Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
0004  * All Rights Reserved.
0005  */
0006 #include <linux/iversion.h>
0007 
0008 #include "xfs.h"
0009 #include "xfs_fs.h"
0010 #include "xfs_shared.h"
0011 #include "xfs_format.h"
0012 #include "xfs_log_format.h"
0013 #include "xfs_trans_resv.h"
0014 #include "xfs_mount.h"
0015 #include "xfs_defer.h"
0016 #include "xfs_inode.h"
0017 #include "xfs_dir2.h"
0018 #include "xfs_attr.h"
0019 #include "xfs_trans_space.h"
0020 #include "xfs_trans.h"
0021 #include "xfs_buf_item.h"
0022 #include "xfs_inode_item.h"
0023 #include "xfs_iunlink_item.h"
0024 #include "xfs_ialloc.h"
0025 #include "xfs_bmap.h"
0026 #include "xfs_bmap_util.h"
0027 #include "xfs_errortag.h"
0028 #include "xfs_error.h"
0029 #include "xfs_quota.h"
0030 #include "xfs_filestream.h"
0031 #include "xfs_trace.h"
0032 #include "xfs_icache.h"
0033 #include "xfs_symlink.h"
0034 #include "xfs_trans_priv.h"
0035 #include "xfs_log.h"
0036 #include "xfs_bmap_btree.h"
0037 #include "xfs_reflink.h"
0038 #include "xfs_ag.h"
0039 #include "xfs_log_priv.h"
0040 
0041 struct kmem_cache *xfs_inode_cache;
0042 
0043 /*
0044  * Used in xfs_itruncate_extents().  This is the maximum number of extents
0045  * freed from a file in a single transaction.
0046  */
0047 #define XFS_ITRUNC_MAX_EXTENTS  2
0048 
0049 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
0050 STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
0051     struct xfs_inode *);
0052 
0053 /*
0054  * helper function to extract extent size hint from inode
0055  */
0056 xfs_extlen_t
0057 xfs_get_extsz_hint(
0058     struct xfs_inode    *ip)
0059 {
0060     /*
0061      * No point in aligning allocations if we need to COW to actually
0062      * write to them.
0063      */
0064     if (xfs_is_always_cow_inode(ip))
0065         return 0;
0066     if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
0067         return ip->i_extsize;
0068     if (XFS_IS_REALTIME_INODE(ip))
0069         return ip->i_mount->m_sb.sb_rextsize;
0070     return 0;
0071 }
0072 
0073 /*
0074  * Helper function to extract CoW extent size hint from inode.
0075  * Between the extent size hint and the CoW extent size hint, we
0076  * return the greater of the two.  If the value is zero (automatic),
0077  * use the default size.
0078  */
0079 xfs_extlen_t
0080 xfs_get_cowextsz_hint(
0081     struct xfs_inode    *ip)
0082 {
0083     xfs_extlen_t        a, b;
0084 
0085     a = 0;
0086     if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
0087         a = ip->i_cowextsize;
0088     b = xfs_get_extsz_hint(ip);
0089 
0090     a = max(a, b);
0091     if (a == 0)
0092         return XFS_DEFAULT_COWEXTSZ_HINT;
0093     return a;
0094 }
0095 
0096 /*
0097  * These two are wrapper routines around the xfs_ilock() routine used to
0098  * centralize some grungy code.  They are used in places that wish to lock the
0099  * inode solely for reading the extents.  The reason these places can't just
0100  * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
0101  * bringing in of the extents from disk for a file in b-tree format.  If the
0102  * inode is in b-tree format, then we need to lock the inode exclusively until
0103  * the extents are read in.  Locking it exclusively all the time would limit
0104  * our parallelism unnecessarily, though.  What we do instead is check to see
0105  * if the extents have been read in yet, and only lock the inode exclusively
0106  * if they have not.
0107  *
0108  * The functions return a value which should be given to the corresponding
0109  * xfs_iunlock() call.
0110  */
0111 uint
0112 xfs_ilock_data_map_shared(
0113     struct xfs_inode    *ip)
0114 {
0115     uint            lock_mode = XFS_ILOCK_SHARED;
0116 
0117     if (xfs_need_iread_extents(&ip->i_df))
0118         lock_mode = XFS_ILOCK_EXCL;
0119     xfs_ilock(ip, lock_mode);
0120     return lock_mode;
0121 }
0122 
0123 uint
0124 xfs_ilock_attr_map_shared(
0125     struct xfs_inode    *ip)
0126 {
0127     uint            lock_mode = XFS_ILOCK_SHARED;
0128 
0129     if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
0130         lock_mode = XFS_ILOCK_EXCL;
0131     xfs_ilock(ip, lock_mode);
0132     return lock_mode;
0133 }
0134 
0135 /*
0136  * You can't set both SHARED and EXCL for the same lock,
0137  * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
0138  * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
0139  * to set in lock_flags.
0140  */
0141 static inline void
0142 xfs_lock_flags_assert(
0143     uint        lock_flags)
0144 {
0145     ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
0146         (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
0147     ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
0148         (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
0149     ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
0150         (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0151     ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
0152     ASSERT(lock_flags != 0);
0153 }
0154 
0155 /*
0156  * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
0157  * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
0158  * various combinations of the locks to be obtained.
0159  *
0160  * The 3 locks should always be ordered so that the IO lock is obtained first,
0161  * the mmap lock second and the ilock last in order to prevent deadlock.
0162  *
0163  * Basic locking order:
0164  *
0165  * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
0166  *
0167  * mmap_lock locking order:
0168  *
0169  * i_rwsem -> page lock -> mmap_lock
0170  * mmap_lock -> invalidate_lock -> page_lock
0171  *
0172  * The difference in mmap_lock locking order mean that we cannot hold the
0173  * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
0174  * can fault in pages during copy in/out (for buffered IO) or require the
0175  * mmap_lock in get_user_pages() to map the user pages into the kernel address
0176  * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
0177  * fault because page faults already hold the mmap_lock.
0178  *
0179  * Hence to serialise fully against both syscall and mmap based IO, we need to
0180  * take both the i_rwsem and the invalidate_lock. These locks should *only* be
0181  * both taken in places where we need to invalidate the page cache in a race
0182  * free manner (e.g. truncate, hole punch and other extent manipulation
0183  * functions).
0184  */
0185 void
0186 xfs_ilock(
0187     xfs_inode_t     *ip,
0188     uint            lock_flags)
0189 {
0190     trace_xfs_ilock(ip, lock_flags, _RET_IP_);
0191 
0192     xfs_lock_flags_assert(lock_flags);
0193 
0194     if (lock_flags & XFS_IOLOCK_EXCL) {
0195         down_write_nested(&VFS_I(ip)->i_rwsem,
0196                   XFS_IOLOCK_DEP(lock_flags));
0197     } else if (lock_flags & XFS_IOLOCK_SHARED) {
0198         down_read_nested(&VFS_I(ip)->i_rwsem,
0199                  XFS_IOLOCK_DEP(lock_flags));
0200     }
0201 
0202     if (lock_flags & XFS_MMAPLOCK_EXCL) {
0203         down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
0204                   XFS_MMAPLOCK_DEP(lock_flags));
0205     } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
0206         down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
0207                  XFS_MMAPLOCK_DEP(lock_flags));
0208     }
0209 
0210     if (lock_flags & XFS_ILOCK_EXCL)
0211         mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
0212     else if (lock_flags & XFS_ILOCK_SHARED)
0213         mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
0214 }
0215 
0216 /*
0217  * This is just like xfs_ilock(), except that the caller
0218  * is guaranteed not to sleep.  It returns 1 if it gets
0219  * the requested locks and 0 otherwise.  If the IO lock is
0220  * obtained but the inode lock cannot be, then the IO lock
0221  * is dropped before returning.
0222  *
0223  * ip -- the inode being locked
0224  * lock_flags -- this parameter indicates the inode's locks to be
0225  *       to be locked.  See the comment for xfs_ilock() for a list
0226  *   of valid values.
0227  */
0228 int
0229 xfs_ilock_nowait(
0230     xfs_inode_t     *ip,
0231     uint            lock_flags)
0232 {
0233     trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
0234 
0235     xfs_lock_flags_assert(lock_flags);
0236 
0237     if (lock_flags & XFS_IOLOCK_EXCL) {
0238         if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
0239             goto out;
0240     } else if (lock_flags & XFS_IOLOCK_SHARED) {
0241         if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
0242             goto out;
0243     }
0244 
0245     if (lock_flags & XFS_MMAPLOCK_EXCL) {
0246         if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
0247             goto out_undo_iolock;
0248     } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
0249         if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
0250             goto out_undo_iolock;
0251     }
0252 
0253     if (lock_flags & XFS_ILOCK_EXCL) {
0254         if (!mrtryupdate(&ip->i_lock))
0255             goto out_undo_mmaplock;
0256     } else if (lock_flags & XFS_ILOCK_SHARED) {
0257         if (!mrtryaccess(&ip->i_lock))
0258             goto out_undo_mmaplock;
0259     }
0260     return 1;
0261 
0262 out_undo_mmaplock:
0263     if (lock_flags & XFS_MMAPLOCK_EXCL)
0264         up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
0265     else if (lock_flags & XFS_MMAPLOCK_SHARED)
0266         up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
0267 out_undo_iolock:
0268     if (lock_flags & XFS_IOLOCK_EXCL)
0269         up_write(&VFS_I(ip)->i_rwsem);
0270     else if (lock_flags & XFS_IOLOCK_SHARED)
0271         up_read(&VFS_I(ip)->i_rwsem);
0272 out:
0273     return 0;
0274 }
0275 
0276 /*
0277  * xfs_iunlock() is used to drop the inode locks acquired with
0278  * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
0279  * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
0280  * that we know which locks to drop.
0281  *
0282  * ip -- the inode being unlocked
0283  * lock_flags -- this parameter indicates the inode's locks to be
0284  *       to be unlocked.  See the comment for xfs_ilock() for a list
0285  *   of valid values for this parameter.
0286  *
0287  */
0288 void
0289 xfs_iunlock(
0290     xfs_inode_t     *ip,
0291     uint            lock_flags)
0292 {
0293     xfs_lock_flags_assert(lock_flags);
0294 
0295     if (lock_flags & XFS_IOLOCK_EXCL)
0296         up_write(&VFS_I(ip)->i_rwsem);
0297     else if (lock_flags & XFS_IOLOCK_SHARED)
0298         up_read(&VFS_I(ip)->i_rwsem);
0299 
0300     if (lock_flags & XFS_MMAPLOCK_EXCL)
0301         up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
0302     else if (lock_flags & XFS_MMAPLOCK_SHARED)
0303         up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
0304 
0305     if (lock_flags & XFS_ILOCK_EXCL)
0306         mrunlock_excl(&ip->i_lock);
0307     else if (lock_flags & XFS_ILOCK_SHARED)
0308         mrunlock_shared(&ip->i_lock);
0309 
0310     trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
0311 }
0312 
0313 /*
0314  * give up write locks.  the i/o lock cannot be held nested
0315  * if it is being demoted.
0316  */
0317 void
0318 xfs_ilock_demote(
0319     xfs_inode_t     *ip,
0320     uint            lock_flags)
0321 {
0322     ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
0323     ASSERT((lock_flags &
0324         ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
0325 
0326     if (lock_flags & XFS_ILOCK_EXCL)
0327         mrdemote(&ip->i_lock);
0328     if (lock_flags & XFS_MMAPLOCK_EXCL)
0329         downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
0330     if (lock_flags & XFS_IOLOCK_EXCL)
0331         downgrade_write(&VFS_I(ip)->i_rwsem);
0332 
0333     trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
0334 }
0335 
0336 #if defined(DEBUG) || defined(XFS_WARN)
0337 static inline bool
0338 __xfs_rwsem_islocked(
0339     struct rw_semaphore *rwsem,
0340     bool            shared)
0341 {
0342     if (!debug_locks)
0343         return rwsem_is_locked(rwsem);
0344 
0345     if (!shared)
0346         return lockdep_is_held_type(rwsem, 0);
0347 
0348     /*
0349      * We are checking that the lock is held at least in shared
0350      * mode but don't care that it might be held exclusively
0351      * (i.e. shared | excl). Hence we check if the lock is held
0352      * in any mode rather than an explicit shared mode.
0353      */
0354     return lockdep_is_held_type(rwsem, -1);
0355 }
0356 
0357 bool
0358 xfs_isilocked(
0359     struct xfs_inode    *ip,
0360     uint            lock_flags)
0361 {
0362     if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
0363         if (!(lock_flags & XFS_ILOCK_SHARED))
0364             return !!ip->i_lock.mr_writer;
0365         return rwsem_is_locked(&ip->i_lock.mr_lock);
0366     }
0367 
0368     if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
0369         return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
0370                 (lock_flags & XFS_MMAPLOCK_SHARED));
0371     }
0372 
0373     if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
0374         return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
0375                 (lock_flags & XFS_IOLOCK_SHARED));
0376     }
0377 
0378     ASSERT(0);
0379     return false;
0380 }
0381 #endif
0382 
0383 /*
0384  * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
0385  * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
0386  * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
0387  * errors and warnings.
0388  */
0389 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
0390 static bool
0391 xfs_lockdep_subclass_ok(
0392     int subclass)
0393 {
0394     return subclass < MAX_LOCKDEP_SUBCLASSES;
0395 }
0396 #else
0397 #define xfs_lockdep_subclass_ok(subclass)   (true)
0398 #endif
0399 
0400 /*
0401  * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0402  * value. This can be called for any type of inode lock combination, including
0403  * parent locking. Care must be taken to ensure we don't overrun the subclass
0404  * storage fields in the class mask we build.
0405  */
0406 static inline uint
0407 xfs_lock_inumorder(
0408     uint    lock_mode,
0409     uint    subclass)
0410 {
0411     uint    class = 0;
0412 
0413     ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
0414                   XFS_ILOCK_RTSUM)));
0415     ASSERT(xfs_lockdep_subclass_ok(subclass));
0416 
0417     if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0418         ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0419         class += subclass << XFS_IOLOCK_SHIFT;
0420     }
0421 
0422     if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0423         ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
0424         class += subclass << XFS_MMAPLOCK_SHIFT;
0425     }
0426 
0427     if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
0428         ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
0429         class += subclass << XFS_ILOCK_SHIFT;
0430     }
0431 
0432     return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
0433 }
0434 
0435 /*
0436  * The following routine will lock n inodes in exclusive mode.  We assume the
0437  * caller calls us with the inodes in i_ino order.
0438  *
0439  * We need to detect deadlock where an inode that we lock is in the AIL and we
0440  * start waiting for another inode that is locked by a thread in a long running
0441  * transaction (such as truncate). This can result in deadlock since the long
0442  * running trans might need to wait for the inode we just locked in order to
0443  * push the tail and free space in the log.
0444  *
0445  * xfs_lock_inodes() can only be used to lock one type of lock at a time -
0446  * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
0447  * lock more than one at a time, lockdep will report false positives saying we
0448  * have violated locking orders.
0449  */
0450 static void
0451 xfs_lock_inodes(
0452     struct xfs_inode    **ips,
0453     int         inodes,
0454     uint            lock_mode)
0455 {
0456     int         attempts = 0;
0457     uint            i;
0458     int         j;
0459     bool            try_lock;
0460     struct xfs_log_item *lp;
0461 
0462     /*
0463      * Currently supports between 2 and 5 inodes with exclusive locking.  We
0464      * support an arbitrary depth of locking here, but absolute limits on
0465      * inodes depend on the type of locking and the limits placed by
0466      * lockdep annotations in xfs_lock_inumorder.  These are all checked by
0467      * the asserts.
0468      */
0469     ASSERT(ips && inodes >= 2 && inodes <= 5);
0470     ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
0471                 XFS_ILOCK_EXCL));
0472     ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
0473                   XFS_ILOCK_SHARED)));
0474     ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
0475         inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
0476     ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
0477         inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
0478 
0479     if (lock_mode & XFS_IOLOCK_EXCL) {
0480         ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
0481     } else if (lock_mode & XFS_MMAPLOCK_EXCL)
0482         ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
0483 
0484 again:
0485     try_lock = false;
0486     i = 0;
0487     for (; i < inodes; i++) {
0488         ASSERT(ips[i]);
0489 
0490         if (i && (ips[i] == ips[i - 1]))    /* Already locked */
0491             continue;
0492 
0493         /*
0494          * If try_lock is not set yet, make sure all locked inodes are
0495          * not in the AIL.  If any are, set try_lock to be used later.
0496          */
0497         if (!try_lock) {
0498             for (j = (i - 1); j >= 0 && !try_lock; j--) {
0499                 lp = &ips[j]->i_itemp->ili_item;
0500                 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
0501                     try_lock = true;
0502             }
0503         }
0504 
0505         /*
0506          * If any of the previous locks we have locked is in the AIL,
0507          * we must TRY to get the second and subsequent locks. If
0508          * we can't get any, we must release all we have
0509          * and try again.
0510          */
0511         if (!try_lock) {
0512             xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
0513             continue;
0514         }
0515 
0516         /* try_lock means we have an inode locked that is in the AIL. */
0517         ASSERT(i != 0);
0518         if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
0519             continue;
0520 
0521         /*
0522          * Unlock all previous guys and try again.  xfs_iunlock will try
0523          * to push the tail if the inode is in the AIL.
0524          */
0525         attempts++;
0526         for (j = i - 1; j >= 0; j--) {
0527             /*
0528              * Check to see if we've already unlocked this one.  Not
0529              * the first one going back, and the inode ptr is the
0530              * same.
0531              */
0532             if (j != (i - 1) && ips[j] == ips[j + 1])
0533                 continue;
0534 
0535             xfs_iunlock(ips[j], lock_mode);
0536         }
0537 
0538         if ((attempts % 5) == 0) {
0539             delay(1); /* Don't just spin the CPU */
0540         }
0541         goto again;
0542     }
0543 }
0544 
0545 /*
0546  * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
0547  * mmaplock must be double-locked separately since we use i_rwsem and
0548  * invalidate_lock for that. We now support taking one lock EXCL and the
0549  * other SHARED.
0550  */
0551 void
0552 xfs_lock_two_inodes(
0553     struct xfs_inode    *ip0,
0554     uint            ip0_mode,
0555     struct xfs_inode    *ip1,
0556     uint            ip1_mode)
0557 {
0558     int         attempts = 0;
0559     struct xfs_log_item *lp;
0560 
0561     ASSERT(hweight32(ip0_mode) == 1);
0562     ASSERT(hweight32(ip1_mode) == 1);
0563     ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
0564     ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
0565     ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
0566     ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
0567     ASSERT(ip0->i_ino != ip1->i_ino);
0568 
0569     if (ip0->i_ino > ip1->i_ino) {
0570         swap(ip0, ip1);
0571         swap(ip0_mode, ip1_mode);
0572     }
0573 
0574  again:
0575     xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
0576 
0577     /*
0578      * If the first lock we have locked is in the AIL, we must TRY to get
0579      * the second lock. If we can't get it, we must release the first one
0580      * and try again.
0581      */
0582     lp = &ip0->i_itemp->ili_item;
0583     if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
0584         if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
0585             xfs_iunlock(ip0, ip0_mode);
0586             if ((++attempts % 5) == 0)
0587                 delay(1); /* Don't just spin the CPU */
0588             goto again;
0589         }
0590     } else {
0591         xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
0592     }
0593 }
0594 
0595 uint
0596 xfs_ip2xflags(
0597     struct xfs_inode    *ip)
0598 {
0599     uint            flags = 0;
0600 
0601     if (ip->i_diflags & XFS_DIFLAG_ANY) {
0602         if (ip->i_diflags & XFS_DIFLAG_REALTIME)
0603             flags |= FS_XFLAG_REALTIME;
0604         if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
0605             flags |= FS_XFLAG_PREALLOC;
0606         if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
0607             flags |= FS_XFLAG_IMMUTABLE;
0608         if (ip->i_diflags & XFS_DIFLAG_APPEND)
0609             flags |= FS_XFLAG_APPEND;
0610         if (ip->i_diflags & XFS_DIFLAG_SYNC)
0611             flags |= FS_XFLAG_SYNC;
0612         if (ip->i_diflags & XFS_DIFLAG_NOATIME)
0613             flags |= FS_XFLAG_NOATIME;
0614         if (ip->i_diflags & XFS_DIFLAG_NODUMP)
0615             flags |= FS_XFLAG_NODUMP;
0616         if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
0617             flags |= FS_XFLAG_RTINHERIT;
0618         if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
0619             flags |= FS_XFLAG_PROJINHERIT;
0620         if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
0621             flags |= FS_XFLAG_NOSYMLINKS;
0622         if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
0623             flags |= FS_XFLAG_EXTSIZE;
0624         if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
0625             flags |= FS_XFLAG_EXTSZINHERIT;
0626         if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
0627             flags |= FS_XFLAG_NODEFRAG;
0628         if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
0629             flags |= FS_XFLAG_FILESTREAM;
0630     }
0631 
0632     if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
0633         if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
0634             flags |= FS_XFLAG_DAX;
0635         if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
0636             flags |= FS_XFLAG_COWEXTSIZE;
0637     }
0638 
0639     if (xfs_inode_has_attr_fork(ip))
0640         flags |= FS_XFLAG_HASATTR;
0641     return flags;
0642 }
0643 
0644 /*
0645  * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
0646  * is allowed, otherwise it has to be an exact match. If a CI match is found,
0647  * ci_name->name will point to a the actual name (caller must free) or
0648  * will be set to NULL if an exact match is found.
0649  */
0650 int
0651 xfs_lookup(
0652     struct xfs_inode    *dp,
0653     const struct xfs_name   *name,
0654     struct xfs_inode    **ipp,
0655     struct xfs_name     *ci_name)
0656 {
0657     xfs_ino_t       inum;
0658     int         error;
0659 
0660     trace_xfs_lookup(dp, name);
0661 
0662     if (xfs_is_shutdown(dp->i_mount))
0663         return -EIO;
0664 
0665     error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
0666     if (error)
0667         goto out_unlock;
0668 
0669     error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
0670     if (error)
0671         goto out_free_name;
0672 
0673     return 0;
0674 
0675 out_free_name:
0676     if (ci_name)
0677         kmem_free(ci_name->name);
0678 out_unlock:
0679     *ipp = NULL;
0680     return error;
0681 }
0682 
0683 /* Propagate di_flags from a parent inode to a child inode. */
0684 static void
0685 xfs_inode_inherit_flags(
0686     struct xfs_inode    *ip,
0687     const struct xfs_inode  *pip)
0688 {
0689     unsigned int        di_flags = 0;
0690     xfs_failaddr_t      failaddr;
0691     umode_t         mode = VFS_I(ip)->i_mode;
0692 
0693     if (S_ISDIR(mode)) {
0694         if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
0695             di_flags |= XFS_DIFLAG_RTINHERIT;
0696         if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
0697             di_flags |= XFS_DIFLAG_EXTSZINHERIT;
0698             ip->i_extsize = pip->i_extsize;
0699         }
0700         if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
0701             di_flags |= XFS_DIFLAG_PROJINHERIT;
0702     } else if (S_ISREG(mode)) {
0703         if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
0704             xfs_has_realtime(ip->i_mount))
0705             di_flags |= XFS_DIFLAG_REALTIME;
0706         if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
0707             di_flags |= XFS_DIFLAG_EXTSIZE;
0708             ip->i_extsize = pip->i_extsize;
0709         }
0710     }
0711     if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
0712         xfs_inherit_noatime)
0713         di_flags |= XFS_DIFLAG_NOATIME;
0714     if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
0715         xfs_inherit_nodump)
0716         di_flags |= XFS_DIFLAG_NODUMP;
0717     if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
0718         xfs_inherit_sync)
0719         di_flags |= XFS_DIFLAG_SYNC;
0720     if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
0721         xfs_inherit_nosymlinks)
0722         di_flags |= XFS_DIFLAG_NOSYMLINKS;
0723     if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
0724         xfs_inherit_nodefrag)
0725         di_flags |= XFS_DIFLAG_NODEFRAG;
0726     if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
0727         di_flags |= XFS_DIFLAG_FILESTREAM;
0728 
0729     ip->i_diflags |= di_flags;
0730 
0731     /*
0732      * Inode verifiers on older kernels only check that the extent size
0733      * hint is an integer multiple of the rt extent size on realtime files.
0734      * They did not check the hint alignment on a directory with both
0735      * rtinherit and extszinherit flags set.  If the misaligned hint is
0736      * propagated from a directory into a new realtime file, new file
0737      * allocations will fail due to math errors in the rt allocator and/or
0738      * trip the verifiers.  Validate the hint settings in the new file so
0739      * that we don't let broken hints propagate.
0740      */
0741     failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
0742             VFS_I(ip)->i_mode, ip->i_diflags);
0743     if (failaddr) {
0744         ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
0745                    XFS_DIFLAG_EXTSZINHERIT);
0746         ip->i_extsize = 0;
0747     }
0748 }
0749 
0750 /* Propagate di_flags2 from a parent inode to a child inode. */
0751 static void
0752 xfs_inode_inherit_flags2(
0753     struct xfs_inode    *ip,
0754     const struct xfs_inode  *pip)
0755 {
0756     xfs_failaddr_t      failaddr;
0757 
0758     if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
0759         ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
0760         ip->i_cowextsize = pip->i_cowextsize;
0761     }
0762     if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
0763         ip->i_diflags2 |= XFS_DIFLAG2_DAX;
0764 
0765     /* Don't let invalid cowextsize hints propagate. */
0766     failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
0767             VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
0768     if (failaddr) {
0769         ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
0770         ip->i_cowextsize = 0;
0771     }
0772 }
0773 
0774 /*
0775  * Initialise a newly allocated inode and return the in-core inode to the
0776  * caller locked exclusively.
0777  */
0778 int
0779 xfs_init_new_inode(
0780     struct user_namespace   *mnt_userns,
0781     struct xfs_trans    *tp,
0782     struct xfs_inode    *pip,
0783     xfs_ino_t       ino,
0784     umode_t         mode,
0785     xfs_nlink_t     nlink,
0786     dev_t           rdev,
0787     prid_t          prid,
0788     bool            init_xattrs,
0789     struct xfs_inode    **ipp)
0790 {
0791     struct inode        *dir = pip ? VFS_I(pip) : NULL;
0792     struct xfs_mount    *mp = tp->t_mountp;
0793     struct xfs_inode    *ip;
0794     unsigned int        flags;
0795     int         error;
0796     struct timespec64   tv;
0797     struct inode        *inode;
0798 
0799     /*
0800      * Protect against obviously corrupt allocation btree records. Later
0801      * xfs_iget checks will catch re-allocation of other active in-memory
0802      * and on-disk inodes. If we don't catch reallocating the parent inode
0803      * here we will deadlock in xfs_iget() so we have to do these checks
0804      * first.
0805      */
0806     if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
0807         xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
0808         return -EFSCORRUPTED;
0809     }
0810 
0811     /*
0812      * Get the in-core inode with the lock held exclusively to prevent
0813      * others from looking at until we're done.
0814      */
0815     error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
0816     if (error)
0817         return error;
0818 
0819     ASSERT(ip != NULL);
0820     inode = VFS_I(ip);
0821     set_nlink(inode, nlink);
0822     inode->i_rdev = rdev;
0823     ip->i_projid = prid;
0824 
0825     if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
0826         inode_fsuid_set(inode, mnt_userns);
0827         inode->i_gid = dir->i_gid;
0828         inode->i_mode = mode;
0829     } else {
0830         inode_init_owner(mnt_userns, inode, dir, mode);
0831     }
0832 
0833     /*
0834      * If the group ID of the new file does not match the effective group
0835      * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
0836      * (and only if the irix_sgid_inherit compatibility variable is set).
0837      */
0838     if (irix_sgid_inherit &&
0839         (inode->i_mode & S_ISGID) &&
0840         !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
0841         inode->i_mode &= ~S_ISGID;
0842 
0843     ip->i_disk_size = 0;
0844     ip->i_df.if_nextents = 0;
0845     ASSERT(ip->i_nblocks == 0);
0846 
0847     tv = current_time(inode);
0848     inode->i_mtime = tv;
0849     inode->i_atime = tv;
0850     inode->i_ctime = tv;
0851 
0852     ip->i_extsize = 0;
0853     ip->i_diflags = 0;
0854 
0855     if (xfs_has_v3inodes(mp)) {
0856         inode_set_iversion(inode, 1);
0857         ip->i_cowextsize = 0;
0858         ip->i_crtime = tv;
0859     }
0860 
0861     flags = XFS_ILOG_CORE;
0862     switch (mode & S_IFMT) {
0863     case S_IFIFO:
0864     case S_IFCHR:
0865     case S_IFBLK:
0866     case S_IFSOCK:
0867         ip->i_df.if_format = XFS_DINODE_FMT_DEV;
0868         flags |= XFS_ILOG_DEV;
0869         break;
0870     case S_IFREG:
0871     case S_IFDIR:
0872         if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
0873             xfs_inode_inherit_flags(ip, pip);
0874         if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
0875             xfs_inode_inherit_flags2(ip, pip);
0876         fallthrough;
0877     case S_IFLNK:
0878         ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
0879         ip->i_df.if_bytes = 0;
0880         ip->i_df.if_u1.if_root = NULL;
0881         break;
0882     default:
0883         ASSERT(0);
0884     }
0885 
0886     /*
0887      * If we need to create attributes immediately after allocating the
0888      * inode, initialise an empty attribute fork right now. We use the
0889      * default fork offset for attributes here as we don't know exactly what
0890      * size or how many attributes we might be adding. We can do this
0891      * safely here because we know the data fork is completely empty and
0892      * this saves us from needing to run a separate transaction to set the
0893      * fork offset in the immediate future.
0894      */
0895     if (init_xattrs && xfs_has_attr(mp)) {
0896         ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
0897         xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
0898     }
0899 
0900     /*
0901      * Log the new values stuffed into the inode.
0902      */
0903     xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
0904     xfs_trans_log_inode(tp, ip, flags);
0905 
0906     /* now that we have an i_mode we can setup the inode structure */
0907     xfs_setup_inode(ip);
0908 
0909     *ipp = ip;
0910     return 0;
0911 }
0912 
0913 /*
0914  * Decrement the link count on an inode & log the change.  If this causes the
0915  * link count to go to zero, move the inode to AGI unlinked list so that it can
0916  * be freed when the last active reference goes away via xfs_inactive().
0917  */
0918 static int          /* error */
0919 xfs_droplink(
0920     xfs_trans_t *tp,
0921     xfs_inode_t *ip)
0922 {
0923     xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
0924 
0925     drop_nlink(VFS_I(ip));
0926     xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
0927 
0928     if (VFS_I(ip)->i_nlink)
0929         return 0;
0930 
0931     return xfs_iunlink(tp, ip);
0932 }
0933 
0934 /*
0935  * Increment the link count on an inode & log the change.
0936  */
0937 static void
0938 xfs_bumplink(
0939     xfs_trans_t *tp,
0940     xfs_inode_t *ip)
0941 {
0942     xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
0943 
0944     inc_nlink(VFS_I(ip));
0945     xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
0946 }
0947 
0948 int
0949 xfs_create(
0950     struct user_namespace   *mnt_userns,
0951     xfs_inode_t     *dp,
0952     struct xfs_name     *name,
0953     umode_t         mode,
0954     dev_t           rdev,
0955     bool            init_xattrs,
0956     xfs_inode_t     **ipp)
0957 {
0958     int         is_dir = S_ISDIR(mode);
0959     struct xfs_mount    *mp = dp->i_mount;
0960     struct xfs_inode    *ip = NULL;
0961     struct xfs_trans    *tp = NULL;
0962     int         error;
0963     bool                    unlock_dp_on_error = false;
0964     prid_t          prid;
0965     struct xfs_dquot    *udqp = NULL;
0966     struct xfs_dquot    *gdqp = NULL;
0967     struct xfs_dquot    *pdqp = NULL;
0968     struct xfs_trans_res    *tres;
0969     uint            resblks;
0970     xfs_ino_t       ino;
0971 
0972     trace_xfs_create(dp, name);
0973 
0974     if (xfs_is_shutdown(mp))
0975         return -EIO;
0976 
0977     prid = xfs_get_initial_prid(dp);
0978 
0979     /*
0980      * Make sure that we have allocated dquot(s) on disk.
0981      */
0982     error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
0983             mapped_fsgid(mnt_userns, &init_user_ns), prid,
0984             XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
0985             &udqp, &gdqp, &pdqp);
0986     if (error)
0987         return error;
0988 
0989     if (is_dir) {
0990         resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
0991         tres = &M_RES(mp)->tr_mkdir;
0992     } else {
0993         resblks = XFS_CREATE_SPACE_RES(mp, name->len);
0994         tres = &M_RES(mp)->tr_create;
0995     }
0996 
0997     /*
0998      * Initially assume that the file does not exist and
0999      * reserve the resources for that case.  If that is not
1000      * the case we'll drop the one we have and get a more
1001      * appropriate transaction later.
1002      */
1003     error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1004             &tp);
1005     if (error == -ENOSPC) {
1006         /* flush outstanding delalloc blocks and retry */
1007         xfs_flush_inodes(mp);
1008         error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1009                 resblks, &tp);
1010     }
1011     if (error)
1012         goto out_release_dquots;
1013 
1014     xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1015     unlock_dp_on_error = true;
1016 
1017     /*
1018      * A newly created regular or special file just has one directory
1019      * entry pointing to them, but a directory also the "." entry
1020      * pointing to itself.
1021      */
1022     error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1023     if (!error)
1024         error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1025                 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1026     if (error)
1027         goto out_trans_cancel;
1028 
1029     /*
1030      * Now we join the directory inode to the transaction.  We do not do it
1031      * earlier because xfs_dialloc might commit the previous transaction
1032      * (and release all the locks).  An error from here on will result in
1033      * the transaction cancel unlocking dp so don't do it explicitly in the
1034      * error path.
1035      */
1036     xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1037     unlock_dp_on_error = false;
1038 
1039     error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1040                     resblks - XFS_IALLOC_SPACE_RES(mp));
1041     if (error) {
1042         ASSERT(error != -ENOSPC);
1043         goto out_trans_cancel;
1044     }
1045     xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1046     xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1047 
1048     if (is_dir) {
1049         error = xfs_dir_init(tp, ip, dp);
1050         if (error)
1051             goto out_trans_cancel;
1052 
1053         xfs_bumplink(tp, dp);
1054     }
1055 
1056     /*
1057      * If this is a synchronous mount, make sure that the
1058      * create transaction goes to disk before returning to
1059      * the user.
1060      */
1061     if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1062         xfs_trans_set_sync(tp);
1063 
1064     /*
1065      * Attach the dquot(s) to the inodes and modify them incore.
1066      * These ids of the inode couldn't have changed since the new
1067      * inode has been locked ever since it was created.
1068      */
1069     xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1070 
1071     error = xfs_trans_commit(tp);
1072     if (error)
1073         goto out_release_inode;
1074 
1075     xfs_qm_dqrele(udqp);
1076     xfs_qm_dqrele(gdqp);
1077     xfs_qm_dqrele(pdqp);
1078 
1079     *ipp = ip;
1080     return 0;
1081 
1082  out_trans_cancel:
1083     xfs_trans_cancel(tp);
1084  out_release_inode:
1085     /*
1086      * Wait until after the current transaction is aborted to finish the
1087      * setup of the inode and release the inode.  This prevents recursive
1088      * transactions and deadlocks from xfs_inactive.
1089      */
1090     if (ip) {
1091         xfs_finish_inode_setup(ip);
1092         xfs_irele(ip);
1093     }
1094  out_release_dquots:
1095     xfs_qm_dqrele(udqp);
1096     xfs_qm_dqrele(gdqp);
1097     xfs_qm_dqrele(pdqp);
1098 
1099     if (unlock_dp_on_error)
1100         xfs_iunlock(dp, XFS_ILOCK_EXCL);
1101     return error;
1102 }
1103 
1104 int
1105 xfs_create_tmpfile(
1106     struct user_namespace   *mnt_userns,
1107     struct xfs_inode    *dp,
1108     umode_t         mode,
1109     struct xfs_inode    **ipp)
1110 {
1111     struct xfs_mount    *mp = dp->i_mount;
1112     struct xfs_inode    *ip = NULL;
1113     struct xfs_trans    *tp = NULL;
1114     int         error;
1115     prid_t                  prid;
1116     struct xfs_dquot    *udqp = NULL;
1117     struct xfs_dquot    *gdqp = NULL;
1118     struct xfs_dquot    *pdqp = NULL;
1119     struct xfs_trans_res    *tres;
1120     uint            resblks;
1121     xfs_ino_t       ino;
1122 
1123     if (xfs_is_shutdown(mp))
1124         return -EIO;
1125 
1126     prid = xfs_get_initial_prid(dp);
1127 
1128     /*
1129      * Make sure that we have allocated dquot(s) on disk.
1130      */
1131     error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
1132             mapped_fsgid(mnt_userns, &init_user_ns), prid,
1133             XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1134             &udqp, &gdqp, &pdqp);
1135     if (error)
1136         return error;
1137 
1138     resblks = XFS_IALLOC_SPACE_RES(mp);
1139     tres = &M_RES(mp)->tr_create_tmpfile;
1140 
1141     error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1142             &tp);
1143     if (error)
1144         goto out_release_dquots;
1145 
1146     error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1147     if (!error)
1148         error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1149                 0, 0, prid, false, &ip);
1150     if (error)
1151         goto out_trans_cancel;
1152 
1153     if (xfs_has_wsync(mp))
1154         xfs_trans_set_sync(tp);
1155 
1156     /*
1157      * Attach the dquot(s) to the inodes and modify them incore.
1158      * These ids of the inode couldn't have changed since the new
1159      * inode has been locked ever since it was created.
1160      */
1161     xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1162 
1163     error = xfs_iunlink(tp, ip);
1164     if (error)
1165         goto out_trans_cancel;
1166 
1167     error = xfs_trans_commit(tp);
1168     if (error)
1169         goto out_release_inode;
1170 
1171     xfs_qm_dqrele(udqp);
1172     xfs_qm_dqrele(gdqp);
1173     xfs_qm_dqrele(pdqp);
1174 
1175     *ipp = ip;
1176     return 0;
1177 
1178  out_trans_cancel:
1179     xfs_trans_cancel(tp);
1180  out_release_inode:
1181     /*
1182      * Wait until after the current transaction is aborted to finish the
1183      * setup of the inode and release the inode.  This prevents recursive
1184      * transactions and deadlocks from xfs_inactive.
1185      */
1186     if (ip) {
1187         xfs_finish_inode_setup(ip);
1188         xfs_irele(ip);
1189     }
1190  out_release_dquots:
1191     xfs_qm_dqrele(udqp);
1192     xfs_qm_dqrele(gdqp);
1193     xfs_qm_dqrele(pdqp);
1194 
1195     return error;
1196 }
1197 
1198 int
1199 xfs_link(
1200     xfs_inode_t     *tdp,
1201     xfs_inode_t     *sip,
1202     struct xfs_name     *target_name)
1203 {
1204     xfs_mount_t     *mp = tdp->i_mount;
1205     xfs_trans_t     *tp;
1206     int         error, nospace_error = 0;
1207     int         resblks;
1208 
1209     trace_xfs_link(tdp, target_name);
1210 
1211     ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1212 
1213     if (xfs_is_shutdown(mp))
1214         return -EIO;
1215 
1216     error = xfs_qm_dqattach(sip);
1217     if (error)
1218         goto std_return;
1219 
1220     error = xfs_qm_dqattach(tdp);
1221     if (error)
1222         goto std_return;
1223 
1224     resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1225     error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1226             &tp, &nospace_error);
1227     if (error)
1228         goto std_return;
1229 
1230     /*
1231      * If we are using project inheritance, we only allow hard link
1232      * creation in our tree when the project IDs are the same; else
1233      * the tree quota mechanism could be circumvented.
1234      */
1235     if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1236              tdp->i_projid != sip->i_projid)) {
1237         error = -EXDEV;
1238         goto error_return;
1239     }
1240 
1241     if (!resblks) {
1242         error = xfs_dir_canenter(tp, tdp, target_name);
1243         if (error)
1244             goto error_return;
1245     }
1246 
1247     /*
1248      * Handle initial link state of O_TMPFILE inode
1249      */
1250     if (VFS_I(sip)->i_nlink == 0) {
1251         struct xfs_perag    *pag;
1252 
1253         pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1254         error = xfs_iunlink_remove(tp, pag, sip);
1255         xfs_perag_put(pag);
1256         if (error)
1257             goto error_return;
1258     }
1259 
1260     error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1261                    resblks);
1262     if (error)
1263         goto error_return;
1264     xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1265     xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1266 
1267     xfs_bumplink(tp, sip);
1268 
1269     /*
1270      * If this is a synchronous mount, make sure that the
1271      * link transaction goes to disk before returning to
1272      * the user.
1273      */
1274     if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1275         xfs_trans_set_sync(tp);
1276 
1277     return xfs_trans_commit(tp);
1278 
1279  error_return:
1280     xfs_trans_cancel(tp);
1281  std_return:
1282     if (error == -ENOSPC && nospace_error)
1283         error = nospace_error;
1284     return error;
1285 }
1286 
1287 /* Clear the reflink flag and the cowblocks tag if possible. */
1288 static void
1289 xfs_itruncate_clear_reflink_flags(
1290     struct xfs_inode    *ip)
1291 {
1292     struct xfs_ifork    *dfork;
1293     struct xfs_ifork    *cfork;
1294 
1295     if (!xfs_is_reflink_inode(ip))
1296         return;
1297     dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1298     cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1299     if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1300         ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1301     if (cfork->if_bytes == 0)
1302         xfs_inode_clear_cowblocks_tag(ip);
1303 }
1304 
1305 /*
1306  * Free up the underlying blocks past new_size.  The new size must be smaller
1307  * than the current size.  This routine can be used both for the attribute and
1308  * data fork, and does not modify the inode size, which is left to the caller.
1309  *
1310  * The transaction passed to this routine must have made a permanent log
1311  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1312  * given transaction and start new ones, so make sure everything involved in
1313  * the transaction is tidy before calling here.  Some transaction will be
1314  * returned to the caller to be committed.  The incoming transaction must
1315  * already include the inode, and both inode locks must be held exclusively.
1316  * The inode must also be "held" within the transaction.  On return the inode
1317  * will be "held" within the returned transaction.  This routine does NOT
1318  * require any disk space to be reserved for it within the transaction.
1319  *
1320  * If we get an error, we must return with the inode locked and linked into the
1321  * current transaction. This keeps things simple for the higher level code,
1322  * because it always knows that the inode is locked and held in the transaction
1323  * that returns to it whether errors occur or not.  We don't mark the inode
1324  * dirty on error so that transactions can be easily aborted if possible.
1325  */
1326 int
1327 xfs_itruncate_extents_flags(
1328     struct xfs_trans    **tpp,
1329     struct xfs_inode    *ip,
1330     int         whichfork,
1331     xfs_fsize_t     new_size,
1332     int         flags)
1333 {
1334     struct xfs_mount    *mp = ip->i_mount;
1335     struct xfs_trans    *tp = *tpp;
1336     xfs_fileoff_t       first_unmap_block;
1337     xfs_filblks_t       unmap_len;
1338     int         error = 0;
1339 
1340     ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1341     ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1342            xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1343     ASSERT(new_size <= XFS_ISIZE(ip));
1344     ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1345     ASSERT(ip->i_itemp != NULL);
1346     ASSERT(ip->i_itemp->ili_lock_flags == 0);
1347     ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1348 
1349     trace_xfs_itruncate_extents_start(ip, new_size);
1350 
1351     flags |= xfs_bmapi_aflag(whichfork);
1352 
1353     /*
1354      * Since it is possible for space to become allocated beyond
1355      * the end of the file (in a crash where the space is allocated
1356      * but the inode size is not yet updated), simply remove any
1357      * blocks which show up between the new EOF and the maximum
1358      * possible file size.
1359      *
1360      * We have to free all the blocks to the bmbt maximum offset, even if
1361      * the page cache can't scale that far.
1362      */
1363     first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1364     if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1365         WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1366         return 0;
1367     }
1368 
1369     unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1370     while (unmap_len > 0) {
1371         ASSERT(tp->t_firstblock == NULLFSBLOCK);
1372         error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1373                 flags, XFS_ITRUNC_MAX_EXTENTS);
1374         if (error)
1375             goto out;
1376 
1377         /* free the just unmapped extents */
1378         error = xfs_defer_finish(&tp);
1379         if (error)
1380             goto out;
1381     }
1382 
1383     if (whichfork == XFS_DATA_FORK) {
1384         /* Remove all pending CoW reservations. */
1385         error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1386                 first_unmap_block, XFS_MAX_FILEOFF, true);
1387         if (error)
1388             goto out;
1389 
1390         xfs_itruncate_clear_reflink_flags(ip);
1391     }
1392 
1393     /*
1394      * Always re-log the inode so that our permanent transaction can keep
1395      * on rolling it forward in the log.
1396      */
1397     xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1398 
1399     trace_xfs_itruncate_extents_end(ip, new_size);
1400 
1401 out:
1402     *tpp = tp;
1403     return error;
1404 }
1405 
1406 int
1407 xfs_release(
1408     xfs_inode_t *ip)
1409 {
1410     xfs_mount_t *mp = ip->i_mount;
1411     int     error = 0;
1412 
1413     if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1414         return 0;
1415 
1416     /* If this is a read-only mount, don't do this (would generate I/O) */
1417     if (xfs_is_readonly(mp))
1418         return 0;
1419 
1420     if (!xfs_is_shutdown(mp)) {
1421         int truncated;
1422 
1423         /*
1424          * If we previously truncated this file and removed old data
1425          * in the process, we want to initiate "early" writeout on
1426          * the last close.  This is an attempt to combat the notorious
1427          * NULL files problem which is particularly noticeable from a
1428          * truncate down, buffered (re-)write (delalloc), followed by
1429          * a crash.  What we are effectively doing here is
1430          * significantly reducing the time window where we'd otherwise
1431          * be exposed to that problem.
1432          */
1433         truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1434         if (truncated) {
1435             xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1436             if (ip->i_delayed_blks > 0) {
1437                 error = filemap_flush(VFS_I(ip)->i_mapping);
1438                 if (error)
1439                     return error;
1440             }
1441         }
1442     }
1443 
1444     if (VFS_I(ip)->i_nlink == 0)
1445         return 0;
1446 
1447     /*
1448      * If we can't get the iolock just skip truncating the blocks past EOF
1449      * because we could deadlock with the mmap_lock otherwise. We'll get
1450      * another chance to drop them once the last reference to the inode is
1451      * dropped, so we'll never leak blocks permanently.
1452      */
1453     if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1454         return 0;
1455 
1456     if (xfs_can_free_eofblocks(ip, false)) {
1457         /*
1458          * Check if the inode is being opened, written and closed
1459          * frequently and we have delayed allocation blocks outstanding
1460          * (e.g. streaming writes from the NFS server), truncating the
1461          * blocks past EOF will cause fragmentation to occur.
1462          *
1463          * In this case don't do the truncation, but we have to be
1464          * careful how we detect this case. Blocks beyond EOF show up as
1465          * i_delayed_blks even when the inode is clean, so we need to
1466          * truncate them away first before checking for a dirty release.
1467          * Hence on the first dirty close we will still remove the
1468          * speculative allocation, but after that we will leave it in
1469          * place.
1470          */
1471         if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1472             goto out_unlock;
1473 
1474         error = xfs_free_eofblocks(ip);
1475         if (error)
1476             goto out_unlock;
1477 
1478         /* delalloc blocks after truncation means it really is dirty */
1479         if (ip->i_delayed_blks)
1480             xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1481     }
1482 
1483 out_unlock:
1484     xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1485     return error;
1486 }
1487 
1488 /*
1489  * xfs_inactive_truncate
1490  *
1491  * Called to perform a truncate when an inode becomes unlinked.
1492  */
1493 STATIC int
1494 xfs_inactive_truncate(
1495     struct xfs_inode *ip)
1496 {
1497     struct xfs_mount    *mp = ip->i_mount;
1498     struct xfs_trans    *tp;
1499     int         error;
1500 
1501     error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1502     if (error) {
1503         ASSERT(xfs_is_shutdown(mp));
1504         return error;
1505     }
1506     xfs_ilock(ip, XFS_ILOCK_EXCL);
1507     xfs_trans_ijoin(tp, ip, 0);
1508 
1509     /*
1510      * Log the inode size first to prevent stale data exposure in the event
1511      * of a system crash before the truncate completes. See the related
1512      * comment in xfs_vn_setattr_size() for details.
1513      */
1514     ip->i_disk_size = 0;
1515     xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1516 
1517     error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1518     if (error)
1519         goto error_trans_cancel;
1520 
1521     ASSERT(ip->i_df.if_nextents == 0);
1522 
1523     error = xfs_trans_commit(tp);
1524     if (error)
1525         goto error_unlock;
1526 
1527     xfs_iunlock(ip, XFS_ILOCK_EXCL);
1528     return 0;
1529 
1530 error_trans_cancel:
1531     xfs_trans_cancel(tp);
1532 error_unlock:
1533     xfs_iunlock(ip, XFS_ILOCK_EXCL);
1534     return error;
1535 }
1536 
1537 /*
1538  * xfs_inactive_ifree()
1539  *
1540  * Perform the inode free when an inode is unlinked.
1541  */
1542 STATIC int
1543 xfs_inactive_ifree(
1544     struct xfs_inode *ip)
1545 {
1546     struct xfs_mount    *mp = ip->i_mount;
1547     struct xfs_trans    *tp;
1548     int         error;
1549 
1550     /*
1551      * We try to use a per-AG reservation for any block needed by the finobt
1552      * tree, but as the finobt feature predates the per-AG reservation
1553      * support a degraded file system might not have enough space for the
1554      * reservation at mount time.  In that case try to dip into the reserved
1555      * pool and pray.
1556      *
1557      * Send a warning if the reservation does happen to fail, as the inode
1558      * now remains allocated and sits on the unlinked list until the fs is
1559      * repaired.
1560      */
1561     if (unlikely(mp->m_finobt_nores)) {
1562         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1563                 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1564                 &tp);
1565     } else {
1566         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1567     }
1568     if (error) {
1569         if (error == -ENOSPC) {
1570             xfs_warn_ratelimited(mp,
1571             "Failed to remove inode(s) from unlinked list. "
1572             "Please free space, unmount and run xfs_repair.");
1573         } else {
1574             ASSERT(xfs_is_shutdown(mp));
1575         }
1576         return error;
1577     }
1578 
1579     /*
1580      * We do not hold the inode locked across the entire rolling transaction
1581      * here. We only need to hold it for the first transaction that
1582      * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1583      * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1584      * here breaks the relationship between cluster buffer invalidation and
1585      * stale inode invalidation on cluster buffer item journal commit
1586      * completion, and can result in leaving dirty stale inodes hanging
1587      * around in memory.
1588      *
1589      * We have no need for serialising this inode operation against other
1590      * operations - we freed the inode and hence reallocation is required
1591      * and that will serialise on reallocating the space the deferops need
1592      * to free. Hence we can unlock the inode on the first commit of
1593      * the transaction rather than roll it right through the deferops. This
1594      * avoids relogging the XFS_ISTALE inode.
1595      *
1596      * We check that xfs_ifree() hasn't grown an internal transaction roll
1597      * by asserting that the inode is still locked when it returns.
1598      */
1599     xfs_ilock(ip, XFS_ILOCK_EXCL);
1600     xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1601 
1602     error = xfs_ifree(tp, ip);
1603     ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1604     if (error) {
1605         /*
1606          * If we fail to free the inode, shut down.  The cancel
1607          * might do that, we need to make sure.  Otherwise the
1608          * inode might be lost for a long time or forever.
1609          */
1610         if (!xfs_is_shutdown(mp)) {
1611             xfs_notice(mp, "%s: xfs_ifree returned error %d",
1612                 __func__, error);
1613             xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1614         }
1615         xfs_trans_cancel(tp);
1616         return error;
1617     }
1618 
1619     /*
1620      * Credit the quota account(s). The inode is gone.
1621      */
1622     xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1623 
1624     /*
1625      * Just ignore errors at this point.  There is nothing we can do except
1626      * to try to keep going. Make sure it's not a silent error.
1627      */
1628     error = xfs_trans_commit(tp);
1629     if (error)
1630         xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1631             __func__, error);
1632 
1633     return 0;
1634 }
1635 
1636 /*
1637  * Returns true if we need to update the on-disk metadata before we can free
1638  * the memory used by this inode.  Updates include freeing post-eof
1639  * preallocations; freeing COW staging extents; and marking the inode free in
1640  * the inobt if it is on the unlinked list.
1641  */
1642 bool
1643 xfs_inode_needs_inactive(
1644     struct xfs_inode    *ip)
1645 {
1646     struct xfs_mount    *mp = ip->i_mount;
1647     struct xfs_ifork    *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1648 
1649     /*
1650      * If the inode is already free, then there can be nothing
1651      * to clean up here.
1652      */
1653     if (VFS_I(ip)->i_mode == 0)
1654         return false;
1655 
1656     /* If this is a read-only mount, don't do this (would generate I/O) */
1657     if (xfs_is_readonly(mp))
1658         return false;
1659 
1660     /* If the log isn't running, push inodes straight to reclaim. */
1661     if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1662         return false;
1663 
1664     /* Metadata inodes require explicit resource cleanup. */
1665     if (xfs_is_metadata_inode(ip))
1666         return false;
1667 
1668     /* Want to clean out the cow blocks if there are any. */
1669     if (cow_ifp && cow_ifp->if_bytes > 0)
1670         return true;
1671 
1672     /* Unlinked files must be freed. */
1673     if (VFS_I(ip)->i_nlink == 0)
1674         return true;
1675 
1676     /*
1677      * This file isn't being freed, so check if there are post-eof blocks
1678      * to free.  @force is true because we are evicting an inode from the
1679      * cache.  Post-eof blocks must be freed, lest we end up with broken
1680      * free space accounting.
1681      *
1682      * Note: don't bother with iolock here since lockdep complains about
1683      * acquiring it in reclaim context. We have the only reference to the
1684      * inode at this point anyways.
1685      */
1686     return xfs_can_free_eofblocks(ip, true);
1687 }
1688 
1689 /*
1690  * xfs_inactive
1691  *
1692  * This is called when the vnode reference count for the vnode
1693  * goes to zero.  If the file has been unlinked, then it must
1694  * now be truncated.  Also, we clear all of the read-ahead state
1695  * kept for the inode here since the file is now closed.
1696  */
1697 void
1698 xfs_inactive(
1699     xfs_inode_t *ip)
1700 {
1701     struct xfs_mount    *mp;
1702     int         error;
1703     int         truncate = 0;
1704 
1705     /*
1706      * If the inode is already free, then there can be nothing
1707      * to clean up here.
1708      */
1709     if (VFS_I(ip)->i_mode == 0) {
1710         ASSERT(ip->i_df.if_broot_bytes == 0);
1711         goto out;
1712     }
1713 
1714     mp = ip->i_mount;
1715     ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1716 
1717     /* If this is a read-only mount, don't do this (would generate I/O) */
1718     if (xfs_is_readonly(mp))
1719         goto out;
1720 
1721     /* Metadata inodes require explicit resource cleanup. */
1722     if (xfs_is_metadata_inode(ip))
1723         goto out;
1724 
1725     /* Try to clean out the cow blocks if there are any. */
1726     if (xfs_inode_has_cow_data(ip))
1727         xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1728 
1729     if (VFS_I(ip)->i_nlink != 0) {
1730         /*
1731          * force is true because we are evicting an inode from the
1732          * cache. Post-eof blocks must be freed, lest we end up with
1733          * broken free space accounting.
1734          *
1735          * Note: don't bother with iolock here since lockdep complains
1736          * about acquiring it in reclaim context. We have the only
1737          * reference to the inode at this point anyways.
1738          */
1739         if (xfs_can_free_eofblocks(ip, true))
1740             xfs_free_eofblocks(ip);
1741 
1742         goto out;
1743     }
1744 
1745     if (S_ISREG(VFS_I(ip)->i_mode) &&
1746         (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1747          ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1748         truncate = 1;
1749 
1750     error = xfs_qm_dqattach(ip);
1751     if (error)
1752         goto out;
1753 
1754     if (S_ISLNK(VFS_I(ip)->i_mode))
1755         error = xfs_inactive_symlink(ip);
1756     else if (truncate)
1757         error = xfs_inactive_truncate(ip);
1758     if (error)
1759         goto out;
1760 
1761     /*
1762      * If there are attributes associated with the file then blow them away
1763      * now.  The code calls a routine that recursively deconstructs the
1764      * attribute fork. If also blows away the in-core attribute fork.
1765      */
1766     if (xfs_inode_has_attr_fork(ip)) {
1767         error = xfs_attr_inactive(ip);
1768         if (error)
1769             goto out;
1770     }
1771 
1772     ASSERT(ip->i_forkoff == 0);
1773 
1774     /*
1775      * Free the inode.
1776      */
1777     xfs_inactive_ifree(ip);
1778 
1779 out:
1780     /*
1781      * We're done making metadata updates for this inode, so we can release
1782      * the attached dquots.
1783      */
1784     xfs_qm_dqdetach(ip);
1785 }
1786 
1787 /*
1788  * In-Core Unlinked List Lookups
1789  * =============================
1790  *
1791  * Every inode is supposed to be reachable from some other piece of metadata
1792  * with the exception of the root directory.  Inodes with a connection to a
1793  * file descriptor but not linked from anywhere in the on-disk directory tree
1794  * are collectively known as unlinked inodes, though the filesystem itself
1795  * maintains links to these inodes so that on-disk metadata are consistent.
1796  *
1797  * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1798  * header contains a number of buckets that point to an inode, and each inode
1799  * record has a pointer to the next inode in the hash chain.  This
1800  * singly-linked list causes scaling problems in the iunlink remove function
1801  * because we must walk that list to find the inode that points to the inode
1802  * being removed from the unlinked hash bucket list.
1803  *
1804  * Hence we keep an in-memory double linked list to link each inode on an
1805  * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1806  * based lists would require having 64 list heads in the perag, one for each
1807  * list. This is expensive in terms of memory (think millions of AGs) and cache
1808  * misses on lookups. Instead, use the fact that inodes on the unlinked list
1809  * must be referenced at the VFS level to keep them on the list and hence we
1810  * have an existence guarantee for inodes on the unlinked list.
1811  *
1812  * Given we have an existence guarantee, we can use lockless inode cache lookups
1813  * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1814  * for the double linked unlinked list, and we don't need any extra locking to
1815  * keep the list safe as all manipulations are done under the AGI buffer lock.
1816  * Keeping the list up to date does not require memory allocation, just finding
1817  * the XFS inode and updating the next/prev unlinked list aginos.
1818  */
1819 
1820 /*
1821  * Find an inode on the unlinked list. This does not take references to the
1822  * inode as we have existence guarantees by holding the AGI buffer lock and that
1823  * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1824  * don't find the inode in cache, then let the caller handle the situation.
1825  */
1826 static struct xfs_inode *
1827 xfs_iunlink_lookup(
1828     struct xfs_perag    *pag,
1829     xfs_agino_t     agino)
1830 {
1831     struct xfs_inode    *ip;
1832 
1833     rcu_read_lock();
1834     ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1835 
1836     /*
1837      * Inode not in memory or in RCU freeing limbo should not happen.
1838      * Warn about this and let the caller handle the failure.
1839      */
1840     if (WARN_ON_ONCE(!ip || !ip->i_ino)) {
1841         rcu_read_unlock();
1842         return NULL;
1843     }
1844     ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1845     rcu_read_unlock();
1846     return ip;
1847 }
1848 
1849 /* Update the prev pointer of the next agino. */
1850 static int
1851 xfs_iunlink_update_backref(
1852     struct xfs_perag    *pag,
1853     xfs_agino_t     prev_agino,
1854     xfs_agino_t     next_agino)
1855 {
1856     struct xfs_inode    *ip;
1857 
1858     /* No update necessary if we are at the end of the list. */
1859     if (next_agino == NULLAGINO)
1860         return 0;
1861 
1862     ip = xfs_iunlink_lookup(pag, next_agino);
1863     if (!ip)
1864         return -EFSCORRUPTED;
1865     ip->i_prev_unlinked = prev_agino;
1866     return 0;
1867 }
1868 
1869 /*
1870  * Point the AGI unlinked bucket at an inode and log the results.  The caller
1871  * is responsible for validating the old value.
1872  */
1873 STATIC int
1874 xfs_iunlink_update_bucket(
1875     struct xfs_trans    *tp,
1876     struct xfs_perag    *pag,
1877     struct xfs_buf      *agibp,
1878     unsigned int        bucket_index,
1879     xfs_agino_t     new_agino)
1880 {
1881     struct xfs_agi      *agi = agibp->b_addr;
1882     xfs_agino_t     old_value;
1883     int         offset;
1884 
1885     ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1886 
1887     old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1888     trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1889             old_value, new_agino);
1890 
1891     /*
1892      * We should never find the head of the list already set to the value
1893      * passed in because either we're adding or removing ourselves from the
1894      * head of the list.
1895      */
1896     if (old_value == new_agino) {
1897         xfs_buf_mark_corrupt(agibp);
1898         return -EFSCORRUPTED;
1899     }
1900 
1901     agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1902     offset = offsetof(struct xfs_agi, agi_unlinked) +
1903             (sizeof(xfs_agino_t) * bucket_index);
1904     xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1905     return 0;
1906 }
1907 
1908 static int
1909 xfs_iunlink_insert_inode(
1910     struct xfs_trans    *tp,
1911     struct xfs_perag    *pag,
1912     struct xfs_buf      *agibp,
1913     struct xfs_inode    *ip)
1914 {
1915     struct xfs_mount    *mp = tp->t_mountp;
1916     struct xfs_agi      *agi = agibp->b_addr;
1917     xfs_agino_t     next_agino;
1918     xfs_agino_t     agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1919     short           bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1920     int         error;
1921 
1922     /*
1923      * Get the index into the agi hash table for the list this inode will
1924      * go on.  Make sure the pointer isn't garbage and that this inode
1925      * isn't already on the list.
1926      */
1927     next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1928     if (next_agino == agino ||
1929         !xfs_verify_agino_or_null(pag, next_agino)) {
1930         xfs_buf_mark_corrupt(agibp);
1931         return -EFSCORRUPTED;
1932     }
1933 
1934     /*
1935      * Update the prev pointer in the next inode to point back to this
1936      * inode.
1937      */
1938     error = xfs_iunlink_update_backref(pag, agino, next_agino);
1939     if (error)
1940         return error;
1941 
1942     if (next_agino != NULLAGINO) {
1943         /*
1944          * There is already another inode in the bucket, so point this
1945          * inode to the current head of the list.
1946          */
1947         error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
1948         if (error)
1949             return error;
1950         ip->i_next_unlinked = next_agino;
1951     }
1952 
1953     /* Point the head of the list to point to this inode. */
1954     return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
1955 }
1956 
1957 /*
1958  * This is called when the inode's link count has gone to 0 or we are creating
1959  * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
1960  *
1961  * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1962  * list when the inode is freed.
1963  */
1964 STATIC int
1965 xfs_iunlink(
1966     struct xfs_trans    *tp,
1967     struct xfs_inode    *ip)
1968 {
1969     struct xfs_mount    *mp = tp->t_mountp;
1970     struct xfs_perag    *pag;
1971     struct xfs_buf      *agibp;
1972     int         error;
1973 
1974     ASSERT(VFS_I(ip)->i_nlink == 0);
1975     ASSERT(VFS_I(ip)->i_mode != 0);
1976     trace_xfs_iunlink(ip);
1977 
1978     pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1979 
1980     /* Get the agi buffer first.  It ensures lock ordering on the list. */
1981     error = xfs_read_agi(pag, tp, &agibp);
1982     if (error)
1983         goto out;
1984 
1985     error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
1986 out:
1987     xfs_perag_put(pag);
1988     return error;
1989 }
1990 
1991 static int
1992 xfs_iunlink_remove_inode(
1993     struct xfs_trans    *tp,
1994     struct xfs_perag    *pag,
1995     struct xfs_buf      *agibp,
1996     struct xfs_inode    *ip)
1997 {
1998     struct xfs_mount    *mp = tp->t_mountp;
1999     struct xfs_agi      *agi = agibp->b_addr;
2000     xfs_agino_t     agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2001     xfs_agino_t     head_agino;
2002     short           bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2003     int         error;
2004 
2005     trace_xfs_iunlink_remove(ip);
2006 
2007     /*
2008      * Get the index into the agi hash table for the list this inode will
2009      * go on.  Make sure the head pointer isn't garbage.
2010      */
2011     head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2012     if (!xfs_verify_agino(pag, head_agino)) {
2013         XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2014                 agi, sizeof(*agi));
2015         return -EFSCORRUPTED;
2016     }
2017 
2018     /*
2019      * Set our inode's next_unlinked pointer to NULL and then return
2020      * the old pointer value so that we can update whatever was previous
2021      * to us in the list to point to whatever was next in the list.
2022      */
2023     error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2024     if (error)
2025         return error;
2026 
2027     /*
2028      * Update the prev pointer in the next inode to point back to previous
2029      * inode in the chain.
2030      */
2031     error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2032             ip->i_next_unlinked);
2033     if (error)
2034         return error;
2035 
2036     if (head_agino != agino) {
2037         struct xfs_inode    *prev_ip;
2038 
2039         prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2040         if (!prev_ip)
2041             return -EFSCORRUPTED;
2042 
2043         error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2044                 ip->i_next_unlinked);
2045         prev_ip->i_next_unlinked = ip->i_next_unlinked;
2046     } else {
2047         /* Point the head of the list to the next unlinked inode. */
2048         error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2049                 ip->i_next_unlinked);
2050     }
2051 
2052     ip->i_next_unlinked = NULLAGINO;
2053     ip->i_prev_unlinked = NULLAGINO;
2054     return error;
2055 }
2056 
2057 /*
2058  * Pull the on-disk inode from the AGI unlinked list.
2059  */
2060 STATIC int
2061 xfs_iunlink_remove(
2062     struct xfs_trans    *tp,
2063     struct xfs_perag    *pag,
2064     struct xfs_inode    *ip)
2065 {
2066     struct xfs_buf      *agibp;
2067     int         error;
2068 
2069     trace_xfs_iunlink_remove(ip);
2070 
2071     /* Get the agi buffer first.  It ensures lock ordering on the list. */
2072     error = xfs_read_agi(pag, tp, &agibp);
2073     if (error)
2074         return error;
2075 
2076     return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2077 }
2078 
2079 /*
2080  * Look up the inode number specified and if it is not already marked XFS_ISTALE
2081  * mark it stale. We should only find clean inodes in this lookup that aren't
2082  * already stale.
2083  */
2084 static void
2085 xfs_ifree_mark_inode_stale(
2086     struct xfs_perag    *pag,
2087     struct xfs_inode    *free_ip,
2088     xfs_ino_t       inum)
2089 {
2090     struct xfs_mount    *mp = pag->pag_mount;
2091     struct xfs_inode_log_item *iip;
2092     struct xfs_inode    *ip;
2093 
2094 retry:
2095     rcu_read_lock();
2096     ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2097 
2098     /* Inode not in memory, nothing to do */
2099     if (!ip) {
2100         rcu_read_unlock();
2101         return;
2102     }
2103 
2104     /*
2105      * because this is an RCU protected lookup, we could find a recently
2106      * freed or even reallocated inode during the lookup. We need to check
2107      * under the i_flags_lock for a valid inode here. Skip it if it is not
2108      * valid, the wrong inode or stale.
2109      */
2110     spin_lock(&ip->i_flags_lock);
2111     if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2112         goto out_iflags_unlock;
2113 
2114     /*
2115      * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2116      * other inodes that we did not find in the list attached to the buffer
2117      * and are not already marked stale. If we can't lock it, back off and
2118      * retry.
2119      */
2120     if (ip != free_ip) {
2121         if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2122             spin_unlock(&ip->i_flags_lock);
2123             rcu_read_unlock();
2124             delay(1);
2125             goto retry;
2126         }
2127     }
2128     ip->i_flags |= XFS_ISTALE;
2129 
2130     /*
2131      * If the inode is flushing, it is already attached to the buffer.  All
2132      * we needed to do here is mark the inode stale so buffer IO completion
2133      * will remove it from the AIL.
2134      */
2135     iip = ip->i_itemp;
2136     if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2137         ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2138         ASSERT(iip->ili_last_fields);
2139         goto out_iunlock;
2140     }
2141 
2142     /*
2143      * Inodes not attached to the buffer can be released immediately.
2144      * Everything else has to go through xfs_iflush_abort() on journal
2145      * commit as the flock synchronises removal of the inode from the
2146      * cluster buffer against inode reclaim.
2147      */
2148     if (!iip || list_empty(&iip->ili_item.li_bio_list))
2149         goto out_iunlock;
2150 
2151     __xfs_iflags_set(ip, XFS_IFLUSHING);
2152     spin_unlock(&ip->i_flags_lock);
2153     rcu_read_unlock();
2154 
2155     /* we have a dirty inode in memory that has not yet been flushed. */
2156     spin_lock(&iip->ili_lock);
2157     iip->ili_last_fields = iip->ili_fields;
2158     iip->ili_fields = 0;
2159     iip->ili_fsync_fields = 0;
2160     spin_unlock(&iip->ili_lock);
2161     ASSERT(iip->ili_last_fields);
2162 
2163     if (ip != free_ip)
2164         xfs_iunlock(ip, XFS_ILOCK_EXCL);
2165     return;
2166 
2167 out_iunlock:
2168     if (ip != free_ip)
2169         xfs_iunlock(ip, XFS_ILOCK_EXCL);
2170 out_iflags_unlock:
2171     spin_unlock(&ip->i_flags_lock);
2172     rcu_read_unlock();
2173 }
2174 
2175 /*
2176  * A big issue when freeing the inode cluster is that we _cannot_ skip any
2177  * inodes that are in memory - they all must be marked stale and attached to
2178  * the cluster buffer.
2179  */
2180 static int
2181 xfs_ifree_cluster(
2182     struct xfs_trans    *tp,
2183     struct xfs_perag    *pag,
2184     struct xfs_inode    *free_ip,
2185     struct xfs_icluster *xic)
2186 {
2187     struct xfs_mount    *mp = free_ip->i_mount;
2188     struct xfs_ino_geometry *igeo = M_IGEO(mp);
2189     struct xfs_buf      *bp;
2190     xfs_daddr_t     blkno;
2191     xfs_ino_t       inum = xic->first_ino;
2192     int         nbufs;
2193     int         i, j;
2194     int         ioffset;
2195     int         error;
2196 
2197     nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2198 
2199     for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2200         /*
2201          * The allocation bitmap tells us which inodes of the chunk were
2202          * physically allocated. Skip the cluster if an inode falls into
2203          * a sparse region.
2204          */
2205         ioffset = inum - xic->first_ino;
2206         if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2207             ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2208             continue;
2209         }
2210 
2211         blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2212                      XFS_INO_TO_AGBNO(mp, inum));
2213 
2214         /*
2215          * We obtain and lock the backing buffer first in the process
2216          * here to ensure dirty inodes attached to the buffer remain in
2217          * the flushing state while we mark them stale.
2218          *
2219          * If we scan the in-memory inodes first, then buffer IO can
2220          * complete before we get a lock on it, and hence we may fail
2221          * to mark all the active inodes on the buffer stale.
2222          */
2223         error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2224                 mp->m_bsize * igeo->blocks_per_cluster,
2225                 XBF_UNMAPPED, &bp);
2226         if (error)
2227             return error;
2228 
2229         /*
2230          * This buffer may not have been correctly initialised as we
2231          * didn't read it from disk. That's not important because we are
2232          * only using to mark the buffer as stale in the log, and to
2233          * attach stale cached inodes on it. That means it will never be
2234          * dispatched for IO. If it is, we want to know about it, and we
2235          * want it to fail. We can acheive this by adding a write
2236          * verifier to the buffer.
2237          */
2238         bp->b_ops = &xfs_inode_buf_ops;
2239 
2240         /*
2241          * Now we need to set all the cached clean inodes as XFS_ISTALE,
2242          * too. This requires lookups, and will skip inodes that we've
2243          * already marked XFS_ISTALE.
2244          */
2245         for (i = 0; i < igeo->inodes_per_cluster; i++)
2246             xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2247 
2248         xfs_trans_stale_inode_buf(tp, bp);
2249         xfs_trans_binval(tp, bp);
2250     }
2251     return 0;
2252 }
2253 
2254 /*
2255  * This is called to return an inode to the inode free list.  The inode should
2256  * already be truncated to 0 length and have no pages associated with it.  This
2257  * routine also assumes that the inode is already a part of the transaction.
2258  *
2259  * The on-disk copy of the inode will have been added to the list of unlinked
2260  * inodes in the AGI. We need to remove the inode from that list atomically with
2261  * respect to freeing it here.
2262  */
2263 int
2264 xfs_ifree(
2265     struct xfs_trans    *tp,
2266     struct xfs_inode    *ip)
2267 {
2268     struct xfs_mount    *mp = ip->i_mount;
2269     struct xfs_perag    *pag;
2270     struct xfs_icluster xic = { 0 };
2271     struct xfs_inode_log_item *iip = ip->i_itemp;
2272     int         error;
2273 
2274     ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2275     ASSERT(VFS_I(ip)->i_nlink == 0);
2276     ASSERT(ip->i_df.if_nextents == 0);
2277     ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2278     ASSERT(ip->i_nblocks == 0);
2279 
2280     pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2281 
2282     /*
2283      * Free the inode first so that we guarantee that the AGI lock is going
2284      * to be taken before we remove the inode from the unlinked list. This
2285      * makes the AGI lock -> unlinked list modification order the same as
2286      * used in O_TMPFILE creation.
2287      */
2288     error = xfs_difree(tp, pag, ip->i_ino, &xic);
2289     if (error)
2290         goto out;
2291 
2292     error = xfs_iunlink_remove(tp, pag, ip);
2293     if (error)
2294         goto out;
2295 
2296     /*
2297      * Free any local-format data sitting around before we reset the
2298      * data fork to extents format.  Note that the attr fork data has
2299      * already been freed by xfs_attr_inactive.
2300      */
2301     if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2302         kmem_free(ip->i_df.if_u1.if_data);
2303         ip->i_df.if_u1.if_data = NULL;
2304         ip->i_df.if_bytes = 0;
2305     }
2306 
2307     VFS_I(ip)->i_mode = 0;      /* mark incore inode as free */
2308     ip->i_diflags = 0;
2309     ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2310     ip->i_forkoff = 0;      /* mark the attr fork not in use */
2311     ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2312     if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2313         xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2314 
2315     /* Don't attempt to replay owner changes for a deleted inode */
2316     spin_lock(&iip->ili_lock);
2317     iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2318     spin_unlock(&iip->ili_lock);
2319 
2320     /*
2321      * Bump the generation count so no one will be confused
2322      * by reincarnations of this inode.
2323      */
2324     VFS_I(ip)->i_generation++;
2325     xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2326 
2327     if (xic.deleted)
2328         error = xfs_ifree_cluster(tp, pag, ip, &xic);
2329 out:
2330     xfs_perag_put(pag);
2331     return error;
2332 }
2333 
2334 /*
2335  * This is called to unpin an inode.  The caller must have the inode locked
2336  * in at least shared mode so that the buffer cannot be subsequently pinned
2337  * once someone is waiting for it to be unpinned.
2338  */
2339 static void
2340 xfs_iunpin(
2341     struct xfs_inode    *ip)
2342 {
2343     ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2344 
2345     trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2346 
2347     /* Give the log a push to start the unpinning I/O */
2348     xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2349 
2350 }
2351 
2352 static void
2353 __xfs_iunpin_wait(
2354     struct xfs_inode    *ip)
2355 {
2356     wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2357     DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2358 
2359     xfs_iunpin(ip);
2360 
2361     do {
2362         prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2363         if (xfs_ipincount(ip))
2364             io_schedule();
2365     } while (xfs_ipincount(ip));
2366     finish_wait(wq, &wait.wq_entry);
2367 }
2368 
2369 void
2370 xfs_iunpin_wait(
2371     struct xfs_inode    *ip)
2372 {
2373     if (xfs_ipincount(ip))
2374         __xfs_iunpin_wait(ip);
2375 }
2376 
2377 /*
2378  * Removing an inode from the namespace involves removing the directory entry
2379  * and dropping the link count on the inode. Removing the directory entry can
2380  * result in locking an AGF (directory blocks were freed) and removing a link
2381  * count can result in placing the inode on an unlinked list which results in
2382  * locking an AGI.
2383  *
2384  * The big problem here is that we have an ordering constraint on AGF and AGI
2385  * locking - inode allocation locks the AGI, then can allocate a new extent for
2386  * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2387  * removes the inode from the unlinked list, requiring that we lock the AGI
2388  * first, and then freeing the inode can result in an inode chunk being freed
2389  * and hence freeing disk space requiring that we lock an AGF.
2390  *
2391  * Hence the ordering that is imposed by other parts of the code is AGI before
2392  * AGF. This means we cannot remove the directory entry before we drop the inode
2393  * reference count and put it on the unlinked list as this results in a lock
2394  * order of AGF then AGI, and this can deadlock against inode allocation and
2395  * freeing. Therefore we must drop the link counts before we remove the
2396  * directory entry.
2397  *
2398  * This is still safe from a transactional point of view - it is not until we
2399  * get to xfs_defer_finish() that we have the possibility of multiple
2400  * transactions in this operation. Hence as long as we remove the directory
2401  * entry and drop the link count in the first transaction of the remove
2402  * operation, there are no transactional constraints on the ordering here.
2403  */
2404 int
2405 xfs_remove(
2406     xfs_inode_t             *dp,
2407     struct xfs_name     *name,
2408     xfs_inode_t     *ip)
2409 {
2410     xfs_mount_t     *mp = dp->i_mount;
2411     xfs_trans_t             *tp = NULL;
2412     int         is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2413     int         dontcare;
2414     int                     error = 0;
2415     uint            resblks;
2416 
2417     trace_xfs_remove(dp, name);
2418 
2419     if (xfs_is_shutdown(mp))
2420         return -EIO;
2421 
2422     error = xfs_qm_dqattach(dp);
2423     if (error)
2424         goto std_return;
2425 
2426     error = xfs_qm_dqattach(ip);
2427     if (error)
2428         goto std_return;
2429 
2430     /*
2431      * We try to get the real space reservation first, allowing for
2432      * directory btree deletion(s) implying possible bmap insert(s).  If we
2433      * can't get the space reservation then we use 0 instead, and avoid the
2434      * bmap btree insert(s) in the directory code by, if the bmap insert
2435      * tries to happen, instead trimming the LAST block from the directory.
2436      *
2437      * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2438      * the directory code can handle a reservationless update and we don't
2439      * want to prevent a user from trying to free space by deleting things.
2440      */
2441     resblks = XFS_REMOVE_SPACE_RES(mp);
2442     error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2443             &tp, &dontcare);
2444     if (error) {
2445         ASSERT(error != -ENOSPC);
2446         goto std_return;
2447     }
2448 
2449     /*
2450      * If we're removing a directory perform some additional validation.
2451      */
2452     if (is_dir) {
2453         ASSERT(VFS_I(ip)->i_nlink >= 2);
2454         if (VFS_I(ip)->i_nlink != 2) {
2455             error = -ENOTEMPTY;
2456             goto out_trans_cancel;
2457         }
2458         if (!xfs_dir_isempty(ip)) {
2459             error = -ENOTEMPTY;
2460             goto out_trans_cancel;
2461         }
2462 
2463         /* Drop the link from ip's "..".  */
2464         error = xfs_droplink(tp, dp);
2465         if (error)
2466             goto out_trans_cancel;
2467 
2468         /* Drop the "." link from ip to self.  */
2469         error = xfs_droplink(tp, ip);
2470         if (error)
2471             goto out_trans_cancel;
2472 
2473         /*
2474          * Point the unlinked child directory's ".." entry to the root
2475          * directory to eliminate back-references to inodes that may
2476          * get freed before the child directory is closed.  If the fs
2477          * gets shrunk, this can lead to dirent inode validation errors.
2478          */
2479         if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2480             error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2481                     tp->t_mountp->m_sb.sb_rootino, 0);
2482             if (error)
2483                 return error;
2484         }
2485     } else {
2486         /*
2487          * When removing a non-directory we need to log the parent
2488          * inode here.  For a directory this is done implicitly
2489          * by the xfs_droplink call for the ".." entry.
2490          */
2491         xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2492     }
2493     xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2494 
2495     /* Drop the link from dp to ip. */
2496     error = xfs_droplink(tp, ip);
2497     if (error)
2498         goto out_trans_cancel;
2499 
2500     error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2501     if (error) {
2502         ASSERT(error != -ENOENT);
2503         goto out_trans_cancel;
2504     }
2505 
2506     /*
2507      * If this is a synchronous mount, make sure that the
2508      * remove transaction goes to disk before returning to
2509      * the user.
2510      */
2511     if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2512         xfs_trans_set_sync(tp);
2513 
2514     error = xfs_trans_commit(tp);
2515     if (error)
2516         goto std_return;
2517 
2518     if (is_dir && xfs_inode_is_filestream(ip))
2519         xfs_filestream_deassociate(ip);
2520 
2521     return 0;
2522 
2523  out_trans_cancel:
2524     xfs_trans_cancel(tp);
2525  std_return:
2526     return error;
2527 }
2528 
2529 /*
2530  * Enter all inodes for a rename transaction into a sorted array.
2531  */
2532 #define __XFS_SORT_INODES   5
2533 STATIC void
2534 xfs_sort_for_rename(
2535     struct xfs_inode    *dp1,   /* in: old (source) directory inode */
2536     struct xfs_inode    *dp2,   /* in: new (target) directory inode */
2537     struct xfs_inode    *ip1,   /* in: inode of old entry */
2538     struct xfs_inode    *ip2,   /* in: inode of new entry */
2539     struct xfs_inode    *wip,   /* in: whiteout inode */
2540     struct xfs_inode    **i_tab,/* out: sorted array of inodes */
2541     int         *num_inodes)  /* in/out: inodes in array */
2542 {
2543     int         i, j;
2544 
2545     ASSERT(*num_inodes == __XFS_SORT_INODES);
2546     memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2547 
2548     /*
2549      * i_tab contains a list of pointers to inodes.  We initialize
2550      * the table here & we'll sort it.  We will then use it to
2551      * order the acquisition of the inode locks.
2552      *
2553      * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2554      */
2555     i = 0;
2556     i_tab[i++] = dp1;
2557     i_tab[i++] = dp2;
2558     i_tab[i++] = ip1;
2559     if (ip2)
2560         i_tab[i++] = ip2;
2561     if (wip)
2562         i_tab[i++] = wip;
2563     *num_inodes = i;
2564 
2565     /*
2566      * Sort the elements via bubble sort.  (Remember, there are at
2567      * most 5 elements to sort, so this is adequate.)
2568      */
2569     for (i = 0; i < *num_inodes; i++) {
2570         for (j = 1; j < *num_inodes; j++) {
2571             if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2572                 struct xfs_inode *temp = i_tab[j];
2573                 i_tab[j] = i_tab[j-1];
2574                 i_tab[j-1] = temp;
2575             }
2576         }
2577     }
2578 }
2579 
2580 static int
2581 xfs_finish_rename(
2582     struct xfs_trans    *tp)
2583 {
2584     /*
2585      * If this is a synchronous mount, make sure that the rename transaction
2586      * goes to disk before returning to the user.
2587      */
2588     if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2589         xfs_trans_set_sync(tp);
2590 
2591     return xfs_trans_commit(tp);
2592 }
2593 
2594 /*
2595  * xfs_cross_rename()
2596  *
2597  * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2598  */
2599 STATIC int
2600 xfs_cross_rename(
2601     struct xfs_trans    *tp,
2602     struct xfs_inode    *dp1,
2603     struct xfs_name     *name1,
2604     struct xfs_inode    *ip1,
2605     struct xfs_inode    *dp2,
2606     struct xfs_name     *name2,
2607     struct xfs_inode    *ip2,
2608     int         spaceres)
2609 {
2610     int     error = 0;
2611     int     ip1_flags = 0;
2612     int     ip2_flags = 0;
2613     int     dp2_flags = 0;
2614 
2615     /* Swap inode number for dirent in first parent */
2616     error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2617     if (error)
2618         goto out_trans_abort;
2619 
2620     /* Swap inode number for dirent in second parent */
2621     error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2622     if (error)
2623         goto out_trans_abort;
2624 
2625     /*
2626      * If we're renaming one or more directories across different parents,
2627      * update the respective ".." entries (and link counts) to match the new
2628      * parents.
2629      */
2630     if (dp1 != dp2) {
2631         dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2632 
2633         if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2634             error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2635                         dp1->i_ino, spaceres);
2636             if (error)
2637                 goto out_trans_abort;
2638 
2639             /* transfer ip2 ".." reference to dp1 */
2640             if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2641                 error = xfs_droplink(tp, dp2);
2642                 if (error)
2643                     goto out_trans_abort;
2644                 xfs_bumplink(tp, dp1);
2645             }
2646 
2647             /*
2648              * Although ip1 isn't changed here, userspace needs
2649              * to be warned about the change, so that applications
2650              * relying on it (like backup ones), will properly
2651              * notify the change
2652              */
2653             ip1_flags |= XFS_ICHGTIME_CHG;
2654             ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2655         }
2656 
2657         if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2658             error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2659                         dp2->i_ino, spaceres);
2660             if (error)
2661                 goto out_trans_abort;
2662 
2663             /* transfer ip1 ".." reference to dp2 */
2664             if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2665                 error = xfs_droplink(tp, dp1);
2666                 if (error)
2667                     goto out_trans_abort;
2668                 xfs_bumplink(tp, dp2);
2669             }
2670 
2671             /*
2672              * Although ip2 isn't changed here, userspace needs
2673              * to be warned about the change, so that applications
2674              * relying on it (like backup ones), will properly
2675              * notify the change
2676              */
2677             ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2678             ip2_flags |= XFS_ICHGTIME_CHG;
2679         }
2680     }
2681 
2682     if (ip1_flags) {
2683         xfs_trans_ichgtime(tp, ip1, ip1_flags);
2684         xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2685     }
2686     if (ip2_flags) {
2687         xfs_trans_ichgtime(tp, ip2, ip2_flags);
2688         xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2689     }
2690     if (dp2_flags) {
2691         xfs_trans_ichgtime(tp, dp2, dp2_flags);
2692         xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2693     }
2694     xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2695     xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2696     return xfs_finish_rename(tp);
2697 
2698 out_trans_abort:
2699     xfs_trans_cancel(tp);
2700     return error;
2701 }
2702 
2703 /*
2704  * xfs_rename_alloc_whiteout()
2705  *
2706  * Return a referenced, unlinked, unlocked inode that can be used as a
2707  * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2708  * crash between allocating the inode and linking it into the rename transaction
2709  * recovery will free the inode and we won't leak it.
2710  */
2711 static int
2712 xfs_rename_alloc_whiteout(
2713     struct user_namespace   *mnt_userns,
2714     struct xfs_name     *src_name,
2715     struct xfs_inode    *dp,
2716     struct xfs_inode    **wip)
2717 {
2718     struct xfs_inode    *tmpfile;
2719     struct qstr     name;
2720     int         error;
2721 
2722     error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
2723                    &tmpfile);
2724     if (error)
2725         return error;
2726 
2727     name.name = src_name->name;
2728     name.len = src_name->len;
2729     error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2730     if (error) {
2731         xfs_finish_inode_setup(tmpfile);
2732         xfs_irele(tmpfile);
2733         return error;
2734     }
2735 
2736     /*
2737      * Prepare the tmpfile inode as if it were created through the VFS.
2738      * Complete the inode setup and flag it as linkable.  nlink is already
2739      * zero, so we can skip the drop_nlink.
2740      */
2741     xfs_setup_iops(tmpfile);
2742     xfs_finish_inode_setup(tmpfile);
2743     VFS_I(tmpfile)->i_state |= I_LINKABLE;
2744 
2745     *wip = tmpfile;
2746     return 0;
2747 }
2748 
2749 /*
2750  * xfs_rename
2751  */
2752 int
2753 xfs_rename(
2754     struct user_namespace   *mnt_userns,
2755     struct xfs_inode    *src_dp,
2756     struct xfs_name     *src_name,
2757     struct xfs_inode    *src_ip,
2758     struct xfs_inode    *target_dp,
2759     struct xfs_name     *target_name,
2760     struct xfs_inode    *target_ip,
2761     unsigned int        flags)
2762 {
2763     struct xfs_mount    *mp = src_dp->i_mount;
2764     struct xfs_trans    *tp;
2765     struct xfs_inode    *wip = NULL;        /* whiteout inode */
2766     struct xfs_inode    *inodes[__XFS_SORT_INODES];
2767     int         i;
2768     int         num_inodes = __XFS_SORT_INODES;
2769     bool            new_parent = (src_dp != target_dp);
2770     bool            src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2771     int         spaceres;
2772     bool            retried = false;
2773     int         error, nospace_error = 0;
2774 
2775     trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2776 
2777     if ((flags & RENAME_EXCHANGE) && !target_ip)
2778         return -EINVAL;
2779 
2780     /*
2781      * If we are doing a whiteout operation, allocate the whiteout inode
2782      * we will be placing at the target and ensure the type is set
2783      * appropriately.
2784      */
2785     if (flags & RENAME_WHITEOUT) {
2786         error = xfs_rename_alloc_whiteout(mnt_userns, src_name,
2787                           target_dp, &wip);
2788         if (error)
2789             return error;
2790 
2791         /* setup target dirent info as whiteout */
2792         src_name->type = XFS_DIR3_FT_CHRDEV;
2793     }
2794 
2795     xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2796                 inodes, &num_inodes);
2797 
2798 retry:
2799     nospace_error = 0;
2800     spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2801     error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2802     if (error == -ENOSPC) {
2803         nospace_error = error;
2804         spaceres = 0;
2805         error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2806                 &tp);
2807     }
2808     if (error)
2809         goto out_release_wip;
2810 
2811     /*
2812      * Attach the dquots to the inodes
2813      */
2814     error = xfs_qm_vop_rename_dqattach(inodes);
2815     if (error)
2816         goto out_trans_cancel;
2817 
2818     /*
2819      * Lock all the participating inodes. Depending upon whether
2820      * the target_name exists in the target directory, and
2821      * whether the target directory is the same as the source
2822      * directory, we can lock from 2 to 4 inodes.
2823      */
2824     xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2825 
2826     /*
2827      * Join all the inodes to the transaction. From this point on,
2828      * we can rely on either trans_commit or trans_cancel to unlock
2829      * them.
2830      */
2831     xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2832     if (new_parent)
2833         xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2834     xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2835     if (target_ip)
2836         xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2837     if (wip)
2838         xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2839 
2840     /*
2841      * If we are using project inheritance, we only allow renames
2842      * into our tree when the project IDs are the same; else the
2843      * tree quota mechanism would be circumvented.
2844      */
2845     if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2846              target_dp->i_projid != src_ip->i_projid)) {
2847         error = -EXDEV;
2848         goto out_trans_cancel;
2849     }
2850 
2851     /* RENAME_EXCHANGE is unique from here on. */
2852     if (flags & RENAME_EXCHANGE)
2853         return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2854                     target_dp, target_name, target_ip,
2855                     spaceres);
2856 
2857     /*
2858      * Try to reserve quota to handle an expansion of the target directory.
2859      * We'll allow the rename to continue in reservationless mode if we hit
2860      * a space usage constraint.  If we trigger reservationless mode, save
2861      * the errno if there isn't any free space in the target directory.
2862      */
2863     if (spaceres != 0) {
2864         error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2865                 0, false);
2866         if (error == -EDQUOT || error == -ENOSPC) {
2867             if (!retried) {
2868                 xfs_trans_cancel(tp);
2869                 xfs_blockgc_free_quota(target_dp, 0);
2870                 retried = true;
2871                 goto retry;
2872             }
2873 
2874             nospace_error = error;
2875             spaceres = 0;
2876             error = 0;
2877         }
2878         if (error)
2879             goto out_trans_cancel;
2880     }
2881 
2882     /*
2883      * Check for expected errors before we dirty the transaction
2884      * so we can return an error without a transaction abort.
2885      */
2886     if (target_ip == NULL) {
2887         /*
2888          * If there's no space reservation, check the entry will
2889          * fit before actually inserting it.
2890          */
2891         if (!spaceres) {
2892             error = xfs_dir_canenter(tp, target_dp, target_name);
2893             if (error)
2894                 goto out_trans_cancel;
2895         }
2896     } else {
2897         /*
2898          * If target exists and it's a directory, check that whether
2899          * it can be destroyed.
2900          */
2901         if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2902             (!xfs_dir_isempty(target_ip) ||
2903              (VFS_I(target_ip)->i_nlink > 2))) {
2904             error = -EEXIST;
2905             goto out_trans_cancel;
2906         }
2907     }
2908 
2909     /*
2910      * Lock the AGI buffers we need to handle bumping the nlink of the
2911      * whiteout inode off the unlinked list and to handle dropping the
2912      * nlink of the target inode.  Per locking order rules, do this in
2913      * increasing AG order and before directory block allocation tries to
2914      * grab AGFs because we grab AGIs before AGFs.
2915      *
2916      * The (vfs) caller must ensure that if src is a directory then
2917      * target_ip is either null or an empty directory.
2918      */
2919     for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2920         if (inodes[i] == wip ||
2921             (inodes[i] == target_ip &&
2922              (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
2923             struct xfs_perag    *pag;
2924             struct xfs_buf      *bp;
2925 
2926             pag = xfs_perag_get(mp,
2927                     XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2928             error = xfs_read_agi(pag, tp, &bp);
2929             xfs_perag_put(pag);
2930             if (error)
2931                 goto out_trans_cancel;
2932         }
2933     }
2934 
2935     /*
2936      * Directory entry creation below may acquire the AGF. Remove
2937      * the whiteout from the unlinked list first to preserve correct
2938      * AGI/AGF locking order. This dirties the transaction so failures
2939      * after this point will abort and log recovery will clean up the
2940      * mess.
2941      *
2942      * For whiteouts, we need to bump the link count on the whiteout
2943      * inode. After this point, we have a real link, clear the tmpfile
2944      * state flag from the inode so it doesn't accidentally get misused
2945      * in future.
2946      */
2947     if (wip) {
2948         struct xfs_perag    *pag;
2949 
2950         ASSERT(VFS_I(wip)->i_nlink == 0);
2951 
2952         pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
2953         error = xfs_iunlink_remove(tp, pag, wip);
2954         xfs_perag_put(pag);
2955         if (error)
2956             goto out_trans_cancel;
2957 
2958         xfs_bumplink(tp, wip);
2959         VFS_I(wip)->i_state &= ~I_LINKABLE;
2960     }
2961 
2962     /*
2963      * Set up the target.
2964      */
2965     if (target_ip == NULL) {
2966         /*
2967          * If target does not exist and the rename crosses
2968          * directories, adjust the target directory link count
2969          * to account for the ".." reference from the new entry.
2970          */
2971         error = xfs_dir_createname(tp, target_dp, target_name,
2972                        src_ip->i_ino, spaceres);
2973         if (error)
2974             goto out_trans_cancel;
2975 
2976         xfs_trans_ichgtime(tp, target_dp,
2977                     XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2978 
2979         if (new_parent && src_is_directory) {
2980             xfs_bumplink(tp, target_dp);
2981         }
2982     } else { /* target_ip != NULL */
2983         /*
2984          * Link the source inode under the target name.
2985          * If the source inode is a directory and we are moving
2986          * it across directories, its ".." entry will be
2987          * inconsistent until we replace that down below.
2988          *
2989          * In case there is already an entry with the same
2990          * name at the destination directory, remove it first.
2991          */
2992         error = xfs_dir_replace(tp, target_dp, target_name,
2993                     src_ip->i_ino, spaceres);
2994         if (error)
2995             goto out_trans_cancel;
2996 
2997         xfs_trans_ichgtime(tp, target_dp,
2998                     XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2999 
3000         /*
3001          * Decrement the link count on the target since the target
3002          * dir no longer points to it.
3003          */
3004         error = xfs_droplink(tp, target_ip);
3005         if (error)
3006             goto out_trans_cancel;
3007 
3008         if (src_is_directory) {
3009             /*
3010              * Drop the link from the old "." entry.
3011              */
3012             error = xfs_droplink(tp, target_ip);
3013             if (error)
3014                 goto out_trans_cancel;
3015         }
3016     } /* target_ip != NULL */
3017 
3018     /*
3019      * Remove the source.
3020      */
3021     if (new_parent && src_is_directory) {
3022         /*
3023          * Rewrite the ".." entry to point to the new
3024          * directory.
3025          */
3026         error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3027                     target_dp->i_ino, spaceres);
3028         ASSERT(error != -EEXIST);
3029         if (error)
3030             goto out_trans_cancel;
3031     }
3032 
3033     /*
3034      * We always want to hit the ctime on the source inode.
3035      *
3036      * This isn't strictly required by the standards since the source
3037      * inode isn't really being changed, but old unix file systems did
3038      * it and some incremental backup programs won't work without it.
3039      */
3040     xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3041     xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3042 
3043     /*
3044      * Adjust the link count on src_dp.  This is necessary when
3045      * renaming a directory, either within one parent when
3046      * the target existed, or across two parent directories.
3047      */
3048     if (src_is_directory && (new_parent || target_ip != NULL)) {
3049 
3050         /*
3051          * Decrement link count on src_directory since the
3052          * entry that's moved no longer points to it.
3053          */
3054         error = xfs_droplink(tp, src_dp);
3055         if (error)
3056             goto out_trans_cancel;
3057     }
3058 
3059     /*
3060      * For whiteouts, we only need to update the source dirent with the
3061      * inode number of the whiteout inode rather than removing it
3062      * altogether.
3063      */
3064     if (wip)
3065         error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3066                     spaceres);
3067     else
3068         error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3069                        spaceres);
3070 
3071     if (error)
3072         goto out_trans_cancel;
3073 
3074     xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3075     xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3076     if (new_parent)
3077         xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3078 
3079     error = xfs_finish_rename(tp);
3080     if (wip)
3081         xfs_irele(wip);
3082     return error;
3083 
3084 out_trans_cancel:
3085     xfs_trans_cancel(tp);
3086 out_release_wip:
3087     if (wip)
3088         xfs_irele(wip);
3089     if (error == -ENOSPC && nospace_error)
3090         error = nospace_error;
3091     return error;
3092 }
3093 
3094 static int
3095 xfs_iflush(
3096     struct xfs_inode    *ip,
3097     struct xfs_buf      *bp)
3098 {
3099     struct xfs_inode_log_item *iip = ip->i_itemp;
3100     struct xfs_dinode   *dip;
3101     struct xfs_mount    *mp = ip->i_mount;
3102     int         error;
3103 
3104     ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3105     ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3106     ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3107            ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3108     ASSERT(iip->ili_item.li_buf == bp);
3109 
3110     dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3111 
3112     /*
3113      * We don't flush the inode if any of the following checks fail, but we
3114      * do still update the log item and attach to the backing buffer as if
3115      * the flush happened. This is a formality to facilitate predictable
3116      * error handling as the caller will shutdown and fail the buffer.
3117      */
3118     error = -EFSCORRUPTED;
3119     if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3120                    mp, XFS_ERRTAG_IFLUSH_1)) {
3121         xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3122             "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3123             __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3124         goto flush_out;
3125     }
3126     if (S_ISREG(VFS_I(ip)->i_mode)) {
3127         if (XFS_TEST_ERROR(
3128             ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3129             ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3130             mp, XFS_ERRTAG_IFLUSH_3)) {
3131             xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3132                 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3133                 __func__, ip->i_ino, ip);
3134             goto flush_out;
3135         }
3136     } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3137         if (XFS_TEST_ERROR(
3138             ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3139             ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3140             ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3141             mp, XFS_ERRTAG_IFLUSH_4)) {
3142             xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3143                 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3144                 __func__, ip->i_ino, ip);
3145             goto flush_out;
3146         }
3147     }
3148     if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3149                 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3150         xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3151             "%s: detected corrupt incore inode %llu, "
3152             "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3153             __func__, ip->i_ino,
3154             ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3155             ip->i_nblocks, ip);
3156         goto flush_out;
3157     }
3158     if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3159                 mp, XFS_ERRTAG_IFLUSH_6)) {
3160         xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3161             "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3162             __func__, ip->i_ino, ip->i_forkoff, ip);
3163         goto flush_out;
3164     }
3165 
3166     /*
3167      * Inode item log recovery for v2 inodes are dependent on the flushiter
3168      * count for correct sequencing.  We bump the flush iteration count so
3169      * we can detect flushes which postdate a log record during recovery.
3170      * This is redundant as we now log every change and hence this can't
3171      * happen but we need to still do it to ensure backwards compatibility
3172      * with old kernels that predate logging all inode changes.
3173      */
3174     if (!xfs_has_v3inodes(mp))
3175         ip->i_flushiter++;
3176 
3177     /*
3178      * If there are inline format data / attr forks attached to this inode,
3179      * make sure they are not corrupt.
3180      */
3181     if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3182         xfs_ifork_verify_local_data(ip))
3183         goto flush_out;
3184     if (xfs_inode_has_attr_fork(ip) &&
3185         ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3186         xfs_ifork_verify_local_attr(ip))
3187         goto flush_out;
3188 
3189     /*
3190      * Copy the dirty parts of the inode into the on-disk inode.  We always
3191      * copy out the core of the inode, because if the inode is dirty at all
3192      * the core must be.
3193      */
3194     xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3195 
3196     /* Wrap, we never let the log put out DI_MAX_FLUSH */
3197     if (!xfs_has_v3inodes(mp)) {
3198         if (ip->i_flushiter == DI_MAX_FLUSH)
3199             ip->i_flushiter = 0;
3200     }
3201 
3202     xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3203     if (xfs_inode_has_attr_fork(ip))
3204         xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3205 
3206     /*
3207      * We've recorded everything logged in the inode, so we'd like to clear
3208      * the ili_fields bits so we don't log and flush things unnecessarily.
3209      * However, we can't stop logging all this information until the data
3210      * we've copied into the disk buffer is written to disk.  If we did we
3211      * might overwrite the copy of the inode in the log with all the data
3212      * after re-logging only part of it, and in the face of a crash we
3213      * wouldn't have all the data we need to recover.
3214      *
3215      * What we do is move the bits to the ili_last_fields field.  When
3216      * logging the inode, these bits are moved back to the ili_fields field.
3217      * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3218      * we know that the information those bits represent is permanently on
3219      * disk.  As long as the flush completes before the inode is logged
3220      * again, then both ili_fields and ili_last_fields will be cleared.
3221      */
3222     error = 0;
3223 flush_out:
3224     spin_lock(&iip->ili_lock);
3225     iip->ili_last_fields = iip->ili_fields;
3226     iip->ili_fields = 0;
3227     iip->ili_fsync_fields = 0;
3228     spin_unlock(&iip->ili_lock);
3229 
3230     /*
3231      * Store the current LSN of the inode so that we can tell whether the
3232      * item has moved in the AIL from xfs_buf_inode_iodone().
3233      */
3234     xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3235                 &iip->ili_item.li_lsn);
3236 
3237     /* generate the checksum. */
3238     xfs_dinode_calc_crc(mp, dip);
3239     return error;
3240 }
3241 
3242 /*
3243  * Non-blocking flush of dirty inode metadata into the backing buffer.
3244  *
3245  * The caller must have a reference to the inode and hold the cluster buffer
3246  * locked. The function will walk across all the inodes on the cluster buffer it
3247  * can find and lock without blocking, and flush them to the cluster buffer.
3248  *
3249  * On successful flushing of at least one inode, the caller must write out the
3250  * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3251  * the caller needs to release the buffer. On failure, the filesystem will be
3252  * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3253  * will be returned.
3254  */
3255 int
3256 xfs_iflush_cluster(
3257     struct xfs_buf      *bp)
3258 {
3259     struct xfs_mount    *mp = bp->b_mount;
3260     struct xfs_log_item *lip, *n;
3261     struct xfs_inode    *ip;
3262     struct xfs_inode_log_item *iip;
3263     int         clcount = 0;
3264     int         error = 0;
3265 
3266     /*
3267      * We must use the safe variant here as on shutdown xfs_iflush_abort()
3268      * will remove itself from the list.
3269      */
3270     list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3271         iip = (struct xfs_inode_log_item *)lip;
3272         ip = iip->ili_inode;
3273 
3274         /*
3275          * Quick and dirty check to avoid locks if possible.
3276          */
3277         if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3278             continue;
3279         if (xfs_ipincount(ip))
3280             continue;
3281 
3282         /*
3283          * The inode is still attached to the buffer, which means it is
3284          * dirty but reclaim might try to grab it. Check carefully for
3285          * that, and grab the ilock while still holding the i_flags_lock
3286          * to guarantee reclaim will not be able to reclaim this inode
3287          * once we drop the i_flags_lock.
3288          */
3289         spin_lock(&ip->i_flags_lock);
3290         ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3291         if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3292             spin_unlock(&ip->i_flags_lock);
3293             continue;
3294         }
3295 
3296         /*
3297          * ILOCK will pin the inode against reclaim and prevent
3298          * concurrent transactions modifying the inode while we are
3299          * flushing the inode. If we get the lock, set the flushing
3300          * state before we drop the i_flags_lock.
3301          */
3302         if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3303             spin_unlock(&ip->i_flags_lock);
3304             continue;
3305         }
3306         __xfs_iflags_set(ip, XFS_IFLUSHING);
3307         spin_unlock(&ip->i_flags_lock);
3308 
3309         /*
3310          * Abort flushing this inode if we are shut down because the
3311          * inode may not currently be in the AIL. This can occur when
3312          * log I/O failure unpins the inode without inserting into the
3313          * AIL, leaving a dirty/unpinned inode attached to the buffer
3314          * that otherwise looks like it should be flushed.
3315          */
3316         if (xlog_is_shutdown(mp->m_log)) {
3317             xfs_iunpin_wait(ip);
3318             xfs_iflush_abort(ip);
3319             xfs_iunlock(ip, XFS_ILOCK_SHARED);
3320             error = -EIO;
3321             continue;
3322         }
3323 
3324         /* don't block waiting on a log force to unpin dirty inodes */
3325         if (xfs_ipincount(ip)) {
3326             xfs_iflags_clear(ip, XFS_IFLUSHING);
3327             xfs_iunlock(ip, XFS_ILOCK_SHARED);
3328             continue;
3329         }
3330 
3331         if (!xfs_inode_clean(ip))
3332             error = xfs_iflush(ip, bp);
3333         else
3334             xfs_iflags_clear(ip, XFS_IFLUSHING);
3335         xfs_iunlock(ip, XFS_ILOCK_SHARED);
3336         if (error)
3337             break;
3338         clcount++;
3339     }
3340 
3341     if (error) {
3342         /*
3343          * Shutdown first so we kill the log before we release this
3344          * buffer. If it is an INODE_ALLOC buffer and pins the tail
3345          * of the log, failing it before the _log_ is shut down can
3346          * result in the log tail being moved forward in the journal
3347          * on disk because log writes can still be taking place. Hence
3348          * unpinning the tail will allow the ICREATE intent to be
3349          * removed from the log an recovery will fail with uninitialised
3350          * inode cluster buffers.
3351          */
3352         xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3353         bp->b_flags |= XBF_ASYNC;
3354         xfs_buf_ioend_fail(bp);
3355         return error;
3356     }
3357 
3358     if (!clcount)
3359         return -EAGAIN;
3360 
3361     XFS_STATS_INC(mp, xs_icluster_flushcnt);
3362     XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3363     return 0;
3364 
3365 }
3366 
3367 /* Release an inode. */
3368 void
3369 xfs_irele(
3370     struct xfs_inode    *ip)
3371 {
3372     trace_xfs_irele(ip, _RET_IP_);
3373     iput(VFS_I(ip));
3374 }
3375 
3376 /*
3377  * Ensure all commited transactions touching the inode are written to the log.
3378  */
3379 int
3380 xfs_log_force_inode(
3381     struct xfs_inode    *ip)
3382 {
3383     xfs_csn_t       seq = 0;
3384 
3385     xfs_ilock(ip, XFS_ILOCK_SHARED);
3386     if (xfs_ipincount(ip))
3387         seq = ip->i_itemp->ili_commit_seq;
3388     xfs_iunlock(ip, XFS_ILOCK_SHARED);
3389 
3390     if (!seq)
3391         return 0;
3392     return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3393 }
3394 
3395 /*
3396  * Grab the exclusive iolock for a data copy from src to dest, making sure to
3397  * abide vfs locking order (lowest pointer value goes first) and breaking the
3398  * layout leases before proceeding.  The loop is needed because we cannot call
3399  * the blocking break_layout() with the iolocks held, and therefore have to
3400  * back out both locks.
3401  */
3402 static int
3403 xfs_iolock_two_inodes_and_break_layout(
3404     struct inode        *src,
3405     struct inode        *dest)
3406 {
3407     int         error;
3408 
3409     if (src > dest)
3410         swap(src, dest);
3411 
3412 retry:
3413     /* Wait to break both inodes' layouts before we start locking. */
3414     error = break_layout(src, true);
3415     if (error)
3416         return error;
3417     if (src != dest) {
3418         error = break_layout(dest, true);
3419         if (error)
3420             return error;
3421     }
3422 
3423     /* Lock one inode and make sure nobody got in and leased it. */
3424     inode_lock(src);
3425     error = break_layout(src, false);
3426     if (error) {
3427         inode_unlock(src);
3428         if (error == -EWOULDBLOCK)
3429             goto retry;
3430         return error;
3431     }
3432 
3433     if (src == dest)
3434         return 0;
3435 
3436     /* Lock the other inode and make sure nobody got in and leased it. */
3437     inode_lock_nested(dest, I_MUTEX_NONDIR2);
3438     error = break_layout(dest, false);
3439     if (error) {
3440         inode_unlock(src);
3441         inode_unlock(dest);
3442         if (error == -EWOULDBLOCK)
3443             goto retry;
3444         return error;
3445     }
3446 
3447     return 0;
3448 }
3449 
3450 static int
3451 xfs_mmaplock_two_inodes_and_break_dax_layout(
3452     struct xfs_inode    *ip1,
3453     struct xfs_inode    *ip2)
3454 {
3455     int         error;
3456     bool            retry;
3457     struct page     *page;
3458 
3459     if (ip1->i_ino > ip2->i_ino)
3460         swap(ip1, ip2);
3461 
3462 again:
3463     retry = false;
3464     /* Lock the first inode */
3465     xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3466     error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3467     if (error || retry) {
3468         xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3469         if (error == 0 && retry)
3470             goto again;
3471         return error;
3472     }
3473 
3474     if (ip1 == ip2)
3475         return 0;
3476 
3477     /* Nested lock the second inode */
3478     xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3479     /*
3480      * We cannot use xfs_break_dax_layouts() directly here because it may
3481      * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3482      * for this nested lock case.
3483      */
3484     page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3485     if (page && page_ref_count(page) != 1) {
3486         xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3487         xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3488         goto again;
3489     }
3490 
3491     return 0;
3492 }
3493 
3494 /*
3495  * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3496  * mmap activity.
3497  */
3498 int
3499 xfs_ilock2_io_mmap(
3500     struct xfs_inode    *ip1,
3501     struct xfs_inode    *ip2)
3502 {
3503     int         ret;
3504 
3505     ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3506     if (ret)
3507         return ret;
3508 
3509     if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3510         ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3511         if (ret) {
3512             inode_unlock(VFS_I(ip2));
3513             if (ip1 != ip2)
3514                 inode_unlock(VFS_I(ip1));
3515             return ret;
3516         }
3517     } else
3518         filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3519                         VFS_I(ip2)->i_mapping);
3520 
3521     return 0;
3522 }
3523 
3524 /* Unlock both inodes to allow IO and mmap activity. */
3525 void
3526 xfs_iunlock2_io_mmap(
3527     struct xfs_inode    *ip1,
3528     struct xfs_inode    *ip2)
3529 {
3530     if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3531         xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3532         if (ip1 != ip2)
3533             xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3534     } else
3535         filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3536                           VFS_I(ip2)->i_mapping);
3537 
3538     inode_unlock(VFS_I(ip2));
3539     if (ip1 != ip2)
3540         inode_unlock(VFS_I(ip1));
3541 }