Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
0004  */
0005 
0006 #include "xfs.h"
0007 #include "xfs_fs.h"
0008 #include "xfs_format.h"
0009 #include "xfs_log_format.h"
0010 #include "xfs_shared.h"
0011 #include "xfs_trans_resv.h"
0012 #include "xfs_mount.h"
0013 #include "xfs_extent_busy.h"
0014 #include "xfs_trans.h"
0015 #include "xfs_trans_priv.h"
0016 #include "xfs_log.h"
0017 #include "xfs_log_priv.h"
0018 #include "xfs_trace.h"
0019 
0020 struct workqueue_struct *xfs_discard_wq;
0021 
0022 /*
0023  * Allocate a new ticket. Failing to get a new ticket makes it really hard to
0024  * recover, so we don't allow failure here. Also, we allocate in a context that
0025  * we don't want to be issuing transactions from, so we need to tell the
0026  * allocation code this as well.
0027  *
0028  * We don't reserve any space for the ticket - we are going to steal whatever
0029  * space we require from transactions as they commit. To ensure we reserve all
0030  * the space required, we need to set the current reservation of the ticket to
0031  * zero so that we know to steal the initial transaction overhead from the
0032  * first transaction commit.
0033  */
0034 static struct xlog_ticket *
0035 xlog_cil_ticket_alloc(
0036     struct xlog *log)
0037 {
0038     struct xlog_ticket *tic;
0039 
0040     tic = xlog_ticket_alloc(log, 0, 1, 0);
0041 
0042     /*
0043      * set the current reservation to zero so we know to steal the basic
0044      * transaction overhead reservation from the first transaction commit.
0045      */
0046     tic->t_curr_res = 0;
0047     tic->t_iclog_hdrs = 0;
0048     return tic;
0049 }
0050 
0051 static inline void
0052 xlog_cil_set_iclog_hdr_count(struct xfs_cil *cil)
0053 {
0054     struct xlog *log = cil->xc_log;
0055 
0056     atomic_set(&cil->xc_iclog_hdrs,
0057            (XLOG_CIL_BLOCKING_SPACE_LIMIT(log) /
0058             (log->l_iclog_size - log->l_iclog_hsize)));
0059 }
0060 
0061 /*
0062  * Check if the current log item was first committed in this sequence.
0063  * We can't rely on just the log item being in the CIL, we have to check
0064  * the recorded commit sequence number.
0065  *
0066  * Note: for this to be used in a non-racy manner, it has to be called with
0067  * CIL flushing locked out. As a result, it should only be used during the
0068  * transaction commit process when deciding what to format into the item.
0069  */
0070 static bool
0071 xlog_item_in_current_chkpt(
0072     struct xfs_cil      *cil,
0073     struct xfs_log_item *lip)
0074 {
0075     if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
0076         return false;
0077 
0078     /*
0079      * li_seq is written on the first commit of a log item to record the
0080      * first checkpoint it is written to. Hence if it is different to the
0081      * current sequence, we're in a new checkpoint.
0082      */
0083     return lip->li_seq == READ_ONCE(cil->xc_current_sequence);
0084 }
0085 
0086 bool
0087 xfs_log_item_in_current_chkpt(
0088     struct xfs_log_item *lip)
0089 {
0090     return xlog_item_in_current_chkpt(lip->li_log->l_cilp, lip);
0091 }
0092 
0093 /*
0094  * Unavoidable forward declaration - xlog_cil_push_work() calls
0095  * xlog_cil_ctx_alloc() itself.
0096  */
0097 static void xlog_cil_push_work(struct work_struct *work);
0098 
0099 static struct xfs_cil_ctx *
0100 xlog_cil_ctx_alloc(void)
0101 {
0102     struct xfs_cil_ctx  *ctx;
0103 
0104     ctx = kmem_zalloc(sizeof(*ctx), KM_NOFS);
0105     INIT_LIST_HEAD(&ctx->committing);
0106     INIT_LIST_HEAD(&ctx->busy_extents);
0107     INIT_LIST_HEAD(&ctx->log_items);
0108     INIT_LIST_HEAD(&ctx->lv_chain);
0109     INIT_WORK(&ctx->push_work, xlog_cil_push_work);
0110     return ctx;
0111 }
0112 
0113 /*
0114  * Aggregate the CIL per cpu structures into global counts, lists, etc and
0115  * clear the percpu state ready for the next context to use. This is called
0116  * from the push code with the context lock held exclusively, hence nothing else
0117  * will be accessing or modifying the per-cpu counters.
0118  */
0119 static void
0120 xlog_cil_push_pcp_aggregate(
0121     struct xfs_cil      *cil,
0122     struct xfs_cil_ctx  *ctx)
0123 {
0124     struct xlog_cil_pcp *cilpcp;
0125     int         cpu;
0126 
0127     for_each_online_cpu(cpu) {
0128         cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
0129 
0130         ctx->ticket->t_curr_res += cilpcp->space_reserved;
0131         cilpcp->space_reserved = 0;
0132 
0133         if (!list_empty(&cilpcp->busy_extents)) {
0134             list_splice_init(&cilpcp->busy_extents,
0135                     &ctx->busy_extents);
0136         }
0137         if (!list_empty(&cilpcp->log_items))
0138             list_splice_init(&cilpcp->log_items, &ctx->log_items);
0139 
0140         /*
0141          * We're in the middle of switching cil contexts.  Reset the
0142          * counter we use to detect when the current context is nearing
0143          * full.
0144          */
0145         cilpcp->space_used = 0;
0146     }
0147 }
0148 
0149 /*
0150  * Aggregate the CIL per-cpu space used counters into the global atomic value.
0151  * This is called when the per-cpu counter aggregation will first pass the soft
0152  * limit threshold so we can switch to atomic counter aggregation for accurate
0153  * detection of hard limit traversal.
0154  */
0155 static void
0156 xlog_cil_insert_pcp_aggregate(
0157     struct xfs_cil      *cil,
0158     struct xfs_cil_ctx  *ctx)
0159 {
0160     struct xlog_cil_pcp *cilpcp;
0161     int         cpu;
0162     int         count = 0;
0163 
0164     /* Trigger atomic updates then aggregate only for the first caller */
0165     if (!test_and_clear_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags))
0166         return;
0167 
0168     for_each_online_cpu(cpu) {
0169         int old, prev;
0170 
0171         cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
0172         do {
0173             old = cilpcp->space_used;
0174             prev = cmpxchg(&cilpcp->space_used, old, 0);
0175         } while (old != prev);
0176         count += old;
0177     }
0178     atomic_add(count, &ctx->space_used);
0179 }
0180 
0181 static void
0182 xlog_cil_ctx_switch(
0183     struct xfs_cil      *cil,
0184     struct xfs_cil_ctx  *ctx)
0185 {
0186     xlog_cil_set_iclog_hdr_count(cil);
0187     set_bit(XLOG_CIL_EMPTY, &cil->xc_flags);
0188     set_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags);
0189     ctx->sequence = ++cil->xc_current_sequence;
0190     ctx->cil = cil;
0191     cil->xc_ctx = ctx;
0192 }
0193 
0194 /*
0195  * After the first stage of log recovery is done, we know where the head and
0196  * tail of the log are. We need this log initialisation done before we can
0197  * initialise the first CIL checkpoint context.
0198  *
0199  * Here we allocate a log ticket to track space usage during a CIL push.  This
0200  * ticket is passed to xlog_write() directly so that we don't slowly leak log
0201  * space by failing to account for space used by log headers and additional
0202  * region headers for split regions.
0203  */
0204 void
0205 xlog_cil_init_post_recovery(
0206     struct xlog *log)
0207 {
0208     log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
0209     log->l_cilp->xc_ctx->sequence = 1;
0210     xlog_cil_set_iclog_hdr_count(log->l_cilp);
0211 }
0212 
0213 static inline int
0214 xlog_cil_iovec_space(
0215     uint    niovecs)
0216 {
0217     return round_up((sizeof(struct xfs_log_vec) +
0218                     niovecs * sizeof(struct xfs_log_iovec)),
0219             sizeof(uint64_t));
0220 }
0221 
0222 /*
0223  * Allocate or pin log vector buffers for CIL insertion.
0224  *
0225  * The CIL currently uses disposable buffers for copying a snapshot of the
0226  * modified items into the log during a push. The biggest problem with this is
0227  * the requirement to allocate the disposable buffer during the commit if:
0228  *  a) does not exist; or
0229  *  b) it is too small
0230  *
0231  * If we do this allocation within xlog_cil_insert_format_items(), it is done
0232  * under the xc_ctx_lock, which means that a CIL push cannot occur during
0233  * the memory allocation. This means that we have a potential deadlock situation
0234  * under low memory conditions when we have lots of dirty metadata pinned in
0235  * the CIL and we need a CIL commit to occur to free memory.
0236  *
0237  * To avoid this, we need to move the memory allocation outside the
0238  * xc_ctx_lock, but because the log vector buffers are disposable, that opens
0239  * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
0240  * vector buffers between the check and the formatting of the item into the
0241  * log vector buffer within the xc_ctx_lock.
0242  *
0243  * Because the log vector buffer needs to be unchanged during the CIL push
0244  * process, we cannot share the buffer between the transaction commit (which
0245  * modifies the buffer) and the CIL push context that is writing the changes
0246  * into the log. This means skipping preallocation of buffer space is
0247  * unreliable, but we most definitely do not want to be allocating and freeing
0248  * buffers unnecessarily during commits when overwrites can be done safely.
0249  *
0250  * The simplest solution to this problem is to allocate a shadow buffer when a
0251  * log item is committed for the second time, and then to only use this buffer
0252  * if necessary. The buffer can remain attached to the log item until such time
0253  * it is needed, and this is the buffer that is reallocated to match the size of
0254  * the incoming modification. Then during the formatting of the item we can swap
0255  * the active buffer with the new one if we can't reuse the existing buffer. We
0256  * don't free the old buffer as it may be reused on the next modification if
0257  * it's size is right, otherwise we'll free and reallocate it at that point.
0258  *
0259  * This function builds a vector for the changes in each log item in the
0260  * transaction. It then works out the length of the buffer needed for each log
0261  * item, allocates them and attaches the vector to the log item in preparation
0262  * for the formatting step which occurs under the xc_ctx_lock.
0263  *
0264  * While this means the memory footprint goes up, it avoids the repeated
0265  * alloc/free pattern that repeated modifications of an item would otherwise
0266  * cause, and hence minimises the CPU overhead of such behaviour.
0267  */
0268 static void
0269 xlog_cil_alloc_shadow_bufs(
0270     struct xlog     *log,
0271     struct xfs_trans    *tp)
0272 {
0273     struct xfs_log_item *lip;
0274 
0275     list_for_each_entry(lip, &tp->t_items, li_trans) {
0276         struct xfs_log_vec *lv;
0277         int niovecs = 0;
0278         int nbytes = 0;
0279         int buf_size;
0280         bool    ordered = false;
0281 
0282         /* Skip items which aren't dirty in this transaction. */
0283         if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
0284             continue;
0285 
0286         /* get number of vecs and size of data to be stored */
0287         lip->li_ops->iop_size(lip, &niovecs, &nbytes);
0288 
0289         /*
0290          * Ordered items need to be tracked but we do not wish to write
0291          * them. We need a logvec to track the object, but we do not
0292          * need an iovec or buffer to be allocated for copying data.
0293          */
0294         if (niovecs == XFS_LOG_VEC_ORDERED) {
0295             ordered = true;
0296             niovecs = 0;
0297             nbytes = 0;
0298         }
0299 
0300         /*
0301          * We 64-bit align the length of each iovec so that the start of
0302          * the next one is naturally aligned.  We'll need to account for
0303          * that slack space here.
0304          *
0305          * We also add the xlog_op_header to each region when
0306          * formatting, but that's not accounted to the size of the item
0307          * at this point. Hence we'll need an addition number of bytes
0308          * for each vector to hold an opheader.
0309          *
0310          * Then round nbytes up to 64-bit alignment so that the initial
0311          * buffer alignment is easy to calculate and verify.
0312          */
0313         nbytes += niovecs *
0314             (sizeof(uint64_t) + sizeof(struct xlog_op_header));
0315         nbytes = round_up(nbytes, sizeof(uint64_t));
0316 
0317         /*
0318          * The data buffer needs to start 64-bit aligned, so round up
0319          * that space to ensure we can align it appropriately and not
0320          * overrun the buffer.
0321          */
0322         buf_size = nbytes + xlog_cil_iovec_space(niovecs);
0323 
0324         /*
0325          * if we have no shadow buffer, or it is too small, we need to
0326          * reallocate it.
0327          */
0328         if (!lip->li_lv_shadow ||
0329             buf_size > lip->li_lv_shadow->lv_size) {
0330             /*
0331              * We free and allocate here as a realloc would copy
0332              * unnecessary data. We don't use kvzalloc() for the
0333              * same reason - we don't need to zero the data area in
0334              * the buffer, only the log vector header and the iovec
0335              * storage.
0336              */
0337             kmem_free(lip->li_lv_shadow);
0338             lv = xlog_kvmalloc(buf_size);
0339 
0340             memset(lv, 0, xlog_cil_iovec_space(niovecs));
0341 
0342             INIT_LIST_HEAD(&lv->lv_list);
0343             lv->lv_item = lip;
0344             lv->lv_size = buf_size;
0345             if (ordered)
0346                 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
0347             else
0348                 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
0349             lip->li_lv_shadow = lv;
0350         } else {
0351             /* same or smaller, optimise common overwrite case */
0352             lv = lip->li_lv_shadow;
0353             if (ordered)
0354                 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
0355             else
0356                 lv->lv_buf_len = 0;
0357             lv->lv_bytes = 0;
0358         }
0359 
0360         /* Ensure the lv is set up according to ->iop_size */
0361         lv->lv_niovecs = niovecs;
0362 
0363         /* The allocated data region lies beyond the iovec region */
0364         lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
0365     }
0366 
0367 }
0368 
0369 /*
0370  * Prepare the log item for insertion into the CIL. Calculate the difference in
0371  * log space it will consume, and if it is a new item pin it as well.
0372  */
0373 STATIC void
0374 xfs_cil_prepare_item(
0375     struct xlog     *log,
0376     struct xfs_log_vec  *lv,
0377     struct xfs_log_vec  *old_lv,
0378     int         *diff_len)
0379 {
0380     /* Account for the new LV being passed in */
0381     if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
0382         *diff_len += lv->lv_bytes;
0383 
0384     /*
0385      * If there is no old LV, this is the first time we've seen the item in
0386      * this CIL context and so we need to pin it. If we are replacing the
0387      * old_lv, then remove the space it accounts for and make it the shadow
0388      * buffer for later freeing. In both cases we are now switching to the
0389      * shadow buffer, so update the pointer to it appropriately.
0390      */
0391     if (!old_lv) {
0392         if (lv->lv_item->li_ops->iop_pin)
0393             lv->lv_item->li_ops->iop_pin(lv->lv_item);
0394         lv->lv_item->li_lv_shadow = NULL;
0395     } else if (old_lv != lv) {
0396         ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
0397 
0398         *diff_len -= old_lv->lv_bytes;
0399         lv->lv_item->li_lv_shadow = old_lv;
0400     }
0401 
0402     /* attach new log vector to log item */
0403     lv->lv_item->li_lv = lv;
0404 
0405     /*
0406      * If this is the first time the item is being committed to the
0407      * CIL, store the sequence number on the log item so we can
0408      * tell in future commits whether this is the first checkpoint
0409      * the item is being committed into.
0410      */
0411     if (!lv->lv_item->li_seq)
0412         lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
0413 }
0414 
0415 /*
0416  * Format log item into a flat buffers
0417  *
0418  * For delayed logging, we need to hold a formatted buffer containing all the
0419  * changes on the log item. This enables us to relog the item in memory and
0420  * write it out asynchronously without needing to relock the object that was
0421  * modified at the time it gets written into the iclog.
0422  *
0423  * This function takes the prepared log vectors attached to each log item, and
0424  * formats the changes into the log vector buffer. The buffer it uses is
0425  * dependent on the current state of the vector in the CIL - the shadow lv is
0426  * guaranteed to be large enough for the current modification, but we will only
0427  * use that if we can't reuse the existing lv. If we can't reuse the existing
0428  * lv, then simple swap it out for the shadow lv. We don't free it - that is
0429  * done lazily either by th enext modification or the freeing of the log item.
0430  *
0431  * We don't set up region headers during this process; we simply copy the
0432  * regions into the flat buffer. We can do this because we still have to do a
0433  * formatting step to write the regions into the iclog buffer.  Writing the
0434  * ophdrs during the iclog write means that we can support splitting large
0435  * regions across iclog boundares without needing a change in the format of the
0436  * item/region encapsulation.
0437  *
0438  * Hence what we need to do now is change the rewrite the vector array to point
0439  * to the copied region inside the buffer we just allocated. This allows us to
0440  * format the regions into the iclog as though they are being formatted
0441  * directly out of the objects themselves.
0442  */
0443 static void
0444 xlog_cil_insert_format_items(
0445     struct xlog     *log,
0446     struct xfs_trans    *tp,
0447     int         *diff_len)
0448 {
0449     struct xfs_log_item *lip;
0450 
0451     /* Bail out if we didn't find a log item.  */
0452     if (list_empty(&tp->t_items)) {
0453         ASSERT(0);
0454         return;
0455     }
0456 
0457     list_for_each_entry(lip, &tp->t_items, li_trans) {
0458         struct xfs_log_vec *lv;
0459         struct xfs_log_vec *old_lv = NULL;
0460         struct xfs_log_vec *shadow;
0461         bool    ordered = false;
0462 
0463         /* Skip items which aren't dirty in this transaction. */
0464         if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
0465             continue;
0466 
0467         /*
0468          * The formatting size information is already attached to
0469          * the shadow lv on the log item.
0470          */
0471         shadow = lip->li_lv_shadow;
0472         if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
0473             ordered = true;
0474 
0475         /* Skip items that do not have any vectors for writing */
0476         if (!shadow->lv_niovecs && !ordered)
0477             continue;
0478 
0479         /* compare to existing item size */
0480         old_lv = lip->li_lv;
0481         if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
0482             /* same or smaller, optimise common overwrite case */
0483             lv = lip->li_lv;
0484 
0485             if (ordered)
0486                 goto insert;
0487 
0488             /*
0489              * set the item up as though it is a new insertion so
0490              * that the space reservation accounting is correct.
0491              */
0492             *diff_len -= lv->lv_bytes;
0493 
0494             /* Ensure the lv is set up according to ->iop_size */
0495             lv->lv_niovecs = shadow->lv_niovecs;
0496 
0497             /* reset the lv buffer information for new formatting */
0498             lv->lv_buf_len = 0;
0499             lv->lv_bytes = 0;
0500             lv->lv_buf = (char *)lv +
0501                     xlog_cil_iovec_space(lv->lv_niovecs);
0502         } else {
0503             /* switch to shadow buffer! */
0504             lv = shadow;
0505             lv->lv_item = lip;
0506             if (ordered) {
0507                 /* track as an ordered logvec */
0508                 ASSERT(lip->li_lv == NULL);
0509                 goto insert;
0510             }
0511         }
0512 
0513         ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
0514         lip->li_ops->iop_format(lip, lv);
0515 insert:
0516         xfs_cil_prepare_item(log, lv, old_lv, diff_len);
0517     }
0518 }
0519 
0520 /*
0521  * The use of lockless waitqueue_active() requires that the caller has
0522  * serialised itself against the wakeup call in xlog_cil_push_work(). That
0523  * can be done by either holding the push lock or the context lock.
0524  */
0525 static inline bool
0526 xlog_cil_over_hard_limit(
0527     struct xlog *log,
0528     int32_t     space_used)
0529 {
0530     if (waitqueue_active(&log->l_cilp->xc_push_wait))
0531         return true;
0532     if (space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log))
0533         return true;
0534     return false;
0535 }
0536 
0537 /*
0538  * Insert the log items into the CIL and calculate the difference in space
0539  * consumed by the item. Add the space to the checkpoint ticket and calculate
0540  * if the change requires additional log metadata. If it does, take that space
0541  * as well. Remove the amount of space we added to the checkpoint ticket from
0542  * the current transaction ticket so that the accounting works out correctly.
0543  */
0544 static void
0545 xlog_cil_insert_items(
0546     struct xlog     *log,
0547     struct xfs_trans    *tp,
0548     uint32_t        released_space)
0549 {
0550     struct xfs_cil      *cil = log->l_cilp;
0551     struct xfs_cil_ctx  *ctx = cil->xc_ctx;
0552     struct xfs_log_item *lip;
0553     int         len = 0;
0554     int         iovhdr_res = 0, split_res = 0, ctx_res = 0;
0555     int         space_used;
0556     int         order;
0557     struct xlog_cil_pcp *cilpcp;
0558 
0559     ASSERT(tp);
0560 
0561     /*
0562      * We can do this safely because the context can't checkpoint until we
0563      * are done so it doesn't matter exactly how we update the CIL.
0564      */
0565     xlog_cil_insert_format_items(log, tp, &len);
0566 
0567     /*
0568      * Subtract the space released by intent cancelation from the space we
0569      * consumed so that we remove it from the CIL space and add it back to
0570      * the current transaction reservation context.
0571      */
0572     len -= released_space;
0573 
0574     /*
0575      * Grab the per-cpu pointer for the CIL before we start any accounting.
0576      * That ensures that we are running with pre-emption disabled and so we
0577      * can't be scheduled away between split sample/update operations that
0578      * are done without outside locking to serialise them.
0579      */
0580     cilpcp = get_cpu_ptr(cil->xc_pcp);
0581 
0582     /*
0583      * We need to take the CIL checkpoint unit reservation on the first
0584      * commit into the CIL. Test the XLOG_CIL_EMPTY bit first so we don't
0585      * unnecessarily do an atomic op in the fast path here. We can clear the
0586      * XLOG_CIL_EMPTY bit as we are under the xc_ctx_lock here and that
0587      * needs to be held exclusively to reset the XLOG_CIL_EMPTY bit.
0588      */
0589     if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) &&
0590         test_and_clear_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
0591         ctx_res = ctx->ticket->t_unit_res;
0592 
0593     /*
0594      * Check if we need to steal iclog headers. atomic_read() is not a
0595      * locked atomic operation, so we can check the value before we do any
0596      * real atomic ops in the fast path. If we've already taken the CIL unit
0597      * reservation from this commit, we've already got one iclog header
0598      * space reserved so we have to account for that otherwise we risk
0599      * overrunning the reservation on this ticket.
0600      *
0601      * If the CIL is already at the hard limit, we might need more header
0602      * space that originally reserved. So steal more header space from every
0603      * commit that occurs once we are over the hard limit to ensure the CIL
0604      * push won't run out of reservation space.
0605      *
0606      * This can steal more than we need, but that's OK.
0607      *
0608      * The cil->xc_ctx_lock provides the serialisation necessary for safely
0609      * calling xlog_cil_over_hard_limit() in this context.
0610      */
0611     space_used = atomic_read(&ctx->space_used) + cilpcp->space_used + len;
0612     if (atomic_read(&cil->xc_iclog_hdrs) > 0 ||
0613         xlog_cil_over_hard_limit(log, space_used)) {
0614         split_res = log->l_iclog_hsize +
0615                     sizeof(struct xlog_op_header);
0616         if (ctx_res)
0617             ctx_res += split_res * (tp->t_ticket->t_iclog_hdrs - 1);
0618         else
0619             ctx_res = split_res * tp->t_ticket->t_iclog_hdrs;
0620         atomic_sub(tp->t_ticket->t_iclog_hdrs, &cil->xc_iclog_hdrs);
0621     }
0622     cilpcp->space_reserved += ctx_res;
0623 
0624     /*
0625      * Accurately account when over the soft limit, otherwise fold the
0626      * percpu count into the global count if over the per-cpu threshold.
0627      */
0628     if (!test_bit(XLOG_CIL_PCP_SPACE, &cil->xc_flags)) {
0629         atomic_add(len, &ctx->space_used);
0630     } else if (cilpcp->space_used + len >
0631             (XLOG_CIL_SPACE_LIMIT(log) / num_online_cpus())) {
0632         space_used = atomic_add_return(cilpcp->space_used + len,
0633                         &ctx->space_used);
0634         cilpcp->space_used = 0;
0635 
0636         /*
0637          * If we just transitioned over the soft limit, we need to
0638          * transition to the global atomic counter.
0639          */
0640         if (space_used >= XLOG_CIL_SPACE_LIMIT(log))
0641             xlog_cil_insert_pcp_aggregate(cil, ctx);
0642     } else {
0643         cilpcp->space_used += len;
0644     }
0645     /* attach the transaction to the CIL if it has any busy extents */
0646     if (!list_empty(&tp->t_busy))
0647         list_splice_init(&tp->t_busy, &cilpcp->busy_extents);
0648 
0649     /*
0650      * Now update the order of everything modified in the transaction
0651      * and insert items into the CIL if they aren't already there.
0652      * We do this here so we only need to take the CIL lock once during
0653      * the transaction commit.
0654      */
0655     order = atomic_inc_return(&ctx->order_id);
0656     list_for_each_entry(lip, &tp->t_items, li_trans) {
0657         /* Skip items which aren't dirty in this transaction. */
0658         if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
0659             continue;
0660 
0661         lip->li_order_id = order;
0662         if (!list_empty(&lip->li_cil))
0663             continue;
0664         list_add_tail(&lip->li_cil, &cilpcp->log_items);
0665     }
0666     put_cpu_ptr(cilpcp);
0667 
0668     /*
0669      * If we've overrun the reservation, dump the tx details before we move
0670      * the log items. Shutdown is imminent...
0671      */
0672     tp->t_ticket->t_curr_res -= ctx_res + len;
0673     if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
0674         xfs_warn(log->l_mp, "Transaction log reservation overrun:");
0675         xfs_warn(log->l_mp,
0676              "  log items: %d bytes (iov hdrs: %d bytes)",
0677              len, iovhdr_res);
0678         xfs_warn(log->l_mp, "  split region headers: %d bytes",
0679              split_res);
0680         xfs_warn(log->l_mp, "  ctx ticket: %d bytes", ctx_res);
0681         xlog_print_trans(tp);
0682         xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
0683     }
0684 }
0685 
0686 static void
0687 xlog_cil_free_logvec(
0688     struct list_head    *lv_chain)
0689 {
0690     struct xfs_log_vec  *lv;
0691 
0692     while (!list_empty(lv_chain)) {
0693         lv = list_first_entry(lv_chain, struct xfs_log_vec, lv_list);
0694         list_del_init(&lv->lv_list);
0695         kmem_free(lv);
0696     }
0697 }
0698 
0699 static void
0700 xlog_discard_endio_work(
0701     struct work_struct  *work)
0702 {
0703     struct xfs_cil_ctx  *ctx =
0704         container_of(work, struct xfs_cil_ctx, discard_endio_work);
0705     struct xfs_mount    *mp = ctx->cil->xc_log->l_mp;
0706 
0707     xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
0708     kmem_free(ctx);
0709 }
0710 
0711 /*
0712  * Queue up the actual completion to a thread to avoid IRQ-safe locking for
0713  * pagb_lock.  Note that we need a unbounded workqueue, otherwise we might
0714  * get the execution delayed up to 30 seconds for weird reasons.
0715  */
0716 static void
0717 xlog_discard_endio(
0718     struct bio      *bio)
0719 {
0720     struct xfs_cil_ctx  *ctx = bio->bi_private;
0721 
0722     INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
0723     queue_work(xfs_discard_wq, &ctx->discard_endio_work);
0724     bio_put(bio);
0725 }
0726 
0727 static void
0728 xlog_discard_busy_extents(
0729     struct xfs_mount    *mp,
0730     struct xfs_cil_ctx  *ctx)
0731 {
0732     struct list_head    *list = &ctx->busy_extents;
0733     struct xfs_extent_busy  *busyp;
0734     struct bio      *bio = NULL;
0735     struct blk_plug     plug;
0736     int         error = 0;
0737 
0738     ASSERT(xfs_has_discard(mp));
0739 
0740     blk_start_plug(&plug);
0741     list_for_each_entry(busyp, list, list) {
0742         trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
0743                      busyp->length);
0744 
0745         error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
0746                 XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
0747                 XFS_FSB_TO_BB(mp, busyp->length),
0748                 GFP_NOFS, &bio);
0749         if (error && error != -EOPNOTSUPP) {
0750             xfs_info(mp,
0751      "discard failed for extent [0x%llx,%u], error %d",
0752                  (unsigned long long)busyp->bno,
0753                  busyp->length,
0754                  error);
0755             break;
0756         }
0757     }
0758 
0759     if (bio) {
0760         bio->bi_private = ctx;
0761         bio->bi_end_io = xlog_discard_endio;
0762         submit_bio(bio);
0763     } else {
0764         xlog_discard_endio_work(&ctx->discard_endio_work);
0765     }
0766     blk_finish_plug(&plug);
0767 }
0768 
0769 /*
0770  * Mark all items committed and clear busy extents. We free the log vector
0771  * chains in a separate pass so that we unpin the log items as quickly as
0772  * possible.
0773  */
0774 static void
0775 xlog_cil_committed(
0776     struct xfs_cil_ctx  *ctx)
0777 {
0778     struct xfs_mount    *mp = ctx->cil->xc_log->l_mp;
0779     bool            abort = xlog_is_shutdown(ctx->cil->xc_log);
0780 
0781     /*
0782      * If the I/O failed, we're aborting the commit and already shutdown.
0783      * Wake any commit waiters before aborting the log items so we don't
0784      * block async log pushers on callbacks. Async log pushers explicitly do
0785      * not wait on log force completion because they may be holding locks
0786      * required to unpin items.
0787      */
0788     if (abort) {
0789         spin_lock(&ctx->cil->xc_push_lock);
0790         wake_up_all(&ctx->cil->xc_start_wait);
0791         wake_up_all(&ctx->cil->xc_commit_wait);
0792         spin_unlock(&ctx->cil->xc_push_lock);
0793     }
0794 
0795     xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, &ctx->lv_chain,
0796                     ctx->start_lsn, abort);
0797 
0798     xfs_extent_busy_sort(&ctx->busy_extents);
0799     xfs_extent_busy_clear(mp, &ctx->busy_extents,
0800                   xfs_has_discard(mp) && !abort);
0801 
0802     spin_lock(&ctx->cil->xc_push_lock);
0803     list_del(&ctx->committing);
0804     spin_unlock(&ctx->cil->xc_push_lock);
0805 
0806     xlog_cil_free_logvec(&ctx->lv_chain);
0807 
0808     if (!list_empty(&ctx->busy_extents))
0809         xlog_discard_busy_extents(mp, ctx);
0810     else
0811         kmem_free(ctx);
0812 }
0813 
0814 void
0815 xlog_cil_process_committed(
0816     struct list_head    *list)
0817 {
0818     struct xfs_cil_ctx  *ctx;
0819 
0820     while ((ctx = list_first_entry_or_null(list,
0821             struct xfs_cil_ctx, iclog_entry))) {
0822         list_del(&ctx->iclog_entry);
0823         xlog_cil_committed(ctx);
0824     }
0825 }
0826 
0827 /*
0828 * Record the LSN of the iclog we were just granted space to start writing into.
0829 * If the context doesn't have a start_lsn recorded, then this iclog will
0830 * contain the start record for the checkpoint. Otherwise this write contains
0831 * the commit record for the checkpoint.
0832 */
0833 void
0834 xlog_cil_set_ctx_write_state(
0835     struct xfs_cil_ctx  *ctx,
0836     struct xlog_in_core *iclog)
0837 {
0838     struct xfs_cil      *cil = ctx->cil;
0839     xfs_lsn_t       lsn = be64_to_cpu(iclog->ic_header.h_lsn);
0840 
0841     ASSERT(!ctx->commit_lsn);
0842     if (!ctx->start_lsn) {
0843         spin_lock(&cil->xc_push_lock);
0844         /*
0845          * The LSN we need to pass to the log items on transaction
0846          * commit is the LSN reported by the first log vector write, not
0847          * the commit lsn. If we use the commit record lsn then we can
0848          * move the grant write head beyond the tail LSN and overwrite
0849          * it.
0850          */
0851         ctx->start_lsn = lsn;
0852         wake_up_all(&cil->xc_start_wait);
0853         spin_unlock(&cil->xc_push_lock);
0854 
0855         /*
0856          * Make sure the metadata we are about to overwrite in the log
0857          * has been flushed to stable storage before this iclog is
0858          * issued.
0859          */
0860         spin_lock(&cil->xc_log->l_icloglock);
0861         iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
0862         spin_unlock(&cil->xc_log->l_icloglock);
0863         return;
0864     }
0865 
0866     /*
0867      * Take a reference to the iclog for the context so that we still hold
0868      * it when xlog_write is done and has released it. This means the
0869      * context controls when the iclog is released for IO.
0870      */
0871     atomic_inc(&iclog->ic_refcnt);
0872 
0873     /*
0874      * xlog_state_get_iclog_space() guarantees there is enough space in the
0875      * iclog for an entire commit record, so we can attach the context
0876      * callbacks now.  This needs to be done before we make the commit_lsn
0877      * visible to waiters so that checkpoints with commit records in the
0878      * same iclog order their IO completion callbacks in the same order that
0879      * the commit records appear in the iclog.
0880      */
0881     spin_lock(&cil->xc_log->l_icloglock);
0882     list_add_tail(&ctx->iclog_entry, &iclog->ic_callbacks);
0883     spin_unlock(&cil->xc_log->l_icloglock);
0884 
0885     /*
0886      * Now we can record the commit LSN and wake anyone waiting for this
0887      * sequence to have the ordered commit record assigned to a physical
0888      * location in the log.
0889      */
0890     spin_lock(&cil->xc_push_lock);
0891     ctx->commit_iclog = iclog;
0892     ctx->commit_lsn = lsn;
0893     wake_up_all(&cil->xc_commit_wait);
0894     spin_unlock(&cil->xc_push_lock);
0895 }
0896 
0897 
0898 /*
0899  * Ensure that the order of log writes follows checkpoint sequence order. This
0900  * relies on the context LSN being zero until the log write has guaranteed the
0901  * LSN that the log write will start at via xlog_state_get_iclog_space().
0902  */
0903 enum _record_type {
0904     _START_RECORD,
0905     _COMMIT_RECORD,
0906 };
0907 
0908 static int
0909 xlog_cil_order_write(
0910     struct xfs_cil      *cil,
0911     xfs_csn_t       sequence,
0912     enum _record_type   record)
0913 {
0914     struct xfs_cil_ctx  *ctx;
0915 
0916 restart:
0917     spin_lock(&cil->xc_push_lock);
0918     list_for_each_entry(ctx, &cil->xc_committing, committing) {
0919         /*
0920          * Avoid getting stuck in this loop because we were woken by the
0921          * shutdown, but then went back to sleep once already in the
0922          * shutdown state.
0923          */
0924         if (xlog_is_shutdown(cil->xc_log)) {
0925             spin_unlock(&cil->xc_push_lock);
0926             return -EIO;
0927         }
0928 
0929         /*
0930          * Higher sequences will wait for this one so skip them.
0931          * Don't wait for our own sequence, either.
0932          */
0933         if (ctx->sequence >= sequence)
0934             continue;
0935 
0936         /* Wait until the LSN for the record has been recorded. */
0937         switch (record) {
0938         case _START_RECORD:
0939             if (!ctx->start_lsn) {
0940                 xlog_wait(&cil->xc_start_wait, &cil->xc_push_lock);
0941                 goto restart;
0942             }
0943             break;
0944         case _COMMIT_RECORD:
0945             if (!ctx->commit_lsn) {
0946                 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
0947                 goto restart;
0948             }
0949             break;
0950         }
0951     }
0952     spin_unlock(&cil->xc_push_lock);
0953     return 0;
0954 }
0955 
0956 /*
0957  * Write out the log vector change now attached to the CIL context. This will
0958  * write a start record that needs to be strictly ordered in ascending CIL
0959  * sequence order so that log recovery will always use in-order start LSNs when
0960  * replaying checkpoints.
0961  */
0962 static int
0963 xlog_cil_write_chain(
0964     struct xfs_cil_ctx  *ctx,
0965     uint32_t        chain_len)
0966 {
0967     struct xlog     *log = ctx->cil->xc_log;
0968     int         error;
0969 
0970     error = xlog_cil_order_write(ctx->cil, ctx->sequence, _START_RECORD);
0971     if (error)
0972         return error;
0973     return xlog_write(log, ctx, &ctx->lv_chain, ctx->ticket, chain_len);
0974 }
0975 
0976 /*
0977  * Write out the commit record of a checkpoint transaction to close off a
0978  * running log write. These commit records are strictly ordered in ascending CIL
0979  * sequence order so that log recovery will always replay the checkpoints in the
0980  * correct order.
0981  */
0982 static int
0983 xlog_cil_write_commit_record(
0984     struct xfs_cil_ctx  *ctx)
0985 {
0986     struct xlog     *log = ctx->cil->xc_log;
0987     struct xlog_op_header   ophdr = {
0988         .oh_clientid = XFS_TRANSACTION,
0989         .oh_tid = cpu_to_be32(ctx->ticket->t_tid),
0990         .oh_flags = XLOG_COMMIT_TRANS,
0991     };
0992     struct xfs_log_iovec    reg = {
0993         .i_addr = &ophdr,
0994         .i_len = sizeof(struct xlog_op_header),
0995         .i_type = XLOG_REG_TYPE_COMMIT,
0996     };
0997     struct xfs_log_vec  vec = {
0998         .lv_niovecs = 1,
0999         .lv_iovecp = &reg,
1000     };
1001     int         error;
1002     LIST_HEAD(lv_chain);
1003     list_add(&vec.lv_list, &lv_chain);
1004 
1005     if (xlog_is_shutdown(log))
1006         return -EIO;
1007 
1008     error = xlog_cil_order_write(ctx->cil, ctx->sequence, _COMMIT_RECORD);
1009     if (error)
1010         return error;
1011 
1012     /* account for space used by record data */
1013     ctx->ticket->t_curr_res -= reg.i_len;
1014     error = xlog_write(log, ctx, &lv_chain, ctx->ticket, reg.i_len);
1015     if (error)
1016         xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1017     return error;
1018 }
1019 
1020 struct xlog_cil_trans_hdr {
1021     struct xlog_op_header   oph[2];
1022     struct xfs_trans_header thdr;
1023     struct xfs_log_iovec    lhdr[2];
1024 };
1025 
1026 /*
1027  * Build a checkpoint transaction header to begin the journal transaction.  We
1028  * need to account for the space used by the transaction header here as it is
1029  * not accounted for in xlog_write().
1030  *
1031  * This is the only place we write a transaction header, so we also build the
1032  * log opheaders that indicate the start of a log transaction and wrap the
1033  * transaction header. We keep the start record in it's own log vector rather
1034  * than compacting them into a single region as this ends up making the logic
1035  * in xlog_write() for handling empty opheaders for start, commit and unmount
1036  * records much simpler.
1037  */
1038 static void
1039 xlog_cil_build_trans_hdr(
1040     struct xfs_cil_ctx  *ctx,
1041     struct xlog_cil_trans_hdr *hdr,
1042     struct xfs_log_vec  *lvhdr,
1043     int         num_iovecs)
1044 {
1045     struct xlog_ticket  *tic = ctx->ticket;
1046     __be32          tid = cpu_to_be32(tic->t_tid);
1047 
1048     memset(hdr, 0, sizeof(*hdr));
1049 
1050     /* Log start record */
1051     hdr->oph[0].oh_tid = tid;
1052     hdr->oph[0].oh_clientid = XFS_TRANSACTION;
1053     hdr->oph[0].oh_flags = XLOG_START_TRANS;
1054 
1055     /* log iovec region pointer */
1056     hdr->lhdr[0].i_addr = &hdr->oph[0];
1057     hdr->lhdr[0].i_len = sizeof(struct xlog_op_header);
1058     hdr->lhdr[0].i_type = XLOG_REG_TYPE_LRHEADER;
1059 
1060     /* log opheader */
1061     hdr->oph[1].oh_tid = tid;
1062     hdr->oph[1].oh_clientid = XFS_TRANSACTION;
1063     hdr->oph[1].oh_len = cpu_to_be32(sizeof(struct xfs_trans_header));
1064 
1065     /* transaction header in host byte order format */
1066     hdr->thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
1067     hdr->thdr.th_type = XFS_TRANS_CHECKPOINT;
1068     hdr->thdr.th_tid = tic->t_tid;
1069     hdr->thdr.th_num_items = num_iovecs;
1070 
1071     /* log iovec region pointer */
1072     hdr->lhdr[1].i_addr = &hdr->oph[1];
1073     hdr->lhdr[1].i_len = sizeof(struct xlog_op_header) +
1074                 sizeof(struct xfs_trans_header);
1075     hdr->lhdr[1].i_type = XLOG_REG_TYPE_TRANSHDR;
1076 
1077     lvhdr->lv_niovecs = 2;
1078     lvhdr->lv_iovecp = &hdr->lhdr[0];
1079     lvhdr->lv_bytes = hdr->lhdr[0].i_len + hdr->lhdr[1].i_len;
1080 
1081     tic->t_curr_res -= lvhdr->lv_bytes;
1082 }
1083 
1084 /*
1085  * CIL item reordering compare function. We want to order in ascending ID order,
1086  * but we want to leave items with the same ID in the order they were added to
1087  * the list. This is important for operations like reflink where we log 4 order
1088  * dependent intents in a single transaction when we overwrite an existing
1089  * shared extent with a new shared extent. i.e. BUI(unmap), CUI(drop),
1090  * CUI (inc), BUI(remap)...
1091  */
1092 static int
1093 xlog_cil_order_cmp(
1094     void            *priv,
1095     const struct list_head  *a,
1096     const struct list_head  *b)
1097 {
1098     struct xfs_log_vec  *l1 = container_of(a, struct xfs_log_vec, lv_list);
1099     struct xfs_log_vec  *l2 = container_of(b, struct xfs_log_vec, lv_list);
1100 
1101     return l1->lv_order_id > l2->lv_order_id;
1102 }
1103 
1104 /*
1105  * Pull all the log vectors off the items in the CIL, and remove the items from
1106  * the CIL. We don't need the CIL lock here because it's only needed on the
1107  * transaction commit side which is currently locked out by the flush lock.
1108  *
1109  * If a log item is marked with a whiteout, we do not need to write it to the
1110  * journal and so we just move them to the whiteout list for the caller to
1111  * dispose of appropriately.
1112  */
1113 static void
1114 xlog_cil_build_lv_chain(
1115     struct xfs_cil_ctx  *ctx,
1116     struct list_head    *whiteouts,
1117     uint32_t        *num_iovecs,
1118     uint32_t        *num_bytes)
1119 {
1120     while (!list_empty(&ctx->log_items)) {
1121         struct xfs_log_item *item;
1122         struct xfs_log_vec  *lv;
1123 
1124         item = list_first_entry(&ctx->log_items,
1125                     struct xfs_log_item, li_cil);
1126 
1127         if (test_bit(XFS_LI_WHITEOUT, &item->li_flags)) {
1128             list_move(&item->li_cil, whiteouts);
1129             trace_xfs_cil_whiteout_skip(item);
1130             continue;
1131         }
1132 
1133         lv = item->li_lv;
1134         lv->lv_order_id = item->li_order_id;
1135 
1136         /* we don't write ordered log vectors */
1137         if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED)
1138             *num_bytes += lv->lv_bytes;
1139         *num_iovecs += lv->lv_niovecs;
1140         list_add_tail(&lv->lv_list, &ctx->lv_chain);
1141 
1142         list_del_init(&item->li_cil);
1143         item->li_order_id = 0;
1144         item->li_lv = NULL;
1145     }
1146 }
1147 
1148 static void
1149 xlog_cil_cleanup_whiteouts(
1150     struct list_head    *whiteouts)
1151 {
1152     while (!list_empty(whiteouts)) {
1153         struct xfs_log_item *item = list_first_entry(whiteouts,
1154                         struct xfs_log_item, li_cil);
1155         list_del_init(&item->li_cil);
1156         trace_xfs_cil_whiteout_unpin(item);
1157         item->li_ops->iop_unpin(item, 1);
1158     }
1159 }
1160 
1161 /*
1162  * Push the Committed Item List to the log.
1163  *
1164  * If the current sequence is the same as xc_push_seq we need to do a flush. If
1165  * xc_push_seq is less than the current sequence, then it has already been
1166  * flushed and we don't need to do anything - the caller will wait for it to
1167  * complete if necessary.
1168  *
1169  * xc_push_seq is checked unlocked against the sequence number for a match.
1170  * Hence we can allow log forces to run racily and not issue pushes for the
1171  * same sequence twice.  If we get a race between multiple pushes for the same
1172  * sequence they will block on the first one and then abort, hence avoiding
1173  * needless pushes.
1174  */
1175 static void
1176 xlog_cil_push_work(
1177     struct work_struct  *work)
1178 {
1179     struct xfs_cil_ctx  *ctx =
1180         container_of(work, struct xfs_cil_ctx, push_work);
1181     struct xfs_cil      *cil = ctx->cil;
1182     struct xlog     *log = cil->xc_log;
1183     struct xfs_cil_ctx  *new_ctx;
1184     int         num_iovecs = 0;
1185     int         num_bytes = 0;
1186     int         error = 0;
1187     struct xlog_cil_trans_hdr thdr;
1188     struct xfs_log_vec  lvhdr = {};
1189     xfs_csn_t       push_seq;
1190     bool            push_commit_stable;
1191     LIST_HEAD       (whiteouts);
1192     struct xlog_ticket  *ticket;
1193 
1194     new_ctx = xlog_cil_ctx_alloc();
1195     new_ctx->ticket = xlog_cil_ticket_alloc(log);
1196 
1197     down_write(&cil->xc_ctx_lock);
1198 
1199     spin_lock(&cil->xc_push_lock);
1200     push_seq = cil->xc_push_seq;
1201     ASSERT(push_seq <= ctx->sequence);
1202     push_commit_stable = cil->xc_push_commit_stable;
1203     cil->xc_push_commit_stable = false;
1204 
1205     /*
1206      * As we are about to switch to a new, empty CIL context, we no longer
1207      * need to throttle tasks on CIL space overruns. Wake any waiters that
1208      * the hard push throttle may have caught so they can start committing
1209      * to the new context. The ctx->xc_push_lock provides the serialisation
1210      * necessary for safely using the lockless waitqueue_active() check in
1211      * this context.
1212      */
1213     if (waitqueue_active(&cil->xc_push_wait))
1214         wake_up_all(&cil->xc_push_wait);
1215 
1216     xlog_cil_push_pcp_aggregate(cil, ctx);
1217 
1218     /*
1219      * Check if we've anything to push. If there is nothing, then we don't
1220      * move on to a new sequence number and so we have to be able to push
1221      * this sequence again later.
1222      */
1223     if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1224         cil->xc_push_seq = 0;
1225         spin_unlock(&cil->xc_push_lock);
1226         goto out_skip;
1227     }
1228 
1229 
1230     /* check for a previously pushed sequence */
1231     if (push_seq < ctx->sequence) {
1232         spin_unlock(&cil->xc_push_lock);
1233         goto out_skip;
1234     }
1235 
1236     /*
1237      * We are now going to push this context, so add it to the committing
1238      * list before we do anything else. This ensures that anyone waiting on
1239      * this push can easily detect the difference between a "push in
1240      * progress" and "CIL is empty, nothing to do".
1241      *
1242      * IOWs, a wait loop can now check for:
1243      *  the current sequence not being found on the committing list;
1244      *  an empty CIL; and
1245      *  an unchanged sequence number
1246      * to detect a push that had nothing to do and therefore does not need
1247      * waiting on. If the CIL is not empty, we get put on the committing
1248      * list before emptying the CIL and bumping the sequence number. Hence
1249      * an empty CIL and an unchanged sequence number means we jumped out
1250      * above after doing nothing.
1251      *
1252      * Hence the waiter will either find the commit sequence on the
1253      * committing list or the sequence number will be unchanged and the CIL
1254      * still dirty. In that latter case, the push has not yet started, and
1255      * so the waiter will have to continue trying to check the CIL
1256      * committing list until it is found. In extreme cases of delay, the
1257      * sequence may fully commit between the attempts the wait makes to wait
1258      * on the commit sequence.
1259      */
1260     list_add(&ctx->committing, &cil->xc_committing);
1261     spin_unlock(&cil->xc_push_lock);
1262 
1263     xlog_cil_build_lv_chain(ctx, &whiteouts, &num_iovecs, &num_bytes);
1264 
1265     /*
1266      * Switch the contexts so we can drop the context lock and move out
1267      * of a shared context. We can't just go straight to the commit record,
1268      * though - we need to synchronise with previous and future commits so
1269      * that the commit records are correctly ordered in the log to ensure
1270      * that we process items during log IO completion in the correct order.
1271      *
1272      * For example, if we get an EFI in one checkpoint and the EFD in the
1273      * next (e.g. due to log forces), we do not want the checkpoint with
1274      * the EFD to be committed before the checkpoint with the EFI.  Hence
1275      * we must strictly order the commit records of the checkpoints so
1276      * that: a) the checkpoint callbacks are attached to the iclogs in the
1277      * correct order; and b) the checkpoints are replayed in correct order
1278      * in log recovery.
1279      *
1280      * Hence we need to add this context to the committing context list so
1281      * that higher sequences will wait for us to write out a commit record
1282      * before they do.
1283      *
1284      * xfs_log_force_seq requires us to mirror the new sequence into the cil
1285      * structure atomically with the addition of this sequence to the
1286      * committing list. This also ensures that we can do unlocked checks
1287      * against the current sequence in log forces without risking
1288      * deferencing a freed context pointer.
1289      */
1290     spin_lock(&cil->xc_push_lock);
1291     xlog_cil_ctx_switch(cil, new_ctx);
1292     spin_unlock(&cil->xc_push_lock);
1293     up_write(&cil->xc_ctx_lock);
1294 
1295     /*
1296      * Sort the log vector chain before we add the transaction headers.
1297      * This ensures we always have the transaction headers at the start
1298      * of the chain.
1299      */
1300     list_sort(NULL, &ctx->lv_chain, xlog_cil_order_cmp);
1301 
1302     /*
1303      * Build a checkpoint transaction header and write it to the log to
1304      * begin the transaction. We need to account for the space used by the
1305      * transaction header here as it is not accounted for in xlog_write().
1306      * Add the lvhdr to the head of the lv chain we pass to xlog_write() so
1307      * it gets written into the iclog first.
1308      */
1309     xlog_cil_build_trans_hdr(ctx, &thdr, &lvhdr, num_iovecs);
1310     num_bytes += lvhdr.lv_bytes;
1311     list_add(&lvhdr.lv_list, &ctx->lv_chain);
1312 
1313     /*
1314      * Take the lvhdr back off the lv_chain immediately after calling
1315      * xlog_cil_write_chain() as it should not be passed to log IO
1316      * completion.
1317      */
1318     error = xlog_cil_write_chain(ctx, num_bytes);
1319     list_del(&lvhdr.lv_list);
1320     if (error)
1321         goto out_abort_free_ticket;
1322 
1323     error = xlog_cil_write_commit_record(ctx);
1324     if (error)
1325         goto out_abort_free_ticket;
1326 
1327     /*
1328      * Grab the ticket from the ctx so we can ungrant it after releasing the
1329      * commit_iclog. The ctx may be freed by the time we return from
1330      * releasing the commit_iclog (i.e. checkpoint has been completed and
1331      * callback run) so we can't reference the ctx after the call to
1332      * xlog_state_release_iclog().
1333      */
1334     ticket = ctx->ticket;
1335 
1336     /*
1337      * If the checkpoint spans multiple iclogs, wait for all previous iclogs
1338      * to complete before we submit the commit_iclog. We can't use state
1339      * checks for this - ACTIVE can be either a past completed iclog or a
1340      * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
1341      * past or future iclog awaiting IO or ordered IO completion to be run.
1342      * In the latter case, if it's a future iclog and we wait on it, the we
1343      * will hang because it won't get processed through to ic_force_wait
1344      * wakeup until this commit_iclog is written to disk.  Hence we use the
1345      * iclog header lsn and compare it to the commit lsn to determine if we
1346      * need to wait on iclogs or not.
1347      */
1348     spin_lock(&log->l_icloglock);
1349     if (ctx->start_lsn != ctx->commit_lsn) {
1350         xfs_lsn_t   plsn;
1351 
1352         plsn = be64_to_cpu(ctx->commit_iclog->ic_prev->ic_header.h_lsn);
1353         if (plsn && XFS_LSN_CMP(plsn, ctx->commit_lsn) < 0) {
1354             /*
1355              * Waiting on ic_force_wait orders the completion of
1356              * iclogs older than ic_prev. Hence we only need to wait
1357              * on the most recent older iclog here.
1358              */
1359             xlog_wait_on_iclog(ctx->commit_iclog->ic_prev);
1360             spin_lock(&log->l_icloglock);
1361         }
1362 
1363         /*
1364          * We need to issue a pre-flush so that the ordering for this
1365          * checkpoint is correctly preserved down to stable storage.
1366          */
1367         ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
1368     }
1369 
1370     /*
1371      * The commit iclog must be written to stable storage to guarantee
1372      * journal IO vs metadata writeback IO is correctly ordered on stable
1373      * storage.
1374      *
1375      * If the push caller needs the commit to be immediately stable and the
1376      * commit_iclog is not yet marked as XLOG_STATE_WANT_SYNC to indicate it
1377      * will be written when released, switch it's state to WANT_SYNC right
1378      * now.
1379      */
1380     ctx->commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
1381     if (push_commit_stable &&
1382         ctx->commit_iclog->ic_state == XLOG_STATE_ACTIVE)
1383         xlog_state_switch_iclogs(log, ctx->commit_iclog, 0);
1384     ticket = ctx->ticket;
1385     xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1386 
1387     /* Not safe to reference ctx now! */
1388 
1389     spin_unlock(&log->l_icloglock);
1390     xlog_cil_cleanup_whiteouts(&whiteouts);
1391     xfs_log_ticket_ungrant(log, ticket);
1392     return;
1393 
1394 out_skip:
1395     up_write(&cil->xc_ctx_lock);
1396     xfs_log_ticket_put(new_ctx->ticket);
1397     kmem_free(new_ctx);
1398     return;
1399 
1400 out_abort_free_ticket:
1401     ASSERT(xlog_is_shutdown(log));
1402     xlog_cil_cleanup_whiteouts(&whiteouts);
1403     if (!ctx->commit_iclog) {
1404         xfs_log_ticket_ungrant(log, ctx->ticket);
1405         xlog_cil_committed(ctx);
1406         return;
1407     }
1408     spin_lock(&log->l_icloglock);
1409     ticket = ctx->ticket;
1410     xlog_state_release_iclog(log, ctx->commit_iclog, ticket);
1411     /* Not safe to reference ctx now! */
1412     spin_unlock(&log->l_icloglock);
1413     xfs_log_ticket_ungrant(log, ticket);
1414 }
1415 
1416 /*
1417  * We need to push CIL every so often so we don't cache more than we can fit in
1418  * the log. The limit really is that a checkpoint can't be more than half the
1419  * log (the current checkpoint is not allowed to overwrite the previous
1420  * checkpoint), but commit latency and memory usage limit this to a smaller
1421  * size.
1422  */
1423 static void
1424 xlog_cil_push_background(
1425     struct xlog *log) __releases(cil->xc_ctx_lock)
1426 {
1427     struct xfs_cil  *cil = log->l_cilp;
1428     int     space_used = atomic_read(&cil->xc_ctx->space_used);
1429 
1430     /*
1431      * The cil won't be empty because we are called while holding the
1432      * context lock so whatever we added to the CIL will still be there.
1433      */
1434     ASSERT(!test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1435 
1436     /*
1437      * We are done if:
1438      * - we haven't used up all the space available yet; or
1439      * - we've already queued up a push; and
1440      * - we're not over the hard limit; and
1441      * - nothing has been over the hard limit.
1442      *
1443      * If so, we don't need to take the push lock as there's nothing to do.
1444      */
1445     if (space_used < XLOG_CIL_SPACE_LIMIT(log) ||
1446         (cil->xc_push_seq == cil->xc_current_sequence &&
1447          space_used < XLOG_CIL_BLOCKING_SPACE_LIMIT(log) &&
1448          !waitqueue_active(&cil->xc_push_wait))) {
1449         up_read(&cil->xc_ctx_lock);
1450         return;
1451     }
1452 
1453     spin_lock(&cil->xc_push_lock);
1454     if (cil->xc_push_seq < cil->xc_current_sequence) {
1455         cil->xc_push_seq = cil->xc_current_sequence;
1456         queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1457     }
1458 
1459     /*
1460      * Drop the context lock now, we can't hold that if we need to sleep
1461      * because we are over the blocking threshold. The push_lock is still
1462      * held, so blocking threshold sleep/wakeup is still correctly
1463      * serialised here.
1464      */
1465     up_read(&cil->xc_ctx_lock);
1466 
1467     /*
1468      * If we are well over the space limit, throttle the work that is being
1469      * done until the push work on this context has begun. Enforce the hard
1470      * throttle on all transaction commits once it has been activated, even
1471      * if the committing transactions have resulted in the space usage
1472      * dipping back down under the hard limit.
1473      *
1474      * The ctx->xc_push_lock provides the serialisation necessary for safely
1475      * calling xlog_cil_over_hard_limit() in this context.
1476      */
1477     if (xlog_cil_over_hard_limit(log, space_used)) {
1478         trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1479         ASSERT(space_used < log->l_logsize);
1480         xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
1481         return;
1482     }
1483 
1484     spin_unlock(&cil->xc_push_lock);
1485 
1486 }
1487 
1488 /*
1489  * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1490  * number that is passed. When it returns, the work will be queued for
1491  * @push_seq, but it won't be completed.
1492  *
1493  * If the caller is performing a synchronous force, we will flush the workqueue
1494  * to get previously queued work moving to minimise the wait time they will
1495  * undergo waiting for all outstanding pushes to complete. The caller is
1496  * expected to do the required waiting for push_seq to complete.
1497  *
1498  * If the caller is performing an async push, we need to ensure that the
1499  * checkpoint is fully flushed out of the iclogs when we finish the push. If we
1500  * don't do this, then the commit record may remain sitting in memory in an
1501  * ACTIVE iclog. This then requires another full log force to push to disk,
1502  * which defeats the purpose of having an async, non-blocking CIL force
1503  * mechanism. Hence in this case we need to pass a flag to the push work to
1504  * indicate it needs to flush the commit record itself.
1505  */
1506 static void
1507 xlog_cil_push_now(
1508     struct xlog *log,
1509     xfs_lsn_t   push_seq,
1510     bool        async)
1511 {
1512     struct xfs_cil  *cil = log->l_cilp;
1513 
1514     if (!cil)
1515         return;
1516 
1517     ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1518 
1519     /* start on any pending background push to minimise wait time on it */
1520     if (!async)
1521         flush_workqueue(cil->xc_push_wq);
1522 
1523     spin_lock(&cil->xc_push_lock);
1524 
1525     /*
1526      * If this is an async flush request, we always need to set the
1527      * xc_push_commit_stable flag even if something else has already queued
1528      * a push. The flush caller is asking for the CIL to be on stable
1529      * storage when the next push completes, so regardless of who has queued
1530      * the push, the flush requires stable semantics from it.
1531      */
1532     cil->xc_push_commit_stable = async;
1533 
1534     /*
1535      * If the CIL is empty or we've already pushed the sequence then
1536      * there's no more work that we need to do.
1537      */
1538     if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags) ||
1539         push_seq <= cil->xc_push_seq) {
1540         spin_unlock(&cil->xc_push_lock);
1541         return;
1542     }
1543 
1544     cil->xc_push_seq = push_seq;
1545     queue_work(cil->xc_push_wq, &cil->xc_ctx->push_work);
1546     spin_unlock(&cil->xc_push_lock);
1547 }
1548 
1549 bool
1550 xlog_cil_empty(
1551     struct xlog *log)
1552 {
1553     struct xfs_cil  *cil = log->l_cilp;
1554     bool        empty = false;
1555 
1556     spin_lock(&cil->xc_push_lock);
1557     if (test_bit(XLOG_CIL_EMPTY, &cil->xc_flags))
1558         empty = true;
1559     spin_unlock(&cil->xc_push_lock);
1560     return empty;
1561 }
1562 
1563 /*
1564  * If there are intent done items in this transaction and the related intent was
1565  * committed in the current (same) CIL checkpoint, we don't need to write either
1566  * the intent or intent done item to the journal as the change will be
1567  * journalled atomically within this checkpoint. As we cannot remove items from
1568  * the CIL here, mark the related intent with a whiteout so that the CIL push
1569  * can remove it rather than writing it to the journal. Then remove the intent
1570  * done item from the current transaction and release it so it doesn't get put
1571  * into the CIL at all.
1572  */
1573 static uint32_t
1574 xlog_cil_process_intents(
1575     struct xfs_cil      *cil,
1576     struct xfs_trans    *tp)
1577 {
1578     struct xfs_log_item *lip, *ilip, *next;
1579     uint32_t        len = 0;
1580 
1581     list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1582         if (!(lip->li_ops->flags & XFS_ITEM_INTENT_DONE))
1583             continue;
1584 
1585         ilip = lip->li_ops->iop_intent(lip);
1586         if (!ilip || !xlog_item_in_current_chkpt(cil, ilip))
1587             continue;
1588         set_bit(XFS_LI_WHITEOUT, &ilip->li_flags);
1589         trace_xfs_cil_whiteout_mark(ilip);
1590         len += ilip->li_lv->lv_bytes;
1591         kmem_free(ilip->li_lv);
1592         ilip->li_lv = NULL;
1593 
1594         xfs_trans_del_item(lip);
1595         lip->li_ops->iop_release(lip);
1596     }
1597     return len;
1598 }
1599 
1600 /*
1601  * Commit a transaction with the given vector to the Committed Item List.
1602  *
1603  * To do this, we need to format the item, pin it in memory if required and
1604  * account for the space used by the transaction. Once we have done that we
1605  * need to release the unused reservation for the transaction, attach the
1606  * transaction to the checkpoint context so we carry the busy extents through
1607  * to checkpoint completion, and then unlock all the items in the transaction.
1608  *
1609  * Called with the context lock already held in read mode to lock out
1610  * background commit, returns without it held once background commits are
1611  * allowed again.
1612  */
1613 void
1614 xlog_cil_commit(
1615     struct xlog     *log,
1616     struct xfs_trans    *tp,
1617     xfs_csn_t       *commit_seq,
1618     bool            regrant)
1619 {
1620     struct xfs_cil      *cil = log->l_cilp;
1621     struct xfs_log_item *lip, *next;
1622     uint32_t        released_space = 0;
1623 
1624     /*
1625      * Do all necessary memory allocation before we lock the CIL.
1626      * This ensures the allocation does not deadlock with a CIL
1627      * push in memory reclaim (e.g. from kswapd).
1628      */
1629     xlog_cil_alloc_shadow_bufs(log, tp);
1630 
1631     /* lock out background commit */
1632     down_read(&cil->xc_ctx_lock);
1633 
1634     if (tp->t_flags & XFS_TRANS_HAS_INTENT_DONE)
1635         released_space = xlog_cil_process_intents(cil, tp);
1636 
1637     xlog_cil_insert_items(log, tp, released_space);
1638 
1639     if (regrant && !xlog_is_shutdown(log))
1640         xfs_log_ticket_regrant(log, tp->t_ticket);
1641     else
1642         xfs_log_ticket_ungrant(log, tp->t_ticket);
1643     tp->t_ticket = NULL;
1644     xfs_trans_unreserve_and_mod_sb(tp);
1645 
1646     /*
1647      * Once all the items of the transaction have been copied to the CIL,
1648      * the items can be unlocked and possibly freed.
1649      *
1650      * This needs to be done before we drop the CIL context lock because we
1651      * have to update state in the log items and unlock them before they go
1652      * to disk. If we don't, then the CIL checkpoint can race with us and
1653      * we can run checkpoint completion before we've updated and unlocked
1654      * the log items. This affects (at least) processing of stale buffers,
1655      * inodes and EFIs.
1656      */
1657     trace_xfs_trans_commit_items(tp, _RET_IP_);
1658     list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1659         xfs_trans_del_item(lip);
1660         if (lip->li_ops->iop_committing)
1661             lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
1662     }
1663     if (commit_seq)
1664         *commit_seq = cil->xc_ctx->sequence;
1665 
1666     /* xlog_cil_push_background() releases cil->xc_ctx_lock */
1667     xlog_cil_push_background(log);
1668 }
1669 
1670 /*
1671  * Flush the CIL to stable storage but don't wait for it to complete. This
1672  * requires the CIL push to ensure the commit record for the push hits the disk,
1673  * but otherwise is no different to a push done from a log force.
1674  */
1675 void
1676 xlog_cil_flush(
1677     struct xlog *log)
1678 {
1679     xfs_csn_t   seq = log->l_cilp->xc_current_sequence;
1680 
1681     trace_xfs_log_force(log->l_mp, seq, _RET_IP_);
1682     xlog_cil_push_now(log, seq, true);
1683 
1684     /*
1685      * If the CIL is empty, make sure that any previous checkpoint that may
1686      * still be in an active iclog is pushed to stable storage.
1687      */
1688     if (test_bit(XLOG_CIL_EMPTY, &log->l_cilp->xc_flags))
1689         xfs_log_force(log->l_mp, 0);
1690 }
1691 
1692 /*
1693  * Conditionally push the CIL based on the sequence passed in.
1694  *
1695  * We only need to push if we haven't already pushed the sequence number given.
1696  * Hence the only time we will trigger a push here is if the push sequence is
1697  * the same as the current context.
1698  *
1699  * We return the current commit lsn to allow the callers to determine if a
1700  * iclog flush is necessary following this call.
1701  */
1702 xfs_lsn_t
1703 xlog_cil_force_seq(
1704     struct xlog *log,
1705     xfs_csn_t   sequence)
1706 {
1707     struct xfs_cil      *cil = log->l_cilp;
1708     struct xfs_cil_ctx  *ctx;
1709     xfs_lsn_t       commit_lsn = NULLCOMMITLSN;
1710 
1711     ASSERT(sequence <= cil->xc_current_sequence);
1712 
1713     if (!sequence)
1714         sequence = cil->xc_current_sequence;
1715     trace_xfs_log_force(log->l_mp, sequence, _RET_IP_);
1716 
1717     /*
1718      * check to see if we need to force out the current context.
1719      * xlog_cil_push() handles racing pushes for the same sequence,
1720      * so no need to deal with it here.
1721      */
1722 restart:
1723     xlog_cil_push_now(log, sequence, false);
1724 
1725     /*
1726      * See if we can find a previous sequence still committing.
1727      * We need to wait for all previous sequence commits to complete
1728      * before allowing the force of push_seq to go ahead. Hence block
1729      * on commits for those as well.
1730      */
1731     spin_lock(&cil->xc_push_lock);
1732     list_for_each_entry(ctx, &cil->xc_committing, committing) {
1733         /*
1734          * Avoid getting stuck in this loop because we were woken by the
1735          * shutdown, but then went back to sleep once already in the
1736          * shutdown state.
1737          */
1738         if (xlog_is_shutdown(log))
1739             goto out_shutdown;
1740         if (ctx->sequence > sequence)
1741             continue;
1742         if (!ctx->commit_lsn) {
1743             /*
1744              * It is still being pushed! Wait for the push to
1745              * complete, then start again from the beginning.
1746              */
1747             XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
1748             xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
1749             goto restart;
1750         }
1751         if (ctx->sequence != sequence)
1752             continue;
1753         /* found it! */
1754         commit_lsn = ctx->commit_lsn;
1755     }
1756 
1757     /*
1758      * The call to xlog_cil_push_now() executes the push in the background.
1759      * Hence by the time we have got here it our sequence may not have been
1760      * pushed yet. This is true if the current sequence still matches the
1761      * push sequence after the above wait loop and the CIL still contains
1762      * dirty objects. This is guaranteed by the push code first adding the
1763      * context to the committing list before emptying the CIL.
1764      *
1765      * Hence if we don't find the context in the committing list and the
1766      * current sequence number is unchanged then the CIL contents are
1767      * significant.  If the CIL is empty, if means there was nothing to push
1768      * and that means there is nothing to wait for. If the CIL is not empty,
1769      * it means we haven't yet started the push, because if it had started
1770      * we would have found the context on the committing list.
1771      */
1772     if (sequence == cil->xc_current_sequence &&
1773         !test_bit(XLOG_CIL_EMPTY, &cil->xc_flags)) {
1774         spin_unlock(&cil->xc_push_lock);
1775         goto restart;
1776     }
1777 
1778     spin_unlock(&cil->xc_push_lock);
1779     return commit_lsn;
1780 
1781     /*
1782      * We detected a shutdown in progress. We need to trigger the log force
1783      * to pass through it's iclog state machine error handling, even though
1784      * we are already in a shutdown state. Hence we can't return
1785      * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1786      * LSN is already stable), so we return a zero LSN instead.
1787      */
1788 out_shutdown:
1789     spin_unlock(&cil->xc_push_lock);
1790     return 0;
1791 }
1792 
1793 /*
1794  * Move dead percpu state to the relevant CIL context structures.
1795  *
1796  * We have to lock the CIL context here to ensure that nothing is modifying
1797  * the percpu state, either addition or removal. Both of these are done under
1798  * the CIL context lock, so grabbing that exclusively here will ensure we can
1799  * safely drain the cilpcp for the CPU that is dying.
1800  */
1801 void
1802 xlog_cil_pcp_dead(
1803     struct xlog     *log,
1804     unsigned int        cpu)
1805 {
1806     struct xfs_cil      *cil = log->l_cilp;
1807     struct xlog_cil_pcp *cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
1808     struct xfs_cil_ctx  *ctx;
1809 
1810     down_write(&cil->xc_ctx_lock);
1811     ctx = cil->xc_ctx;
1812     if (ctx->ticket)
1813         ctx->ticket->t_curr_res += cilpcp->space_reserved;
1814     cilpcp->space_reserved = 0;
1815 
1816     if (!list_empty(&cilpcp->log_items))
1817         list_splice_init(&cilpcp->log_items, &ctx->log_items);
1818     if (!list_empty(&cilpcp->busy_extents))
1819         list_splice_init(&cilpcp->busy_extents, &ctx->busy_extents);
1820     atomic_add(cilpcp->space_used, &ctx->space_used);
1821     cilpcp->space_used = 0;
1822     up_write(&cil->xc_ctx_lock);
1823 }
1824 
1825 /*
1826  * Perform initial CIL structure initialisation.
1827  */
1828 int
1829 xlog_cil_init(
1830     struct xlog     *log)
1831 {
1832     struct xfs_cil      *cil;
1833     struct xfs_cil_ctx  *ctx;
1834     struct xlog_cil_pcp *cilpcp;
1835     int         cpu;
1836 
1837     cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
1838     if (!cil)
1839         return -ENOMEM;
1840     /*
1841      * Limit the CIL pipeline depth to 4 concurrent works to bound the
1842      * concurrency the log spinlocks will be exposed to.
1843      */
1844     cil->xc_push_wq = alloc_workqueue("xfs-cil/%s",
1845             XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM | WQ_UNBOUND),
1846             4, log->l_mp->m_super->s_id);
1847     if (!cil->xc_push_wq)
1848         goto out_destroy_cil;
1849 
1850     cil->xc_log = log;
1851     cil->xc_pcp = alloc_percpu(struct xlog_cil_pcp);
1852     if (!cil->xc_pcp)
1853         goto out_destroy_wq;
1854 
1855     for_each_possible_cpu(cpu) {
1856         cilpcp = per_cpu_ptr(cil->xc_pcp, cpu);
1857         INIT_LIST_HEAD(&cilpcp->busy_extents);
1858         INIT_LIST_HEAD(&cilpcp->log_items);
1859     }
1860 
1861     INIT_LIST_HEAD(&cil->xc_committing);
1862     spin_lock_init(&cil->xc_push_lock);
1863     init_waitqueue_head(&cil->xc_push_wait);
1864     init_rwsem(&cil->xc_ctx_lock);
1865     init_waitqueue_head(&cil->xc_start_wait);
1866     init_waitqueue_head(&cil->xc_commit_wait);
1867     log->l_cilp = cil;
1868 
1869     ctx = xlog_cil_ctx_alloc();
1870     xlog_cil_ctx_switch(cil, ctx);
1871     return 0;
1872 
1873 out_destroy_wq:
1874     destroy_workqueue(cil->xc_push_wq);
1875 out_destroy_cil:
1876     kmem_free(cil);
1877     return -ENOMEM;
1878 }
1879 
1880 void
1881 xlog_cil_destroy(
1882     struct xlog *log)
1883 {
1884     struct xfs_cil  *cil = log->l_cilp;
1885 
1886     if (cil->xc_ctx) {
1887         if (cil->xc_ctx->ticket)
1888             xfs_log_ticket_put(cil->xc_ctx->ticket);
1889         kmem_free(cil->xc_ctx);
1890     }
1891 
1892     ASSERT(test_bit(XLOG_CIL_EMPTY, &cil->xc_flags));
1893     free_percpu(cil->xc_pcp);
1894     destroy_workqueue(cil->xc_push_wq);
1895     kmem_free(cil);
1896 }
1897