The write pointer of full zones is invalid. */
0351         return zi->i_max_size;
0352     default:
0353         if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
0354             return zi->i_max_size;
0355         return (zone->wp - zone->start) << SECTOR_SHIFT;
0356     }
0357 }
0358 
0359 struct zonefs_ioerr_data {
0360     struct inode    *inode;
0361     bool        write;
0362 };
0363 
0364 static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
0365                   void *data)
0366 {
0367     struct zonefs_ioerr_data *err = data;
0368     struct inode *inode = err->inode;
0369     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0370     struct super_block *sb = inode->i_sb;
0371     struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
0372     loff_t isize, data_size;
0373 
0374     /*
0375      * Check the zone condition: if the zone is not "bad" (offline or
0376      * read-only), read errors are simply signaled to the IO issuer as long
0377      * as there is no inconsistency between the inode size and the amount of
0378      * data writen in the zone (data_size).
0379      */
0380     data_size = zonefs_check_zone_condition(inode, zone, true, false);
0381     isize = i_size_read(inode);
0382     if (zone->cond != BLK_ZONE_COND_OFFLINE &&
0383         zone->cond != BLK_ZONE_COND_READONLY &&
0384         !err->write && isize == data_size)
0385         return 0;
0386 
0387     /*
0388      * At this point, we detected either a bad zone or an inconsistency
0389      * between the inode size and the amount of data written in the zone.
0390      * For the latter case, the cause may be a write IO error or an external
0391      * action on the device. Two error patterns exist:
0392      * 1) The inode size is lower than the amount of data in the zone:
0393      *    a write operation partially failed and data was writen at the end
0394      *    of the file. This can happen in the case of a large direct IO
0395      *    needing several BIOs and/or write requests to be processed.
0396      * 2) The inode size is larger than the amount of data in the zone:
0397      *    this can happen with a deferred write error with the use of the
0398      *    device side write cache after getting successful write IO
0399      *    completions. Other possibilities are (a) an external corruption,
0400      *    e.g. an application reset the zone directly, or (b) the device
0401      *    has a serious problem (e.g. firmware bug).
0402      *
0403      * In all cases, warn about inode size inconsistency and handle the
0404      * IO error according to the zone condition and to the mount options.
0405      */
0406     if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
0407         zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
0408                 inode->i_ino, isize, data_size);
0409 
0410     /*
0411      * First handle bad zones signaled by hardware. The mount options
0412      * errors=zone-ro and errors=zone-offline result in changing the
0413      * zone condition to read-only and offline respectively, as if the
0414      * condition was signaled by the hardware.
0415      */
0416     if (zone->cond == BLK_ZONE_COND_OFFLINE ||
0417         sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
0418         zonefs_warn(sb, "inode %lu: read/write access disabled\n",
0419                 inode->i_ino);
0420         if (zone->cond != BLK_ZONE_COND_OFFLINE) {
0421             zone->cond = BLK_ZONE_COND_OFFLINE;
0422             data_size = zonefs_check_zone_condition(inode, zone,
0423                                 false, false);
0424         }
0425     } else if (zone->cond == BLK_ZONE_COND_READONLY ||
0426            sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
0427         zonefs_warn(sb, "inode %lu: write access disabled\n",
0428                 inode->i_ino);
0429         if (zone->cond != BLK_ZONE_COND_READONLY) {
0430             zone->cond = BLK_ZONE_COND_READONLY;
0431             data_size = zonefs_check_zone_condition(inode, zone,
0432                                 false, false);
0433         }
0434     }
0435 
0436     /*
0437      * If the filesystem is mounted with the explicit-open mount option, we
0438      * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
0439      * the read-only or offline condition, to avoid attempting an explicit
0440      * close of the zone when the inode file is closed.
0441      */
0442     if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
0443         (zone->cond == BLK_ZONE_COND_OFFLINE ||
0444          zone->cond == BLK_ZONE_COND_READONLY))
0445         zi->i_flags &= ~ZONEFS_ZONE_OPEN;
0446 
0447     /*
0448      * If error=remount-ro was specified, any error result in remounting
0449      * the volume as read-only.
0450      */
0451     if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
0452         zonefs_warn(sb, "remounting filesystem read-only\n");
0453         sb->s_flags |= SB_RDONLY;
0454     }
0455 
0456     /*
0457      * Update block usage stats and the inode size  to prevent access to
0458      * invalid data.
0459      */
0460     zonefs_update_stats(inode, data_size);
0461     zonefs_i_size_write(inode, data_size);
0462     zi->i_wpoffset = data_size;
0463     zonefs_account_active(inode);
0464 
0465     return 0;
0466 }
0467 
0468 /*
0469  * When an file IO error occurs, check the file zone to see if there is a change
0470  * in the zone condition (e.g. offline or read-only). For a failed write to a
0471  * sequential zone, the zone write pointer position must also be checked to
0472  * eventually correct the file size and zonefs inode write pointer offset
0473  * (which can be out of sync with the drive due to partial write failures).
0474  */
0475 static void __zonefs_io_error(struct inode *inode, bool write)
0476 {
0477     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0478     struct super_block *sb = inode->i_sb;
0479     struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
0480     unsigned int noio_flag;
0481     unsigned int nr_zones =
0482         zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
0483     struct zonefs_ioerr_data err = {
0484         .inode = inode,
0485         .write = write,
0486     };
0487     int ret;
0488 
0489     /*
0490      * Memory allocations in blkdev_report_zones() can trigger a memory
0491      * reclaim which may in turn cause a recursion into zonefs as well as
0492      * struct request allocations for the same device. The former case may
0493      * end up in a deadlock on the inode truncate mutex, while the latter
0494      * may prevent IO forward progress. Executing the report zones under
0495      * the GFP_NOIO context avoids both problems.
0496      */
0497     noio_flag = memalloc_noio_save();
0498     ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
0499                   zonefs_io_error_cb, &err);
0500     if (ret != nr_zones)
0501         zonefs_err(sb, "Get inode %lu zone information failed %d\n",
0502                inode->i_ino, ret);
0503     memalloc_noio_restore(noio_flag);
0504 }
0505 
0506 static void zonefs_io_error(struct inode *inode, bool write)
0507 {
0508     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0509 
0510     mutex_lock(&zi->i_truncate_mutex);
0511     __zonefs_io_error(inode, write);
0512     mutex_unlock(&zi->i_truncate_mutex);
0513 }
0514 
0515 static int zonefs_file_truncate(struct inode *inode, loff_t isize)
0516 {
0517     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0518     loff_t old_isize;
0519     enum req_op op;
0520     int ret = 0;
0521 
0522     /*
0523      * Only sequential zone files can be truncated and truncation is allowed
0524      * only down to a 0 size, which is equivalent to a zone reset, and to
0525      * the maximum file size, which is equivalent to a zone finish.
0526      */
0527     if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
0528         return -EPERM;
0529 
0530     if (!isize)
0531         op = REQ_OP_ZONE_RESET;
0532     else if (isize == zi->i_max_size)
0533         op = REQ_OP_ZONE_FINISH;
0534     else
0535         return -EPERM;
0536 
0537     inode_dio_wait(inode);
0538 
0539     /* Serialize against page faults */
0540     filemap_invalidate_lock(inode->i_mapping);
0541 
0542     /* Serialize against zonefs_iomap_begin() */
0543     mutex_lock(&zi->i_truncate_mutex);
0544 
0545     old_isize = i_size_read(inode);
0546     if (isize == old_isize)
0547         goto unlock;
0548 
0549     ret = zonefs_zone_mgmt(inode, op);
0550     if (ret)
0551         goto unlock;
0552 
0553     /*
0554      * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
0555      * take care of open zones.
0556      */
0557     if (zi->i_flags & ZONEFS_ZONE_OPEN) {
0558         /*
0559          * Truncating a zone to EMPTY or FULL is the equivalent of
0560          * closing the zone. For a truncation to 0, we need to
0561          * re-open the zone to ensure new writes can be processed.
0562          * For a truncation to the maximum file size, the zone is
0563          * closed and writes cannot be accepted anymore, so clear
0564          * the open flag.
0565          */
0566         if (!isize)
0567             ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
0568         else
0569             zi->i_flags &= ~ZONEFS_ZONE_OPEN;
0570     }
0571 
0572     zonefs_update_stats(inode, isize);
0573     truncate_setsize(inode, isize);
0574     zi->i_wpoffset = isize;
0575     zonefs_account_active(inode);
0576 
0577 unlock:
0578     mutex_unlock(&zi->i_truncate_mutex);
0579     filemap_invalidate_unlock(inode->i_mapping);
0580 
0581     return ret;
0582 }
0583 
0584 static int zonefs_inode_setattr(struct user_namespace *mnt_userns,
0585                 struct dentry *dentry, struct iattr *iattr)
0586 {
0587     struct inode *inode = d_inode(dentry);
0588     int ret;
0589 
0590     if (unlikely(IS_IMMUTABLE(inode)))
0591         return -EPERM;
0592 
0593     ret = setattr_prepare(&init_user_ns, dentry, iattr);
0594     if (ret)
0595         return ret;
0596 
0597     /*
0598      * Since files and directories cannot be created nor deleted, do not
0599      * allow setting any write attributes on the sub-directories grouping
0600      * files by zone type.
0601      */
0602     if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
0603         (iattr->ia_mode & 0222))
0604         return -EPERM;
0605 
0606     if (((iattr->ia_valid & ATTR_UID) &&
0607          !uid_eq(iattr->ia_uid, inode->i_uid)) ||
0608         ((iattr->ia_valid & ATTR_GID) &&
0609          !gid_eq(iattr->ia_gid, inode->i_gid))) {
0610         ret = dquot_transfer(mnt_userns, inode, iattr);
0611         if (ret)
0612             return ret;
0613     }
0614 
0615     if (iattr->ia_valid & ATTR_SIZE) {
0616         ret = zonefs_file_truncate(inode, iattr->ia_size);
0617         if (ret)
0618             return ret;
0619     }
0620 
0621     setattr_copy(&init_user_ns, inode, iattr);
0622 
0623     return 0;
0624 }
0625 
0626 static const struct inode_operations zonefs_file_inode_operations = {
0627     .setattr    = zonefs_inode_setattr,
0628 };
0629 
0630 static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
0631                  int datasync)
0632 {
0633     struct inode *inode = file_inode(file);
0634     int ret = 0;
0635 
0636     if (unlikely(IS_IMMUTABLE(inode)))
0637         return -EPERM;
0638 
0639     /*
0640      * Since only direct writes are allowed in sequential files, page cache
0641      * flush is needed only for conventional zone files.
0642      */
0643     if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
0644         ret = file_write_and_wait_range(file, start, end);
0645     if (!ret)
0646         ret = blkdev_issue_flush(inode->i_sb->s_bdev);
0647 
0648     if (ret)
0649         zonefs_io_error(inode, true);
0650 
0651     return ret;
0652 }
0653 
0654 static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
0655 {
0656     struct inode *inode = file_inode(vmf->vma->vm_file);
0657     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0658     vm_fault_t ret;
0659 
0660     if (unlikely(IS_IMMUTABLE(inode)))
0661         return VM_FAULT_SIGBUS;
0662 
0663     /*
0664      * Sanity check: only conventional zone files can have shared
0665      * writeable mappings.
0666      */
0667     if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
0668         return VM_FAULT_NOPAGE;
0669 
0670     sb_start_pagefault(inode->i_sb);
0671     file_update_time(vmf->vma->vm_file);
0672 
0673     /* Serialize against truncates */
0674     filemap_invalidate_lock_shared(inode->i_mapping);
0675     ret = iomap_page_mkwrite(vmf, &zonefs_write_iomap_ops);
0676     filemap_invalidate_unlock_shared(inode->i_mapping);
0677 
0678     sb_end_pagefault(inode->i_sb);
0679     return ret;
0680 }
0681 
0682 static const struct vm_operations_struct zonefs_file_vm_ops = {
0683     .fault      = filemap_fault,
0684     .map_pages  = filemap_map_pages,
0685     .page_mkwrite   = zonefs_filemap_page_mkwrite,
0686 };
0687 
0688 static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
0689 {
0690     /*
0691      * Conventional zones accept random writes, so their files can support
0692      * shared writable mappings. For sequential zone files, only read
0693      * mappings are possible since there are no guarantees for write
0694      * ordering between msync() and page cache writeback.
0695      */
0696     if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
0697         (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
0698         return -EINVAL;
0699 
0700     file_accessed(file);
0701     vma->vm_ops = &zonefs_file_vm_ops;
0702 
0703     return 0;
0704 }
0705 
0706 static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
0707 {
0708     loff_t isize = i_size_read(file_inode(file));
0709 
0710     /*
0711      * Seeks are limited to below the zone size for conventional zones
0712      * and below the zone write pointer for sequential zones. In both
0713      * cases, this limit is the inode size.
0714      */
0715     return generic_file_llseek_size(file, offset, whence, isize, isize);
0716 }
0717 
0718 static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
0719                     int error, unsigned int flags)
0720 {
0721     struct inode *inode = file_inode(iocb->ki_filp);
0722     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0723 
0724     if (error) {
0725         zonefs_io_error(inode, true);
0726         return error;
0727     }
0728 
0729     if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
0730         /*
0731          * Note that we may be seeing completions out of order,
0732          * but that is not a problem since a write completed
0733          * successfully necessarily means that all preceding writes
0734          * were also successful. So we can safely increase the inode
0735          * size to the write end location.
0736          */
0737         mutex_lock(&zi->i_truncate_mutex);
0738         if (i_size_read(inode) < iocb->ki_pos + size) {
0739             zonefs_update_stats(inode, iocb->ki_pos + size);
0740             zonefs_i_size_write(inode, iocb->ki_pos + size);
0741         }
0742         mutex_unlock(&zi->i_truncate_mutex);
0743     }
0744 
0745     return 0;
0746 }
0747 
0748 static const struct iomap_dio_ops zonefs_write_dio_ops = {
0749     .end_io         = zonefs_file_write_dio_end_io,
0750 };
0751 
0752 static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
0753 {
0754     struct inode *inode = file_inode(iocb->ki_filp);
0755     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0756     struct block_device *bdev = inode->i_sb->s_bdev;
0757     unsigned int max = bdev_max_zone_append_sectors(bdev);
0758     struct bio *bio;
0759     ssize_t size;
0760     int nr_pages;
0761     ssize_t ret;
0762 
0763     max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
0764     iov_iter_truncate(from, max);
0765 
0766     nr_pages = iov_iter_npages(from, BIO_MAX_VECS);
0767     if (!nr_pages)
0768         return 0;
0769 
0770     bio = bio_alloc(bdev, nr_pages,
0771             REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE, GFP_NOFS);
0772     bio->bi_iter.bi_sector = zi->i_zsector;
0773     bio->bi_ioprio = iocb->ki_ioprio;
0774     if (iocb_is_dsync(iocb))
0775         bio->bi_opf |= REQ_FUA;
0776 
0777     ret = bio_iov_iter_get_pages(bio, from);
0778     if (unlikely(ret))
0779         goto out_release;
0780 
0781     size = bio->bi_iter.bi_size;
0782     task_io_account_write(size);
0783 
0784     if (iocb->ki_flags & IOCB_HIPRI)
0785         bio_set_polled(bio, iocb);
0786 
0787     ret = submit_bio_wait(bio);
0788 
0789     zonefs_file_write_dio_end_io(iocb, size, ret, 0);
0790     trace_zonefs_file_dio_append(inode, size, ret);
0791 
0792 out_release:
0793     bio_release_pages(bio, false);
0794     bio_put(bio);
0795 
0796     if (ret >= 0) {
0797         iocb->ki_pos += size;
0798         return size;
0799     }
0800 
0801     return ret;
0802 }
0803 
0804 /*
0805  * Do not exceed the LFS limits nor the file zone size. If pos is under the
0806  * limit it becomes a short access. If it exceeds the limit, return -EFBIG.
0807  */
0808 static loff_t zonefs_write_check_limits(struct file *file, loff_t pos,
0809                     loff_t count)
0810 {
0811     struct inode *inode = file_inode(file);
0812     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0813     loff_t limit = rlimit(RLIMIT_FSIZE);
0814     loff_t max_size = zi->i_max_size;
0815 
0816     if (limit != RLIM_INFINITY) {
0817         if (pos >= limit) {
0818             send_sig(SIGXFSZ, current, 0);
0819             return -EFBIG;
0820         }
0821         count = min(count, limit - pos);
0822     }
0823 
0824     if (!(file->f_flags & O_LARGEFILE))
0825         max_size = min_t(loff_t, MAX_NON_LFS, max_size);
0826 
0827     if (unlikely(pos >= max_size))
0828         return -EFBIG;
0829 
0830     return min(count, max_size - pos);
0831 }
0832 
0833 static ssize_t zonefs_write_checks(struct kiocb *iocb, struct iov_iter *from)
0834 {
0835     struct file *file = iocb->ki_filp;
0836     struct inode *inode = file_inode(file);
0837     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0838     loff_t count;
0839 
0840     if (IS_SWAPFILE(inode))
0841         return -ETXTBSY;
0842 
0843     if (!iov_iter_count(from))
0844         return 0;
0845 
0846     if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
0847         return -EINVAL;
0848 
0849     if (iocb->ki_flags & IOCB_APPEND) {
0850         if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
0851             return -EINVAL;
0852         mutex_lock(&zi->i_truncate_mutex);
0853         iocb->ki_pos = zi->i_wpoffset;
0854         mutex_unlock(&zi->i_truncate_mutex);
0855     }
0856 
0857     count = zonefs_write_check_limits(file, iocb->ki_pos,
0858                       iov_iter_count(from));
0859     if (count < 0)
0860         return count;
0861 
0862     iov_iter_truncate(from, count);
0863     return iov_iter_count(from);
0864 }
0865 
0866 /*
0867  * Handle direct writes. For sequential zone files, this is the only possible
0868  * write path. For these files, check that the user is issuing writes
0869  * sequentially from the end of the file. This code assumes that the block layer
0870  * delivers write requests to the device in sequential order. This is always the
0871  * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
0872  * elevator feature is being used (e.g. mq-deadline). The block layer always
0873  * automatically select such an elevator for zoned block devices during the
0874  * device initialization.
0875  */
0876 static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
0877 {
0878     struct inode *inode = file_inode(iocb->ki_filp);
0879     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0880     struct super_block *sb = inode->i_sb;
0881     bool sync = is_sync_kiocb(iocb);
0882     bool append = false;
0883     ssize_t ret, count;
0884 
0885     /*
0886      * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
0887      * as this can cause write reordering (e.g. the first aio gets EAGAIN
0888      * on the inode lock but the second goes through but is now unaligned).
0889      */
0890     if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
0891         (iocb->ki_flags & IOCB_NOWAIT))
0892         return -EOPNOTSUPP;
0893 
0894     if (iocb->ki_flags & IOCB_NOWAIT) {
0895         if (!inode_trylock(inode))
0896             return -EAGAIN;
0897     } else {
0898         inode_lock(inode);
0899     }
0900 
0901     count = zonefs_write_checks(iocb, from);
0902     if (count <= 0) {
0903         ret = count;
0904         goto inode_unlock;
0905     }
0906 
0907     if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
0908         ret = -EINVAL;
0909         goto inode_unlock;
0910     }
0911 
0912     /* Enforce sequential writes (append only) in sequential zones */
0913     if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
0914         mutex_lock(&zi->i_truncate_mutex);
0915         if (iocb->ki_pos != zi->i_wpoffset) {
0916             mutex_unlock(&zi->i_truncate_mutex);
0917             ret = -EINVAL;
0918             goto inode_unlock;
0919         }
0920         mutex_unlock(&zi->i_truncate_mutex);
0921         append = sync;
0922     }
0923 
0924     if (append)
0925         ret = zonefs_file_dio_append(iocb, from);
0926     else
0927         ret = iomap_dio_rw(iocb, from, &zonefs_write_iomap_ops,
0928                    &zonefs_write_dio_ops, 0, NULL, 0);
0929     if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
0930         (ret > 0 || ret == -EIOCBQUEUED)) {
0931         if (ret > 0)
0932             count = ret;
0933 
0934         /*
0935          * Update the zone write pointer offset assuming the write
0936          * operation succeeded. If it did not, the error recovery path
0937          * will correct it. Also do active seq file accounting.
0938          */
0939         mutex_lock(&zi->i_truncate_mutex);
0940         zi->i_wpoffset += count;
0941         zonefs_account_active(inode);
0942         mutex_unlock(&zi->i_truncate_mutex);
0943     }
0944 
0945 inode_unlock:
0946     inode_unlock(inode);
0947 
0948     return ret;
0949 }
0950 
0951 static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
0952                       struct iov_iter *from)
0953 {
0954     struct inode *inode = file_inode(iocb->ki_filp);
0955     struct zonefs_inode_info *zi = ZONEFS_I(inode);
0956     ssize_t ret;
0957 
0958     /*
0959      * Direct IO writes are mandatory for sequential zone files so that the
0960      * write IO issuing order is preserved.
0961      */
0962     if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
0963         return -EIO;
0964 
0965     if (iocb->ki_flags & IOCB_NOWAIT) {
0966         if (!inode_trylock(inode))
0967             return -EAGAIN;
0968     } else {
0969         inode_lock(inode);
0970     }
0971 
0972     ret = zonefs_write_checks(iocb, from);
0973     if (ret <= 0)
0974         goto inode_unlock;
0975 
0976     ret = iomap_file_buffered_write(iocb, from, &zonefs_write_iomap_ops);
0977     if (ret > 0)
0978         iocb->ki_pos += ret;
0979     else if (ret == -EIO)
0980         zonefs_io_error(inode, true);
0981 
0982 inode_unlock:
0983     inode_unlock(inode);
0984     if (ret > 0)
0985         ret = generic_write_sync(iocb, ret);
0986 
0987     return ret;
0988 }
0989 
0990 static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
0991 {
0992     struct inode *inode = file_inode(iocb->ki_filp);
0993 
0994     if (unlikely(IS_IMMUTABLE(inode)))
0995         return -EPERM;
0996 
0997     if (sb_rdonly(inode->i_sb))
0998         return -EROFS;
0999 
1000     /* Write operations beyond the zone size are not allowed */
1001     if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
1002         return -EFBIG;
1003 
1004     if (iocb->ki_flags & IOCB_DIRECT) {
1005         ssize_t ret = zonefs_file_dio_write(iocb, from);
1006         if (ret != -ENOTBLK)
1007             return ret;
1008     }
1009 
1010     return zonefs_file_buffered_write(iocb, from);
1011 }
1012 
1013 static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
1014                        int error, unsigned int flags)
1015 {
1016     if (error) {
1017         zonefs_io_error(file_inode(iocb->ki_filp), false);
1018         return error;
1019     }
1020 
1021     return 0;
1022 }
1023 
1024 static const struct iomap_dio_ops zonefs_read_dio_ops = {
1025     .end_io         = zonefs_file_read_dio_end_io,
1026 };
1027 
1028 static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1029 {
1030     struct inode *inode = file_inode(iocb->ki_filp);
1031     struct zonefs_inode_info *zi = ZONEFS_I(inode);
1032     struct super_block *sb = inode->i_sb;
1033     loff_t isize;
1034     ssize_t ret;
1035 
1036     /* Offline zones cannot be read */
1037     if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
1038         return -EPERM;
1039 
1040     if (iocb->ki_pos >= zi->i_max_size)
1041         return 0;
1042 
1043     if (iocb->ki_flags & IOCB_NOWAIT) {
1044         if (!inode_trylock_shared(inode))
1045             return -EAGAIN;
1046     } else {
1047         inode_lock_shared(inode);
1048     }
1049 
1050     /* Limit read operations to written data */
1051     mutex_lock(&zi->i_truncate_mutex);
1052     isize = i_size_read(inode);
1053     if (iocb->ki_pos >= isize) {
1054         mutex_unlock(&zi->i_truncate_mutex);
1055         ret = 0;
1056         goto inode_unlock;
1057     }
1058     iov_iter_truncate(to, isize - iocb->ki_pos);
1059     mutex_unlock(&zi->i_truncate_mutex);
1060 
1061     if (iocb->ki_flags & IOCB_DIRECT) {
1062         size_t count = iov_iter_count(to);
1063 
1064         if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
1065             ret = -EINVAL;
1066             goto inode_unlock;
1067         }
1068         file_accessed(iocb->ki_filp);
1069         ret = iomap_dio_rw(iocb, to, &zonefs_read_iomap_ops,
1070                    &zonefs_read_dio_ops, 0, NULL, 0);
1071     } else {
1072         ret = generic_file_read_iter(iocb, to);
1073         if (ret == -EIO)
1074             zonefs_io_error(inode, false);
1075     }
1076 
1077 inode_unlock:
1078     inode_unlock_shared(inode);
1079 
1080     return ret;
1081 }
1082 
1083 /*
1084  * Write open accounting is done only for sequential files.
1085  */
1086 static inline bool zonefs_seq_file_need_wro(struct inode *inode,
1087                         struct file *file)
1088 {
1089     struct zonefs_inode_info *zi = ZONEFS_I(inode);
1090 
1091     if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
1092         return false;
1093 
1094     if (!(file->f_mode & FMODE_WRITE))
1095         return false;
1096 
1097     return true;
1098 }
1099 
1100 static int zonefs_seq_file_write_open(struct inode *inode)
1101 {
1102     struct zonefs_inode_info *zi = ZONEFS_I(inode);
1103     int ret = 0;
1104 
1105     mutex_lock(&zi->i_truncate_mutex);
1106 
1107     if (!zi->i_wr_refcnt) {
1108         struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1109         unsigned int wro = atomic_inc_return(&sbi->s_wro_seq_files);
1110 
1111         if (sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1112 
1113             if (sbi->s_max_wro_seq_files
1114                 && wro > sbi->s_max_wro_seq_files) {
1115                 atomic_dec(&sbi->s_wro_seq_files);
1116                 ret = -EBUSY;
1117                 goto unlock;
1118             }
1119 
1120             if (i_size_read(inode) < zi->i_max_size) {
1121                 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
1122                 if (ret) {
1123                     atomic_dec(&sbi->s_wro_seq_files);
1124                     goto unlock;
1125                 }
1126                 zi->i_flags |= ZONEFS_ZONE_OPEN;
1127                 zonefs_account_active(inode);
1128             }
1129         }
1130     }
1131 
1132     zi->i_wr_refcnt++;
1133 
1134 unlock:
1135     mutex_unlock(&zi->i_truncate_mutex);
1136 
1137     return ret;
1138 }
1139 
1140 static int zonefs_file_open(struct inode *inode, struct file *file)
1141 {
1142     int ret;
1143 
1144     ret = generic_file_open(inode, file);
1145     if (ret)
1146         return ret;
1147 
1148     if (zonefs_seq_file_need_wro(inode, file))
1149         return zonefs_seq_file_write_open(inode);
1150 
1151     return 0;
1152 }
1153 
1154 static void zonefs_seq_file_write_close(struct inode *inode)
1155 {
1156     struct zonefs_inode_info *zi = ZONEFS_I(inode);
1157     struct super_block *sb = inode->i_sb;
1158     struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1159     int ret = 0;
1160 
1161     mutex_lock(&zi->i_truncate_mutex);
1162 
1163     zi->i_wr_refcnt--;
1164     if (zi->i_wr_refcnt)
1165         goto unlock;
1166 
1167     /*
1168      * The file zone may not be open anymore (e.g. the file was truncated to
1169      * its maximum size or it was fully written). For this case, we only
1170      * need to decrement the write open count.
1171      */
1172     if (zi->i_flags & ZONEFS_ZONE_OPEN) {
1173         ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1174         if (ret) {
1175             __zonefs_io_error(inode, false);
1176             /*
1177              * Leaving zones explicitly open may lead to a state
1178              * where most zones cannot be written (zone resources
1179              * exhausted). So take preventive action by remounting
1180              * read-only.
1181              */
1182             if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1183                 !(sb->s_flags & SB_RDONLY)) {
1184                 zonefs_warn(sb,
1185                     "closing zone at %llu failed %d\n",
1186                     zi->i_zsector, ret);
1187                 zonefs_warn(sb,
1188                     "remounting filesystem read-only\n");
1189                 sb->s_flags |= SB_RDONLY;
1190             }
1191             goto unlock;
1192         }
1193 
1194         zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1195         zonefs_account_active(inode);
1196     }
1197 
1198     atomic_dec(&sbi->s_wro_seq_files);
1199 
1200 unlock:
1201     mutex_unlock(&zi->i_truncate_mutex);
1202 }
1203 
1204 static int zonefs_file_release(struct inode *inode, struct file *file)
1205 {
1206     /*
1207      * If we explicitly open a zone we must close it again as well, but the
1208      * zone management operation can fail (either due to an IO error or as
1209      * the zone has gone offline or read-only). Make sure we don't fail the
1210      * close(2) for user-space.
1211      */
1212     if (zonefs_seq_file_need_wro(inode, file))
1213         zonefs_seq_file_write_close(inode);
1214 
1215     return 0;
1216 }
1217 
1218 static const struct file_operations zonefs_file_operations = {
1219     .open       = zonefs_file_open,
1220     .release    = zonefs_file_release,
1221     .fsync      = zonefs_file_fsync,
1222     .mmap       = zonefs_file_mmap,
1223     .llseek     = zonefs_file_llseek,
1224     .read_iter  = zonefs_file_read_iter,
1225     .write_iter = zonefs_file_write_iter,
1226     .splice_read    = generic_file_splice_read,
1227     .splice_write   = iter_file_splice_write,
1228     .iopoll     = iocb_bio_iopoll,
1229 };
1230 
1231 static struct kmem_cache *zonefs_inode_cachep;
1232 
1233 static struct inode *zonefs_alloc_inode(struct super_block *sb)
1234 {
1235     struct zonefs_inode_info *zi;
1236 
1237     zi = alloc_inode_sb(sb, zonefs_inode_cachep, GFP_KERNEL);
1238     if (!zi)
1239         return NULL;
1240 
1241     inode_init_once(&zi->i_vnode);
1242     mutex_init(&zi->i_truncate_mutex);
1243     zi->i_wr_refcnt = 0;
1244     zi->i_flags = 0;
1245 
1246     return &zi->i_vnode;
1247 }
1248 
1249 static void zonefs_free_inode(struct inode *inode)
1250 {
1251     kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1252 }
1253 
1254 /*
1255  * File system stat.
1256  */
1257 static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1258 {
1259     struct super_block *sb = dentry->d_sb;
1260     struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1261     enum zonefs_ztype t;
1262 
1263     buf->f_type = ZONEFS_MAGIC;
1264     buf->f_bsize = sb->s_blocksize;
1265     buf->f_namelen = ZONEFS_NAME_MAX;
1266 
1267     spin_lock(&sbi->s_lock);
1268 
1269     buf->f_blocks = sbi->s_blocks;
1270     if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1271         buf->f_bfree = 0;
1272     else
1273         buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1274     buf->f_bavail = buf->f_bfree;
1275 
1276     for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1277         if (sbi->s_nr_files[t])
1278             buf->f_files += sbi->s_nr_files[t] + 1;
1279     }
1280     buf->f_ffree = 0;
1281 
1282     spin_unlock(&sbi->s_lock);
1283 
1284     buf->f_fsid = uuid_to_fsid(sbi->s_uuid.b);
1285 
1286     return 0;
1287 }
1288 
1289 enum {
1290     Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
1291     Opt_explicit_open, Opt_err,
1292 };
1293 
1294 static const match_table_t tokens = {
1295     { Opt_errors_ro,    "errors=remount-ro"},
1296     { Opt_errors_zro,   "errors=zone-ro"},
1297     { Opt_errors_zol,   "errors=zone-offline"},
1298     { Opt_errors_repair,    "errors=repair"},
1299     { Opt_explicit_open,    "explicit-open" },
1300     { Opt_err,      NULL}
1301 };
1302 
1303 static int zonefs_parse_options(struct super_block *sb, char *options)
1304 {
1305     struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1306     substring_t args[MAX_OPT_ARGS];
1307     char *p;
1308 
1309     if (!options)
1310         return 0;
1311 
1312     while ((p = strsep(&options, ",")) != NULL) {
1313         int token;
1314 
1315         if (!*p)
1316             continue;
1317 
1318         token = match_token(p, tokens, args);
1319         switch (token) {
1320         case Opt_errors_ro:
1321             sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1322             sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1323             break;
1324         case Opt_errors_zro:
1325             sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1326             sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1327             break;
1328         case Opt_errors_zol:
1329             sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1330             sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1331             break;
1332         case Opt_errors_repair:
1333             sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1334             sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1335             break;
1336         case Opt_explicit_open:
1337             sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1338             break;
1339         default:
1340             return -EINVAL;
1341         }
1342     }
1343 
1344     return 0;
1345 }
1346 
1347 static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1348 {
1349     struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1350 
1351     if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1352         seq_puts(seq, ",errors=remount-ro");
1353     if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1354         seq_puts(seq, ",errors=zone-ro");
1355     if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1356         seq_puts(seq, ",errors=zone-offline");
1357     if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1358         seq_puts(seq, ",errors=repair");
1359 
1360     return 0;
1361 }
1362 
1363 static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1364 {
1365     sync_filesystem(sb);
1366 
1367     return zonefs_parse_options(sb, data);
1368 }
1369 
1370 static const struct super_operations zonefs_sops = {
1371     .alloc_inode    = zonefs_alloc_inode,
1372     .free_inode = zonefs_free_inode,
1373     .statfs     = zonefs_statfs,
1374     .remount_fs = zonefs_remount,
1375     .show_options   = zonefs_show_options,
1376 };
1377 
1378 static const struct inode_operations zonefs_dir_inode_operations = {
1379     .lookup     = simple_lookup,
1380     .setattr    = zonefs_inode_setattr,
1381 };
1382 
1383 static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1384                   enum zonefs_ztype type)
1385 {
1386     struct super_block *sb = parent->i_sb;
1387 
1388     inode->i_ino = bdev_nr_zones(sb->s_bdev) + type + 1;
1389     inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
1390     inode->i_op = &zonefs_dir_inode_operations;
1391     inode->i_fop = &simple_dir_operations;
1392     set_nlink(inode, 2);
1393     inc_nlink(parent);
1394 }
1395 
1396 static int zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1397                   enum zonefs_ztype type)
1398 {
1399     struct super_block *sb = inode->i_sb;
1400     struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1401     struct zonefs_inode_info *zi = ZONEFS_I(inode);
1402     int ret = 0;
1403 
1404     inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1405     inode->i_mode = S_IFREG | sbi->s_perm;
1406 
1407     zi->i_ztype = type;
1408     zi->i_zsector = zone->start;
1409     zi->i_zone_size = zone->len << SECTOR_SHIFT;
1410 
1411     zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
1412                    zone->capacity << SECTOR_SHIFT);
1413     zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
1414 
1415     inode->i_uid = sbi->s_uid;
1416     inode->i_gid = sbi->s_gid;
1417     inode->i_size = zi->i_wpoffset;
1418     inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
1419 
1420     inode->i_op = &zonefs_file_inode_operations;
1421     inode->i_fop = &zonefs_file_operations;
1422     inode->i_mapping->a_ops = &zonefs_file_aops;
1423 
1424     sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1425     sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1426     sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1427 
1428     mutex_lock(&zi->i_truncate_mutex);
1429 
1430     /*
1431      * For sequential zones, make sure that any open zone is closed first
1432      * to ensure that the initial number of open zones is 0, in sync with
1433      * the open zone accounting done when the mount option
1434      * ZONEFS_MNTOPT_EXPLICIT_OPEN is used.
1435      */
1436     if (type == ZONEFS_ZTYPE_SEQ &&
1437         (zone->cond == BLK_ZONE_COND_IMP_OPEN ||
1438          zone->cond == BLK_ZONE_COND_EXP_OPEN)) {
1439         ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1440         if (ret)
1441             goto unlock;
1442     }
1443 
1444     zonefs_account_active(inode);
1445 
1446 unlock:
1447     mutex_unlock(&zi->i_truncate_mutex);
1448 
1449     return ret;
1450 }
1451 
1452 static struct dentry *zonefs_create_inode(struct dentry *parent,
1453                     const char *name, struct blk_zone *zone,
1454                     enum zonefs_ztype type)
1455 {
1456     struct inode *dir = d_inode(parent);
1457     struct dentry *dentry;
1458     struct inode *inode;
1459     int ret;
1460 
1461     dentry = d_alloc_name(parent, name);
1462     if (!dentry)
1463         return NULL;
1464 
1465     inode = new_inode(parent->d_sb);
1466     if (!inode)
1467         goto dput;
1468 
1469     inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1470     if (zone) {
1471         ret = zonefs_init_file_inode(inode, zone, type);
1472         if (ret) {
1473             iput(inode);
1474             goto dput;
1475         }
1476     } else {
1477         zonefs_init_dir_inode(dir, inode, type);
1478     }
1479 
1480     d_add(dentry, inode);
1481     dir->i_size++;
1482 
1483     return dentry;
1484 
1485 dput:
1486     dput(dentry);
1487 
1488     return NULL;
1489 }
1490 
1491 struct zonefs_zone_data {
1492     struct super_block  *sb;
1493     unsigned int        nr_zones[ZONEFS_ZTYPE_MAX];
1494     struct blk_zone     *zones;
1495 };
1496 
1497 /*
1498  * Create a zone group and populate it with zone files.
1499  */
1500 static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1501                 enum zonefs_ztype type)
1502 {
1503     struct super_block *sb = zd->sb;
1504     struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1505     struct blk_zone *zone, *next, *end;
1506     const char *zgroup_name;
1507     char *file_name;
1508     struct dentry *dir;
1509     unsigned int n = 0;
1510     int ret;
1511 
1512     /* If the group is empty, there is nothing to do */
1513     if (!zd->nr_zones[type])
1514         return 0;
1515 
1516     file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1517     if (!file_name)
1518         return -ENOMEM;
1519 
1520     if (type == ZONEFS_ZTYPE_CNV)
1521         zgroup_name = "cnv";
1522     else
1523         zgroup_name = "seq";
1524 
1525     dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
1526     if (!dir) {
1527         ret = -ENOMEM;
1528         goto free;
1529     }
1530 
1531     /*
1532      * The first zone contains the super block: skip it.
1533      */
1534     end = zd->zones + bdev_nr_zones(sb->s_bdev);
1535     for (zone = &zd->zones[1]; zone < end; zone = next) {
1536 
1537         next = zone + 1;
1538         if (zonefs_zone_type(zone) != type)
1539             continue;
1540 
1541         /*
1542          * For conventional zones, contiguous zones can be aggregated
1543          * together to form larger files. Note that this overwrites the
1544          * length of the first zone of the set of contiguous zones
1545          * aggregated together. If one offline or read-only zone is
1546          * found, assume that all zones aggregated have the same
1547          * condition.
1548          */
1549         if (type == ZONEFS_ZTYPE_CNV &&
1550             (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1551             for (; next < end; next++) {
1552                 if (zonefs_zone_type(next) != type)
1553                     break;
1554                 zone->len += next->len;
1555                 zone->capacity += next->capacity;
1556                 if (next->cond == BLK_ZONE_COND_READONLY &&
1557                     zone->cond != BLK_ZONE_COND_OFFLINE)
1558                     zone->cond = BLK_ZONE_COND_READONLY;
1559                 else if (next->cond == BLK_ZONE_COND_OFFLINE)
1560                     zone->cond = BLK_ZONE_COND_OFFLINE;
1561             }
1562             if (zone->capacity != zone->len) {
1563                 zonefs_err(sb, "Invalid conventional zone capacity\n");
1564                 ret = -EINVAL;
1565                 goto free;
1566             }
1567         }
1568 
1569         /*
1570          * Use the file number within its group as file name.
1571          */
1572         snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
1573         if (!zonefs_create_inode(dir, file_name, zone, type)) {
1574             ret = -ENOMEM;
1575             goto free;
1576         }
1577 
1578         n++;
1579     }
1580 
1581     zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1582             zgroup_name, n, n > 1 ? "s" : "");
1583 
1584     sbi->s_nr_files[type] = n;
1585     ret = 0;
1586 
1587 free:
1588     kfree(file_name);
1589 
1590     return ret;
1591 }
1592 
1593 static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1594                    void *data)
1595 {
1596     struct zonefs_zone_data *zd = data;
1597 
1598     /*
1599      * Count the number of usable zones: the first zone at index 0 contains
1600      * the super block and is ignored.
1601      */
1602     switch (zone->type) {
1603     case BLK_ZONE_TYPE_CONVENTIONAL:
1604         zone->wp = zone->start + zone->len;
1605         if (idx)
1606             zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1607         break;
1608     case BLK_ZONE_TYPE_SEQWRITE_REQ:
1609     case BLK_ZONE_TYPE_SEQWRITE_PREF:
1610         if (idx)
1611             zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1612         break;
1613     default:
1614         zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1615                zone->type);
1616         return -EIO;
1617     }
1618 
1619     memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1620 
1621     return 0;
1622 }
1623 
1624 static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1625 {
1626     struct block_device *bdev = zd->sb->s_bdev;
1627     int ret;
1628 
1629     zd->zones = kvcalloc(bdev_nr_zones(bdev), sizeof(struct blk_zone),
1630                  GFP_KERNEL);
1631     if (!zd->zones)
1632         return -ENOMEM;
1633 
1634     /* Get zones information from the device */
1635     ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1636                   zonefs_get_zone_info_cb, zd);
1637     if (ret < 0) {
1638         zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1639         return ret;
1640     }
1641 
1642     if (ret != bdev_nr_zones(bdev)) {
1643         zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1644                ret, bdev_nr_zones(bdev));
1645         return -EIO;
1646     }
1647 
1648     return 0;
1649 }
1650 
1651 static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1652 {
1653     kvfree(zd->zones);
1654 }
1655 
1656 /*
1657  * Read super block information from the device.
1658  */
1659 static int zonefs_read_super(struct super_block *sb)
1660 {
1661     struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1662     struct zonefs_super *super;
1663     u32 crc, stored_crc;
1664     struct page *page;
1665     struct bio_vec bio_vec;
1666     struct bio bio;
1667     int ret;
1668 
1669     page = alloc_page(GFP_KERNEL);
1670     if (!page)
1671         return -ENOMEM;
1672 
1673     bio_init(&bio, sb->s_bdev, &bio_vec, 1, REQ_OP_READ);
1674     bio.bi_iter.bi_sector = 0;
1675     bio_add_page(&bio, page, PAGE_SIZE, 0);
1676 
1677     ret = submit_bio_wait(&bio);
1678     if (ret)
1679         goto free_page;
1680 
1681     super = page_address(page);
1682 
1683     ret = -EINVAL;
1684     if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1685         goto free_page;
1686 
1687     stored_crc = le32_to_cpu(super->s_crc);
1688     super->s_crc = 0;
1689     crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1690     if (crc != stored_crc) {
1691         zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1692                crc, stored_crc);
1693         goto free_page;
1694     }
1695 
1696     sbi->s_features = le64_to_cpu(super->s_features);
1697     if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1698         zonefs_err(sb, "Unknown features set 0x%llx\n",
1699                sbi->s_features);
1700         goto free_page;
1701     }
1702 
1703     if (sbi->s_features & ZONEFS_F_UID) {
1704         sbi->s_uid = make_kuid(current_user_ns(),
1705                        le32_to_cpu(super->s_uid));
1706         if (!uid_valid(sbi->s_uid)) {
1707             zonefs_err(sb, "Invalid UID feature\n");
1708             goto free_page;
1709         }
1710     }
1711 
1712     if (sbi->s_features & ZONEFS_F_GID) {
1713         sbi->s_gid = make_kgid(current_user_ns(),
1714                        le32_to_cpu(super->s_gid));
1715         if (!gid_valid(sbi->s_gid)) {
1716             zonefs_err(sb, "Invalid GID feature\n");
1717             goto free_page;
1718         }
1719     }
1720 
1721     if (sbi->s_features & ZONEFS_F_PERM)
1722         sbi->s_perm = le32_to_cpu(super->s_perm);
1723 
1724     if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1725         zonefs_err(sb, "Reserved area is being used\n");
1726         goto free_page;
1727     }
1728 
1729     import_uuid(&sbi->s_uuid, super->s_uuid);
1730     ret = 0;
1731 
1732 free_page:
1733     __free_page(page);
1734 
1735     return ret;
1736 }
1737 
1738 /*
1739  * Check that the device is zoned. If it is, get the list of zones and create
1740  * sub-directories and files according to the device zone configuration and
1741  * format options.
1742  */
1743 static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1744 {
1745     struct zonefs_zone_data zd;
1746     struct zonefs_sb_info *sbi;
1747     struct inode *inode;
1748     enum zonefs_ztype t;
1749     int ret;
1750 
1751     if (!bdev_is_zoned(sb->s_bdev)) {
1752         zonefs_err(sb, "Not a zoned block device\n");
1753         return -EINVAL;
1754     }
1755 
1756     /*
1757      * Initialize super block information: the maximum file size is updated
1758      * when the zone files are created so that the format option
1759      * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1760      * beyond the zone size is taken into account.
1761      */
1762     sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1763     if (!sbi)
1764         return -ENOMEM;
1765 
1766     spin_lock_init(&sbi->s_lock);
1767     sb->s_fs_info = sbi;
1768     sb->s_magic = ZONEFS_MAGIC;
1769     sb->s_maxbytes = 0;
1770     sb->s_op = &zonefs_sops;
1771     sb->s_time_gran = 1;
1772 
1773     /*
1774      * The block size is set to the device zone write granularity to ensure
1775      * that write operations are always aligned according to the device
1776      * interface constraints.
1777      */
1778     sb_set_blocksize(sb, bdev_zone_write_granularity(sb->s_bdev));
1779     sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1780     sbi->s_uid = GLOBAL_ROOT_UID;
1781     sbi->s_gid = GLOBAL_ROOT_GID;
1782     sbi->s_perm = 0640;
1783     sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
1784 
1785     atomic_set(&sbi->s_wro_seq_files, 0);
1786     sbi->s_max_wro_seq_files = bdev_max_open_zones(sb->s_bdev);
1787     atomic_set(&sbi->s_active_seq_files, 0);
1788     sbi->s_max_active_seq_files = bdev_max_active_zones(sb->s_bdev);
1789 
1790     ret = zonefs_read_super(sb);
1791     if (ret)
1792         return ret;
1793 
1794     ret = zonefs_parse_options(sb, data);
1795     if (ret)
1796         return ret;
1797 
1798     memset(&zd, 0, sizeof(struct zonefs_zone_data));
1799     zd.sb = sb;
1800     ret = zonefs_get_zone_info(&zd);
1801     if (ret)
1802         goto cleanup;
1803 
1804     ret = zonefs_sysfs_register(sb);
1805     if (ret)
1806         goto cleanup;
1807 
1808     zonefs_info(sb, "Mounting %u zones", bdev_nr_zones(sb->s_bdev));
1809 
1810     if (!sbi->s_max_wro_seq_files &&
1811         !sbi->s_max_active_seq_files &&
1812         sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1813         zonefs_info(sb,
1814             "No open and active zone limits. Ignoring explicit_open mount option\n");
1815         sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1816     }
1817 
1818     /* Create root directory inode */
1819     ret = -ENOMEM;
1820     inode = new_inode(sb);
1821     if (!inode)
1822         goto cleanup;
1823 
1824     inode->i_ino = bdev_nr_zones(sb->s_bdev);
1825     inode->i_mode = S_IFDIR | 0555;
1826     inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1827     inode->i_op = &zonefs_dir_inode_operations;
1828     inode->i_fop = &simple_dir_operations;
1829     set_nlink(inode, 2);
1830 
1831     sb->s_root = d_make_root(inode);
1832     if (!sb->s_root)
1833         goto cleanup;
1834 
1835     /* Create and populate files in zone groups directories */
1836     for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1837         ret = zonefs_create_zgroup(&zd, t);
1838         if (ret)
1839             break;
1840     }
1841 
1842 cleanup:
1843     zonefs_cleanup_zone_info(&zd);
1844 
1845     return ret;
1846 }
1847 
1848 static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1849                    int flags, const char *dev_name, void *data)
1850 {
1851     return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1852 }
1853 
1854 static void zonefs_kill_super(struct super_block *sb)
1855 {
1856     struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1857 
1858     if (sb->s_root)
1859         d_genocide(sb->s_root);
1860 
1861     zonefs_sysfs_unregister(sb);
1862     kill_block_super(sb);
1863     kfree(sbi);
1864 }
1865 
1866 /*
1867  * File system definition and registration.
1868  */
1869 static struct file_system_type zonefs_type = {
1870     .owner      = THIS_MODULE,
1871     .name       = "zonefs",
1872     .mount      = zonefs_mount,
1873     .kill_sb    = zonefs_kill_super,
1874     .fs_flags   = FS_REQUIRES_DEV,
1875 };
1876 
1877 static int __init zonefs_init_inodecache(void)
1878 {
1879     zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1880             sizeof(struct zonefs_inode_info), 0,
1881             (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1882             NULL);
1883     if (zonefs_inode_cachep == NULL)
1884         return -ENOMEM;
1885     return 0;
1886 }
1887 
1888 static void zonefs_destroy_inodecache(void)
1889 {
1890     /*
1891      * Make sure all delayed rcu free inodes are flushed before we
1892      * destroy the inode cache.
1893      */
1894     rcu_barrier();
1895     kmem_cache_destroy(zonefs_inode_cachep);
1896 }
1897 
1898 static int __init zonefs_init(void)
1899 {
1900     int ret;
1901 
1902     BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1903 
1904     ret = zonefs_init_inodecache();
1905     if (ret)
1906         return ret;
1907 
1908     ret = register_filesystem(&zonefs_type);
1909     if (ret)
1910         goto destroy_inodecache;
1911 
1912     ret = zonefs_sysfs_init();
1913     if (ret)
1914         goto unregister_fs;
1915 
1916     return 0;
1917 
1918 unregister_fs:
1919     unregister_filesystem(&zonefs_type);
1920 destroy_inodecache:
1921     zonefs_destroy_inodecache();
1922 
1923     return ret;
1924 }
1925 
1926 static void __exit zonefs_exit(void)
1927 {
1928     zonefs_sysfs_exit();
1929     zonefs_destroy_inodecache();
1930     unregister_filesystem(&zonefs_type);
1931 }
1932 
1933 MODULE_AUTHOR("Damien Le Moal");
1934 MODULE_DESCRIPTION("Zone file system for zoned block devices");
1935 MODULE_LICENSE("GPL");
1936 MODULE_ALIAS_FS("zonefs");
1937 module_init(zonefs_init);
1938 module_exit(zonefs_exit);