Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
0004  * All Rights Reserved.
0005  */
0006 #include "xfs.h"
0007 #include "xfs_fs.h"
0008 #include "xfs_shared.h"
0009 #include "xfs_format.h"
0010 #include "xfs_log_format.h"
0011 #include "xfs_trans_resv.h"
0012 #include "xfs_mount.h"
0013 #include "xfs_errortag.h"
0014 #include "xfs_error.h"
0015 #include "xfs_trans.h"
0016 #include "xfs_trans_priv.h"
0017 #include "xfs_log.h"
0018 #include "xfs_log_priv.h"
0019 #include "xfs_trace.h"
0020 #include "xfs_sysfs.h"
0021 #include "xfs_sb.h"
0022 #include "xfs_health.h"
0023 
0024 struct kmem_cache   *xfs_log_ticket_cache;
0025 
0026 /* Local miscellaneous function prototypes */
0027 STATIC struct xlog *
0028 xlog_alloc_log(
0029     struct xfs_mount    *mp,
0030     struct xfs_buftarg  *log_target,
0031     xfs_daddr_t     blk_offset,
0032     int         num_bblks);
0033 STATIC int
0034 xlog_space_left(
0035     struct xlog     *log,
0036     atomic64_t      *head);
0037 STATIC void
0038 xlog_dealloc_log(
0039     struct xlog     *log);
0040 
0041 /* local state machine functions */
0042 STATIC void xlog_state_done_syncing(
0043     struct xlog_in_core *iclog);
0044 STATIC void xlog_state_do_callback(
0045     struct xlog     *log);
0046 STATIC int
0047 xlog_state_get_iclog_space(
0048     struct xlog     *log,
0049     int         len,
0050     struct xlog_in_core **iclog,
0051     struct xlog_ticket  *ticket,
0052     int         *logoffsetp);
0053 STATIC void
0054 xlog_grant_push_ail(
0055     struct xlog     *log,
0056     int         need_bytes);
0057 STATIC void
0058 xlog_sync(
0059     struct xlog     *log,
0060     struct xlog_in_core *iclog,
0061     struct xlog_ticket  *ticket);
0062 #if defined(DEBUG)
0063 STATIC void
0064 xlog_verify_grant_tail(
0065     struct xlog *log);
0066 STATIC void
0067 xlog_verify_iclog(
0068     struct xlog     *log,
0069     struct xlog_in_core *iclog,
0070     int         count);
0071 STATIC void
0072 xlog_verify_tail_lsn(
0073     struct xlog     *log,
0074     struct xlog_in_core *iclog);
0075 #else
0076 #define xlog_verify_grant_tail(a)
0077 #define xlog_verify_iclog(a,b,c)
0078 #define xlog_verify_tail_lsn(a,b)
0079 #endif
0080 
0081 STATIC int
0082 xlog_iclogs_empty(
0083     struct xlog     *log);
0084 
0085 static int
0086 xfs_log_cover(struct xfs_mount *);
0087 
0088 /*
0089  * We need to make sure the buffer pointer returned is naturally aligned for the
0090  * biggest basic data type we put into it. We have already accounted for this
0091  * padding when sizing the buffer.
0092  *
0093  * However, this padding does not get written into the log, and hence we have to
0094  * track the space used by the log vectors separately to prevent log space hangs
0095  * due to inaccurate accounting (i.e. a leak) of the used log space through the
0096  * CIL context ticket.
0097  *
0098  * We also add space for the xlog_op_header that describes this region in the
0099  * log. This prepends the data region we return to the caller to copy their data
0100  * into, so do all the static initialisation of the ophdr now. Because the ophdr
0101  * is not 8 byte aligned, we have to be careful to ensure that we align the
0102  * start of the buffer such that the region we return to the call is 8 byte
0103  * aligned and packed against the tail of the ophdr.
0104  */
0105 void *
0106 xlog_prepare_iovec(
0107     struct xfs_log_vec  *lv,
0108     struct xfs_log_iovec    **vecp,
0109     uint            type)
0110 {
0111     struct xfs_log_iovec    *vec = *vecp;
0112     struct xlog_op_header   *oph;
0113     uint32_t        len;
0114     void            *buf;
0115 
0116     if (vec) {
0117         ASSERT(vec - lv->lv_iovecp < lv->lv_niovecs);
0118         vec++;
0119     } else {
0120         vec = &lv->lv_iovecp[0];
0121     }
0122 
0123     len = lv->lv_buf_len + sizeof(struct xlog_op_header);
0124     if (!IS_ALIGNED(len, sizeof(uint64_t))) {
0125         lv->lv_buf_len = round_up(len, sizeof(uint64_t)) -
0126                     sizeof(struct xlog_op_header);
0127     }
0128 
0129     vec->i_type = type;
0130     vec->i_addr = lv->lv_buf + lv->lv_buf_len;
0131 
0132     oph = vec->i_addr;
0133     oph->oh_clientid = XFS_TRANSACTION;
0134     oph->oh_res2 = 0;
0135     oph->oh_flags = 0;
0136 
0137     buf = vec->i_addr + sizeof(struct xlog_op_header);
0138     ASSERT(IS_ALIGNED((unsigned long)buf, sizeof(uint64_t)));
0139 
0140     *vecp = vec;
0141     return buf;
0142 }
0143 
0144 static void
0145 xlog_grant_sub_space(
0146     struct xlog     *log,
0147     atomic64_t      *head,
0148     int         bytes)
0149 {
0150     int64_t head_val = atomic64_read(head);
0151     int64_t new, old;
0152 
0153     do {
0154         int cycle, space;
0155 
0156         xlog_crack_grant_head_val(head_val, &cycle, &space);
0157 
0158         space -= bytes;
0159         if (space < 0) {
0160             space += log->l_logsize;
0161             cycle--;
0162         }
0163 
0164         old = head_val;
0165         new = xlog_assign_grant_head_val(cycle, space);
0166         head_val = atomic64_cmpxchg(head, old, new);
0167     } while (head_val != old);
0168 }
0169 
0170 static void
0171 xlog_grant_add_space(
0172     struct xlog     *log,
0173     atomic64_t      *head,
0174     int         bytes)
0175 {
0176     int64_t head_val = atomic64_read(head);
0177     int64_t new, old;
0178 
0179     do {
0180         int     tmp;
0181         int     cycle, space;
0182 
0183         xlog_crack_grant_head_val(head_val, &cycle, &space);
0184 
0185         tmp = log->l_logsize - space;
0186         if (tmp > bytes)
0187             space += bytes;
0188         else {
0189             space = bytes - tmp;
0190             cycle++;
0191         }
0192 
0193         old = head_val;
0194         new = xlog_assign_grant_head_val(cycle, space);
0195         head_val = atomic64_cmpxchg(head, old, new);
0196     } while (head_val != old);
0197 }
0198 
0199 STATIC void
0200 xlog_grant_head_init(
0201     struct xlog_grant_head  *head)
0202 {
0203     xlog_assign_grant_head(&head->grant, 1, 0);
0204     INIT_LIST_HEAD(&head->waiters);
0205     spin_lock_init(&head->lock);
0206 }
0207 
0208 STATIC void
0209 xlog_grant_head_wake_all(
0210     struct xlog_grant_head  *head)
0211 {
0212     struct xlog_ticket  *tic;
0213 
0214     spin_lock(&head->lock);
0215     list_for_each_entry(tic, &head->waiters, t_queue)
0216         wake_up_process(tic->t_task);
0217     spin_unlock(&head->lock);
0218 }
0219 
0220 static inline int
0221 xlog_ticket_reservation(
0222     struct xlog     *log,
0223     struct xlog_grant_head  *head,
0224     struct xlog_ticket  *tic)
0225 {
0226     if (head == &log->l_write_head) {
0227         ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
0228         return tic->t_unit_res;
0229     } else {
0230         if (tic->t_flags & XLOG_TIC_PERM_RESERV)
0231             return tic->t_unit_res * tic->t_cnt;
0232         else
0233             return tic->t_unit_res;
0234     }
0235 }
0236 
0237 STATIC bool
0238 xlog_grant_head_wake(
0239     struct xlog     *log,
0240     struct xlog_grant_head  *head,
0241     int         *free_bytes)
0242 {
0243     struct xlog_ticket  *tic;
0244     int         need_bytes;
0245     bool            woken_task = false;
0246 
0247     list_for_each_entry(tic, &head->waiters, t_queue) {
0248 
0249         /*
0250          * There is a chance that the size of the CIL checkpoints in
0251          * progress at the last AIL push target calculation resulted in
0252          * limiting the target to the log head (l_last_sync_lsn) at the
0253          * time. This may not reflect where the log head is now as the
0254          * CIL checkpoints may have completed.
0255          *
0256          * Hence when we are woken here, it may be that the head of the
0257          * log that has moved rather than the tail. As the tail didn't
0258          * move, there still won't be space available for the
0259          * reservation we require.  However, if the AIL has already
0260          * pushed to the target defined by the old log head location, we
0261          * will hang here waiting for something else to update the AIL
0262          * push target.
0263          *
0264          * Therefore, if there isn't space to wake the first waiter on
0265          * the grant head, we need to push the AIL again to ensure the
0266          * target reflects both the current log tail and log head
0267          * position before we wait for the tail to move again.
0268          */
0269 
0270         need_bytes = xlog_ticket_reservation(log, head, tic);
0271         if (*free_bytes < need_bytes) {
0272             if (!woken_task)
0273                 xlog_grant_push_ail(log, need_bytes);
0274             return false;
0275         }
0276 
0277         *free_bytes -= need_bytes;
0278         trace_xfs_log_grant_wake_up(log, tic);
0279         wake_up_process(tic->t_task);
0280         woken_task = true;
0281     }
0282 
0283     return true;
0284 }
0285 
0286 STATIC int
0287 xlog_grant_head_wait(
0288     struct xlog     *log,
0289     struct xlog_grant_head  *head,
0290     struct xlog_ticket  *tic,
0291     int         need_bytes) __releases(&head->lock)
0292                         __acquires(&head->lock)
0293 {
0294     list_add_tail(&tic->t_queue, &head->waiters);
0295 
0296     do {
0297         if (xlog_is_shutdown(log))
0298             goto shutdown;
0299         xlog_grant_push_ail(log, need_bytes);
0300 
0301         __set_current_state(TASK_UNINTERRUPTIBLE);
0302         spin_unlock(&head->lock);
0303 
0304         XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
0305 
0306         trace_xfs_log_grant_sleep(log, tic);
0307         schedule();
0308         trace_xfs_log_grant_wake(log, tic);
0309 
0310         spin_lock(&head->lock);
0311         if (xlog_is_shutdown(log))
0312             goto shutdown;
0313     } while (xlog_space_left(log, &head->grant) < need_bytes);
0314 
0315     list_del_init(&tic->t_queue);
0316     return 0;
0317 shutdown:
0318     list_del_init(&tic->t_queue);
0319     return -EIO;
0320 }
0321 
0322 /*
0323  * Atomically get the log space required for a log ticket.
0324  *
0325  * Once a ticket gets put onto head->waiters, it will only return after the
0326  * needed reservation is satisfied.
0327  *
0328  * This function is structured so that it has a lock free fast path. This is
0329  * necessary because every new transaction reservation will come through this
0330  * path. Hence any lock will be globally hot if we take it unconditionally on
0331  * every pass.
0332  *
0333  * As tickets are only ever moved on and off head->waiters under head->lock, we
0334  * only need to take that lock if we are going to add the ticket to the queue
0335  * and sleep. We can avoid taking the lock if the ticket was never added to
0336  * head->waiters because the t_queue list head will be empty and we hold the
0337  * only reference to it so it can safely be checked unlocked.
0338  */
0339 STATIC int
0340 xlog_grant_head_check(
0341     struct xlog     *log,
0342     struct xlog_grant_head  *head,
0343     struct xlog_ticket  *tic,
0344     int         *need_bytes)
0345 {
0346     int         free_bytes;
0347     int         error = 0;
0348 
0349     ASSERT(!xlog_in_recovery(log));
0350 
0351     /*
0352      * If there are other waiters on the queue then give them a chance at
0353      * logspace before us.  Wake up the first waiters, if we do not wake
0354      * up all the waiters then go to sleep waiting for more free space,
0355      * otherwise try to get some space for this transaction.
0356      */
0357     *need_bytes = xlog_ticket_reservation(log, head, tic);
0358     free_bytes = xlog_space_left(log, &head->grant);
0359     if (!list_empty_careful(&head->waiters)) {
0360         spin_lock(&head->lock);
0361         if (!xlog_grant_head_wake(log, head, &free_bytes) ||
0362             free_bytes < *need_bytes) {
0363             error = xlog_grant_head_wait(log, head, tic,
0364                              *need_bytes);
0365         }
0366         spin_unlock(&head->lock);
0367     } else if (free_bytes < *need_bytes) {
0368         spin_lock(&head->lock);
0369         error = xlog_grant_head_wait(log, head, tic, *need_bytes);
0370         spin_unlock(&head->lock);
0371     }
0372 
0373     return error;
0374 }
0375 
0376 bool
0377 xfs_log_writable(
0378     struct xfs_mount    *mp)
0379 {
0380     /*
0381      * Do not write to the log on norecovery mounts, if the data or log
0382      * devices are read-only, or if the filesystem is shutdown. Read-only
0383      * mounts allow internal writes for log recovery and unmount purposes,
0384      * so don't restrict that case.
0385      */
0386     if (xfs_has_norecovery(mp))
0387         return false;
0388     if (xfs_readonly_buftarg(mp->m_ddev_targp))
0389         return false;
0390     if (xfs_readonly_buftarg(mp->m_log->l_targ))
0391         return false;
0392     if (xlog_is_shutdown(mp->m_log))
0393         return false;
0394     return true;
0395 }
0396 
0397 /*
0398  * Replenish the byte reservation required by moving the grant write head.
0399  */
0400 int
0401 xfs_log_regrant(
0402     struct xfs_mount    *mp,
0403     struct xlog_ticket  *tic)
0404 {
0405     struct xlog     *log = mp->m_log;
0406     int         need_bytes;
0407     int         error = 0;
0408 
0409     if (xlog_is_shutdown(log))
0410         return -EIO;
0411 
0412     XFS_STATS_INC(mp, xs_try_logspace);
0413 
0414     /*
0415      * This is a new transaction on the ticket, so we need to change the
0416      * transaction ID so that the next transaction has a different TID in
0417      * the log. Just add one to the existing tid so that we can see chains
0418      * of rolling transactions in the log easily.
0419      */
0420     tic->t_tid++;
0421 
0422     xlog_grant_push_ail(log, tic->t_unit_res);
0423 
0424     tic->t_curr_res = tic->t_unit_res;
0425     if (tic->t_cnt > 0)
0426         return 0;
0427 
0428     trace_xfs_log_regrant(log, tic);
0429 
0430     error = xlog_grant_head_check(log, &log->l_write_head, tic,
0431                       &need_bytes);
0432     if (error)
0433         goto out_error;
0434 
0435     xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
0436     trace_xfs_log_regrant_exit(log, tic);
0437     xlog_verify_grant_tail(log);
0438     return 0;
0439 
0440 out_error:
0441     /*
0442      * If we are failing, make sure the ticket doesn't have any current
0443      * reservations.  We don't want to add this back when the ticket/
0444      * transaction gets cancelled.
0445      */
0446     tic->t_curr_res = 0;
0447     tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
0448     return error;
0449 }
0450 
0451 /*
0452  * Reserve log space and return a ticket corresponding to the reservation.
0453  *
0454  * Each reservation is going to reserve extra space for a log record header.
0455  * When writes happen to the on-disk log, we don't subtract the length of the
0456  * log record header from any reservation.  By wasting space in each
0457  * reservation, we prevent over allocation problems.
0458  */
0459 int
0460 xfs_log_reserve(
0461     struct xfs_mount    *mp,
0462     int         unit_bytes,
0463     int         cnt,
0464     struct xlog_ticket  **ticp,
0465     bool            permanent)
0466 {
0467     struct xlog     *log = mp->m_log;
0468     struct xlog_ticket  *tic;
0469     int         need_bytes;
0470     int         error = 0;
0471 
0472     if (xlog_is_shutdown(log))
0473         return -EIO;
0474 
0475     XFS_STATS_INC(mp, xs_try_logspace);
0476 
0477     ASSERT(*ticp == NULL);
0478     tic = xlog_ticket_alloc(log, unit_bytes, cnt, permanent);
0479     *ticp = tic;
0480 
0481     xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
0482                         : tic->t_unit_res);
0483 
0484     trace_xfs_log_reserve(log, tic);
0485 
0486     error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
0487                       &need_bytes);
0488     if (error)
0489         goto out_error;
0490 
0491     xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
0492     xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
0493     trace_xfs_log_reserve_exit(log, tic);
0494     xlog_verify_grant_tail(log);
0495     return 0;
0496 
0497 out_error:
0498     /*
0499      * If we are failing, make sure the ticket doesn't have any current
0500      * reservations.  We don't want to add this back when the ticket/
0501      * transaction gets cancelled.
0502      */
0503     tic->t_curr_res = 0;
0504     tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
0505     return error;
0506 }
0507 
0508 /*
0509  * Run all the pending iclog callbacks and wake log force waiters and iclog
0510  * space waiters so they can process the newly set shutdown state. We really
0511  * don't care what order we process callbacks here because the log is shut down
0512  * and so state cannot change on disk anymore. However, we cannot wake waiters
0513  * until the callbacks have been processed because we may be in unmount and
0514  * we must ensure that all AIL operations the callbacks perform have completed
0515  * before we tear down the AIL.
0516  *
0517  * We avoid processing actively referenced iclogs so that we don't run callbacks
0518  * while the iclog owner might still be preparing the iclog for IO submssion.
0519  * These will be caught by xlog_state_iclog_release() and call this function
0520  * again to process any callbacks that may have been added to that iclog.
0521  */
0522 static void
0523 xlog_state_shutdown_callbacks(
0524     struct xlog     *log)
0525 {
0526     struct xlog_in_core *iclog;
0527     LIST_HEAD(cb_list);
0528 
0529     iclog = log->l_iclog;
0530     do {
0531         if (atomic_read(&iclog->ic_refcnt)) {
0532             /* Reference holder will re-run iclog callbacks. */
0533             continue;
0534         }
0535         list_splice_init(&iclog->ic_callbacks, &cb_list);
0536         spin_unlock(&log->l_icloglock);
0537 
0538         xlog_cil_process_committed(&cb_list);
0539 
0540         spin_lock(&log->l_icloglock);
0541         wake_up_all(&iclog->ic_write_wait);
0542         wake_up_all(&iclog->ic_force_wait);
0543     } while ((iclog = iclog->ic_next) != log->l_iclog);
0544 
0545     wake_up_all(&log->l_flush_wait);
0546 }
0547 
0548 /*
0549  * Flush iclog to disk if this is the last reference to the given iclog and the
0550  * it is in the WANT_SYNC state.
0551  *
0552  * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
0553  * log tail is updated correctly. NEED_FUA indicates that the iclog will be
0554  * written to stable storage, and implies that a commit record is contained
0555  * within the iclog. We need to ensure that the log tail does not move beyond
0556  * the tail that the first commit record in the iclog ordered against, otherwise
0557  * correct recovery of that checkpoint becomes dependent on future operations
0558  * performed on this iclog.
0559  *
0560  * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
0561  * current tail into iclog. Once the iclog tail is set, future operations must
0562  * not modify it, otherwise they potentially violate ordering constraints for
0563  * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
0564  * the iclog will get zeroed on activation of the iclog after sync, so we
0565  * always capture the tail lsn on the iclog on the first NEED_FUA release
0566  * regardless of the number of active reference counts on this iclog.
0567  */
0568 int
0569 xlog_state_release_iclog(
0570     struct xlog     *log,
0571     struct xlog_in_core *iclog,
0572     struct xlog_ticket  *ticket)
0573 {
0574     xfs_lsn_t       tail_lsn;
0575     bool            last_ref;
0576 
0577     lockdep_assert_held(&log->l_icloglock);
0578 
0579     trace_xlog_iclog_release(iclog, _RET_IP_);
0580     /*
0581      * Grabbing the current log tail needs to be atomic w.r.t. the writing
0582      * of the tail LSN into the iclog so we guarantee that the log tail does
0583      * not move between the first time we know that the iclog needs to be
0584      * made stable and when we eventually submit it.
0585      */
0586     if ((iclog->ic_state == XLOG_STATE_WANT_SYNC ||
0587          (iclog->ic_flags & XLOG_ICL_NEED_FUA)) &&
0588         !iclog->ic_header.h_tail_lsn) {
0589         tail_lsn = xlog_assign_tail_lsn(log->l_mp);
0590         iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
0591     }
0592 
0593     last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
0594 
0595     if (xlog_is_shutdown(log)) {
0596         /*
0597          * If there are no more references to this iclog, process the
0598          * pending iclog callbacks that were waiting on the release of
0599          * this iclog.
0600          */
0601         if (last_ref)
0602             xlog_state_shutdown_callbacks(log);
0603         return -EIO;
0604     }
0605 
0606     if (!last_ref)
0607         return 0;
0608 
0609     if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
0610         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
0611         return 0;
0612     }
0613 
0614     iclog->ic_state = XLOG_STATE_SYNCING;
0615     xlog_verify_tail_lsn(log, iclog);
0616     trace_xlog_iclog_syncing(iclog, _RET_IP_);
0617 
0618     spin_unlock(&log->l_icloglock);
0619     xlog_sync(log, iclog, ticket);
0620     spin_lock(&log->l_icloglock);
0621     return 0;
0622 }
0623 
0624 /*
0625  * Mount a log filesystem
0626  *
0627  * mp       - ubiquitous xfs mount point structure
0628  * log_target   - buftarg of on-disk log device
0629  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
0630  * num_bblocks  - Number of BBSIZE blocks in on-disk log
0631  *
0632  * Return error or zero.
0633  */
0634 int
0635 xfs_log_mount(
0636     xfs_mount_t *mp,
0637     xfs_buftarg_t   *log_target,
0638     xfs_daddr_t blk_offset,
0639     int     num_bblks)
0640 {
0641     struct xlog *log;
0642     bool        fatal = xfs_has_crc(mp);
0643     int     error = 0;
0644     int     min_logfsbs;
0645 
0646     if (!xfs_has_norecovery(mp)) {
0647         xfs_notice(mp, "Mounting V%d Filesystem",
0648                XFS_SB_VERSION_NUM(&mp->m_sb));
0649     } else {
0650         xfs_notice(mp,
0651 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
0652                XFS_SB_VERSION_NUM(&mp->m_sb));
0653         ASSERT(xfs_is_readonly(mp));
0654     }
0655 
0656     log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
0657     if (IS_ERR(log)) {
0658         error = PTR_ERR(log);
0659         goto out;
0660     }
0661     mp->m_log = log;
0662 
0663     /*
0664      * Validate the given log space and drop a critical message via syslog
0665      * if the log size is too small that would lead to some unexpected
0666      * situations in transaction log space reservation stage.
0667      *
0668      * Note: we can't just reject the mount if the validation fails.  This
0669      * would mean that people would have to downgrade their kernel just to
0670      * remedy the situation as there is no way to grow the log (short of
0671      * black magic surgery with xfs_db).
0672      *
0673      * We can, however, reject mounts for CRC format filesystems, as the
0674      * mkfs binary being used to make the filesystem should never create a
0675      * filesystem with a log that is too small.
0676      */
0677     min_logfsbs = xfs_log_calc_minimum_size(mp);
0678 
0679     if (mp->m_sb.sb_logblocks < min_logfsbs) {
0680         xfs_warn(mp,
0681         "Log size %d blocks too small, minimum size is %d blocks",
0682              mp->m_sb.sb_logblocks, min_logfsbs);
0683         error = -EINVAL;
0684     } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
0685         xfs_warn(mp,
0686         "Log size %d blocks too large, maximum size is %lld blocks",
0687              mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
0688         error = -EINVAL;
0689     } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
0690         xfs_warn(mp,
0691         "log size %lld bytes too large, maximum size is %lld bytes",
0692              XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
0693              XFS_MAX_LOG_BYTES);
0694         error = -EINVAL;
0695     } else if (mp->m_sb.sb_logsunit > 1 &&
0696            mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
0697         xfs_warn(mp,
0698         "log stripe unit %u bytes must be a multiple of block size",
0699              mp->m_sb.sb_logsunit);
0700         error = -EINVAL;
0701         fatal = true;
0702     }
0703     if (error) {
0704         /*
0705          * Log check errors are always fatal on v5; or whenever bad
0706          * metadata leads to a crash.
0707          */
0708         if (fatal) {
0709             xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
0710             ASSERT(0);
0711             goto out_free_log;
0712         }
0713         xfs_crit(mp, "Log size out of supported range.");
0714         xfs_crit(mp,
0715 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
0716     }
0717 
0718     /*
0719      * Initialize the AIL now we have a log.
0720      */
0721     error = xfs_trans_ail_init(mp);
0722     if (error) {
0723         xfs_warn(mp, "AIL initialisation failed: error %d", error);
0724         goto out_free_log;
0725     }
0726     log->l_ailp = mp->m_ail;
0727 
0728     /*
0729      * skip log recovery on a norecovery mount.  pretend it all
0730      * just worked.
0731      */
0732     if (!xfs_has_norecovery(mp)) {
0733         /*
0734          * log recovery ignores readonly state and so we need to clear
0735          * mount-based read only state so it can write to disk.
0736          */
0737         bool    readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
0738                         &mp->m_opstate);
0739         error = xlog_recover(log);
0740         if (readonly)
0741             set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
0742         if (error) {
0743             xfs_warn(mp, "log mount/recovery failed: error %d",
0744                 error);
0745             xlog_recover_cancel(log);
0746             goto out_destroy_ail;
0747         }
0748     }
0749 
0750     error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
0751                    "log");
0752     if (error)
0753         goto out_destroy_ail;
0754 
0755     /* Normal transactions can now occur */
0756     clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
0757 
0758     /*
0759      * Now the log has been fully initialised and we know were our
0760      * space grant counters are, we can initialise the permanent ticket
0761      * needed for delayed logging to work.
0762      */
0763     xlog_cil_init_post_recovery(log);
0764 
0765     return 0;
0766 
0767 out_destroy_ail:
0768     xfs_trans_ail_destroy(mp);
0769 out_free_log:
0770     xlog_dealloc_log(log);
0771 out:
0772     return error;
0773 }
0774 
0775 /*
0776  * Finish the recovery of the file system.  This is separate from the
0777  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
0778  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
0779  * here.
0780  *
0781  * If we finish recovery successfully, start the background log work. If we are
0782  * not doing recovery, then we have a RO filesystem and we don't need to start
0783  * it.
0784  */
0785 int
0786 xfs_log_mount_finish(
0787     struct xfs_mount    *mp)
0788 {
0789     struct xlog     *log = mp->m_log;
0790     bool            readonly;
0791     int         error = 0;
0792 
0793     if (xfs_has_norecovery(mp)) {
0794         ASSERT(xfs_is_readonly(mp));
0795         return 0;
0796     }
0797 
0798     /*
0799      * log recovery ignores readonly state and so we need to clear
0800      * mount-based read only state so it can write to disk.
0801      */
0802     readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
0803 
0804     /*
0805      * During the second phase of log recovery, we need iget and
0806      * iput to behave like they do for an active filesystem.
0807      * xfs_fs_drop_inode needs to be able to prevent the deletion
0808      * of inodes before we're done replaying log items on those
0809      * inodes.  Turn it off immediately after recovery finishes
0810      * so that we don't leak the quota inodes if subsequent mount
0811      * activities fail.
0812      *
0813      * We let all inodes involved in redo item processing end up on
0814      * the LRU instead of being evicted immediately so that if we do
0815      * something to an unlinked inode, the irele won't cause
0816      * premature truncation and freeing of the inode, which results
0817      * in log recovery failure.  We have to evict the unreferenced
0818      * lru inodes after clearing SB_ACTIVE because we don't
0819      * otherwise clean up the lru if there's a subsequent failure in
0820      * xfs_mountfs, which leads to us leaking the inodes if nothing
0821      * else (e.g. quotacheck) references the inodes before the
0822      * mount failure occurs.
0823      */
0824     mp->m_super->s_flags |= SB_ACTIVE;
0825     xfs_log_work_queue(mp);
0826     if (xlog_recovery_needed(log))
0827         error = xlog_recover_finish(log);
0828     mp->m_super->s_flags &= ~SB_ACTIVE;
0829     evict_inodes(mp->m_super);
0830 
0831     /*
0832      * Drain the buffer LRU after log recovery. This is required for v4
0833      * filesystems to avoid leaving around buffers with NULL verifier ops,
0834      * but we do it unconditionally to make sure we're always in a clean
0835      * cache state after mount.
0836      *
0837      * Don't push in the error case because the AIL may have pending intents
0838      * that aren't removed until recovery is cancelled.
0839      */
0840     if (xlog_recovery_needed(log)) {
0841         if (!error) {
0842             xfs_log_force(mp, XFS_LOG_SYNC);
0843             xfs_ail_push_all_sync(mp->m_ail);
0844         }
0845         xfs_notice(mp, "Ending recovery (logdev: %s)",
0846                 mp->m_logname ? mp->m_logname : "internal");
0847     } else {
0848         xfs_info(mp, "Ending clean mount");
0849     }
0850     xfs_buftarg_drain(mp->m_ddev_targp);
0851 
0852     clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
0853     if (readonly)
0854         set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
0855 
0856     /* Make sure the log is dead if we're returning failure. */
0857     ASSERT(!error || xlog_is_shutdown(log));
0858 
0859     return error;
0860 }
0861 
0862 /*
0863  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
0864  * the log.
0865  */
0866 void
0867 xfs_log_mount_cancel(
0868     struct xfs_mount    *mp)
0869 {
0870     xlog_recover_cancel(mp->m_log);
0871     xfs_log_unmount(mp);
0872 }
0873 
0874 /*
0875  * Flush out the iclog to disk ensuring that device caches are flushed and
0876  * the iclog hits stable storage before any completion waiters are woken.
0877  */
0878 static inline int
0879 xlog_force_iclog(
0880     struct xlog_in_core *iclog)
0881 {
0882     atomic_inc(&iclog->ic_refcnt);
0883     iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
0884     if (iclog->ic_state == XLOG_STATE_ACTIVE)
0885         xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
0886     return xlog_state_release_iclog(iclog->ic_log, iclog, NULL);
0887 }
0888 
0889 /*
0890  * Wait for the iclog and all prior iclogs to be written disk as required by the
0891  * log force state machine. Waiting on ic_force_wait ensures iclog completions
0892  * have been ordered and callbacks run before we are woken here, hence
0893  * guaranteeing that all the iclogs up to this one are on stable storage.
0894  */
0895 int
0896 xlog_wait_on_iclog(
0897     struct xlog_in_core *iclog)
0898         __releases(iclog->ic_log->l_icloglock)
0899 {
0900     struct xlog     *log = iclog->ic_log;
0901 
0902     trace_xlog_iclog_wait_on(iclog, _RET_IP_);
0903     if (!xlog_is_shutdown(log) &&
0904         iclog->ic_state != XLOG_STATE_ACTIVE &&
0905         iclog->ic_state != XLOG_STATE_DIRTY) {
0906         XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
0907         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
0908     } else {
0909         spin_unlock(&log->l_icloglock);
0910     }
0911 
0912     if (xlog_is_shutdown(log))
0913         return -EIO;
0914     return 0;
0915 }
0916 
0917 /*
0918  * Write out an unmount record using the ticket provided. We have to account for
0919  * the data space used in the unmount ticket as this write is not done from a
0920  * transaction context that has already done the accounting for us.
0921  */
0922 static int
0923 xlog_write_unmount_record(
0924     struct xlog     *log,
0925     struct xlog_ticket  *ticket)
0926 {
0927     struct  {
0928         struct xlog_op_header ophdr;
0929         struct xfs_unmount_log_format ulf;
0930     } unmount_rec = {
0931         .ophdr = {
0932             .oh_clientid = XFS_LOG,
0933             .oh_tid = cpu_to_be32(ticket->t_tid),
0934             .oh_flags = XLOG_UNMOUNT_TRANS,
0935         },
0936         .ulf = {
0937             .magic = XLOG_UNMOUNT_TYPE,
0938         },
0939     };
0940     struct xfs_log_iovec reg = {
0941         .i_addr = &unmount_rec,
0942         .i_len = sizeof(unmount_rec),
0943         .i_type = XLOG_REG_TYPE_UNMOUNT,
0944     };
0945     struct xfs_log_vec vec = {
0946         .lv_niovecs = 1,
0947         .lv_iovecp = &reg,
0948     };
0949     LIST_HEAD(lv_chain);
0950     list_add(&vec.lv_list, &lv_chain);
0951 
0952     BUILD_BUG_ON((sizeof(struct xlog_op_header) +
0953               sizeof(struct xfs_unmount_log_format)) !=
0954                             sizeof(unmount_rec));
0955 
0956     /* account for space used by record data */
0957     ticket->t_curr_res -= sizeof(unmount_rec);
0958 
0959     return xlog_write(log, NULL, &lv_chain, ticket, reg.i_len);
0960 }
0961 
0962 /*
0963  * Mark the filesystem clean by writing an unmount record to the head of the
0964  * log.
0965  */
0966 static void
0967 xlog_unmount_write(
0968     struct xlog     *log)
0969 {
0970     struct xfs_mount    *mp = log->l_mp;
0971     struct xlog_in_core *iclog;
0972     struct xlog_ticket  *tic = NULL;
0973     int         error;
0974 
0975     error = xfs_log_reserve(mp, 600, 1, &tic, 0);
0976     if (error)
0977         goto out_err;
0978 
0979     error = xlog_write_unmount_record(log, tic);
0980     /*
0981      * At this point, we're umounting anyway, so there's no point in
0982      * transitioning log state to shutdown. Just continue...
0983      */
0984 out_err:
0985     if (error)
0986         xfs_alert(mp, "%s: unmount record failed", __func__);
0987 
0988     spin_lock(&log->l_icloglock);
0989     iclog = log->l_iclog;
0990     error = xlog_force_iclog(iclog);
0991     xlog_wait_on_iclog(iclog);
0992 
0993     if (tic) {
0994         trace_xfs_log_umount_write(log, tic);
0995         xfs_log_ticket_ungrant(log, tic);
0996     }
0997 }
0998 
0999 static void
1000 xfs_log_unmount_verify_iclog(
1001     struct xlog     *log)
1002 {
1003     struct xlog_in_core *iclog = log->l_iclog;
1004 
1005     do {
1006         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
1007         ASSERT(iclog->ic_offset == 0);
1008     } while ((iclog = iclog->ic_next) != log->l_iclog);
1009 }
1010 
1011 /*
1012  * Unmount record used to have a string "Unmount filesystem--" in the
1013  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
1014  * We just write the magic number now since that particular field isn't
1015  * currently architecture converted and "Unmount" is a bit foo.
1016  * As far as I know, there weren't any dependencies on the old behaviour.
1017  */
1018 static void
1019 xfs_log_unmount_write(
1020     struct xfs_mount    *mp)
1021 {
1022     struct xlog     *log = mp->m_log;
1023 
1024     if (!xfs_log_writable(mp))
1025         return;
1026 
1027     xfs_log_force(mp, XFS_LOG_SYNC);
1028 
1029     if (xlog_is_shutdown(log))
1030         return;
1031 
1032     /*
1033      * If we think the summary counters are bad, avoid writing the unmount
1034      * record to force log recovery at next mount, after which the summary
1035      * counters will be recalculated.  Refer to xlog_check_unmount_rec for
1036      * more details.
1037      */
1038     if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1039             XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1040         xfs_alert(mp, "%s: will fix summary counters at next mount",
1041                 __func__);
1042         return;
1043     }
1044 
1045     xfs_log_unmount_verify_iclog(log);
1046     xlog_unmount_write(log);
1047 }
1048 
1049 /*
1050  * Empty the log for unmount/freeze.
1051  *
1052  * To do this, we first need to shut down the background log work so it is not
1053  * trying to cover the log as we clean up. We then need to unpin all objects in
1054  * the log so we can then flush them out. Once they have completed their IO and
1055  * run the callbacks removing themselves from the AIL, we can cover the log.
1056  */
1057 int
1058 xfs_log_quiesce(
1059     struct xfs_mount    *mp)
1060 {
1061     /*
1062      * Clear log incompat features since we're quiescing the log.  Report
1063      * failures, though it's not fatal to have a higher log feature
1064      * protection level than the log contents actually require.
1065      */
1066     if (xfs_clear_incompat_log_features(mp)) {
1067         int error;
1068 
1069         error = xfs_sync_sb(mp, false);
1070         if (error)
1071             xfs_warn(mp,
1072     "Failed to clear log incompat features on quiesce");
1073     }
1074 
1075     cancel_delayed_work_sync(&mp->m_log->l_work);
1076     xfs_log_force(mp, XFS_LOG_SYNC);
1077 
1078     /*
1079      * The superblock buffer is uncached and while xfs_ail_push_all_sync()
1080      * will push it, xfs_buftarg_wait() will not wait for it. Further,
1081      * xfs_buf_iowait() cannot be used because it was pushed with the
1082      * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1083      * the IO to complete.
1084      */
1085     xfs_ail_push_all_sync(mp->m_ail);
1086     xfs_buftarg_wait(mp->m_ddev_targp);
1087     xfs_buf_lock(mp->m_sb_bp);
1088     xfs_buf_unlock(mp->m_sb_bp);
1089 
1090     return xfs_log_cover(mp);
1091 }
1092 
1093 void
1094 xfs_log_clean(
1095     struct xfs_mount    *mp)
1096 {
1097     xfs_log_quiesce(mp);
1098     xfs_log_unmount_write(mp);
1099 }
1100 
1101 /*
1102  * Shut down and release the AIL and Log.
1103  *
1104  * During unmount, we need to ensure we flush all the dirty metadata objects
1105  * from the AIL so that the log is empty before we write the unmount record to
1106  * the log. Once this is done, we can tear down the AIL and the log.
1107  */
1108 void
1109 xfs_log_unmount(
1110     struct xfs_mount    *mp)
1111 {
1112     xfs_log_clean(mp);
1113 
1114     xfs_buftarg_drain(mp->m_ddev_targp);
1115 
1116     xfs_trans_ail_destroy(mp);
1117 
1118     xfs_sysfs_del(&mp->m_log->l_kobj);
1119 
1120     xlog_dealloc_log(mp->m_log);
1121 }
1122 
1123 void
1124 xfs_log_item_init(
1125     struct xfs_mount    *mp,
1126     struct xfs_log_item *item,
1127     int         type,
1128     const struct xfs_item_ops *ops)
1129 {
1130     item->li_log = mp->m_log;
1131     item->li_ailp = mp->m_ail;
1132     item->li_type = type;
1133     item->li_ops = ops;
1134     item->li_lv = NULL;
1135 
1136     INIT_LIST_HEAD(&item->li_ail);
1137     INIT_LIST_HEAD(&item->li_cil);
1138     INIT_LIST_HEAD(&item->li_bio_list);
1139     INIT_LIST_HEAD(&item->li_trans);
1140 }
1141 
1142 /*
1143  * Wake up processes waiting for log space after we have moved the log tail.
1144  */
1145 void
1146 xfs_log_space_wake(
1147     struct xfs_mount    *mp)
1148 {
1149     struct xlog     *log = mp->m_log;
1150     int         free_bytes;
1151 
1152     if (xlog_is_shutdown(log))
1153         return;
1154 
1155     if (!list_empty_careful(&log->l_write_head.waiters)) {
1156         ASSERT(!xlog_in_recovery(log));
1157 
1158         spin_lock(&log->l_write_head.lock);
1159         free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1160         xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1161         spin_unlock(&log->l_write_head.lock);
1162     }
1163 
1164     if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1165         ASSERT(!xlog_in_recovery(log));
1166 
1167         spin_lock(&log->l_reserve_head.lock);
1168         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1169         xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1170         spin_unlock(&log->l_reserve_head.lock);
1171     }
1172 }
1173 
1174 /*
1175  * Determine if we have a transaction that has gone to disk that needs to be
1176  * covered. To begin the transition to the idle state firstly the log needs to
1177  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1178  * we start attempting to cover the log.
1179  *
1180  * Only if we are then in a state where covering is needed, the caller is
1181  * informed that dummy transactions are required to move the log into the idle
1182  * state.
1183  *
1184  * If there are any items in the AIl or CIL, then we do not want to attempt to
1185  * cover the log as we may be in a situation where there isn't log space
1186  * available to run a dummy transaction and this can lead to deadlocks when the
1187  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1188  * there's no point in running a dummy transaction at this point because we
1189  * can't start trying to idle the log until both the CIL and AIL are empty.
1190  */
1191 static bool
1192 xfs_log_need_covered(
1193     struct xfs_mount    *mp)
1194 {
1195     struct xlog     *log = mp->m_log;
1196     bool            needed = false;
1197 
1198     if (!xlog_cil_empty(log))
1199         return false;
1200 
1201     spin_lock(&log->l_icloglock);
1202     switch (log->l_covered_state) {
1203     case XLOG_STATE_COVER_DONE:
1204     case XLOG_STATE_COVER_DONE2:
1205     case XLOG_STATE_COVER_IDLE:
1206         break;
1207     case XLOG_STATE_COVER_NEED:
1208     case XLOG_STATE_COVER_NEED2:
1209         if (xfs_ail_min_lsn(log->l_ailp))
1210             break;
1211         if (!xlog_iclogs_empty(log))
1212             break;
1213 
1214         needed = true;
1215         if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1216             log->l_covered_state = XLOG_STATE_COVER_DONE;
1217         else
1218             log->l_covered_state = XLOG_STATE_COVER_DONE2;
1219         break;
1220     default:
1221         needed = true;
1222         break;
1223     }
1224     spin_unlock(&log->l_icloglock);
1225     return needed;
1226 }
1227 
1228 /*
1229  * Explicitly cover the log. This is similar to background log covering but
1230  * intended for usage in quiesce codepaths. The caller is responsible to ensure
1231  * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1232  * must all be empty.
1233  */
1234 static int
1235 xfs_log_cover(
1236     struct xfs_mount    *mp)
1237 {
1238     int         error = 0;
1239     bool            need_covered;
1240 
1241     ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1242             !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
1243         xlog_is_shutdown(mp->m_log));
1244 
1245     if (!xfs_log_writable(mp))
1246         return 0;
1247 
1248     /*
1249      * xfs_log_need_covered() is not idempotent because it progresses the
1250      * state machine if the log requires covering. Therefore, we must call
1251      * this function once and use the result until we've issued an sb sync.
1252      * Do so first to make that abundantly clear.
1253      *
1254      * Fall into the covering sequence if the log needs covering or the
1255      * mount has lazy superblock accounting to sync to disk. The sb sync
1256      * used for covering accumulates the in-core counters, so covering
1257      * handles this for us.
1258      */
1259     need_covered = xfs_log_need_covered(mp);
1260     if (!need_covered && !xfs_has_lazysbcount(mp))
1261         return 0;
1262 
1263     /*
1264      * To cover the log, commit the superblock twice (at most) in
1265      * independent checkpoints. The first serves as a reference for the
1266      * tail pointer. The sync transaction and AIL push empties the AIL and
1267      * updates the in-core tail to the LSN of the first checkpoint. The
1268      * second commit updates the on-disk tail with the in-core LSN,
1269      * covering the log. Push the AIL one more time to leave it empty, as
1270      * we found it.
1271      */
1272     do {
1273         error = xfs_sync_sb(mp, true);
1274         if (error)
1275             break;
1276         xfs_ail_push_all_sync(mp->m_ail);
1277     } while (xfs_log_need_covered(mp));
1278 
1279     return error;
1280 }
1281 
1282 /*
1283  * We may be holding the log iclog lock upon entering this routine.
1284  */
1285 xfs_lsn_t
1286 xlog_assign_tail_lsn_locked(
1287     struct xfs_mount    *mp)
1288 {
1289     struct xlog     *log = mp->m_log;
1290     struct xfs_log_item *lip;
1291     xfs_lsn_t       tail_lsn;
1292 
1293     assert_spin_locked(&mp->m_ail->ail_lock);
1294 
1295     /*
1296      * To make sure we always have a valid LSN for the log tail we keep
1297      * track of the last LSN which was committed in log->l_last_sync_lsn,
1298      * and use that when the AIL was empty.
1299      */
1300     lip = xfs_ail_min(mp->m_ail);
1301     if (lip)
1302         tail_lsn = lip->li_lsn;
1303     else
1304         tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1305     trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1306     atomic64_set(&log->l_tail_lsn, tail_lsn);
1307     return tail_lsn;
1308 }
1309 
1310 xfs_lsn_t
1311 xlog_assign_tail_lsn(
1312     struct xfs_mount    *mp)
1313 {
1314     xfs_lsn_t       tail_lsn;
1315 
1316     spin_lock(&mp->m_ail->ail_lock);
1317     tail_lsn = xlog_assign_tail_lsn_locked(mp);
1318     spin_unlock(&mp->m_ail->ail_lock);
1319 
1320     return tail_lsn;
1321 }
1322 
1323 /*
1324  * Return the space in the log between the tail and the head.  The head
1325  * is passed in the cycle/bytes formal parms.  In the special case where
1326  * the reserve head has wrapped passed the tail, this calculation is no
1327  * longer valid.  In this case, just return 0 which means there is no space
1328  * in the log.  This works for all places where this function is called
1329  * with the reserve head.  Of course, if the write head were to ever
1330  * wrap the tail, we should blow up.  Rather than catch this case here,
1331  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1332  *
1333  * If reservation head is behind the tail, we have a problem. Warn about it,
1334  * but then treat it as if the log is empty.
1335  *
1336  * If the log is shut down, the head and tail may be invalid or out of whack, so
1337  * shortcut invalidity asserts in this case so that we don't trigger them
1338  * falsely.
1339  */
1340 STATIC int
1341 xlog_space_left(
1342     struct xlog *log,
1343     atomic64_t  *head)
1344 {
1345     int     tail_bytes;
1346     int     tail_cycle;
1347     int     head_cycle;
1348     int     head_bytes;
1349 
1350     xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1351     xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1352     tail_bytes = BBTOB(tail_bytes);
1353     if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1354         return log->l_logsize - (head_bytes - tail_bytes);
1355     if (tail_cycle + 1 < head_cycle)
1356         return 0;
1357 
1358     /* Ignore potential inconsistency when shutdown. */
1359     if (xlog_is_shutdown(log))
1360         return log->l_logsize;
1361 
1362     if (tail_cycle < head_cycle) {
1363         ASSERT(tail_cycle == (head_cycle - 1));
1364         return tail_bytes - head_bytes;
1365     }
1366 
1367     /*
1368      * The reservation head is behind the tail. In this case we just want to
1369      * return the size of the log as the amount of space left.
1370      */
1371     xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1372     xfs_alert(log->l_mp, "  tail_cycle = %d, tail_bytes = %d",
1373           tail_cycle, tail_bytes);
1374     xfs_alert(log->l_mp, "  GH   cycle = %d, GH   bytes = %d",
1375           head_cycle, head_bytes);
1376     ASSERT(0);
1377     return log->l_logsize;
1378 }
1379 
1380 
1381 static void
1382 xlog_ioend_work(
1383     struct work_struct  *work)
1384 {
1385     struct xlog_in_core     *iclog =
1386         container_of(work, struct xlog_in_core, ic_end_io_work);
1387     struct xlog     *log = iclog->ic_log;
1388     int         error;
1389 
1390     error = blk_status_to_errno(iclog->ic_bio.bi_status);
1391 #ifdef DEBUG
1392     /* treat writes with injected CRC errors as failed */
1393     if (iclog->ic_fail_crc)
1394         error = -EIO;
1395 #endif
1396 
1397     /*
1398      * Race to shutdown the filesystem if we see an error.
1399      */
1400     if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1401         xfs_alert(log->l_mp, "log I/O error %d", error);
1402         xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1403     }
1404 
1405     xlog_state_done_syncing(iclog);
1406     bio_uninit(&iclog->ic_bio);
1407 
1408     /*
1409      * Drop the lock to signal that we are done. Nothing references the
1410      * iclog after this, so an unmount waiting on this lock can now tear it
1411      * down safely. As such, it is unsafe to reference the iclog after the
1412      * unlock as we could race with it being freed.
1413      */
1414     up(&iclog->ic_sema);
1415 }
1416 
1417 /*
1418  * Return size of each in-core log record buffer.
1419  *
1420  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1421  *
1422  * If the filesystem blocksize is too large, we may need to choose a
1423  * larger size since the directory code currently logs entire blocks.
1424  */
1425 STATIC void
1426 xlog_get_iclog_buffer_size(
1427     struct xfs_mount    *mp,
1428     struct xlog     *log)
1429 {
1430     if (mp->m_logbufs <= 0)
1431         mp->m_logbufs = XLOG_MAX_ICLOGS;
1432     if (mp->m_logbsize <= 0)
1433         mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1434 
1435     log->l_iclog_bufs = mp->m_logbufs;
1436     log->l_iclog_size = mp->m_logbsize;
1437 
1438     /*
1439      * # headers = size / 32k - one header holds cycles from 32k of data.
1440      */
1441     log->l_iclog_heads =
1442         DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1443     log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1444 }
1445 
1446 void
1447 xfs_log_work_queue(
1448     struct xfs_mount        *mp)
1449 {
1450     queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1451                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1452 }
1453 
1454 /*
1455  * Clear the log incompat flags if we have the opportunity.
1456  *
1457  * This only happens if we're about to log the second dummy transaction as part
1458  * of covering the log and we can get the log incompat feature usage lock.
1459  */
1460 static inline void
1461 xlog_clear_incompat(
1462     struct xlog     *log)
1463 {
1464     struct xfs_mount    *mp = log->l_mp;
1465 
1466     if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1467                 XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1468         return;
1469 
1470     if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1471         return;
1472 
1473     if (!down_write_trylock(&log->l_incompat_users))
1474         return;
1475 
1476     xfs_clear_incompat_log_features(mp);
1477     up_write(&log->l_incompat_users);
1478 }
1479 
1480 /*
1481  * Every sync period we need to unpin all items in the AIL and push them to
1482  * disk. If there is nothing dirty, then we might need to cover the log to
1483  * indicate that the filesystem is idle.
1484  */
1485 static void
1486 xfs_log_worker(
1487     struct work_struct  *work)
1488 {
1489     struct xlog     *log = container_of(to_delayed_work(work),
1490                         struct xlog, l_work);
1491     struct xfs_mount    *mp = log->l_mp;
1492 
1493     /* dgc: errors ignored - not fatal and nowhere to report them */
1494     if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
1495         /*
1496          * Dump a transaction into the log that contains no real change.
1497          * This is needed to stamp the current tail LSN into the log
1498          * during the covering operation.
1499          *
1500          * We cannot use an inode here for this - that will push dirty
1501          * state back up into the VFS and then periodic inode flushing
1502          * will prevent log covering from making progress. Hence we
1503          * synchronously log the superblock instead to ensure the
1504          * superblock is immediately unpinned and can be written back.
1505          */
1506         xlog_clear_incompat(log);
1507         xfs_sync_sb(mp, true);
1508     } else
1509         xfs_log_force(mp, 0);
1510 
1511     /* start pushing all the metadata that is currently dirty */
1512     xfs_ail_push_all(mp->m_ail);
1513 
1514     /* queue us up again */
1515     xfs_log_work_queue(mp);
1516 }
1517 
1518 /*
1519  * This routine initializes some of the log structure for a given mount point.
1520  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1521  * some other stuff may be filled in too.
1522  */
1523 STATIC struct xlog *
1524 xlog_alloc_log(
1525     struct xfs_mount    *mp,
1526     struct xfs_buftarg  *log_target,
1527     xfs_daddr_t     blk_offset,
1528     int         num_bblks)
1529 {
1530     struct xlog     *log;
1531     xlog_rec_header_t   *head;
1532     xlog_in_core_t      **iclogp;
1533     xlog_in_core_t      *iclog, *prev_iclog=NULL;
1534     int         i;
1535     int         error = -ENOMEM;
1536     uint            log2_size = 0;
1537 
1538     log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1539     if (!log) {
1540         xfs_warn(mp, "Log allocation failed: No memory!");
1541         goto out;
1542     }
1543 
1544     log->l_mp      = mp;
1545     log->l_targ    = log_target;
1546     log->l_logsize     = BBTOB(num_bblks);
1547     log->l_logBBstart  = blk_offset;
1548     log->l_logBBsize   = num_bblks;
1549     log->l_covered_state = XLOG_STATE_COVER_IDLE;
1550     set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1551     INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1552 
1553     log->l_prev_block  = -1;
1554     /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1555     xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1556     xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1557     log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1558 
1559     if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
1560         log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1561     else
1562         log->l_iclog_roundoff = BBSIZE;
1563 
1564     xlog_grant_head_init(&log->l_reserve_head);
1565     xlog_grant_head_init(&log->l_write_head);
1566 
1567     error = -EFSCORRUPTED;
1568     if (xfs_has_sector(mp)) {
1569             log2_size = mp->m_sb.sb_logsectlog;
1570         if (log2_size < BBSHIFT) {
1571             xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1572                 log2_size, BBSHIFT);
1573             goto out_free_log;
1574         }
1575 
1576             log2_size -= BBSHIFT;
1577         if (log2_size > mp->m_sectbb_log) {
1578             xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1579                 log2_size, mp->m_sectbb_log);
1580             goto out_free_log;
1581         }
1582 
1583         /* for larger sector sizes, must have v2 or external log */
1584         if (log2_size && log->l_logBBstart > 0 &&
1585                 !xfs_has_logv2(mp)) {
1586             xfs_warn(mp,
1587         "log sector size (0x%x) invalid for configuration.",
1588                 log2_size);
1589             goto out_free_log;
1590         }
1591     }
1592     log->l_sectBBsize = 1 << log2_size;
1593 
1594     init_rwsem(&log->l_incompat_users);
1595 
1596     xlog_get_iclog_buffer_size(mp, log);
1597 
1598     spin_lock_init(&log->l_icloglock);
1599     init_waitqueue_head(&log->l_flush_wait);
1600 
1601     iclogp = &log->l_iclog;
1602     /*
1603      * The amount of memory to allocate for the iclog structure is
1604      * rather funky due to the way the structure is defined.  It is
1605      * done this way so that we can use different sizes for machines
1606      * with different amounts of memory.  See the definition of
1607      * xlog_in_core_t in xfs_log_priv.h for details.
1608      */
1609     ASSERT(log->l_iclog_size >= 4096);
1610     for (i = 0; i < log->l_iclog_bufs; i++) {
1611         size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1612                 sizeof(struct bio_vec);
1613 
1614         iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1615         if (!iclog)
1616             goto out_free_iclog;
1617 
1618         *iclogp = iclog;
1619         iclog->ic_prev = prev_iclog;
1620         prev_iclog = iclog;
1621 
1622         iclog->ic_data = kvzalloc(log->l_iclog_size,
1623                 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1624         if (!iclog->ic_data)
1625             goto out_free_iclog;
1626         head = &iclog->ic_header;
1627         memset(head, 0, sizeof(xlog_rec_header_t));
1628         head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1629         head->h_version = cpu_to_be32(
1630             xfs_has_logv2(log->l_mp) ? 2 : 1);
1631         head->h_size = cpu_to_be32(log->l_iclog_size);
1632         /* new fields */
1633         head->h_fmt = cpu_to_be32(XLOG_FMT);
1634         memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1635 
1636         iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1637         iclog->ic_state = XLOG_STATE_ACTIVE;
1638         iclog->ic_log = log;
1639         atomic_set(&iclog->ic_refcnt, 0);
1640         INIT_LIST_HEAD(&iclog->ic_callbacks);
1641         iclog->ic_datap = (void *)iclog->ic_data + log->l_iclog_hsize;
1642 
1643         init_waitqueue_head(&iclog->ic_force_wait);
1644         init_waitqueue_head(&iclog->ic_write_wait);
1645         INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1646         sema_init(&iclog->ic_sema, 1);
1647 
1648         iclogp = &iclog->ic_next;
1649     }
1650     *iclogp = log->l_iclog;         /* complete ring */
1651     log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1652 
1653     log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1654             XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1655                     WQ_HIGHPRI),
1656             0, mp->m_super->s_id);
1657     if (!log->l_ioend_workqueue)
1658         goto out_free_iclog;
1659 
1660     error = xlog_cil_init(log);
1661     if (error)
1662         goto out_destroy_workqueue;
1663     return log;
1664 
1665 out_destroy_workqueue:
1666     destroy_workqueue(log->l_ioend_workqueue);
1667 out_free_iclog:
1668     for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1669         prev_iclog = iclog->ic_next;
1670         kmem_free(iclog->ic_data);
1671         kmem_free(iclog);
1672         if (prev_iclog == log->l_iclog)
1673             break;
1674     }
1675 out_free_log:
1676     kmem_free(log);
1677 out:
1678     return ERR_PTR(error);
1679 }   /* xlog_alloc_log */
1680 
1681 /*
1682  * Compute the LSN that we'd need to push the log tail towards in order to have
1683  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1684  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1685  * log free space already meets all three thresholds, this function returns
1686  * NULLCOMMITLSN.
1687  */
1688 xfs_lsn_t
1689 xlog_grant_push_threshold(
1690     struct xlog *log,
1691     int     need_bytes)
1692 {
1693     xfs_lsn_t   threshold_lsn = 0;
1694     xfs_lsn_t   last_sync_lsn;
1695     int     free_blocks;
1696     int     free_bytes;
1697     int     threshold_block;
1698     int     threshold_cycle;
1699     int     free_threshold;
1700 
1701     ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1702 
1703     free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1704     free_blocks = BTOBBT(free_bytes);
1705 
1706     /*
1707      * Set the threshold for the minimum number of free blocks in the
1708      * log to the maximum of what the caller needs, one quarter of the
1709      * log, and 256 blocks.
1710      */
1711     free_threshold = BTOBB(need_bytes);
1712     free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1713     free_threshold = max(free_threshold, 256);
1714     if (free_blocks >= free_threshold)
1715         return NULLCOMMITLSN;
1716 
1717     xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1718                         &threshold_block);
1719     threshold_block += free_threshold;
1720     if (threshold_block >= log->l_logBBsize) {
1721         threshold_block -= log->l_logBBsize;
1722         threshold_cycle += 1;
1723     }
1724     threshold_lsn = xlog_assign_lsn(threshold_cycle,
1725                     threshold_block);
1726     /*
1727      * Don't pass in an lsn greater than the lsn of the last
1728      * log record known to be on disk. Use a snapshot of the last sync lsn
1729      * so that it doesn't change between the compare and the set.
1730      */
1731     last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1732     if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1733         threshold_lsn = last_sync_lsn;
1734 
1735     return threshold_lsn;
1736 }
1737 
1738 /*
1739  * Push the tail of the log if we need to do so to maintain the free log space
1740  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1741  * policy which pushes on an lsn which is further along in the log once we
1742  * reach the high water mark.  In this manner, we would be creating a low water
1743  * mark.
1744  */
1745 STATIC void
1746 xlog_grant_push_ail(
1747     struct xlog *log,
1748     int     need_bytes)
1749 {
1750     xfs_lsn_t   threshold_lsn;
1751 
1752     threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1753     if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
1754         return;
1755 
1756     /*
1757      * Get the transaction layer to kick the dirty buffers out to
1758      * disk asynchronously. No point in trying to do this if
1759      * the filesystem is shutting down.
1760      */
1761     xfs_ail_push(log->l_ailp, threshold_lsn);
1762 }
1763 
1764 /*
1765  * Stamp cycle number in every block
1766  */
1767 STATIC void
1768 xlog_pack_data(
1769     struct xlog     *log,
1770     struct xlog_in_core *iclog,
1771     int         roundoff)
1772 {
1773     int         i, j, k;
1774     int         size = iclog->ic_offset + roundoff;
1775     __be32          cycle_lsn;
1776     char            *dp;
1777 
1778     cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1779 
1780     dp = iclog->ic_datap;
1781     for (i = 0; i < BTOBB(size); i++) {
1782         if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1783             break;
1784         iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1785         *(__be32 *)dp = cycle_lsn;
1786         dp += BBSIZE;
1787     }
1788 
1789     if (xfs_has_logv2(log->l_mp)) {
1790         xlog_in_core_2_t *xhdr = iclog->ic_data;
1791 
1792         for ( ; i < BTOBB(size); i++) {
1793             j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1794             k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1795             xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1796             *(__be32 *)dp = cycle_lsn;
1797             dp += BBSIZE;
1798         }
1799 
1800         for (i = 1; i < log->l_iclog_heads; i++)
1801             xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1802     }
1803 }
1804 
1805 /*
1806  * Calculate the checksum for a log buffer.
1807  *
1808  * This is a little more complicated than it should be because the various
1809  * headers and the actual data are non-contiguous.
1810  */
1811 __le32
1812 xlog_cksum(
1813     struct xlog     *log,
1814     struct xlog_rec_header  *rhead,
1815     char            *dp,
1816     int         size)
1817 {
1818     uint32_t        crc;
1819 
1820     /* first generate the crc for the record header ... */
1821     crc = xfs_start_cksum_update((char *)rhead,
1822                   sizeof(struct xlog_rec_header),
1823                   offsetof(struct xlog_rec_header, h_crc));
1824 
1825     /* ... then for additional cycle data for v2 logs ... */
1826     if (xfs_has_logv2(log->l_mp)) {
1827         union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1828         int     i;
1829         int     xheads;
1830 
1831         xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1832 
1833         for (i = 1; i < xheads; i++) {
1834             crc = crc32c(crc, &xhdr[i].hic_xheader,
1835                      sizeof(struct xlog_rec_ext_header));
1836         }
1837     }
1838 
1839     /* ... and finally for the payload */
1840     crc = crc32c(crc, dp, size);
1841 
1842     return xfs_end_cksum(crc);
1843 }
1844 
1845 static void
1846 xlog_bio_end_io(
1847     struct bio      *bio)
1848 {
1849     struct xlog_in_core *iclog = bio->bi_private;
1850 
1851     queue_work(iclog->ic_log->l_ioend_workqueue,
1852            &iclog->ic_end_io_work);
1853 }
1854 
1855 static int
1856 xlog_map_iclog_data(
1857     struct bio      *bio,
1858     void            *data,
1859     size_t          count)
1860 {
1861     do {
1862         struct page *page = kmem_to_page(data);
1863         unsigned int    off = offset_in_page(data);
1864         size_t      len = min_t(size_t, count, PAGE_SIZE - off);
1865 
1866         if (bio_add_page(bio, page, len, off) != len)
1867             return -EIO;
1868 
1869         data += len;
1870         count -= len;
1871     } while (count);
1872 
1873     return 0;
1874 }
1875 
1876 STATIC void
1877 xlog_write_iclog(
1878     struct xlog     *log,
1879     struct xlog_in_core *iclog,
1880     uint64_t        bno,
1881     unsigned int        count)
1882 {
1883     ASSERT(bno < log->l_logBBsize);
1884     trace_xlog_iclog_write(iclog, _RET_IP_);
1885 
1886     /*
1887      * We lock the iclogbufs here so that we can serialise against I/O
1888      * completion during unmount.  We might be processing a shutdown
1889      * triggered during unmount, and that can occur asynchronously to the
1890      * unmount thread, and hence we need to ensure that completes before
1891      * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1892      * across the log IO to archieve that.
1893      */
1894     down(&iclog->ic_sema);
1895     if (xlog_is_shutdown(log)) {
1896         /*
1897          * It would seem logical to return EIO here, but we rely on
1898          * the log state machine to propagate I/O errors instead of
1899          * doing it here.  We kick of the state machine and unlock
1900          * the buffer manually, the code needs to be kept in sync
1901          * with the I/O completion path.
1902          */
1903         xlog_state_done_syncing(iclog);
1904         up(&iclog->ic_sema);
1905         return;
1906     }
1907 
1908     /*
1909      * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1910      * IOs coming immediately after this one. This prevents the block layer
1911      * writeback throttle from throttling log writes behind background
1912      * metadata writeback and causing priority inversions.
1913      */
1914     bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1915          howmany(count, PAGE_SIZE),
1916          REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1917     iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1918     iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1919     iclog->ic_bio.bi_private = iclog;
1920 
1921     if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
1922         iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1923         /*
1924          * For external log devices, we also need to flush the data
1925          * device cache first to ensure all metadata writeback covered
1926          * by the LSN in this iclog is on stable storage. This is slow,
1927          * but it *must* complete before we issue the external log IO.
1928          *
1929          * If the flush fails, we cannot conclude that past metadata
1930          * writeback from the log succeeded.  Repeating the flush is
1931          * not possible, hence we must shut down with log IO error to
1932          * avoid shutdown re-entering this path and erroring out again.
1933          */
1934         if (log->l_targ != log->l_mp->m_ddev_targp &&
1935             blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev)) {
1936             xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1937             return;
1938         }
1939     }
1940     if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1941         iclog->ic_bio.bi_opf |= REQ_FUA;
1942 
1943     iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
1944 
1945     if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1946         xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
1947         return;
1948     }
1949     if (is_vmalloc_addr(iclog->ic_data))
1950         flush_kernel_vmap_range(iclog->ic_data, count);
1951 
1952     /*
1953      * If this log buffer would straddle the end of the log we will have
1954      * to split it up into two bios, so that we can continue at the start.
1955      */
1956     if (bno + BTOBB(count) > log->l_logBBsize) {
1957         struct bio *split;
1958 
1959         split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1960                   GFP_NOIO, &fs_bio_set);
1961         bio_chain(split, &iclog->ic_bio);
1962         submit_bio(split);
1963 
1964         /* restart at logical offset zero for the remainder */
1965         iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1966     }
1967 
1968     submit_bio(&iclog->ic_bio);
1969 }
1970 
1971 /*
1972  * We need to bump cycle number for the part of the iclog that is
1973  * written to the start of the log. Watch out for the header magic
1974  * number case, though.
1975  */
1976 static void
1977 xlog_split_iclog(
1978     struct xlog     *log,
1979     void            *data,
1980     uint64_t        bno,
1981     unsigned int        count)
1982 {
1983     unsigned int        split_offset = BBTOB(log->l_logBBsize - bno);
1984     unsigned int        i;
1985 
1986     for (i = split_offset; i < count; i += BBSIZE) {
1987         uint32_t cycle = get_unaligned_be32(data + i);
1988 
1989         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1990             cycle++;
1991         put_unaligned_be32(cycle, data + i);
1992     }
1993 }
1994 
1995 static int
1996 xlog_calc_iclog_size(
1997     struct xlog     *log,
1998     struct xlog_in_core *iclog,
1999     uint32_t        *roundoff)
2000 {
2001     uint32_t        count_init, count;
2002 
2003     /* Add for LR header */
2004     count_init = log->l_iclog_hsize + iclog->ic_offset;
2005     count = roundup(count_init, log->l_iclog_roundoff);
2006 
2007     *roundoff = count - count_init;
2008 
2009     ASSERT(count >= count_init);
2010     ASSERT(*roundoff < log->l_iclog_roundoff);
2011     return count;
2012 }
2013 
2014 /*
2015  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
2016  * fashion.  Previously, we should have moved the current iclog
2017  * ptr in the log to point to the next available iclog.  This allows further
2018  * write to continue while this code syncs out an iclog ready to go.
2019  * Before an in-core log can be written out, the data section must be scanned
2020  * to save away the 1st word of each BBSIZE block into the header.  We replace
2021  * it with the current cycle count.  Each BBSIZE block is tagged with the
2022  * cycle count because there in an implicit assumption that drives will
2023  * guarantee that entire 512 byte blocks get written at once.  In other words,
2024  * we can't have part of a 512 byte block written and part not written.  By
2025  * tagging each block, we will know which blocks are valid when recovering
2026  * after an unclean shutdown.
2027  *
2028  * This routine is single threaded on the iclog.  No other thread can be in
2029  * this routine with the same iclog.  Changing contents of iclog can there-
2030  * fore be done without grabbing the state machine lock.  Updating the global
2031  * log will require grabbing the lock though.
2032  *
2033  * The entire log manager uses a logical block numbering scheme.  Only
2034  * xlog_write_iclog knows about the fact that the log may not start with
2035  * block zero on a given device.
2036  */
2037 STATIC void
2038 xlog_sync(
2039     struct xlog     *log,
2040     struct xlog_in_core *iclog,
2041     struct xlog_ticket  *ticket)
2042 {
2043     unsigned int        count;      /* byte count of bwrite */
2044     unsigned int        roundoff;       /* roundoff to BB or stripe */
2045     uint64_t        bno;
2046     unsigned int        size;
2047 
2048     ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2049     trace_xlog_iclog_sync(iclog, _RET_IP_);
2050 
2051     count = xlog_calc_iclog_size(log, iclog, &roundoff);
2052 
2053     /*
2054      * If we have a ticket, account for the roundoff via the ticket
2055      * reservation to avoid touching the hot grant heads needlessly.
2056      * Otherwise, we have to move grant heads directly.
2057      */
2058     if (ticket) {
2059         ticket->t_curr_res -= roundoff;
2060     } else {
2061         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2062         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
2063     }
2064 
2065     /* put cycle number in every block */
2066     xlog_pack_data(log, iclog, roundoff);
2067 
2068     /* real byte length */
2069     size = iclog->ic_offset;
2070     if (xfs_has_logv2(log->l_mp))
2071         size += roundoff;
2072     iclog->ic_header.h_len = cpu_to_be32(size);
2073 
2074     XFS_STATS_INC(log->l_mp, xs_log_writes);
2075     XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
2076 
2077     bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2078 
2079     /* Do we need to split this write into 2 parts? */
2080     if (bno + BTOBB(count) > log->l_logBBsize)
2081         xlog_split_iclog(log, &iclog->ic_header, bno, count);
2082 
2083     /* calculcate the checksum */
2084     iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2085                         iclog->ic_datap, size);
2086     /*
2087      * Intentionally corrupt the log record CRC based on the error injection
2088      * frequency, if defined. This facilitates testing log recovery in the
2089      * event of torn writes. Hence, set the IOABORT state to abort the log
2090      * write on I/O completion and shutdown the fs. The subsequent mount
2091      * detects the bad CRC and attempts to recover.
2092      */
2093 #ifdef DEBUG
2094     if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
2095         iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
2096         iclog->ic_fail_crc = true;
2097         xfs_warn(log->l_mp,
2098     "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2099              be64_to_cpu(iclog->ic_header.h_lsn));
2100     }
2101 #endif
2102     xlog_verify_iclog(log, iclog, count);
2103     xlog_write_iclog(log, iclog, bno, count);
2104 }
2105 
2106 /*
2107  * Deallocate a log structure
2108  */
2109 STATIC void
2110 xlog_dealloc_log(
2111     struct xlog *log)
2112 {
2113     xlog_in_core_t  *iclog, *next_iclog;
2114     int     i;
2115 
2116     /*
2117      * Cycle all the iclogbuf locks to make sure all log IO completion
2118      * is done before we tear down these buffers.
2119      */
2120     iclog = log->l_iclog;
2121     for (i = 0; i < log->l_iclog_bufs; i++) {
2122         down(&iclog->ic_sema);
2123         up(&iclog->ic_sema);
2124         iclog = iclog->ic_next;
2125     }
2126 
2127     /*
2128      * Destroy the CIL after waiting for iclog IO completion because an
2129      * iclog EIO error will try to shut down the log, which accesses the
2130      * CIL to wake up the waiters.
2131      */
2132     xlog_cil_destroy(log);
2133 
2134     iclog = log->l_iclog;
2135     for (i = 0; i < log->l_iclog_bufs; i++) {
2136         next_iclog = iclog->ic_next;
2137         kmem_free(iclog->ic_data);
2138         kmem_free(iclog);
2139         iclog = next_iclog;
2140     }
2141 
2142     log->l_mp->m_log = NULL;
2143     destroy_workqueue(log->l_ioend_workqueue);
2144     kmem_free(log);
2145 }
2146 
2147 /*
2148  * Update counters atomically now that memcpy is done.
2149  */
2150 static inline void
2151 xlog_state_finish_copy(
2152     struct xlog     *log,
2153     struct xlog_in_core *iclog,
2154     int         record_cnt,
2155     int         copy_bytes)
2156 {
2157     lockdep_assert_held(&log->l_icloglock);
2158 
2159     be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2160     iclog->ic_offset += copy_bytes;
2161 }
2162 
2163 /*
2164  * print out info relating to regions written which consume
2165  * the reservation
2166  */
2167 void
2168 xlog_print_tic_res(
2169     struct xfs_mount    *mp,
2170     struct xlog_ticket  *ticket)
2171 {
2172     xfs_warn(mp, "ticket reservation summary:");
2173     xfs_warn(mp, "  unit res    = %d bytes", ticket->t_unit_res);
2174     xfs_warn(mp, "  current res = %d bytes", ticket->t_curr_res);
2175     xfs_warn(mp, "  original count  = %d", ticket->t_ocnt);
2176     xfs_warn(mp, "  remaining count = %d", ticket->t_cnt);
2177 }
2178 
2179 /*
2180  * Print a summary of the transaction.
2181  */
2182 void
2183 xlog_print_trans(
2184     struct xfs_trans    *tp)
2185 {
2186     struct xfs_mount    *mp = tp->t_mountp;
2187     struct xfs_log_item *lip;
2188 
2189     /* dump core transaction and ticket info */
2190     xfs_warn(mp, "transaction summary:");
2191     xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2192     xfs_warn(mp, "  log count = %d", tp->t_log_count);
2193     xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2194 
2195     xlog_print_tic_res(mp, tp->t_ticket);
2196 
2197     /* dump each log item */
2198     list_for_each_entry(lip, &tp->t_items, li_trans) {
2199         struct xfs_log_vec  *lv = lip->li_lv;
2200         struct xfs_log_iovec    *vec;
2201         int         i;
2202 
2203         xfs_warn(mp, "log item: ");
2204         xfs_warn(mp, "  type    = 0x%x", lip->li_type);
2205         xfs_warn(mp, "  flags   = 0x%lx", lip->li_flags);
2206         if (!lv)
2207             continue;
2208         xfs_warn(mp, "  niovecs = %d", lv->lv_niovecs);
2209         xfs_warn(mp, "  size    = %d", lv->lv_size);
2210         xfs_warn(mp, "  bytes   = %d", lv->lv_bytes);
2211         xfs_warn(mp, "  buf len = %d", lv->lv_buf_len);
2212 
2213         /* dump each iovec for the log item */
2214         vec = lv->lv_iovecp;
2215         for (i = 0; i < lv->lv_niovecs; i++) {
2216             int dumplen = min(vec->i_len, 32);
2217 
2218             xfs_warn(mp, "  iovec[%d]", i);
2219             xfs_warn(mp, "    type  = 0x%x", vec->i_type);
2220             xfs_warn(mp, "    len   = %d", vec->i_len);
2221             xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2222             xfs_hex_dump(vec->i_addr, dumplen);
2223 
2224             vec++;
2225         }
2226     }
2227 }
2228 
2229 static inline void
2230 xlog_write_iovec(
2231     struct xlog_in_core *iclog,
2232     uint32_t        *log_offset,
2233     void            *data,
2234     uint32_t        write_len,
2235     int         *bytes_left,
2236     uint32_t        *record_cnt,
2237     uint32_t        *data_cnt)
2238 {
2239     ASSERT(*log_offset < iclog->ic_log->l_iclog_size);
2240     ASSERT(*log_offset % sizeof(int32_t) == 0);
2241     ASSERT(write_len % sizeof(int32_t) == 0);
2242 
2243     memcpy(iclog->ic_datap + *log_offset, data, write_len);
2244     *log_offset += write_len;
2245     *bytes_left -= write_len;
2246     (*record_cnt)++;
2247     *data_cnt += write_len;
2248 }
2249 
2250 /*
2251  * Write log vectors into a single iclog which is guaranteed by the caller
2252  * to have enough space to write the entire log vector into.
2253  */
2254 static void
2255 xlog_write_full(
2256     struct xfs_log_vec  *lv,
2257     struct xlog_ticket  *ticket,
2258     struct xlog_in_core *iclog,
2259     uint32_t        *log_offset,
2260     uint32_t        *len,
2261     uint32_t        *record_cnt,
2262     uint32_t        *data_cnt)
2263 {
2264     int         index;
2265 
2266     ASSERT(*log_offset + *len <= iclog->ic_size ||
2267         iclog->ic_state == XLOG_STATE_WANT_SYNC);
2268 
2269     /*
2270      * Ordered log vectors have no regions to write so this
2271      * loop will naturally skip them.
2272      */
2273     for (index = 0; index < lv->lv_niovecs; index++) {
2274         struct xfs_log_iovec    *reg = &lv->lv_iovecp[index];
2275         struct xlog_op_header   *ophdr = reg->i_addr;
2276 
2277         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2278         xlog_write_iovec(iclog, log_offset, reg->i_addr,
2279                 reg->i_len, len, record_cnt, data_cnt);
2280     }
2281 }
2282 
2283 static int
2284 xlog_write_get_more_iclog_space(
2285     struct xlog_ticket  *ticket,
2286     struct xlog_in_core **iclogp,
2287     uint32_t        *log_offset,
2288     uint32_t        len,
2289     uint32_t        *record_cnt,
2290     uint32_t        *data_cnt)
2291 {
2292     struct xlog_in_core *iclog = *iclogp;
2293     struct xlog     *log = iclog->ic_log;
2294     int         error;
2295 
2296     spin_lock(&log->l_icloglock);
2297     ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC);
2298     xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2299     error = xlog_state_release_iclog(log, iclog, ticket);
2300     spin_unlock(&log->l_icloglock);
2301     if (error)
2302         return error;
2303 
2304     error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2305                     log_offset);
2306     if (error)
2307         return error;
2308     *record_cnt = 0;
2309     *data_cnt = 0;
2310     *iclogp = iclog;
2311     return 0;
2312 }
2313 
2314 /*
2315  * Write log vectors into a single iclog which is smaller than the current chain
2316  * length. We write until we cannot fit a full record into the remaining space
2317  * and then stop. We return the log vector that is to be written that cannot
2318  * wholly fit in the iclog.
2319  */
2320 static int
2321 xlog_write_partial(
2322     struct xfs_log_vec  *lv,
2323     struct xlog_ticket  *ticket,
2324     struct xlog_in_core **iclogp,
2325     uint32_t        *log_offset,
2326     uint32_t        *len,
2327     uint32_t        *record_cnt,
2328     uint32_t        *data_cnt)
2329 {
2330     struct xlog_in_core *iclog = *iclogp;
2331     struct xlog_op_header   *ophdr;
2332     int         index = 0;
2333     uint32_t        rlen;
2334     int         error;
2335 
2336     /* walk the logvec, copying until we run out of space in the iclog */
2337     for (index = 0; index < lv->lv_niovecs; index++) {
2338         struct xfs_log_iovec    *reg = &lv->lv_iovecp[index];
2339         uint32_t        reg_offset = 0;
2340 
2341         /*
2342          * The first region of a continuation must have a non-zero
2343          * length otherwise log recovery will just skip over it and
2344          * start recovering from the next opheader it finds. Because we
2345          * mark the next opheader as a continuation, recovery will then
2346          * incorrectly add the continuation to the previous region and
2347          * that breaks stuff.
2348          *
2349          * Hence if there isn't space for region data after the
2350          * opheader, then we need to start afresh with a new iclog.
2351          */
2352         if (iclog->ic_size - *log_offset <=
2353                     sizeof(struct xlog_op_header)) {
2354             error = xlog_write_get_more_iclog_space(ticket,
2355                     &iclog, log_offset, *len, record_cnt,
2356                     data_cnt);
2357             if (error)
2358                 return error;
2359         }
2360 
2361         ophdr = reg->i_addr;
2362         rlen = min_t(uint32_t, reg->i_len, iclog->ic_size - *log_offset);
2363 
2364         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2365         ophdr->oh_len = cpu_to_be32(rlen - sizeof(struct xlog_op_header));
2366         if (rlen != reg->i_len)
2367             ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2368 
2369         xlog_write_iovec(iclog, log_offset, reg->i_addr,
2370                 rlen, len, record_cnt, data_cnt);
2371 
2372         /* If we wrote the whole region, move to the next. */
2373         if (rlen == reg->i_len)
2374             continue;
2375 
2376         /*
2377          * We now have a partially written iovec, but it can span
2378          * multiple iclogs so we loop here. First we release the iclog
2379          * we currently have, then we get a new iclog and add a new
2380          * opheader. Then we continue copying from where we were until
2381          * we either complete the iovec or fill the iclog. If we
2382          * complete the iovec, then we increment the index and go right
2383          * back to the top of the outer loop. if we fill the iclog, we
2384          * run the inner loop again.
2385          *
2386          * This is complicated by the tail of a region using all the
2387          * space in an iclog and hence requiring us to release the iclog
2388          * and get a new one before returning to the outer loop. We must
2389          * always guarantee that we exit this inner loop with at least
2390          * space for log transaction opheaders left in the current
2391          * iclog, hence we cannot just terminate the loop at the end
2392          * of the of the continuation. So we loop while there is no
2393          * space left in the current iclog, and check for the end of the
2394          * continuation after getting a new iclog.
2395          */
2396         do {
2397             /*
2398              * Ensure we include the continuation opheader in the
2399              * space we need in the new iclog by adding that size
2400              * to the length we require. This continuation opheader
2401              * needs to be accounted to the ticket as the space it
2402              * consumes hasn't been accounted to the lv we are
2403              * writing.
2404              */
2405             error = xlog_write_get_more_iclog_space(ticket,
2406                     &iclog, log_offset,
2407                     *len + sizeof(struct xlog_op_header),
2408                     record_cnt, data_cnt);
2409             if (error)
2410                 return error;
2411 
2412             ophdr = iclog->ic_datap + *log_offset;
2413             ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2414             ophdr->oh_clientid = XFS_TRANSACTION;
2415             ophdr->oh_res2 = 0;
2416             ophdr->oh_flags = XLOG_WAS_CONT_TRANS;
2417 
2418             ticket->t_curr_res -= sizeof(struct xlog_op_header);
2419             *log_offset += sizeof(struct xlog_op_header);
2420             *data_cnt += sizeof(struct xlog_op_header);
2421 
2422             /*
2423              * If rlen fits in the iclog, then end the region
2424              * continuation. Otherwise we're going around again.
2425              */
2426             reg_offset += rlen;
2427             rlen = reg->i_len - reg_offset;
2428             if (rlen <= iclog->ic_size - *log_offset)
2429                 ophdr->oh_flags |= XLOG_END_TRANS;
2430             else
2431                 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2432 
2433             rlen = min_t(uint32_t, rlen, iclog->ic_size - *log_offset);
2434             ophdr->oh_len = cpu_to_be32(rlen);
2435 
2436             xlog_write_iovec(iclog, log_offset,
2437                     reg->i_addr + reg_offset,
2438                     rlen, len, record_cnt, data_cnt);
2439 
2440         } while (ophdr->oh_flags & XLOG_CONTINUE_TRANS);
2441     }
2442 
2443     /*
2444      * No more iovecs remain in this logvec so return the next log vec to
2445      * the caller so it can go back to fast path copying.
2446      */
2447     *iclogp = iclog;
2448     return 0;
2449 }
2450 
2451 /*
2452  * Write some region out to in-core log
2453  *
2454  * This will be called when writing externally provided regions or when
2455  * writing out a commit record for a given transaction.
2456  *
2457  * General algorithm:
2458  *  1. Find total length of this write.  This may include adding to the
2459  *      lengths passed in.
2460  *  2. Check whether we violate the tickets reservation.
2461  *  3. While writing to this iclog
2462  *      A. Reserve as much space in this iclog as can get
2463  *      B. If this is first write, save away start lsn
2464  *      C. While writing this region:
2465  *      1. If first write of transaction, write start record
2466  *      2. Write log operation header (header per region)
2467  *      3. Find out if we can fit entire region into this iclog
2468  *      4. Potentially, verify destination memcpy ptr
2469  *      5. Memcpy (partial) region
2470  *      6. If partial copy, release iclog; otherwise, continue
2471  *          copying more regions into current iclog
2472  *  4. Mark want sync bit (in simulation mode)
2473  *  5. Release iclog for potential flush to on-disk log.
2474  *
2475  * ERRORS:
2476  * 1.   Panic if reservation is overrun.  This should never happen since
2477  *  reservation amounts are generated internal to the filesystem.
2478  * NOTES:
2479  * 1. Tickets are single threaded data structures.
2480  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2481  *  syncing routine.  When a single log_write region needs to span
2482  *  multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2483  *  on all log operation writes which don't contain the end of the
2484  *  region.  The XLOG_END_TRANS bit is used for the in-core log
2485  *  operation which contains the end of the continued log_write region.
2486  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2487  *  we don't really know exactly how much space will be used.  As a result,
2488  *  we don't update ic_offset until the end when we know exactly how many
2489  *  bytes have been written out.
2490  */
2491 int
2492 xlog_write(
2493     struct xlog     *log,
2494     struct xfs_cil_ctx  *ctx,
2495     struct list_head    *lv_chain,
2496     struct xlog_ticket  *ticket,
2497     uint32_t        len)
2498 
2499 {
2500     struct xlog_in_core *iclog = NULL;
2501     struct xfs_log_vec  *lv;
2502     uint32_t        record_cnt = 0;
2503     uint32_t        data_cnt = 0;
2504     int         error = 0;
2505     int         log_offset;
2506 
2507     if (ticket->t_curr_res < 0) {
2508         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2509              "ctx ticket reservation ran out. Need to up reservation");
2510         xlog_print_tic_res(log->l_mp, ticket);
2511         xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR);
2512     }
2513 
2514     error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2515                        &log_offset);
2516     if (error)
2517         return error;
2518 
2519     ASSERT(log_offset <= iclog->ic_size - 1);
2520 
2521     /*
2522      * If we have a context pointer, pass it the first iclog we are
2523      * writing to so it can record state needed for iclog write
2524      * ordering.
2525      */
2526     if (ctx)
2527         xlog_cil_set_ctx_write_state(ctx, iclog);
2528 
2529     list_for_each_entry(lv, lv_chain, lv_list) {
2530         /*
2531          * If the entire log vec does not fit in the iclog, punt it to
2532          * the partial copy loop which can handle this case.
2533          */
2534         if (lv->lv_niovecs &&
2535             lv->lv_bytes > iclog->ic_size - log_offset) {
2536             error = xlog_write_partial(lv, ticket, &iclog,
2537                     &log_offset, &len, &record_cnt,
2538                     &data_cnt);
2539             if (error) {
2540                 /*
2541                  * We have no iclog to release, so just return
2542                  * the error immediately.
2543                  */
2544                 return error;
2545             }
2546         } else {
2547             xlog_write_full(lv, ticket, iclog, &log_offset,
2548                      &len, &record_cnt, &data_cnt);
2549         }
2550     }
2551     ASSERT(len == 0);
2552 
2553     /*
2554      * We've already been guaranteed that the last writes will fit inside
2555      * the current iclog, and hence it will already have the space used by
2556      * those writes accounted to it. Hence we do not need to update the
2557      * iclog with the number of bytes written here.
2558      */
2559     spin_lock(&log->l_icloglock);
2560     xlog_state_finish_copy(log, iclog, record_cnt, 0);
2561     error = xlog_state_release_iclog(log, iclog, ticket);
2562     spin_unlock(&log->l_icloglock);
2563 
2564     return error;
2565 }
2566 
2567 static void
2568 xlog_state_activate_iclog(
2569     struct xlog_in_core *iclog,
2570     int         *iclogs_changed)
2571 {
2572     ASSERT(list_empty_careful(&iclog->ic_callbacks));
2573     trace_xlog_iclog_activate(iclog, _RET_IP_);
2574 
2575     /*
2576      * If the number of ops in this iclog indicate it just contains the
2577      * dummy transaction, we can change state into IDLE (the second time
2578      * around). Otherwise we should change the state into NEED a dummy.
2579      * We don't need to cover the dummy.
2580      */
2581     if (*iclogs_changed == 0 &&
2582         iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2583         *iclogs_changed = 1;
2584     } else {
2585         /*
2586          * We have two dirty iclogs so start over.  This could also be
2587          * num of ops indicating this is not the dummy going out.
2588          */
2589         *iclogs_changed = 2;
2590     }
2591 
2592     iclog->ic_state = XLOG_STATE_ACTIVE;
2593     iclog->ic_offset = 0;
2594     iclog->ic_header.h_num_logops = 0;
2595     memset(iclog->ic_header.h_cycle_data, 0,
2596         sizeof(iclog->ic_header.h_cycle_data));
2597     iclog->ic_header.h_lsn = 0;
2598     iclog->ic_header.h_tail_lsn = 0;
2599 }
2600 
2601 /*
2602  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2603  * ACTIVE after iclog I/O has completed.
2604  */
2605 static void
2606 xlog_state_activate_iclogs(
2607     struct xlog     *log,
2608     int         *iclogs_changed)
2609 {
2610     struct xlog_in_core *iclog = log->l_iclog;
2611 
2612     do {
2613         if (iclog->ic_state == XLOG_STATE_DIRTY)
2614             xlog_state_activate_iclog(iclog, iclogs_changed);
2615         /*
2616          * The ordering of marking iclogs ACTIVE must be maintained, so
2617          * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2618          */
2619         else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2620             break;
2621     } while ((iclog = iclog->ic_next) != log->l_iclog);
2622 }
2623 
2624 static int
2625 xlog_covered_state(
2626     int         prev_state,
2627     int         iclogs_changed)
2628 {
2629     /*
2630      * We go to NEED for any non-covering writes. We go to NEED2 if we just
2631      * wrote the first covering record (DONE). We go to IDLE if we just
2632      * wrote the second covering record (DONE2) and remain in IDLE until a
2633      * non-covering write occurs.
2634      */
2635     switch (prev_state) {
2636     case XLOG_STATE_COVER_IDLE:
2637         if (iclogs_changed == 1)
2638             return XLOG_STATE_COVER_IDLE;
2639         fallthrough;
2640     case XLOG_STATE_COVER_NEED:
2641     case XLOG_STATE_COVER_NEED2:
2642         break;
2643     case XLOG_STATE_COVER_DONE:
2644         if (iclogs_changed == 1)
2645             return XLOG_STATE_COVER_NEED2;
2646         break;
2647     case XLOG_STATE_COVER_DONE2:
2648         if (iclogs_changed == 1)
2649             return XLOG_STATE_COVER_IDLE;
2650         break;
2651     default:
2652         ASSERT(0);
2653     }
2654 
2655     return XLOG_STATE_COVER_NEED;
2656 }
2657 
2658 STATIC void
2659 xlog_state_clean_iclog(
2660     struct xlog     *log,
2661     struct xlog_in_core *dirty_iclog)
2662 {
2663     int         iclogs_changed = 0;
2664 
2665     trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2666 
2667     dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2668 
2669     xlog_state_activate_iclogs(log, &iclogs_changed);
2670     wake_up_all(&dirty_iclog->ic_force_wait);
2671 
2672     if (iclogs_changed) {
2673         log->l_covered_state = xlog_covered_state(log->l_covered_state,
2674                 iclogs_changed);
2675     }
2676 }
2677 
2678 STATIC xfs_lsn_t
2679 xlog_get_lowest_lsn(
2680     struct xlog     *log)
2681 {
2682     struct xlog_in_core *iclog = log->l_iclog;
2683     xfs_lsn_t       lowest_lsn = 0, lsn;
2684 
2685     do {
2686         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2687             iclog->ic_state == XLOG_STATE_DIRTY)
2688             continue;
2689 
2690         lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2691         if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2692             lowest_lsn = lsn;
2693     } while ((iclog = iclog->ic_next) != log->l_iclog);
2694 
2695     return lowest_lsn;
2696 }
2697 
2698 /*
2699  * Completion of a iclog IO does not imply that a transaction has completed, as
2700  * transactions can be large enough to span many iclogs. We cannot change the
2701  * tail of the log half way through a transaction as this may be the only
2702  * transaction in the log and moving the tail to point to the middle of it
2703  * will prevent recovery from finding the start of the transaction. Hence we
2704  * should only update the last_sync_lsn if this iclog contains transaction
2705  * completion callbacks on it.
2706  *
2707  * We have to do this before we drop the icloglock to ensure we are the only one
2708  * that can update it.
2709  *
2710  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2711  * the reservation grant head pushing. This is due to the fact that the push
2712  * target is bound by the current last_sync_lsn value. Hence if we have a large
2713  * amount of log space bound up in this committing transaction then the
2714  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2715  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2716  * should push the AIL to ensure the push target (and hence the grant head) is
2717  * no longer bound by the old log head location and can move forwards and make
2718  * progress again.
2719  */
2720 static void
2721 xlog_state_set_callback(
2722     struct xlog     *log,
2723     struct xlog_in_core *iclog,
2724     xfs_lsn_t       header_lsn)
2725 {
2726     trace_xlog_iclog_callback(iclog, _RET_IP_);
2727     iclog->ic_state = XLOG_STATE_CALLBACK;
2728 
2729     ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2730                header_lsn) <= 0);
2731 
2732     if (list_empty_careful(&iclog->ic_callbacks))
2733         return;
2734 
2735     atomic64_set(&log->l_last_sync_lsn, header_lsn);
2736     xlog_grant_push_ail(log, 0);
2737 }
2738 
2739 /*
2740  * Return true if we need to stop processing, false to continue to the next
2741  * iclog. The caller will need to run callbacks if the iclog is returned in the
2742  * XLOG_STATE_CALLBACK state.
2743  */
2744 static bool
2745 xlog_state_iodone_process_iclog(
2746     struct xlog     *log,
2747     struct xlog_in_core *iclog)
2748 {
2749     xfs_lsn_t       lowest_lsn;
2750     xfs_lsn_t       header_lsn;
2751 
2752     switch (iclog->ic_state) {
2753     case XLOG_STATE_ACTIVE:
2754     case XLOG_STATE_DIRTY:
2755         /*
2756          * Skip all iclogs in the ACTIVE & DIRTY states:
2757          */
2758         return false;
2759     case XLOG_STATE_DONE_SYNC:
2760         /*
2761          * Now that we have an iclog that is in the DONE_SYNC state, do
2762          * one more check here to see if we have chased our tail around.
2763          * If this is not the lowest lsn iclog, then we will leave it
2764          * for another completion to process.
2765          */
2766         header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2767         lowest_lsn = xlog_get_lowest_lsn(log);
2768         if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2769             return false;
2770         xlog_state_set_callback(log, iclog, header_lsn);
2771         return false;
2772     default:
2773         /*
2774          * Can only perform callbacks in order.  Since this iclog is not
2775          * in the DONE_SYNC state, we skip the rest and just try to
2776          * clean up.
2777          */
2778         return true;
2779     }
2780 }
2781 
2782 /*
2783  * Loop over all the iclogs, running attached callbacks on them. Return true if
2784  * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2785  * to handle transient shutdown state here at all because
2786  * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2787  * cleanup of the callbacks.
2788  */
2789 static bool
2790 xlog_state_do_iclog_callbacks(
2791     struct xlog     *log)
2792         __releases(&log->l_icloglock)
2793         __acquires(&log->l_icloglock)
2794 {
2795     struct xlog_in_core *first_iclog = log->l_iclog;
2796     struct xlog_in_core *iclog = first_iclog;
2797     bool            ran_callback = false;
2798 
2799     do {
2800         LIST_HEAD(cb_list);
2801 
2802         if (xlog_state_iodone_process_iclog(log, iclog))
2803             break;
2804         if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2805             iclog = iclog->ic_next;
2806             continue;
2807         }
2808         list_splice_init(&iclog->ic_callbacks, &cb_list);
2809         spin_unlock(&log->l_icloglock);
2810 
2811         trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2812         xlog_cil_process_committed(&cb_list);
2813         trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2814         ran_callback = true;
2815 
2816         spin_lock(&log->l_icloglock);
2817         xlog_state_clean_iclog(log, iclog);
2818         iclog = iclog->ic_next;
2819     } while (iclog != first_iclog);
2820 
2821     return ran_callback;
2822 }
2823 
2824 
2825 /*
2826  * Loop running iclog completion callbacks until there are no more iclogs in a
2827  * state that can run callbacks.
2828  */
2829 STATIC void
2830 xlog_state_do_callback(
2831     struct xlog     *log)
2832 {
2833     int         flushcnt = 0;
2834     int         repeats = 0;
2835 
2836     spin_lock(&log->l_icloglock);
2837     while (xlog_state_do_iclog_callbacks(log)) {
2838         if (xlog_is_shutdown(log))
2839             break;
2840 
2841         if (++repeats > 5000) {
2842             flushcnt += repeats;
2843             repeats = 0;
2844             xfs_warn(log->l_mp,
2845                 "%s: possible infinite loop (%d iterations)",
2846                 __func__, flushcnt);
2847         }
2848     }
2849 
2850     if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
2851         wake_up_all(&log->l_flush_wait);
2852 
2853     spin_unlock(&log->l_icloglock);
2854 }
2855 
2856 
2857 /*
2858  * Finish transitioning this iclog to the dirty state.
2859  *
2860  * Callbacks could take time, so they are done outside the scope of the
2861  * global state machine log lock.
2862  */
2863 STATIC void
2864 xlog_state_done_syncing(
2865     struct xlog_in_core *iclog)
2866 {
2867     struct xlog     *log = iclog->ic_log;
2868 
2869     spin_lock(&log->l_icloglock);
2870     ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2871     trace_xlog_iclog_sync_done(iclog, _RET_IP_);
2872 
2873     /*
2874      * If we got an error, either on the first buffer, or in the case of
2875      * split log writes, on the second, we shut down the file system and
2876      * no iclogs should ever be attempted to be written to disk again.
2877      */
2878     if (!xlog_is_shutdown(log)) {
2879         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2880         iclog->ic_state = XLOG_STATE_DONE_SYNC;
2881     }
2882 
2883     /*
2884      * Someone could be sleeping prior to writing out the next
2885      * iclog buffer, we wake them all, one will get to do the
2886      * I/O, the others get to wait for the result.
2887      */
2888     wake_up_all(&iclog->ic_write_wait);
2889     spin_unlock(&log->l_icloglock);
2890     xlog_state_do_callback(log);
2891 }
2892 
2893 /*
2894  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2895  * sleep.  We wait on the flush queue on the head iclog as that should be
2896  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2897  * we will wait here and all new writes will sleep until a sync completes.
2898  *
2899  * The in-core logs are used in a circular fashion. They are not used
2900  * out-of-order even when an iclog past the head is free.
2901  *
2902  * return:
2903  *  * log_offset where xlog_write() can start writing into the in-core
2904  *      log's data space.
2905  *  * in-core log pointer to which xlog_write() should write.
2906  *  * boolean indicating this is a continued write to an in-core log.
2907  *      If this is the last write, then the in-core log's offset field
2908  *      needs to be incremented, depending on the amount of data which
2909  *      is copied.
2910  */
2911 STATIC int
2912 xlog_state_get_iclog_space(
2913     struct xlog     *log,
2914     int         len,
2915     struct xlog_in_core **iclogp,
2916     struct xlog_ticket  *ticket,
2917     int         *logoffsetp)
2918 {
2919     int       log_offset;
2920     xlog_rec_header_t *head;
2921     xlog_in_core_t    *iclog;
2922 
2923 restart:
2924     spin_lock(&log->l_icloglock);
2925     if (xlog_is_shutdown(log)) {
2926         spin_unlock(&log->l_icloglock);
2927         return -EIO;
2928     }
2929 
2930     iclog = log->l_iclog;
2931     if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2932         XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2933 
2934         /* Wait for log writes to have flushed */
2935         xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2936         goto restart;
2937     }
2938 
2939     head = &iclog->ic_header;
2940 
2941     atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2942     log_offset = iclog->ic_offset;
2943 
2944     trace_xlog_iclog_get_space(iclog, _RET_IP_);
2945 
2946     /* On the 1st write to an iclog, figure out lsn.  This works
2947      * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2948      * committing to.  If the offset is set, that's how many blocks
2949      * must be written.
2950      */
2951     if (log_offset == 0) {
2952         ticket->t_curr_res -= log->l_iclog_hsize;
2953         head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2954         head->h_lsn = cpu_to_be64(
2955             xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2956         ASSERT(log->l_curr_block >= 0);
2957     }
2958 
2959     /* If there is enough room to write everything, then do it.  Otherwise,
2960      * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2961      * bit is on, so this will get flushed out.  Don't update ic_offset
2962      * until you know exactly how many bytes get copied.  Therefore, wait
2963      * until later to update ic_offset.
2964      *
2965      * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2966      * can fit into remaining data section.
2967      */
2968     if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2969         int     error = 0;
2970 
2971         xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2972 
2973         /*
2974          * If we are the only one writing to this iclog, sync it to
2975          * disk.  We need to do an atomic compare and decrement here to
2976          * avoid racing with concurrent atomic_dec_and_lock() calls in
2977          * xlog_state_release_iclog() when there is more than one
2978          * reference to the iclog.
2979          */
2980         if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2981             error = xlog_state_release_iclog(log, iclog, ticket);
2982         spin_unlock(&log->l_icloglock);
2983         if (error)
2984             return error;
2985         goto restart;
2986     }
2987 
2988     /* Do we have enough room to write the full amount in the remainder
2989      * of this iclog?  Or must we continue a write on the next iclog and
2990      * mark this iclog as completely taken?  In the case where we switch
2991      * iclogs (to mark it taken), this particular iclog will release/sync
2992      * to disk in xlog_write().
2993      */
2994     if (len <= iclog->ic_size - iclog->ic_offset)
2995         iclog->ic_offset += len;
2996     else
2997         xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2998     *iclogp = iclog;
2999 
3000     ASSERT(iclog->ic_offset <= iclog->ic_size);
3001     spin_unlock(&log->l_icloglock);
3002 
3003     *logoffsetp = log_offset;
3004     return 0;
3005 }
3006 
3007 /*
3008  * The first cnt-1 times a ticket goes through here we don't need to move the
3009  * grant write head because the permanent reservation has reserved cnt times the
3010  * unit amount.  Release part of current permanent unit reservation and reset
3011  * current reservation to be one units worth.  Also move grant reservation head
3012  * forward.
3013  */
3014 void
3015 xfs_log_ticket_regrant(
3016     struct xlog     *log,
3017     struct xlog_ticket  *ticket)
3018 {
3019     trace_xfs_log_ticket_regrant(log, ticket);
3020 
3021     if (ticket->t_cnt > 0)
3022         ticket->t_cnt--;
3023 
3024     xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3025                     ticket->t_curr_res);
3026     xlog_grant_sub_space(log, &log->l_write_head.grant,
3027                     ticket->t_curr_res);
3028     ticket->t_curr_res = ticket->t_unit_res;
3029 
3030     trace_xfs_log_ticket_regrant_sub(log, ticket);
3031 
3032     /* just return if we still have some of the pre-reserved space */
3033     if (!ticket->t_cnt) {
3034         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3035                      ticket->t_unit_res);
3036         trace_xfs_log_ticket_regrant_exit(log, ticket);
3037 
3038         ticket->t_curr_res = ticket->t_unit_res;
3039     }
3040 
3041     xfs_log_ticket_put(ticket);
3042 }
3043 
3044 /*
3045  * Give back the space left from a reservation.
3046  *
3047  * All the information we need to make a correct determination of space left
3048  * is present.  For non-permanent reservations, things are quite easy.  The
3049  * count should have been decremented to zero.  We only need to deal with the
3050  * space remaining in the current reservation part of the ticket.  If the
3051  * ticket contains a permanent reservation, there may be left over space which
3052  * needs to be released.  A count of N means that N-1 refills of the current
3053  * reservation can be done before we need to ask for more space.  The first
3054  * one goes to fill up the first current reservation.  Once we run out of
3055  * space, the count will stay at zero and the only space remaining will be
3056  * in the current reservation field.
3057  */
3058 void
3059 xfs_log_ticket_ungrant(
3060     struct xlog     *log,
3061     struct xlog_ticket  *ticket)
3062 {
3063     int         bytes;
3064 
3065     trace_xfs_log_ticket_ungrant(log, ticket);
3066 
3067     if (ticket->t_cnt > 0)
3068         ticket->t_cnt--;
3069 
3070     trace_xfs_log_ticket_ungrant_sub(log, ticket);
3071 
3072     /*
3073      * If this is a permanent reservation ticket, we may be able to free
3074      * up more space based on the remaining count.
3075      */
3076     bytes = ticket->t_curr_res;
3077     if (ticket->t_cnt > 0) {
3078         ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3079         bytes += ticket->t_unit_res*ticket->t_cnt;
3080     }
3081 
3082     xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3083     xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3084 
3085     trace_xfs_log_ticket_ungrant_exit(log, ticket);
3086 
3087     xfs_log_space_wake(log->l_mp);
3088     xfs_log_ticket_put(ticket);
3089 }
3090 
3091 /*
3092  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3093  * the current iclog pointer to the next iclog in the ring.
3094  */
3095 void
3096 xlog_state_switch_iclogs(
3097     struct xlog     *log,
3098     struct xlog_in_core *iclog,
3099     int         eventual_size)
3100 {
3101     ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3102     assert_spin_locked(&log->l_icloglock);
3103     trace_xlog_iclog_switch(iclog, _RET_IP_);
3104 
3105     if (!eventual_size)
3106         eventual_size = iclog->ic_offset;
3107     iclog->ic_state = XLOG_STATE_WANT_SYNC;
3108     iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3109     log->l_prev_block = log->l_curr_block;
3110     log->l_prev_cycle = log->l_curr_cycle;
3111 
3112     /* roll log?: ic_offset changed later */
3113     log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3114 
3115     /* Round up to next log-sunit */
3116     if (log->l_iclog_roundoff > BBSIZE) {
3117         uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
3118         log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3119     }
3120 
3121     if (log->l_curr_block >= log->l_logBBsize) {
3122         /*
3123          * Rewind the current block before the cycle is bumped to make
3124          * sure that the combined LSN never transiently moves forward
3125          * when the log wraps to the next cycle. This is to support the
3126          * unlocked sample of these fields from xlog_valid_lsn(). Most
3127          * other cases should acquire l_icloglock.
3128          */
3129         log->l_curr_block -= log->l_logBBsize;
3130         ASSERT(log->l_curr_block >= 0);
3131         smp_wmb();
3132         log->l_curr_cycle++;
3133         if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3134             log->l_curr_cycle++;
3135     }
3136     ASSERT(iclog == log->l_iclog);
3137     log->l_iclog = iclog->ic_next;
3138 }
3139 
3140 /*
3141  * Force the iclog to disk and check if the iclog has been completed before
3142  * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3143  * pmem) or fast async storage because we drop the icloglock to issue the IO.
3144  * If completion has already occurred, tell the caller so that it can avoid an
3145  * unnecessary wait on the iclog.
3146  */
3147 static int
3148 xlog_force_and_check_iclog(
3149     struct xlog_in_core *iclog,
3150     bool            *completed)
3151 {
3152     xfs_lsn_t       lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3153     int         error;
3154 
3155     *completed = false;
3156     error = xlog_force_iclog(iclog);
3157     if (error)
3158         return error;
3159 
3160     /*
3161      * If the iclog has already been completed and reused the header LSN
3162      * will have been rewritten by completion
3163      */
3164     if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3165         *completed = true;
3166     return 0;
3167 }
3168 
3169 /*
3170  * Write out all data in the in-core log as of this exact moment in time.
3171  *
3172  * Data may be written to the in-core log during this call.  However,
3173  * we don't guarantee this data will be written out.  A change from past
3174  * implementation means this routine will *not* write out zero length LRs.
3175  *
3176  * Basically, we try and perform an intelligent scan of the in-core logs.
3177  * If we determine there is no flushable data, we just return.  There is no
3178  * flushable data if:
3179  *
3180  *  1. the current iclog is active and has no data; the previous iclog
3181  *      is in the active or dirty state.
3182  *  2. the current iclog is drity, and the previous iclog is in the
3183  *      active or dirty state.
3184  *
3185  * We may sleep if:
3186  *
3187  *  1. the current iclog is not in the active nor dirty state.
3188  *  2. the current iclog dirty, and the previous iclog is not in the
3189  *      active nor dirty state.
3190  *  3. the current iclog is active, and there is another thread writing
3191  *      to this particular iclog.
3192  *  4. a) the current iclog is active and has no other writers
3193  *     b) when we return from flushing out this iclog, it is still
3194  *      not in the active nor dirty state.
3195  */
3196 int
3197 xfs_log_force(
3198     struct xfs_mount    *mp,
3199     uint            flags)
3200 {
3201     struct xlog     *log = mp->m_log;
3202     struct xlog_in_core *iclog;
3203 
3204     XFS_STATS_INC(mp, xs_log_force);
3205     trace_xfs_log_force(mp, 0, _RET_IP_);
3206 
3207     xlog_cil_force(log);
3208 
3209     spin_lock(&log->l_icloglock);
3210     if (xlog_is_shutdown(log))
3211         goto out_error;
3212 
3213     iclog = log->l_iclog;
3214     trace_xlog_iclog_force(iclog, _RET_IP_);
3215 
3216     if (iclog->ic_state == XLOG_STATE_DIRTY ||
3217         (iclog->ic_state == XLOG_STATE_ACTIVE &&
3218          atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3219         /*
3220          * If the head is dirty or (active and empty), then we need to
3221          * look at the previous iclog.
3222          *
3223          * If the previous iclog is active or dirty we are done.  There
3224          * is nothing to sync out. Otherwise, we attach ourselves to the
3225          * previous iclog and go to sleep.
3226          */
3227         iclog = iclog->ic_prev;
3228     } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3229         if (atomic_read(&iclog->ic_refcnt) == 0) {
3230             /* We have exclusive access to this iclog. */
3231             bool    completed;
3232 
3233             if (xlog_force_and_check_iclog(iclog, &completed))
3234                 goto out_error;
3235 
3236             if (completed)
3237                 goto out_unlock;
3238         } else {
3239             /*
3240              * Someone else is still writing to this iclog, so we
3241              * need to ensure that when they release the iclog it
3242              * gets synced immediately as we may be waiting on it.
3243              */
3244             xlog_state_switch_iclogs(log, iclog, 0);
3245         }
3246     }
3247 
3248     /*
3249      * The iclog we are about to wait on may contain the checkpoint pushed
3250      * by the above xlog_cil_force() call, but it may not have been pushed
3251      * to disk yet. Like the ACTIVE case above, we need to make sure caches
3252      * are flushed when this iclog is written.
3253      */
3254     if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3255         iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3256 
3257     if (flags & XFS_LOG_SYNC)
3258         return xlog_wait_on_iclog(iclog);
3259 out_unlock:
3260     spin_unlock(&log->l_icloglock);
3261     return 0;
3262 out_error:
3263     spin_unlock(&log->l_icloglock);
3264     return -EIO;
3265 }
3266 
3267 /*
3268  * Force the log to a specific LSN.
3269  *
3270  * If an iclog with that lsn can be found:
3271  *  If it is in the DIRTY state, just return.
3272  *  If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3273  *      state and go to sleep or return.
3274  *  If it is in any other state, go to sleep or return.
3275  *
3276  * Synchronous forces are implemented with a wait queue.  All callers trying
3277  * to force a given lsn to disk must wait on the queue attached to the
3278  * specific in-core log.  When given in-core log finally completes its write
3279  * to disk, that thread will wake up all threads waiting on the queue.
3280  */
3281 static int
3282 xlog_force_lsn(
3283     struct xlog     *log,
3284     xfs_lsn_t       lsn,
3285     uint            flags,
3286     int         *log_flushed,
3287     bool            already_slept)
3288 {
3289     struct xlog_in_core *iclog;
3290     bool            completed;
3291 
3292     spin_lock(&log->l_icloglock);
3293     if (xlog_is_shutdown(log))
3294         goto out_error;
3295 
3296     iclog = log->l_iclog;
3297     while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3298         trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
3299         iclog = iclog->ic_next;
3300         if (iclog == log->l_iclog)
3301             goto out_unlock;
3302     }
3303 
3304     switch (iclog->ic_state) {
3305     case XLOG_STATE_ACTIVE:
3306         /*
3307          * We sleep here if we haven't already slept (e.g. this is the
3308          * first time we've looked at the correct iclog buf) and the
3309          * buffer before us is going to be sync'ed.  The reason for this
3310          * is that if we are doing sync transactions here, by waiting
3311          * for the previous I/O to complete, we can allow a few more
3312          * transactions into this iclog before we close it down.
3313          *
3314          * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3315          * refcnt so we can release the log (which drops the ref count).
3316          * The state switch keeps new transaction commits from using
3317          * this buffer.  When the current commits finish writing into
3318          * the buffer, the refcount will drop to zero and the buffer
3319          * will go out then.
3320          */
3321         if (!already_slept &&
3322             (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3323              iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3324             xlog_wait(&iclog->ic_prev->ic_write_wait,
3325                     &log->l_icloglock);
3326             return -EAGAIN;
3327         }
3328         if (xlog_force_and_check_iclog(iclog, &completed))
3329             goto out_error;
3330         if (log_flushed)
3331             *log_flushed = 1;
3332         if (completed)
3333             goto out_unlock;
3334         break;
3335     case XLOG_STATE_WANT_SYNC:
3336         /*
3337          * This iclog may contain the checkpoint pushed by the
3338          * xlog_cil_force_seq() call, but there are other writers still
3339          * accessing it so it hasn't been pushed to disk yet. Like the
3340          * ACTIVE case above, we need to make sure caches are flushed
3341          * when this iclog is written.
3342          */
3343         iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3344         break;
3345     default:
3346         /*
3347          * The entire checkpoint was written by the CIL force and is on
3348          * its way to disk already. It will be stable when it
3349          * completes, so we don't need to manipulate caches here at all.
3350          * We just need to wait for completion if necessary.
3351          */
3352         break;
3353     }
3354 
3355     if (flags & XFS_LOG_SYNC)
3356         return xlog_wait_on_iclog(iclog);
3357 out_unlock:
3358     spin_unlock(&log->l_icloglock);
3359     return 0;
3360 out_error:
3361     spin_unlock(&log->l_icloglock);
3362     return -EIO;
3363 }
3364 
3365 /*
3366  * Force the log to a specific checkpoint sequence.
3367  *
3368  * First force the CIL so that all the required changes have been flushed to the
3369  * iclogs. If the CIL force completed it will return a commit LSN that indicates
3370  * the iclog that needs to be flushed to stable storage. If the caller needs
3371  * a synchronous log force, we will wait on the iclog with the LSN returned by
3372  * xlog_cil_force_seq() to be completed.
3373  */
3374 int
3375 xfs_log_force_seq(
3376     struct xfs_mount    *mp,
3377     xfs_csn_t       seq,
3378     uint            flags,
3379     int         *log_flushed)
3380 {
3381     struct xlog     *log = mp->m_log;
3382     xfs_lsn_t       lsn;
3383     int         ret;
3384     ASSERT(seq != 0);
3385 
3386     XFS_STATS_INC(mp, xs_log_force);
3387     trace_xfs_log_force(mp, seq, _RET_IP_);
3388 
3389     lsn = xlog_cil_force_seq(log, seq);
3390     if (lsn == NULLCOMMITLSN)
3391         return 0;
3392 
3393     ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3394     if (ret == -EAGAIN) {
3395         XFS_STATS_INC(mp, xs_log_force_sleep);
3396         ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3397     }
3398     return ret;
3399 }
3400 
3401 /*
3402  * Free a used ticket when its refcount falls to zero.
3403  */
3404 void
3405 xfs_log_ticket_put(
3406     xlog_ticket_t   *ticket)
3407 {
3408     ASSERT(atomic_read(&ticket->t_ref) > 0);
3409     if (atomic_dec_and_test(&ticket->t_ref))
3410         kmem_cache_free(xfs_log_ticket_cache, ticket);
3411 }
3412 
3413 xlog_ticket_t *
3414 xfs_log_ticket_get(
3415     xlog_ticket_t   *ticket)
3416 {
3417     ASSERT(atomic_read(&ticket->t_ref) > 0);
3418     atomic_inc(&ticket->t_ref);
3419     return ticket;
3420 }
3421 
3422 /*
3423  * Figure out the total log space unit (in bytes) that would be
3424  * required for a log ticket.
3425  */
3426 static int
3427 xlog_calc_unit_res(
3428     struct xlog     *log,
3429     int         unit_bytes,
3430     int         *niclogs)
3431 {
3432     int         iclog_space;
3433     uint            num_headers;
3434 
3435     /*
3436      * Permanent reservations have up to 'cnt'-1 active log operations
3437      * in the log.  A unit in this case is the amount of space for one
3438      * of these log operations.  Normal reservations have a cnt of 1
3439      * and their unit amount is the total amount of space required.
3440      *
3441      * The following lines of code account for non-transaction data
3442      * which occupy space in the on-disk log.
3443      *
3444      * Normal form of a transaction is:
3445      * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3446      * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3447      *
3448      * We need to account for all the leadup data and trailer data
3449      * around the transaction data.
3450      * And then we need to account for the worst case in terms of using
3451      * more space.
3452      * The worst case will happen if:
3453      * - the placement of the transaction happens to be such that the
3454      *   roundoff is at its maximum
3455      * - the transaction data is synced before the commit record is synced
3456      *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3457      *   Therefore the commit record is in its own Log Record.
3458      *   This can happen as the commit record is called with its
3459      *   own region to xlog_write().
3460      *   This then means that in the worst case, roundoff can happen for
3461      *   the commit-rec as well.
3462      *   The commit-rec is smaller than padding in this scenario and so it is
3463      *   not added separately.
3464      */
3465 
3466     /* for trans header */
3467     unit_bytes += sizeof(xlog_op_header_t);
3468     unit_bytes += sizeof(xfs_trans_header_t);
3469 
3470     /* for start-rec */
3471     unit_bytes += sizeof(xlog_op_header_t);
3472 
3473     /*
3474      * for LR headers - the space for data in an iclog is the size minus
3475      * the space used for the headers. If we use the iclog size, then we
3476      * undercalculate the number of headers required.
3477      *
3478      * Furthermore - the addition of op headers for split-recs might
3479      * increase the space required enough to require more log and op
3480      * headers, so take that into account too.
3481      *
3482      * IMPORTANT: This reservation makes the assumption that if this
3483      * transaction is the first in an iclog and hence has the LR headers
3484      * accounted to it, then the remaining space in the iclog is
3485      * exclusively for this transaction.  i.e. if the transaction is larger
3486      * than the iclog, it will be the only thing in that iclog.
3487      * Fundamentally, this means we must pass the entire log vector to
3488      * xlog_write to guarantee this.
3489      */
3490     iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3491     num_headers = howmany(unit_bytes, iclog_space);
3492 
3493     /* for split-recs - ophdrs added when data split over LRs */
3494     unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3495 
3496     /* add extra header reservations if we overrun */
3497     while (!num_headers ||
3498            howmany(unit_bytes, iclog_space) > num_headers) {
3499         unit_bytes += sizeof(xlog_op_header_t);
3500         num_headers++;
3501     }
3502     unit_bytes += log->l_iclog_hsize * num_headers;
3503 
3504     /* for commit-rec LR header - note: padding will subsume the ophdr */
3505     unit_bytes += log->l_iclog_hsize;
3506 
3507     /* roundoff padding for transaction data and one for commit record */
3508     unit_bytes += 2 * log->l_iclog_roundoff;
3509 
3510     if (niclogs)
3511         *niclogs = num_headers;
3512     return unit_bytes;
3513 }
3514 
3515 int
3516 xfs_log_calc_unit_res(
3517     struct xfs_mount    *mp,
3518     int         unit_bytes)
3519 {
3520     return xlog_calc_unit_res(mp->m_log, unit_bytes, NULL);
3521 }
3522 
3523 /*
3524  * Allocate and initialise a new log ticket.
3525  */
3526 struct xlog_ticket *
3527 xlog_ticket_alloc(
3528     struct xlog     *log,
3529     int         unit_bytes,
3530     int         cnt,
3531     bool            permanent)
3532 {
3533     struct xlog_ticket  *tic;
3534     int         unit_res;
3535 
3536     tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL);
3537 
3538     unit_res = xlog_calc_unit_res(log, unit_bytes, &tic->t_iclog_hdrs);
3539 
3540     atomic_set(&tic->t_ref, 1);
3541     tic->t_task     = current;
3542     INIT_LIST_HEAD(&tic->t_queue);
3543     tic->t_unit_res     = unit_res;
3544     tic->t_curr_res     = unit_res;
3545     tic->t_cnt      = cnt;
3546     tic->t_ocnt     = cnt;
3547     tic->t_tid      = prandom_u32();
3548     if (permanent)
3549         tic->t_flags |= XLOG_TIC_PERM_RESERV;
3550 
3551     return tic;
3552 }
3553 
3554 #if defined(DEBUG)
3555 /*
3556  * Check to make sure the grant write head didn't just over lap the tail.  If
3557  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3558  * the cycles differ by exactly one and check the byte count.
3559  *
3560  * This check is run unlocked, so can give false positives. Rather than assert
3561  * on failures, use a warn-once flag and a panic tag to allow the admin to
3562  * determine if they want to panic the machine when such an error occurs. For
3563  * debug kernels this will have the same effect as using an assert but, unlinke
3564  * an assert, it can be turned off at runtime.
3565  */
3566 STATIC void
3567 xlog_verify_grant_tail(
3568     struct xlog *log)
3569 {
3570     int     tail_cycle, tail_blocks;
3571     int     cycle, space;
3572 
3573     xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3574     xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3575     if (tail_cycle != cycle) {
3576         if (cycle - 1 != tail_cycle &&
3577             !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3578             xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3579                 "%s: cycle - 1 != tail_cycle", __func__);
3580         }
3581 
3582         if (space > BBTOB(tail_blocks) &&
3583             !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
3584             xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3585                 "%s: space > BBTOB(tail_blocks)", __func__);
3586         }
3587     }
3588 }
3589 
3590 /* check if it will fit */
3591 STATIC void
3592 xlog_verify_tail_lsn(
3593     struct xlog     *log,
3594     struct xlog_in_core *iclog)
3595 {
3596     xfs_lsn_t   tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3597     int     blocks;
3598 
3599     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3600     blocks =
3601         log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3602     if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3603         xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3604     } else {
3605     ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3606 
3607     if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3608         xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3609 
3610     blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3611     if (blocks < BTOBB(iclog->ic_offset) + 1)
3612         xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3613     }
3614 }
3615 
3616 /*
3617  * Perform a number of checks on the iclog before writing to disk.
3618  *
3619  * 1. Make sure the iclogs are still circular
3620  * 2. Make sure we have a good magic number
3621  * 3. Make sure we don't have magic numbers in the data
3622  * 4. Check fields of each log operation header for:
3623  *  A. Valid client identifier
3624  *  B. tid ptr value falls in valid ptr space (user space code)
3625  *  C. Length in log record header is correct according to the
3626  *      individual operation headers within record.
3627  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3628  *  log, check the preceding blocks of the physical log to make sure all
3629  *  the cycle numbers agree with the current cycle number.
3630  */
3631 STATIC void
3632 xlog_verify_iclog(
3633     struct xlog     *log,
3634     struct xlog_in_core *iclog,
3635     int         count)
3636 {
3637     xlog_op_header_t    *ophead;
3638     xlog_in_core_t      *icptr;
3639     xlog_in_core_2_t    *xhdr;
3640     void            *base_ptr, *ptr, *p;
3641     ptrdiff_t       field_offset;
3642     uint8_t         clientid;
3643     int         len, i, j, k, op_len;
3644     int         idx;
3645 
3646     /* check validity of iclog pointers */
3647     spin_lock(&log->l_icloglock);
3648     icptr = log->l_iclog;
3649     for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3650         ASSERT(icptr);
3651 
3652     if (icptr != log->l_iclog)
3653         xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3654     spin_unlock(&log->l_icloglock);
3655 
3656     /* check log magic numbers */
3657     if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3658         xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3659 
3660     base_ptr = ptr = &iclog->ic_header;
3661     p = &iclog->ic_header;
3662     for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3663         if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3664             xfs_emerg(log->l_mp, "%s: unexpected magic num",
3665                 __func__);
3666     }
3667 
3668     /* check fields */
3669     len = be32_to_cpu(iclog->ic_header.h_num_logops);
3670     base_ptr = ptr = iclog->ic_datap;
3671     ophead = ptr;
3672     xhdr = iclog->ic_data;
3673     for (i = 0; i < len; i++) {
3674         ophead = ptr;
3675 
3676         /* clientid is only 1 byte */
3677         p = &ophead->oh_clientid;
3678         field_offset = p - base_ptr;
3679         if (field_offset & 0x1ff) {
3680             clientid = ophead->oh_clientid;
3681         } else {
3682             idx = BTOBBT((void *)&ophead->oh_clientid - iclog->ic_datap);
3683             if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3684                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3685                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3686                 clientid = xlog_get_client_id(
3687                     xhdr[j].hic_xheader.xh_cycle_data[k]);
3688             } else {
3689                 clientid = xlog_get_client_id(
3690                     iclog->ic_header.h_cycle_data[idx]);
3691             }
3692         }
3693         if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) {
3694             xfs_warn(log->l_mp,
3695                 "%s: op %d invalid clientid %d op "PTR_FMT" offset 0x%lx",
3696                 __func__, i, clientid, ophead,
3697                 (unsigned long)field_offset);
3698         }
3699 
3700         /* check length */
3701         p = &ophead->oh_len;
3702         field_offset = p - base_ptr;
3703         if (field_offset & 0x1ff) {
3704             op_len = be32_to_cpu(ophead->oh_len);
3705         } else {
3706             idx = BTOBBT((void *)&ophead->oh_len - iclog->ic_datap);
3707             if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3708                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3709                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3710                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3711             } else {
3712                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3713             }
3714         }
3715         ptr += sizeof(xlog_op_header_t) + op_len;
3716     }
3717 }
3718 #endif
3719 
3720 /*
3721  * Perform a forced shutdown on the log.
3722  *
3723  * This can be called from low level log code to trigger a shutdown, or from the
3724  * high level mount shutdown code when the mount shuts down.
3725  *
3726  * Our main objectives here are to make sure that:
3727  *  a. if the shutdown was not due to a log IO error, flush the logs to
3728  *     disk. Anything modified after this is ignored.
3729  *  b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3730  *     parties to find out. Nothing new gets queued after this is done.
3731  *  c. Tasks sleeping on log reservations, pinned objects and
3732  *     other resources get woken up.
3733  *  d. The mount is also marked as shut down so that log triggered shutdowns
3734  *     still behave the same as if they called xfs_forced_shutdown().
3735  *
3736  * Return true if the shutdown cause was a log IO error and we actually shut the
3737  * log down.
3738  */
3739 bool
3740 xlog_force_shutdown(
3741     struct xlog *log,
3742     uint32_t    shutdown_flags)
3743 {
3744     bool        log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
3745 
3746     if (!log)
3747         return false;
3748 
3749     /*
3750      * Flush all the completed transactions to disk before marking the log
3751      * being shut down. We need to do this first as shutting down the log
3752      * before the force will prevent the log force from flushing the iclogs
3753      * to disk.
3754      *
3755      * When we are in recovery, there are no transactions to flush, and
3756      * we don't want to touch the log because we don't want to perturb the
3757      * current head/tail for future recovery attempts. Hence we need to
3758      * avoid a log force in this case.
3759      *
3760      * If we are shutting down due to a log IO error, then we must avoid
3761      * trying to write the log as that may just result in more IO errors and
3762      * an endless shutdown/force loop.
3763      */
3764     if (!log_error && !xlog_in_recovery(log))
3765         xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3766 
3767     /*
3768      * Atomically set the shutdown state. If the shutdown state is already
3769      * set, there someone else is performing the shutdown and so we are done
3770      * here. This should never happen because we should only ever get called
3771      * once by the first shutdown caller.
3772      *
3773      * Much of the log state machine transitions assume that shutdown state
3774      * cannot change once they hold the log->l_icloglock. Hence we need to
3775      * hold that lock here, even though we use the atomic test_and_set_bit()
3776      * operation to set the shutdown state.
3777      */
3778     spin_lock(&log->l_icloglock);
3779     if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3780         spin_unlock(&log->l_icloglock);
3781         return false;
3782     }
3783     spin_unlock(&log->l_icloglock);
3784 
3785     /*
3786      * If this log shutdown also sets the mount shutdown state, issue a
3787      * shutdown warning message.
3788      */
3789     if (!test_and_set_bit(XFS_OPSTATE_SHUTDOWN, &log->l_mp->m_opstate)) {
3790         xfs_alert_tag(log->l_mp, XFS_PTAG_SHUTDOWN_LOGERROR,
3791 "Filesystem has been shut down due to log error (0x%x).",
3792                 shutdown_flags);
3793         xfs_alert(log->l_mp,
3794 "Please unmount the filesystem and rectify the problem(s).");
3795         if (xfs_error_level >= XFS_ERRLEVEL_HIGH)
3796             xfs_stack_trace();
3797     }
3798 
3799     /*
3800      * We don't want anybody waiting for log reservations after this. That
3801      * means we have to wake up everybody queued up on reserveq as well as
3802      * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3803      * we don't enqueue anything once the SHUTDOWN flag is set, and this
3804      * action is protected by the grant locks.
3805      */
3806     xlog_grant_head_wake_all(&log->l_reserve_head);
3807     xlog_grant_head_wake_all(&log->l_write_head);
3808 
3809     /*
3810      * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3811      * as if the log writes were completed. The abort handling in the log
3812      * item committed callback functions will do this again under lock to
3813      * avoid races.
3814      */
3815     spin_lock(&log->l_cilp->xc_push_lock);
3816     wake_up_all(&log->l_cilp->xc_start_wait);
3817     wake_up_all(&log->l_cilp->xc_commit_wait);
3818     spin_unlock(&log->l_cilp->xc_push_lock);
3819 
3820     spin_lock(&log->l_icloglock);
3821     xlog_state_shutdown_callbacks(log);
3822     spin_unlock(&log->l_icloglock);
3823 
3824     wake_up_var(&log->l_opstate);
3825     return log_error;
3826 }
3827 
3828 STATIC int
3829 xlog_iclogs_empty(
3830     struct xlog *log)
3831 {
3832     xlog_in_core_t  *iclog;
3833 
3834     iclog = log->l_iclog;
3835     do {
3836         /* endianness does not matter here, zero is zero in
3837          * any language.
3838          */
3839         if (iclog->ic_header.h_num_logops)
3840             return 0;
3841         iclog = iclog->ic_next;
3842     } while (iclog != log->l_iclog);
3843     return 1;
3844 }
3845 
3846 /*
3847  * Verify that an LSN stamped into a piece of metadata is valid. This is
3848  * intended for use in read verifiers on v5 superblocks.
3849  */
3850 bool
3851 xfs_log_check_lsn(
3852     struct xfs_mount    *mp,
3853     xfs_lsn_t       lsn)
3854 {
3855     struct xlog     *log = mp->m_log;
3856     bool            valid;
3857 
3858     /*
3859      * norecovery mode skips mount-time log processing and unconditionally
3860      * resets the in-core LSN. We can't validate in this mode, but
3861      * modifications are not allowed anyways so just return true.
3862      */
3863     if (xfs_has_norecovery(mp))
3864         return true;
3865 
3866     /*
3867      * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3868      * handled by recovery and thus safe to ignore here.
3869      */
3870     if (lsn == NULLCOMMITLSN)
3871         return true;
3872 
3873     valid = xlog_valid_lsn(mp->m_log, lsn);
3874 
3875     /* warn the user about what's gone wrong before verifier failure */
3876     if (!valid) {
3877         spin_lock(&log->l_icloglock);
3878         xfs_warn(mp,
3879 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3880 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3881              CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3882              log->l_curr_cycle, log->l_curr_block);
3883         spin_unlock(&log->l_icloglock);
3884     }
3885 
3886     return valid;
3887 }
3888 
3889 /*
3890  * Notify the log that we're about to start using a feature that is protected
3891  * by a log incompat feature flag.  This will prevent log covering from
3892  * clearing those flags.
3893  */
3894 void
3895 xlog_use_incompat_feat(
3896     struct xlog     *log)
3897 {
3898     down_read(&log->l_incompat_users);
3899 }
3900 
3901 /* Notify the log that we've finished using log incompat features. */
3902 void
3903 xlog_drop_incompat_feat(
3904     struct xlog     *log)
3905 {
3906     up_read(&log->l_incompat_users);
3907 }