Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
0004  * All Rights Reserved.
0005  */
0006 #include "xfs.h"
0007 #include "xfs_fs.h"
0008 #include "xfs_shared.h"
0009 #include "xfs_format.h"
0010 #include "xfs_log_format.h"
0011 #include "xfs_trans_resv.h"
0012 #include "xfs_bit.h"
0013 #include "xfs_sb.h"
0014 #include "xfs_mount.h"
0015 #include "xfs_inode.h"
0016 #include "xfs_dir2.h"
0017 #include "xfs_ialloc.h"
0018 #include "xfs_alloc.h"
0019 #include "xfs_rtalloc.h"
0020 #include "xfs_bmap.h"
0021 #include "xfs_trans.h"
0022 #include "xfs_trans_priv.h"
0023 #include "xfs_log.h"
0024 #include "xfs_log_priv.h"
0025 #include "xfs_error.h"
0026 #include "xfs_quota.h"
0027 #include "xfs_fsops.h"
0028 #include "xfs_icache.h"
0029 #include "xfs_sysfs.h"
0030 #include "xfs_rmap_btree.h"
0031 #include "xfs_refcount_btree.h"
0032 #include "xfs_reflink.h"
0033 #include "xfs_extent_busy.h"
0034 #include "xfs_health.h"
0035 #include "xfs_trace.h"
0036 #include "xfs_ag.h"
0037 
0038 static DEFINE_MUTEX(xfs_uuid_table_mutex);
0039 static int xfs_uuid_table_size;
0040 static uuid_t *xfs_uuid_table;
0041 
0042 void
0043 xfs_uuid_table_free(void)
0044 {
0045     if (xfs_uuid_table_size == 0)
0046         return;
0047     kmem_free(xfs_uuid_table);
0048     xfs_uuid_table = NULL;
0049     xfs_uuid_table_size = 0;
0050 }
0051 
0052 /*
0053  * See if the UUID is unique among mounted XFS filesystems.
0054  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
0055  */
0056 STATIC int
0057 xfs_uuid_mount(
0058     struct xfs_mount    *mp)
0059 {
0060     uuid_t          *uuid = &mp->m_sb.sb_uuid;
0061     int         hole, i;
0062 
0063     /* Publish UUID in struct super_block */
0064     uuid_copy(&mp->m_super->s_uuid, uuid);
0065 
0066     if (xfs_has_nouuid(mp))
0067         return 0;
0068 
0069     if (uuid_is_null(uuid)) {
0070         xfs_warn(mp, "Filesystem has null UUID - can't mount");
0071         return -EINVAL;
0072     }
0073 
0074     mutex_lock(&xfs_uuid_table_mutex);
0075     for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
0076         if (uuid_is_null(&xfs_uuid_table[i])) {
0077             hole = i;
0078             continue;
0079         }
0080         if (uuid_equal(uuid, &xfs_uuid_table[i]))
0081             goto out_duplicate;
0082     }
0083 
0084     if (hole < 0) {
0085         xfs_uuid_table = krealloc(xfs_uuid_table,
0086             (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
0087             GFP_KERNEL | __GFP_NOFAIL);
0088         hole = xfs_uuid_table_size++;
0089     }
0090     xfs_uuid_table[hole] = *uuid;
0091     mutex_unlock(&xfs_uuid_table_mutex);
0092 
0093     return 0;
0094 
0095  out_duplicate:
0096     mutex_unlock(&xfs_uuid_table_mutex);
0097     xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
0098     return -EINVAL;
0099 }
0100 
0101 STATIC void
0102 xfs_uuid_unmount(
0103     struct xfs_mount    *mp)
0104 {
0105     uuid_t          *uuid = &mp->m_sb.sb_uuid;
0106     int         i;
0107 
0108     if (xfs_has_nouuid(mp))
0109         return;
0110 
0111     mutex_lock(&xfs_uuid_table_mutex);
0112     for (i = 0; i < xfs_uuid_table_size; i++) {
0113         if (uuid_is_null(&xfs_uuid_table[i]))
0114             continue;
0115         if (!uuid_equal(uuid, &xfs_uuid_table[i]))
0116             continue;
0117         memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
0118         break;
0119     }
0120     ASSERT(i < xfs_uuid_table_size);
0121     mutex_unlock(&xfs_uuid_table_mutex);
0122 }
0123 
0124 /*
0125  * Check size of device based on the (data/realtime) block count.
0126  * Note: this check is used by the growfs code as well as mount.
0127  */
0128 int
0129 xfs_sb_validate_fsb_count(
0130     xfs_sb_t    *sbp,
0131     uint64_t    nblocks)
0132 {
0133     ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
0134     ASSERT(sbp->sb_blocklog >= BBSHIFT);
0135 
0136     /* Limited by ULONG_MAX of page cache index */
0137     if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
0138         return -EFBIG;
0139     return 0;
0140 }
0141 
0142 /*
0143  * xfs_readsb
0144  *
0145  * Does the initial read of the superblock.
0146  */
0147 int
0148 xfs_readsb(
0149     struct xfs_mount *mp,
0150     int     flags)
0151 {
0152     unsigned int    sector_size;
0153     struct xfs_buf  *bp;
0154     struct xfs_sb   *sbp = &mp->m_sb;
0155     int     error;
0156     int     loud = !(flags & XFS_MFSI_QUIET);
0157     const struct xfs_buf_ops *buf_ops;
0158 
0159     ASSERT(mp->m_sb_bp == NULL);
0160     ASSERT(mp->m_ddev_targp != NULL);
0161 
0162     /*
0163      * For the initial read, we must guess at the sector
0164      * size based on the block device.  It's enough to
0165      * get the sb_sectsize out of the superblock and
0166      * then reread with the proper length.
0167      * We don't verify it yet, because it may not be complete.
0168      */
0169     sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
0170     buf_ops = NULL;
0171 
0172     /*
0173      * Allocate a (locked) buffer to hold the superblock. This will be kept
0174      * around at all times to optimize access to the superblock. Therefore,
0175      * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
0176      * elevated.
0177      */
0178 reread:
0179     error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
0180                       BTOBB(sector_size), XBF_NO_IOACCT, &bp,
0181                       buf_ops);
0182     if (error) {
0183         if (loud)
0184             xfs_warn(mp, "SB validate failed with error %d.", error);
0185         /* bad CRC means corrupted metadata */
0186         if (error == -EFSBADCRC)
0187             error = -EFSCORRUPTED;
0188         return error;
0189     }
0190 
0191     /*
0192      * Initialize the mount structure from the superblock.
0193      */
0194     xfs_sb_from_disk(sbp, bp->b_addr);
0195 
0196     /*
0197      * If we haven't validated the superblock, do so now before we try
0198      * to check the sector size and reread the superblock appropriately.
0199      */
0200     if (sbp->sb_magicnum != XFS_SB_MAGIC) {
0201         if (loud)
0202             xfs_warn(mp, "Invalid superblock magic number");
0203         error = -EINVAL;
0204         goto release_buf;
0205     }
0206 
0207     /*
0208      * We must be able to do sector-sized and sector-aligned IO.
0209      */
0210     if (sector_size > sbp->sb_sectsize) {
0211         if (loud)
0212             xfs_warn(mp, "device supports %u byte sectors (not %u)",
0213                 sector_size, sbp->sb_sectsize);
0214         error = -ENOSYS;
0215         goto release_buf;
0216     }
0217 
0218     if (buf_ops == NULL) {
0219         /*
0220          * Re-read the superblock so the buffer is correctly sized,
0221          * and properly verified.
0222          */
0223         xfs_buf_relse(bp);
0224         sector_size = sbp->sb_sectsize;
0225         buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
0226         goto reread;
0227     }
0228 
0229     mp->m_features |= xfs_sb_version_to_features(sbp);
0230     xfs_reinit_percpu_counters(mp);
0231 
0232     /* no need to be quiet anymore, so reset the buf ops */
0233     bp->b_ops = &xfs_sb_buf_ops;
0234 
0235     mp->m_sb_bp = bp;
0236     xfs_buf_unlock(bp);
0237     return 0;
0238 
0239 release_buf:
0240     xfs_buf_relse(bp);
0241     return error;
0242 }
0243 
0244 /*
0245  * If the sunit/swidth change would move the precomputed root inode value, we
0246  * must reject the ondisk change because repair will stumble over that.
0247  * However, we allow the mount to proceed because we never rejected this
0248  * combination before.  Returns true to update the sb, false otherwise.
0249  */
0250 static inline int
0251 xfs_check_new_dalign(
0252     struct xfs_mount    *mp,
0253     int         new_dalign,
0254     bool            *update_sb)
0255 {
0256     struct xfs_sb       *sbp = &mp->m_sb;
0257     xfs_ino_t       calc_ino;
0258 
0259     calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
0260     trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
0261 
0262     if (sbp->sb_rootino == calc_ino) {
0263         *update_sb = true;
0264         return 0;
0265     }
0266 
0267     xfs_warn(mp,
0268 "Cannot change stripe alignment; would require moving root inode.");
0269 
0270     /*
0271      * XXX: Next time we add a new incompat feature, this should start
0272      * returning -EINVAL to fail the mount.  Until then, spit out a warning
0273      * that we're ignoring the administrator's instructions.
0274      */
0275     xfs_warn(mp, "Skipping superblock stripe alignment update.");
0276     *update_sb = false;
0277     return 0;
0278 }
0279 
0280 /*
0281  * If we were provided with new sunit/swidth values as mount options, make sure
0282  * that they pass basic alignment and superblock feature checks, and convert
0283  * them into the same units (FSB) that everything else expects.  This step
0284  * /must/ be done before computing the inode geometry.
0285  */
0286 STATIC int
0287 xfs_validate_new_dalign(
0288     struct xfs_mount    *mp)
0289 {
0290     if (mp->m_dalign == 0)
0291         return 0;
0292 
0293     /*
0294      * If stripe unit and stripe width are not multiples
0295      * of the fs blocksize turn off alignment.
0296      */
0297     if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
0298         (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
0299         xfs_warn(mp,
0300     "alignment check failed: sunit/swidth vs. blocksize(%d)",
0301             mp->m_sb.sb_blocksize);
0302         return -EINVAL;
0303     } else {
0304         /*
0305          * Convert the stripe unit and width to FSBs.
0306          */
0307         mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
0308         if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
0309             xfs_warn(mp,
0310         "alignment check failed: sunit/swidth vs. agsize(%d)",
0311                  mp->m_sb.sb_agblocks);
0312             return -EINVAL;
0313         } else if (mp->m_dalign) {
0314             mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
0315         } else {
0316             xfs_warn(mp,
0317         "alignment check failed: sunit(%d) less than bsize(%d)",
0318                  mp->m_dalign, mp->m_sb.sb_blocksize);
0319             return -EINVAL;
0320         }
0321     }
0322 
0323     if (!xfs_has_dalign(mp)) {
0324         xfs_warn(mp,
0325 "cannot change alignment: superblock does not support data alignment");
0326         return -EINVAL;
0327     }
0328 
0329     return 0;
0330 }
0331 
0332 /* Update alignment values based on mount options and sb values. */
0333 STATIC int
0334 xfs_update_alignment(
0335     struct xfs_mount    *mp)
0336 {
0337     struct xfs_sb       *sbp = &mp->m_sb;
0338 
0339     if (mp->m_dalign) {
0340         bool        update_sb;
0341         int     error;
0342 
0343         if (sbp->sb_unit == mp->m_dalign &&
0344             sbp->sb_width == mp->m_swidth)
0345             return 0;
0346 
0347         error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
0348         if (error || !update_sb)
0349             return error;
0350 
0351         sbp->sb_unit = mp->m_dalign;
0352         sbp->sb_width = mp->m_swidth;
0353         mp->m_update_sb = true;
0354     } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
0355         mp->m_dalign = sbp->sb_unit;
0356         mp->m_swidth = sbp->sb_width;
0357     }
0358 
0359     return 0;
0360 }
0361 
0362 /*
0363  * precalculate the low space thresholds for dynamic speculative preallocation.
0364  */
0365 void
0366 xfs_set_low_space_thresholds(
0367     struct xfs_mount    *mp)
0368 {
0369     uint64_t        dblocks = mp->m_sb.sb_dblocks;
0370     uint64_t        rtexts = mp->m_sb.sb_rextents;
0371     int         i;
0372 
0373     do_div(dblocks, 100);
0374     do_div(rtexts, 100);
0375 
0376     for (i = 0; i < XFS_LOWSP_MAX; i++) {
0377         mp->m_low_space[i] = dblocks * (i + 1);
0378         mp->m_low_rtexts[i] = rtexts * (i + 1);
0379     }
0380 }
0381 
0382 /*
0383  * Check that the data (and log if separate) is an ok size.
0384  */
0385 STATIC int
0386 xfs_check_sizes(
0387     struct xfs_mount *mp)
0388 {
0389     struct xfs_buf  *bp;
0390     xfs_daddr_t d;
0391     int     error;
0392 
0393     d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
0394     if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0395         xfs_warn(mp, "filesystem size mismatch detected");
0396         return -EFBIG;
0397     }
0398     error = xfs_buf_read_uncached(mp->m_ddev_targp,
0399                     d - XFS_FSS_TO_BB(mp, 1),
0400                     XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
0401     if (error) {
0402         xfs_warn(mp, "last sector read failed");
0403         return error;
0404     }
0405     xfs_buf_relse(bp);
0406 
0407     if (mp->m_logdev_targp == mp->m_ddev_targp)
0408         return 0;
0409 
0410     d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
0411     if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
0412         xfs_warn(mp, "log size mismatch detected");
0413         return -EFBIG;
0414     }
0415     error = xfs_buf_read_uncached(mp->m_logdev_targp,
0416                     d - XFS_FSB_TO_BB(mp, 1),
0417                     XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
0418     if (error) {
0419         xfs_warn(mp, "log device read failed");
0420         return error;
0421     }
0422     xfs_buf_relse(bp);
0423     return 0;
0424 }
0425 
0426 /*
0427  * Clear the quotaflags in memory and in the superblock.
0428  */
0429 int
0430 xfs_mount_reset_sbqflags(
0431     struct xfs_mount    *mp)
0432 {
0433     mp->m_qflags = 0;
0434 
0435     /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
0436     if (mp->m_sb.sb_qflags == 0)
0437         return 0;
0438     spin_lock(&mp->m_sb_lock);
0439     mp->m_sb.sb_qflags = 0;
0440     spin_unlock(&mp->m_sb_lock);
0441 
0442     if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
0443         return 0;
0444 
0445     return xfs_sync_sb(mp, false);
0446 }
0447 
0448 uint64_t
0449 xfs_default_resblks(xfs_mount_t *mp)
0450 {
0451     uint64_t resblks;
0452 
0453     /*
0454      * We default to 5% or 8192 fsbs of space reserved, whichever is
0455      * smaller.  This is intended to cover concurrent allocation
0456      * transactions when we initially hit enospc. These each require a 4
0457      * block reservation. Hence by default we cover roughly 2000 concurrent
0458      * allocation reservations.
0459      */
0460     resblks = mp->m_sb.sb_dblocks;
0461     do_div(resblks, 20);
0462     resblks = min_t(uint64_t, resblks, 8192);
0463     return resblks;
0464 }
0465 
0466 /* Ensure the summary counts are correct. */
0467 STATIC int
0468 xfs_check_summary_counts(
0469     struct xfs_mount    *mp)
0470 {
0471     int         error = 0;
0472 
0473     /*
0474      * The AG0 superblock verifier rejects in-progress filesystems,
0475      * so we should never see the flag set this far into mounting.
0476      */
0477     if (mp->m_sb.sb_inprogress) {
0478         xfs_err(mp, "sb_inprogress set after log recovery??");
0479         WARN_ON(1);
0480         return -EFSCORRUPTED;
0481     }
0482 
0483     /*
0484      * Now the log is mounted, we know if it was an unclean shutdown or
0485      * not. If it was, with the first phase of recovery has completed, we
0486      * have consistent AG blocks on disk. We have not recovered EFIs yet,
0487      * but they are recovered transactionally in the second recovery phase
0488      * later.
0489      *
0490      * If the log was clean when we mounted, we can check the summary
0491      * counters.  If any of them are obviously incorrect, we can recompute
0492      * them from the AGF headers in the next step.
0493      */
0494     if (xfs_is_clean(mp) &&
0495         (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
0496          !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
0497          mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
0498         xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
0499 
0500     /*
0501      * We can safely re-initialise incore superblock counters from the
0502      * per-ag data. These may not be correct if the filesystem was not
0503      * cleanly unmounted, so we waited for recovery to finish before doing
0504      * this.
0505      *
0506      * If the filesystem was cleanly unmounted or the previous check did
0507      * not flag anything weird, then we can trust the values in the
0508      * superblock to be correct and we don't need to do anything here.
0509      * Otherwise, recalculate the summary counters.
0510      */
0511     if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
0512         xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
0513         error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
0514         if (error)
0515             return error;
0516     }
0517 
0518     /*
0519      * Older kernels misused sb_frextents to reflect both incore
0520      * reservations made by running transactions and the actual count of
0521      * free rt extents in the ondisk metadata.  Transactions committed
0522      * during runtime can therefore contain a superblock update that
0523      * undercounts the number of free rt extents tracked in the rt bitmap.
0524      * A clean unmount record will have the correct frextents value since
0525      * there can be no other transactions running at that point.
0526      *
0527      * If we're mounting the rt volume after recovering the log, recompute
0528      * frextents from the rtbitmap file to fix the inconsistency.
0529      */
0530     if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
0531         error = xfs_rtalloc_reinit_frextents(mp);
0532         if (error)
0533             return error;
0534     }
0535 
0536     return 0;
0537 }
0538 
0539 /*
0540  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
0541  * internal inode structures can be sitting in the CIL and AIL at this point,
0542  * so we need to unpin them, write them back and/or reclaim them before unmount
0543  * can proceed.  In other words, callers are required to have inactivated all
0544  * inodes.
0545  *
0546  * An inode cluster that has been freed can have its buffer still pinned in
0547  * memory because the transaction is still sitting in a iclog. The stale inodes
0548  * on that buffer will be pinned to the buffer until the transaction hits the
0549  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
0550  * may never see the pinned buffer, so nothing will push out the iclog and
0551  * unpin the buffer.
0552  *
0553  * Hence we need to force the log to unpin everything first. However, log
0554  * forces don't wait for the discards they issue to complete, so we have to
0555  * explicitly wait for them to complete here as well.
0556  *
0557  * Then we can tell the world we are unmounting so that error handling knows
0558  * that the filesystem is going away and we should error out anything that we
0559  * have been retrying in the background.  This will prevent never-ending
0560  * retries in AIL pushing from hanging the unmount.
0561  *
0562  * Finally, we can push the AIL to clean all the remaining dirty objects, then
0563  * reclaim the remaining inodes that are still in memory at this point in time.
0564  */
0565 static void
0566 xfs_unmount_flush_inodes(
0567     struct xfs_mount    *mp)
0568 {
0569     xfs_log_force(mp, XFS_LOG_SYNC);
0570     xfs_extent_busy_wait_all(mp);
0571     flush_workqueue(xfs_discard_wq);
0572 
0573     set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
0574 
0575     xfs_ail_push_all_sync(mp->m_ail);
0576     xfs_inodegc_stop(mp);
0577     cancel_delayed_work_sync(&mp->m_reclaim_work);
0578     xfs_reclaim_inodes(mp);
0579     xfs_health_unmount(mp);
0580 }
0581 
0582 static void
0583 xfs_mount_setup_inode_geom(
0584     struct xfs_mount    *mp)
0585 {
0586     struct xfs_ino_geometry *igeo = M_IGEO(mp);
0587 
0588     igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
0589     ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
0590 
0591     xfs_ialloc_setup_geometry(mp);
0592 }
0593 
0594 /* Compute maximum possible height for per-AG btree types for this fs. */
0595 static inline void
0596 xfs_agbtree_compute_maxlevels(
0597     struct xfs_mount    *mp)
0598 {
0599     unsigned int        levels;
0600 
0601     levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
0602     levels = max(levels, mp->m_rmap_maxlevels);
0603     mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
0604 }
0605 
0606 /*
0607  * This function does the following on an initial mount of a file system:
0608  *  - reads the superblock from disk and init the mount struct
0609  *  - if we're a 32-bit kernel, do a size check on the superblock
0610  *      so we don't mount terabyte filesystems
0611  *  - init mount struct realtime fields
0612  *  - allocate inode hash table for fs
0613  *  - init directory manager
0614  *  - perform recovery and init the log manager
0615  */
0616 int
0617 xfs_mountfs(
0618     struct xfs_mount    *mp)
0619 {
0620     struct xfs_sb       *sbp = &(mp->m_sb);
0621     struct xfs_inode    *rip;
0622     struct xfs_ino_geometry *igeo = M_IGEO(mp);
0623     uint64_t        resblks;
0624     uint            quotamount = 0;
0625     uint            quotaflags = 0;
0626     int         error = 0;
0627 
0628     xfs_sb_mount_common(mp, sbp);
0629 
0630     /*
0631      * Check for a mismatched features2 values.  Older kernels read & wrote
0632      * into the wrong sb offset for sb_features2 on some platforms due to
0633      * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
0634      * which made older superblock reading/writing routines swap it as a
0635      * 64-bit value.
0636      *
0637      * For backwards compatibility, we make both slots equal.
0638      *
0639      * If we detect a mismatched field, we OR the set bits into the existing
0640      * features2 field in case it has already been modified; we don't want
0641      * to lose any features.  We then update the bad location with the ORed
0642      * value so that older kernels will see any features2 flags. The
0643      * superblock writeback code ensures the new sb_features2 is copied to
0644      * sb_bad_features2 before it is logged or written to disk.
0645      */
0646     if (xfs_sb_has_mismatched_features2(sbp)) {
0647         xfs_warn(mp, "correcting sb_features alignment problem");
0648         sbp->sb_features2 |= sbp->sb_bad_features2;
0649         mp->m_update_sb = true;
0650     }
0651 
0652 
0653     /* always use v2 inodes by default now */
0654     if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
0655         mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
0656         mp->m_features |= XFS_FEAT_NLINK;
0657         mp->m_update_sb = true;
0658     }
0659 
0660     /*
0661      * If we were given new sunit/swidth options, do some basic validation
0662      * checks and convert the incore dalign and swidth values to the
0663      * same units (FSB) that everything else uses.  This /must/ happen
0664      * before computing the inode geometry.
0665      */
0666     error = xfs_validate_new_dalign(mp);
0667     if (error)
0668         goto out;
0669 
0670     xfs_alloc_compute_maxlevels(mp);
0671     xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
0672     xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
0673     xfs_mount_setup_inode_geom(mp);
0674     xfs_rmapbt_compute_maxlevels(mp);
0675     xfs_refcountbt_compute_maxlevels(mp);
0676 
0677     xfs_agbtree_compute_maxlevels(mp);
0678 
0679     /*
0680      * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
0681      * is NOT aligned turn off m_dalign since allocator alignment is within
0682      * an ag, therefore ag has to be aligned at stripe boundary.  Note that
0683      * we must compute the free space and rmap btree geometry before doing
0684      * this.
0685      */
0686     error = xfs_update_alignment(mp);
0687     if (error)
0688         goto out;
0689 
0690     /* enable fail_at_unmount as default */
0691     mp->m_fail_unmount = true;
0692 
0693     error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
0694                    NULL, mp->m_super->s_id);
0695     if (error)
0696         goto out;
0697 
0698     error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
0699                    &mp->m_kobj, "stats");
0700     if (error)
0701         goto out_remove_sysfs;
0702 
0703     error = xfs_error_sysfs_init(mp);
0704     if (error)
0705         goto out_del_stats;
0706 
0707     error = xfs_errortag_init(mp);
0708     if (error)
0709         goto out_remove_error_sysfs;
0710 
0711     error = xfs_uuid_mount(mp);
0712     if (error)
0713         goto out_remove_errortag;
0714 
0715     /*
0716      * Update the preferred write size based on the information from the
0717      * on-disk superblock.
0718      */
0719     mp->m_allocsize_log =
0720         max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
0721     mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
0722 
0723     /* set the low space thresholds for dynamic preallocation */
0724     xfs_set_low_space_thresholds(mp);
0725 
0726     /*
0727      * If enabled, sparse inode chunk alignment is expected to match the
0728      * cluster size. Full inode chunk alignment must match the chunk size,
0729      * but that is checked on sb read verification...
0730      */
0731     if (xfs_has_sparseinodes(mp) &&
0732         mp->m_sb.sb_spino_align !=
0733             XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
0734         xfs_warn(mp,
0735     "Sparse inode block alignment (%u) must match cluster size (%llu).",
0736              mp->m_sb.sb_spino_align,
0737              XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
0738         error = -EINVAL;
0739         goto out_remove_uuid;
0740     }
0741 
0742     /*
0743      * Check that the data (and log if separate) is an ok size.
0744      */
0745     error = xfs_check_sizes(mp);
0746     if (error)
0747         goto out_remove_uuid;
0748 
0749     /*
0750      * Initialize realtime fields in the mount structure
0751      */
0752     error = xfs_rtmount_init(mp);
0753     if (error) {
0754         xfs_warn(mp, "RT mount failed");
0755         goto out_remove_uuid;
0756     }
0757 
0758     /*
0759      *  Copies the low order bits of the timestamp and the randomly
0760      *  set "sequence" number out of a UUID.
0761      */
0762     mp->m_fixedfsid[0] =
0763         (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
0764          get_unaligned_be16(&sbp->sb_uuid.b[4]);
0765     mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
0766 
0767     error = xfs_da_mount(mp);
0768     if (error) {
0769         xfs_warn(mp, "Failed dir/attr init: %d", error);
0770         goto out_remove_uuid;
0771     }
0772 
0773     /*
0774      * Initialize the precomputed transaction reservations values.
0775      */
0776     xfs_trans_init(mp);
0777 
0778     /*
0779      * Allocate and initialize the per-ag data.
0780      */
0781     error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
0782             &mp->m_maxagi);
0783     if (error) {
0784         xfs_warn(mp, "Failed per-ag init: %d", error);
0785         goto out_free_dir;
0786     }
0787 
0788     if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
0789         xfs_warn(mp, "no log defined");
0790         error = -EFSCORRUPTED;
0791         goto out_free_perag;
0792     }
0793 
0794     error = xfs_inodegc_register_shrinker(mp);
0795     if (error)
0796         goto out_fail_wait;
0797 
0798     /*
0799      * Log's mount-time initialization. The first part of recovery can place
0800      * some items on the AIL, to be handled when recovery is finished or
0801      * cancelled.
0802      */
0803     error = xfs_log_mount(mp, mp->m_logdev_targp,
0804                   XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
0805                   XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
0806     if (error) {
0807         xfs_warn(mp, "log mount failed");
0808         goto out_inodegc_shrinker;
0809     }
0810 
0811     /* Enable background inode inactivation workers. */
0812     xfs_inodegc_start(mp);
0813     xfs_blockgc_start(mp);
0814 
0815     /*
0816      * Now that we've recovered any pending superblock feature bit
0817      * additions, we can finish setting up the attr2 behaviour for the
0818      * mount. The noattr2 option overrides the superblock flag, so only
0819      * check the superblock feature flag if the mount option is not set.
0820      */
0821     if (xfs_has_noattr2(mp)) {
0822         mp->m_features &= ~XFS_FEAT_ATTR2;
0823     } else if (!xfs_has_attr2(mp) &&
0824            (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
0825         mp->m_features |= XFS_FEAT_ATTR2;
0826     }
0827 
0828     /*
0829      * Get and sanity-check the root inode.
0830      * Save the pointer to it in the mount structure.
0831      */
0832     error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
0833              XFS_ILOCK_EXCL, &rip);
0834     if (error) {
0835         xfs_warn(mp,
0836             "Failed to read root inode 0x%llx, error %d",
0837             sbp->sb_rootino, -error);
0838         goto out_log_dealloc;
0839     }
0840 
0841     ASSERT(rip != NULL);
0842 
0843     if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
0844         xfs_warn(mp, "corrupted root inode %llu: not a directory",
0845             (unsigned long long)rip->i_ino);
0846         xfs_iunlock(rip, XFS_ILOCK_EXCL);
0847         error = -EFSCORRUPTED;
0848         goto out_rele_rip;
0849     }
0850     mp->m_rootip = rip; /* save it */
0851 
0852     xfs_iunlock(rip, XFS_ILOCK_EXCL);
0853 
0854     /*
0855      * Initialize realtime inode pointers in the mount structure
0856      */
0857     error = xfs_rtmount_inodes(mp);
0858     if (error) {
0859         /*
0860          * Free up the root inode.
0861          */
0862         xfs_warn(mp, "failed to read RT inodes");
0863         goto out_rele_rip;
0864     }
0865 
0866     /* Make sure the summary counts are ok. */
0867     error = xfs_check_summary_counts(mp);
0868     if (error)
0869         goto out_rtunmount;
0870 
0871     /*
0872      * If this is a read-only mount defer the superblock updates until
0873      * the next remount into writeable mode.  Otherwise we would never
0874      * perform the update e.g. for the root filesystem.
0875      */
0876     if (mp->m_update_sb && !xfs_is_readonly(mp)) {
0877         error = xfs_sync_sb(mp, false);
0878         if (error) {
0879             xfs_warn(mp, "failed to write sb changes");
0880             goto out_rtunmount;
0881         }
0882     }
0883 
0884     /*
0885      * Initialise the XFS quota management subsystem for this mount
0886      */
0887     if (XFS_IS_QUOTA_ON(mp)) {
0888         error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
0889         if (error)
0890             goto out_rtunmount;
0891     } else {
0892         /*
0893          * If a file system had quotas running earlier, but decided to
0894          * mount without -o uquota/pquota/gquota options, revoke the
0895          * quotachecked license.
0896          */
0897         if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0898             xfs_notice(mp, "resetting quota flags");
0899             error = xfs_mount_reset_sbqflags(mp);
0900             if (error)
0901                 goto out_rtunmount;
0902         }
0903     }
0904 
0905     /*
0906      * Finish recovering the file system.  This part needed to be delayed
0907      * until after the root and real-time bitmap inodes were consistently
0908      * read in.  Temporarily create per-AG space reservations for metadata
0909      * btree shape changes because space freeing transactions (for inode
0910      * inactivation) require the per-AG reservation in lieu of reserving
0911      * blocks.
0912      */
0913     error = xfs_fs_reserve_ag_blocks(mp);
0914     if (error && error == -ENOSPC)
0915         xfs_warn(mp,
0916     "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
0917     error = xfs_log_mount_finish(mp);
0918     xfs_fs_unreserve_ag_blocks(mp);
0919     if (error) {
0920         xfs_warn(mp, "log mount finish failed");
0921         goto out_rtunmount;
0922     }
0923 
0924     /*
0925      * Now the log is fully replayed, we can transition to full read-only
0926      * mode for read-only mounts. This will sync all the metadata and clean
0927      * the log so that the recovery we just performed does not have to be
0928      * replayed again on the next mount.
0929      *
0930      * We use the same quiesce mechanism as the rw->ro remount, as they are
0931      * semantically identical operations.
0932      */
0933     if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
0934         xfs_log_clean(mp);
0935 
0936     /*
0937      * Complete the quota initialisation, post-log-replay component.
0938      */
0939     if (quotamount) {
0940         ASSERT(mp->m_qflags == 0);
0941         mp->m_qflags = quotaflags;
0942 
0943         xfs_qm_mount_quotas(mp);
0944     }
0945 
0946     /*
0947      * Now we are mounted, reserve a small amount of unused space for
0948      * privileged transactions. This is needed so that transaction
0949      * space required for critical operations can dip into this pool
0950      * when at ENOSPC. This is needed for operations like create with
0951      * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
0952      * are not allowed to use this reserved space.
0953      *
0954      * This may drive us straight to ENOSPC on mount, but that implies
0955      * we were already there on the last unmount. Warn if this occurs.
0956      */
0957     if (!xfs_is_readonly(mp)) {
0958         resblks = xfs_default_resblks(mp);
0959         error = xfs_reserve_blocks(mp, &resblks, NULL);
0960         if (error)
0961             xfs_warn(mp,
0962     "Unable to allocate reserve blocks. Continuing without reserve pool.");
0963 
0964         /* Reserve AG blocks for future btree expansion. */
0965         error = xfs_fs_reserve_ag_blocks(mp);
0966         if (error && error != -ENOSPC)
0967             goto out_agresv;
0968     }
0969 
0970     return 0;
0971 
0972  out_agresv:
0973     xfs_fs_unreserve_ag_blocks(mp);
0974     xfs_qm_unmount_quotas(mp);
0975  out_rtunmount:
0976     xfs_rtunmount_inodes(mp);
0977  out_rele_rip:
0978     xfs_irele(rip);
0979     /* Clean out dquots that might be in memory after quotacheck. */
0980     xfs_qm_unmount(mp);
0981 
0982     /*
0983      * Inactivate all inodes that might still be in memory after a log
0984      * intent recovery failure so that reclaim can free them.  Metadata
0985      * inodes and the root directory shouldn't need inactivation, but the
0986      * mount failed for some reason, so pull down all the state and flee.
0987      */
0988     xfs_inodegc_flush(mp);
0989 
0990     /*
0991      * Flush all inode reclamation work and flush the log.
0992      * We have to do this /after/ rtunmount and qm_unmount because those
0993      * two will have scheduled delayed reclaim for the rt/quota inodes.
0994      *
0995      * This is slightly different from the unmountfs call sequence
0996      * because we could be tearing down a partially set up mount.  In
0997      * particular, if log_mount_finish fails we bail out without calling
0998      * qm_unmount_quotas and therefore rely on qm_unmount to release the
0999      * quota inodes.
1000      */
1001     xfs_unmount_flush_inodes(mp);
1002  out_log_dealloc:
1003     xfs_log_mount_cancel(mp);
1004  out_inodegc_shrinker:
1005     unregister_shrinker(&mp->m_inodegc_shrinker);
1006  out_fail_wait:
1007     if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1008         xfs_buftarg_drain(mp->m_logdev_targp);
1009     xfs_buftarg_drain(mp->m_ddev_targp);
1010  out_free_perag:
1011     xfs_free_perag(mp);
1012  out_free_dir:
1013     xfs_da_unmount(mp);
1014  out_remove_uuid:
1015     xfs_uuid_unmount(mp);
1016  out_remove_errortag:
1017     xfs_errortag_del(mp);
1018  out_remove_error_sysfs:
1019     xfs_error_sysfs_del(mp);
1020  out_del_stats:
1021     xfs_sysfs_del(&mp->m_stats.xs_kobj);
1022  out_remove_sysfs:
1023     xfs_sysfs_del(&mp->m_kobj);
1024  out:
1025     return error;
1026 }
1027 
1028 /*
1029  * This flushes out the inodes,dquots and the superblock, unmounts the
1030  * log and makes sure that incore structures are freed.
1031  */
1032 void
1033 xfs_unmountfs(
1034     struct xfs_mount    *mp)
1035 {
1036     uint64_t        resblks;
1037     int         error;
1038 
1039     /*
1040      * Perform all on-disk metadata updates required to inactivate inodes
1041      * that the VFS evicted earlier in the unmount process.  Freeing inodes
1042      * and discarding CoW fork preallocations can cause shape changes to
1043      * the free inode and refcount btrees, respectively, so we must finish
1044      * this before we discard the metadata space reservations.  Metadata
1045      * inodes and the root directory do not require inactivation.
1046      */
1047     xfs_inodegc_flush(mp);
1048 
1049     xfs_blockgc_stop(mp);
1050     xfs_fs_unreserve_ag_blocks(mp);
1051     xfs_qm_unmount_quotas(mp);
1052     xfs_rtunmount_inodes(mp);
1053     xfs_irele(mp->m_rootip);
1054 
1055     xfs_unmount_flush_inodes(mp);
1056 
1057     xfs_qm_unmount(mp);
1058 
1059     /*
1060      * Unreserve any blocks we have so that when we unmount we don't account
1061      * the reserved free space as used. This is really only necessary for
1062      * lazy superblock counting because it trusts the incore superblock
1063      * counters to be absolutely correct on clean unmount.
1064      *
1065      * We don't bother correcting this elsewhere for lazy superblock
1066      * counting because on mount of an unclean filesystem we reconstruct the
1067      * correct counter value and this is irrelevant.
1068      *
1069      * For non-lazy counter filesystems, this doesn't matter at all because
1070      * we only every apply deltas to the superblock and hence the incore
1071      * value does not matter....
1072      */
1073     resblks = 0;
1074     error = xfs_reserve_blocks(mp, &resblks, NULL);
1075     if (error)
1076         xfs_warn(mp, "Unable to free reserved block pool. "
1077                 "Freespace may not be correct on next mount.");
1078 
1079     xfs_log_unmount(mp);
1080     xfs_da_unmount(mp);
1081     xfs_uuid_unmount(mp);
1082 
1083 #if defined(DEBUG)
1084     xfs_errortag_clearall(mp);
1085 #endif
1086     unregister_shrinker(&mp->m_inodegc_shrinker);
1087     xfs_free_perag(mp);
1088 
1089     xfs_errortag_del(mp);
1090     xfs_error_sysfs_del(mp);
1091     xfs_sysfs_del(&mp->m_stats.xs_kobj);
1092     xfs_sysfs_del(&mp->m_kobj);
1093 }
1094 
1095 /*
1096  * Determine whether modifications can proceed. The caller specifies the minimum
1097  * freeze level for which modifications should not be allowed. This allows
1098  * certain operations to proceed while the freeze sequence is in progress, if
1099  * necessary.
1100  */
1101 bool
1102 xfs_fs_writable(
1103     struct xfs_mount    *mp,
1104     int         level)
1105 {
1106     ASSERT(level > SB_UNFROZEN);
1107     if ((mp->m_super->s_writers.frozen >= level) ||
1108         xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1109         return false;
1110 
1111     return true;
1112 }
1113 
1114 /* Adjust m_fdblocks or m_frextents. */
1115 int
1116 xfs_mod_freecounter(
1117     struct xfs_mount    *mp,
1118     struct percpu_counter   *counter,
1119     int64_t         delta,
1120     bool            rsvd)
1121 {
1122     int64_t         lcounter;
1123     long long       res_used;
1124     uint64_t        set_aside = 0;
1125     s32         batch;
1126     bool            has_resv_pool;
1127 
1128     ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1129     has_resv_pool = (counter == &mp->m_fdblocks);
1130     if (rsvd)
1131         ASSERT(has_resv_pool);
1132 
1133     if (delta > 0) {
1134         /*
1135          * If the reserve pool is depleted, put blocks back into it
1136          * first. Most of the time the pool is full.
1137          */
1138         if (likely(!has_resv_pool ||
1139                mp->m_resblks == mp->m_resblks_avail)) {
1140             percpu_counter_add(counter, delta);
1141             return 0;
1142         }
1143 
1144         spin_lock(&mp->m_sb_lock);
1145         res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1146 
1147         if (res_used > delta) {
1148             mp->m_resblks_avail += delta;
1149         } else {
1150             delta -= res_used;
1151             mp->m_resblks_avail = mp->m_resblks;
1152             percpu_counter_add(counter, delta);
1153         }
1154         spin_unlock(&mp->m_sb_lock);
1155         return 0;
1156     }
1157 
1158     /*
1159      * Taking blocks away, need to be more accurate the closer we
1160      * are to zero.
1161      *
1162      * If the counter has a value of less than 2 * max batch size,
1163      * then make everything serialise as we are real close to
1164      * ENOSPC.
1165      */
1166     if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1167                      XFS_FDBLOCKS_BATCH) < 0)
1168         batch = 1;
1169     else
1170         batch = XFS_FDBLOCKS_BATCH;
1171 
1172     /*
1173      * Set aside allocbt blocks because these blocks are tracked as free
1174      * space but not available for allocation. Technically this means that a
1175      * single reservation cannot consume all remaining free space, but the
1176      * ratio of allocbt blocks to usable free blocks should be rather small.
1177      * The tradeoff without this is that filesystems that maintain high
1178      * perag block reservations can over reserve physical block availability
1179      * and fail physical allocation, which leads to much more serious
1180      * problems (i.e. transaction abort, pagecache discards, etc.) than
1181      * slightly premature -ENOSPC.
1182      */
1183     if (has_resv_pool)
1184         set_aside = xfs_fdblocks_unavailable(mp);
1185     percpu_counter_add_batch(counter, delta, batch);
1186     if (__percpu_counter_compare(counter, set_aside,
1187                      XFS_FDBLOCKS_BATCH) >= 0) {
1188         /* we had space! */
1189         return 0;
1190     }
1191 
1192     /*
1193      * lock up the sb for dipping into reserves before releasing the space
1194      * that took us to ENOSPC.
1195      */
1196     spin_lock(&mp->m_sb_lock);
1197     percpu_counter_add(counter, -delta);
1198     if (!has_resv_pool || !rsvd)
1199         goto fdblocks_enospc;
1200 
1201     lcounter = (long long)mp->m_resblks_avail + delta;
1202     if (lcounter >= 0) {
1203         mp->m_resblks_avail = lcounter;
1204         spin_unlock(&mp->m_sb_lock);
1205         return 0;
1206     }
1207     xfs_warn_once(mp,
1208 "Reserve blocks depleted! Consider increasing reserve pool size.");
1209 
1210 fdblocks_enospc:
1211     spin_unlock(&mp->m_sb_lock);
1212     return -ENOSPC;
1213 }
1214 
1215 /*
1216  * Used to free the superblock along various error paths.
1217  */
1218 void
1219 xfs_freesb(
1220     struct xfs_mount    *mp)
1221 {
1222     struct xfs_buf      *bp = mp->m_sb_bp;
1223 
1224     xfs_buf_lock(bp);
1225     mp->m_sb_bp = NULL;
1226     xfs_buf_relse(bp);
1227 }
1228 
1229 /*
1230  * If the underlying (data/log/rt) device is readonly, there are some
1231  * operations that cannot proceed.
1232  */
1233 int
1234 xfs_dev_is_read_only(
1235     struct xfs_mount    *mp,
1236     char            *message)
1237 {
1238     if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1239         xfs_readonly_buftarg(mp->m_logdev_targp) ||
1240         (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1241         xfs_notice(mp, "%s required on read-only device.", message);
1242         xfs_notice(mp, "write access unavailable, cannot proceed.");
1243         return -EROFS;
1244     }
1245     return 0;
1246 }
1247 
1248 /* Force the summary counters to be recalculated at next mount. */
1249 void
1250 xfs_force_summary_recalc(
1251     struct xfs_mount    *mp)
1252 {
1253     if (!xfs_has_lazysbcount(mp))
1254         return;
1255 
1256     xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1257 }
1258 
1259 /*
1260  * Enable a log incompat feature flag in the primary superblock.  The caller
1261  * cannot have any other transactions in progress.
1262  */
1263 int
1264 xfs_add_incompat_log_feature(
1265     struct xfs_mount    *mp,
1266     uint32_t        feature)
1267 {
1268     struct xfs_dsb      *dsb;
1269     int         error;
1270 
1271     ASSERT(hweight32(feature) == 1);
1272     ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1273 
1274     /*
1275      * Force the log to disk and kick the background AIL thread to reduce
1276      * the chances that the bwrite will stall waiting for the AIL to unpin
1277      * the primary superblock buffer.  This isn't a data integrity
1278      * operation, so we don't need a synchronous push.
1279      */
1280     error = xfs_log_force(mp, XFS_LOG_SYNC);
1281     if (error)
1282         return error;
1283     xfs_ail_push_all(mp->m_ail);
1284 
1285     /*
1286      * Lock the primary superblock buffer to serialize all callers that
1287      * are trying to set feature bits.
1288      */
1289     xfs_buf_lock(mp->m_sb_bp);
1290     xfs_buf_hold(mp->m_sb_bp);
1291 
1292     if (xfs_is_shutdown(mp)) {
1293         error = -EIO;
1294         goto rele;
1295     }
1296 
1297     if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1298         goto rele;
1299 
1300     /*
1301      * Write the primary superblock to disk immediately, because we need
1302      * the log_incompat bit to be set in the primary super now to protect
1303      * the log items that we're going to commit later.
1304      */
1305     dsb = mp->m_sb_bp->b_addr;
1306     xfs_sb_to_disk(dsb, &mp->m_sb);
1307     dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1308     error = xfs_bwrite(mp->m_sb_bp);
1309     if (error)
1310         goto shutdown;
1311 
1312     /*
1313      * Add the feature bits to the incore superblock before we unlock the
1314      * buffer.
1315      */
1316     xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1317     xfs_buf_relse(mp->m_sb_bp);
1318 
1319     /* Log the superblock to disk. */
1320     return xfs_sync_sb(mp, false);
1321 shutdown:
1322     xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1323 rele:
1324     xfs_buf_relse(mp->m_sb_bp);
1325     return error;
1326 }
1327 
1328 /*
1329  * Clear all the log incompat flags from the superblock.
1330  *
1331  * The caller cannot be in a transaction, must ensure that the log does not
1332  * contain any log items protected by any log incompat bit, and must ensure
1333  * that there are no other threads that depend on the state of the log incompat
1334  * feature flags in the primary super.
1335  *
1336  * Returns true if the superblock is dirty.
1337  */
1338 bool
1339 xfs_clear_incompat_log_features(
1340     struct xfs_mount    *mp)
1341 {
1342     bool            ret = false;
1343 
1344     if (!xfs_has_crc(mp) ||
1345         !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1346                 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1347         xfs_is_shutdown(mp))
1348         return false;
1349 
1350     /*
1351      * Update the incore superblock.  We synchronize on the primary super
1352      * buffer lock to be consistent with the add function, though at least
1353      * in theory this shouldn't be necessary.
1354      */
1355     xfs_buf_lock(mp->m_sb_bp);
1356     xfs_buf_hold(mp->m_sb_bp);
1357 
1358     if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1359                 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1360         xfs_sb_remove_incompat_log_features(&mp->m_sb);
1361         ret = true;
1362     }
1363 
1364     xfs_buf_relse(mp->m_sb_bp);
1365     return ret;
1366 }
1367 
1368 /*
1369  * Update the in-core delayed block counter.
1370  *
1371  * We prefer to update the counter without having to take a spinlock for every
1372  * counter update (i.e. batching).  Each change to delayed allocation
1373  * reservations can change can easily exceed the default percpu counter
1374  * batching, so we use a larger batch factor here.
1375  *
1376  * Note that we don't currently have any callers requiring fast summation
1377  * (e.g. percpu_counter_read) so we can use a big batch value here.
1378  */
1379 #define XFS_DELALLOC_BATCH  (4096)
1380 void
1381 xfs_mod_delalloc(
1382     struct xfs_mount    *mp,
1383     int64_t         delta)
1384 {
1385     percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1386             XFS_DELALLOC_BATCH);
1387 }