Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
0004  * All Rights Reserved.
0005  */
0006 #include "xfs.h"
0007 #include "xfs_fs.h"
0008 #include "xfs_shared.h"
0009 #include "xfs_format.h"
0010 #include "xfs_log_format.h"
0011 #include "xfs_trans_resv.h"
0012 #include "xfs_mount.h"
0013 #include "xfs_inode.h"
0014 #include "xfs_trans.h"
0015 #include "xfs_trans_priv.h"
0016 #include "xfs_inode_item.h"
0017 #include "xfs_quota.h"
0018 #include "xfs_trace.h"
0019 #include "xfs_icache.h"
0020 #include "xfs_bmap_util.h"
0021 #include "xfs_dquot_item.h"
0022 #include "xfs_dquot.h"
0023 #include "xfs_reflink.h"
0024 #include "xfs_ialloc.h"
0025 #include "xfs_ag.h"
0026 #include "xfs_log_priv.h"
0027 
0028 #include <linux/iversion.h>
0029 
0030 /* Radix tree tags for incore inode tree. */
0031 
0032 /* inode is to be reclaimed */
0033 #define XFS_ICI_RECLAIM_TAG 0
0034 /* Inode has speculative preallocations (posteof or cow) to clean. */
0035 #define XFS_ICI_BLOCKGC_TAG 1
0036 
0037 /*
0038  * The goal for walking incore inodes.  These can correspond with incore inode
0039  * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
0040  */
0041 enum xfs_icwalk_goal {
0042     /* Goals directly associated with tagged inodes. */
0043     XFS_ICWALK_BLOCKGC  = XFS_ICI_BLOCKGC_TAG,
0044     XFS_ICWALK_RECLAIM  = XFS_ICI_RECLAIM_TAG,
0045 };
0046 
0047 static int xfs_icwalk(struct xfs_mount *mp,
0048         enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
0049 static int xfs_icwalk_ag(struct xfs_perag *pag,
0050         enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
0051 
0052 /*
0053  * Private inode cache walk flags for struct xfs_icwalk.  Must not
0054  * coincide with XFS_ICWALK_FLAGS_VALID.
0055  */
0056 
0057 /* Stop scanning after icw_scan_limit inodes. */
0058 #define XFS_ICWALK_FLAG_SCAN_LIMIT  (1U << 28)
0059 
0060 #define XFS_ICWALK_FLAG_RECLAIM_SICK    (1U << 27)
0061 #define XFS_ICWALK_FLAG_UNION       (1U << 26) /* union filter algorithm */
0062 
0063 #define XFS_ICWALK_PRIVATE_FLAGS    (XFS_ICWALK_FLAG_SCAN_LIMIT | \
0064                      XFS_ICWALK_FLAG_RECLAIM_SICK | \
0065                      XFS_ICWALK_FLAG_UNION)
0066 
0067 /*
0068  * Allocate and initialise an xfs_inode.
0069  */
0070 struct xfs_inode *
0071 xfs_inode_alloc(
0072     struct xfs_mount    *mp,
0073     xfs_ino_t       ino)
0074 {
0075     struct xfs_inode    *ip;
0076 
0077     /*
0078      * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
0079      * and return NULL here on ENOMEM.
0080      */
0081     ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
0082 
0083     if (inode_init_always(mp->m_super, VFS_I(ip))) {
0084         kmem_cache_free(xfs_inode_cache, ip);
0085         return NULL;
0086     }
0087 
0088     /* VFS doesn't initialise i_mode or i_state! */
0089     VFS_I(ip)->i_mode = 0;
0090     VFS_I(ip)->i_state = 0;
0091     mapping_set_large_folios(VFS_I(ip)->i_mapping);
0092 
0093     XFS_STATS_INC(mp, vn_active);
0094     ASSERT(atomic_read(&ip->i_pincount) == 0);
0095     ASSERT(ip->i_ino == 0);
0096 
0097     /* initialise the xfs inode */
0098     ip->i_ino = ino;
0099     ip->i_mount = mp;
0100     memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
0101     ip->i_cowfp = NULL;
0102     memset(&ip->i_af, 0, sizeof(ip->i_af));
0103     ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
0104     memset(&ip->i_df, 0, sizeof(ip->i_df));
0105     ip->i_flags = 0;
0106     ip->i_delayed_blks = 0;
0107     ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
0108     ip->i_nblocks = 0;
0109     ip->i_forkoff = 0;
0110     ip->i_sick = 0;
0111     ip->i_checked = 0;
0112     INIT_WORK(&ip->i_ioend_work, xfs_end_io);
0113     INIT_LIST_HEAD(&ip->i_ioend_list);
0114     spin_lock_init(&ip->i_ioend_lock);
0115     ip->i_next_unlinked = NULLAGINO;
0116     ip->i_prev_unlinked = NULLAGINO;
0117 
0118     return ip;
0119 }
0120 
0121 STATIC void
0122 xfs_inode_free_callback(
0123     struct rcu_head     *head)
0124 {
0125     struct inode        *inode = container_of(head, struct inode, i_rcu);
0126     struct xfs_inode    *ip = XFS_I(inode);
0127 
0128     switch (VFS_I(ip)->i_mode & S_IFMT) {
0129     case S_IFREG:
0130     case S_IFDIR:
0131     case S_IFLNK:
0132         xfs_idestroy_fork(&ip->i_df);
0133         break;
0134     }
0135 
0136     xfs_ifork_zap_attr(ip);
0137 
0138     if (ip->i_cowfp) {
0139         xfs_idestroy_fork(ip->i_cowfp);
0140         kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
0141     }
0142     if (ip->i_itemp) {
0143         ASSERT(!test_bit(XFS_LI_IN_AIL,
0144                  &ip->i_itemp->ili_item.li_flags));
0145         xfs_inode_item_destroy(ip);
0146         ip->i_itemp = NULL;
0147     }
0148 
0149     kmem_cache_free(xfs_inode_cache, ip);
0150 }
0151 
0152 static void
0153 __xfs_inode_free(
0154     struct xfs_inode    *ip)
0155 {
0156     /* asserts to verify all state is correct here */
0157     ASSERT(atomic_read(&ip->i_pincount) == 0);
0158     ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
0159     XFS_STATS_DEC(ip->i_mount, vn_active);
0160 
0161     call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
0162 }
0163 
0164 void
0165 xfs_inode_free(
0166     struct xfs_inode    *ip)
0167 {
0168     ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
0169 
0170     /*
0171      * Because we use RCU freeing we need to ensure the inode always
0172      * appears to be reclaimed with an invalid inode number when in the
0173      * free state. The ip->i_flags_lock provides the barrier against lookup
0174      * races.
0175      */
0176     spin_lock(&ip->i_flags_lock);
0177     ip->i_flags = XFS_IRECLAIM;
0178     ip->i_ino = 0;
0179     spin_unlock(&ip->i_flags_lock);
0180 
0181     __xfs_inode_free(ip);
0182 }
0183 
0184 /*
0185  * Queue background inode reclaim work if there are reclaimable inodes and there
0186  * isn't reclaim work already scheduled or in progress.
0187  */
0188 static void
0189 xfs_reclaim_work_queue(
0190     struct xfs_mount        *mp)
0191 {
0192 
0193     rcu_read_lock();
0194     if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
0195         queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
0196             msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
0197     }
0198     rcu_read_unlock();
0199 }
0200 
0201 /*
0202  * Background scanning to trim preallocated space. This is queued based on the
0203  * 'speculative_prealloc_lifetime' tunable (5m by default).
0204  */
0205 static inline void
0206 xfs_blockgc_queue(
0207     struct xfs_perag    *pag)
0208 {
0209     struct xfs_mount    *mp = pag->pag_mount;
0210 
0211     if (!xfs_is_blockgc_enabled(mp))
0212         return;
0213 
0214     rcu_read_lock();
0215     if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
0216         queue_delayed_work(pag->pag_mount->m_blockgc_wq,
0217                    &pag->pag_blockgc_work,
0218                    msecs_to_jiffies(xfs_blockgc_secs * 1000));
0219     rcu_read_unlock();
0220 }
0221 
0222 /* Set a tag on both the AG incore inode tree and the AG radix tree. */
0223 static void
0224 xfs_perag_set_inode_tag(
0225     struct xfs_perag    *pag,
0226     xfs_agino_t     agino,
0227     unsigned int        tag)
0228 {
0229     struct xfs_mount    *mp = pag->pag_mount;
0230     bool            was_tagged;
0231 
0232     lockdep_assert_held(&pag->pag_ici_lock);
0233 
0234     was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
0235     radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
0236 
0237     if (tag == XFS_ICI_RECLAIM_TAG)
0238         pag->pag_ici_reclaimable++;
0239 
0240     if (was_tagged)
0241         return;
0242 
0243     /* propagate the tag up into the perag radix tree */
0244     spin_lock(&mp->m_perag_lock);
0245     radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
0246     spin_unlock(&mp->m_perag_lock);
0247 
0248     /* start background work */
0249     switch (tag) {
0250     case XFS_ICI_RECLAIM_TAG:
0251         xfs_reclaim_work_queue(mp);
0252         break;
0253     case XFS_ICI_BLOCKGC_TAG:
0254         xfs_blockgc_queue(pag);
0255         break;
0256     }
0257 
0258     trace_xfs_perag_set_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
0259 }
0260 
0261 /* Clear a tag on both the AG incore inode tree and the AG radix tree. */
0262 static void
0263 xfs_perag_clear_inode_tag(
0264     struct xfs_perag    *pag,
0265     xfs_agino_t     agino,
0266     unsigned int        tag)
0267 {
0268     struct xfs_mount    *mp = pag->pag_mount;
0269 
0270     lockdep_assert_held(&pag->pag_ici_lock);
0271 
0272     /*
0273      * Reclaim can signal (with a null agino) that it cleared its own tag
0274      * by removing the inode from the radix tree.
0275      */
0276     if (agino != NULLAGINO)
0277         radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
0278     else
0279         ASSERT(tag == XFS_ICI_RECLAIM_TAG);
0280 
0281     if (tag == XFS_ICI_RECLAIM_TAG)
0282         pag->pag_ici_reclaimable--;
0283 
0284     if (radix_tree_tagged(&pag->pag_ici_root, tag))
0285         return;
0286 
0287     /* clear the tag from the perag radix tree */
0288     spin_lock(&mp->m_perag_lock);
0289     radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
0290     spin_unlock(&mp->m_perag_lock);
0291 
0292     trace_xfs_perag_clear_inode_tag(mp, pag->pag_agno, tag, _RET_IP_);
0293 }
0294 
0295 /*
0296  * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
0297  * part of the structure. This is made more complex by the fact we store
0298  * information about the on-disk values in the VFS inode and so we can't just
0299  * overwrite the values unconditionally. Hence we save the parameters we
0300  * need to retain across reinitialisation, and rewrite them into the VFS inode
0301  * after reinitialisation even if it fails.
0302  */
0303 static int
0304 xfs_reinit_inode(
0305     struct xfs_mount    *mp,
0306     struct inode        *inode)
0307 {
0308     int         error;
0309     uint32_t        nlink = inode->i_nlink;
0310     uint32_t        generation = inode->i_generation;
0311     uint64_t        version = inode_peek_iversion(inode);
0312     umode_t         mode = inode->i_mode;
0313     dev_t           dev = inode->i_rdev;
0314     kuid_t          uid = inode->i_uid;
0315     kgid_t          gid = inode->i_gid;
0316 
0317     error = inode_init_always(mp->m_super, inode);
0318 
0319     set_nlink(inode, nlink);
0320     inode->i_generation = generation;
0321     inode_set_iversion_queried(inode, version);
0322     inode->i_mode = mode;
0323     inode->i_rdev = dev;
0324     inode->i_uid = uid;
0325     inode->i_gid = gid;
0326     mapping_set_large_folios(inode->i_mapping);
0327     return error;
0328 }
0329 
0330 /*
0331  * Carefully nudge an inode whose VFS state has been torn down back into a
0332  * usable state.  Drops the i_flags_lock and the rcu read lock.
0333  */
0334 static int
0335 xfs_iget_recycle(
0336     struct xfs_perag    *pag,
0337     struct xfs_inode    *ip) __releases(&ip->i_flags_lock)
0338 {
0339     struct xfs_mount    *mp = ip->i_mount;
0340     struct inode        *inode = VFS_I(ip);
0341     int         error;
0342 
0343     trace_xfs_iget_recycle(ip);
0344 
0345     /*
0346      * We need to make it look like the inode is being reclaimed to prevent
0347      * the actual reclaim workers from stomping over us while we recycle
0348      * the inode.  We can't clear the radix tree tag yet as it requires
0349      * pag_ici_lock to be held exclusive.
0350      */
0351     ip->i_flags |= XFS_IRECLAIM;
0352 
0353     spin_unlock(&ip->i_flags_lock);
0354     rcu_read_unlock();
0355 
0356     ASSERT(!rwsem_is_locked(&inode->i_rwsem));
0357     error = xfs_reinit_inode(mp, inode);
0358     if (error) {
0359         /*
0360          * Re-initializing the inode failed, and we are in deep
0361          * trouble.  Try to re-add it to the reclaim list.
0362          */
0363         rcu_read_lock();
0364         spin_lock(&ip->i_flags_lock);
0365         ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
0366         ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
0367         spin_unlock(&ip->i_flags_lock);
0368         rcu_read_unlock();
0369 
0370         trace_xfs_iget_recycle_fail(ip);
0371         return error;
0372     }
0373 
0374     spin_lock(&pag->pag_ici_lock);
0375     spin_lock(&ip->i_flags_lock);
0376 
0377     /*
0378      * Clear the per-lifetime state in the inode as we are now effectively
0379      * a new inode and need to return to the initial state before reuse
0380      * occurs.
0381      */
0382     ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
0383     ip->i_flags |= XFS_INEW;
0384     xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
0385             XFS_ICI_RECLAIM_TAG);
0386     inode->i_state = I_NEW;
0387     spin_unlock(&ip->i_flags_lock);
0388     spin_unlock(&pag->pag_ici_lock);
0389 
0390     return 0;
0391 }
0392 
0393 /*
0394  * If we are allocating a new inode, then check what was returned is
0395  * actually a free, empty inode. If we are not allocating an inode,
0396  * then check we didn't find a free inode.
0397  *
0398  * Returns:
0399  *  0       if the inode free state matches the lookup context
0400  *  -ENOENT     if the inode is free and we are not allocating
0401  *  -EFSCORRUPTED   if there is any state mismatch at all
0402  */
0403 static int
0404 xfs_iget_check_free_state(
0405     struct xfs_inode    *ip,
0406     int         flags)
0407 {
0408     if (flags & XFS_IGET_CREATE) {
0409         /* should be a free inode */
0410         if (VFS_I(ip)->i_mode != 0) {
0411             xfs_warn(ip->i_mount,
0412 "Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
0413                 ip->i_ino, VFS_I(ip)->i_mode);
0414             return -EFSCORRUPTED;
0415         }
0416 
0417         if (ip->i_nblocks != 0) {
0418             xfs_warn(ip->i_mount,
0419 "Corruption detected! Free inode 0x%llx has blocks allocated!",
0420                 ip->i_ino);
0421             return -EFSCORRUPTED;
0422         }
0423         return 0;
0424     }
0425 
0426     /* should be an allocated inode */
0427     if (VFS_I(ip)->i_mode == 0)
0428         return -ENOENT;
0429 
0430     return 0;
0431 }
0432 
0433 /* Make all pending inactivation work start immediately. */
0434 static void
0435 xfs_inodegc_queue_all(
0436     struct xfs_mount    *mp)
0437 {
0438     struct xfs_inodegc  *gc;
0439     int         cpu;
0440 
0441     for_each_online_cpu(cpu) {
0442         gc = per_cpu_ptr(mp->m_inodegc, cpu);
0443         if (!llist_empty(&gc->list))
0444             mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
0445     }
0446 }
0447 
0448 /*
0449  * Check the validity of the inode we just found it the cache
0450  */
0451 static int
0452 xfs_iget_cache_hit(
0453     struct xfs_perag    *pag,
0454     struct xfs_inode    *ip,
0455     xfs_ino_t       ino,
0456     int         flags,
0457     int         lock_flags) __releases(RCU)
0458 {
0459     struct inode        *inode = VFS_I(ip);
0460     struct xfs_mount    *mp = ip->i_mount;
0461     int         error;
0462 
0463     /*
0464      * check for re-use of an inode within an RCU grace period due to the
0465      * radix tree nodes not being updated yet. We monitor for this by
0466      * setting the inode number to zero before freeing the inode structure.
0467      * If the inode has been reallocated and set up, then the inode number
0468      * will not match, so check for that, too.
0469      */
0470     spin_lock(&ip->i_flags_lock);
0471     if (ip->i_ino != ino)
0472         goto out_skip;
0473 
0474     /*
0475      * If we are racing with another cache hit that is currently
0476      * instantiating this inode or currently recycling it out of
0477      * reclaimable state, wait for the initialisation to complete
0478      * before continuing.
0479      *
0480      * If we're racing with the inactivation worker we also want to wait.
0481      * If we're creating a new file, it's possible that the worker
0482      * previously marked the inode as free on disk but hasn't finished
0483      * updating the incore state yet.  The AGI buffer will be dirty and
0484      * locked to the icreate transaction, so a synchronous push of the
0485      * inodegc workers would result in deadlock.  For a regular iget, the
0486      * worker is running already, so we might as well wait.
0487      *
0488      * XXX(hch): eventually we should do something equivalent to
0489      *       wait_on_inode to wait for these flags to be cleared
0490      *       instead of polling for it.
0491      */
0492     if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
0493         goto out_skip;
0494 
0495     if (ip->i_flags & XFS_NEED_INACTIVE) {
0496         /* Unlinked inodes cannot be re-grabbed. */
0497         if (VFS_I(ip)->i_nlink == 0) {
0498             error = -ENOENT;
0499             goto out_error;
0500         }
0501         goto out_inodegc_flush;
0502     }
0503 
0504     /*
0505      * Check the inode free state is valid. This also detects lookup
0506      * racing with unlinks.
0507      */
0508     error = xfs_iget_check_free_state(ip, flags);
0509     if (error)
0510         goto out_error;
0511 
0512     /* Skip inodes that have no vfs state. */
0513     if ((flags & XFS_IGET_INCORE) &&
0514         (ip->i_flags & XFS_IRECLAIMABLE))
0515         goto out_skip;
0516 
0517     /* The inode fits the selection criteria; process it. */
0518     if (ip->i_flags & XFS_IRECLAIMABLE) {
0519         /* Drops i_flags_lock and RCU read lock. */
0520         error = xfs_iget_recycle(pag, ip);
0521         if (error)
0522             return error;
0523     } else {
0524         /* If the VFS inode is being torn down, pause and try again. */
0525         if (!igrab(inode))
0526             goto out_skip;
0527 
0528         /* We've got a live one. */
0529         spin_unlock(&ip->i_flags_lock);
0530         rcu_read_unlock();
0531         trace_xfs_iget_hit(ip);
0532     }
0533 
0534     if (lock_flags != 0)
0535         xfs_ilock(ip, lock_flags);
0536 
0537     if (!(flags & XFS_IGET_INCORE))
0538         xfs_iflags_clear(ip, XFS_ISTALE);
0539     XFS_STATS_INC(mp, xs_ig_found);
0540 
0541     return 0;
0542 
0543 out_skip:
0544     trace_xfs_iget_skip(ip);
0545     XFS_STATS_INC(mp, xs_ig_frecycle);
0546     error = -EAGAIN;
0547 out_error:
0548     spin_unlock(&ip->i_flags_lock);
0549     rcu_read_unlock();
0550     return error;
0551 
0552 out_inodegc_flush:
0553     spin_unlock(&ip->i_flags_lock);
0554     rcu_read_unlock();
0555     /*
0556      * Do not wait for the workers, because the caller could hold an AGI
0557      * buffer lock.  We're just going to sleep in a loop anyway.
0558      */
0559     if (xfs_is_inodegc_enabled(mp))
0560         xfs_inodegc_queue_all(mp);
0561     return -EAGAIN;
0562 }
0563 
0564 static int
0565 xfs_iget_cache_miss(
0566     struct xfs_mount    *mp,
0567     struct xfs_perag    *pag,
0568     xfs_trans_t     *tp,
0569     xfs_ino_t       ino,
0570     struct xfs_inode    **ipp,
0571     int         flags,
0572     int         lock_flags)
0573 {
0574     struct xfs_inode    *ip;
0575     int         error;
0576     xfs_agino_t     agino = XFS_INO_TO_AGINO(mp, ino);
0577     int         iflags;
0578 
0579     ip = xfs_inode_alloc(mp, ino);
0580     if (!ip)
0581         return -ENOMEM;
0582 
0583     error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
0584     if (error)
0585         goto out_destroy;
0586 
0587     /*
0588      * For version 5 superblocks, if we are initialising a new inode and we
0589      * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
0590      * simply build the new inode core with a random generation number.
0591      *
0592      * For version 4 (and older) superblocks, log recovery is dependent on
0593      * the i_flushiter field being initialised from the current on-disk
0594      * value and hence we must also read the inode off disk even when
0595      * initializing new inodes.
0596      */
0597     if (xfs_has_v3inodes(mp) &&
0598         (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
0599         VFS_I(ip)->i_generation = prandom_u32();
0600     } else {
0601         struct xfs_buf      *bp;
0602 
0603         error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
0604         if (error)
0605             goto out_destroy;
0606 
0607         error = xfs_inode_from_disk(ip,
0608                 xfs_buf_offset(bp, ip->i_imap.im_boffset));
0609         if (!error)
0610             xfs_buf_set_ref(bp, XFS_INO_REF);
0611         xfs_trans_brelse(tp, bp);
0612 
0613         if (error)
0614             goto out_destroy;
0615     }
0616 
0617     trace_xfs_iget_miss(ip);
0618 
0619     /*
0620      * Check the inode free state is valid. This also detects lookup
0621      * racing with unlinks.
0622      */
0623     error = xfs_iget_check_free_state(ip, flags);
0624     if (error)
0625         goto out_destroy;
0626 
0627     /*
0628      * Preload the radix tree so we can insert safely under the
0629      * write spinlock. Note that we cannot sleep inside the preload
0630      * region. Since we can be called from transaction context, don't
0631      * recurse into the file system.
0632      */
0633     if (radix_tree_preload(GFP_NOFS)) {
0634         error = -EAGAIN;
0635         goto out_destroy;
0636     }
0637 
0638     /*
0639      * Because the inode hasn't been added to the radix-tree yet it can't
0640      * be found by another thread, so we can do the non-sleeping lock here.
0641      */
0642     if (lock_flags) {
0643         if (!xfs_ilock_nowait(ip, lock_flags))
0644             BUG();
0645     }
0646 
0647     /*
0648      * These values must be set before inserting the inode into the radix
0649      * tree as the moment it is inserted a concurrent lookup (allowed by the
0650      * RCU locking mechanism) can find it and that lookup must see that this
0651      * is an inode currently under construction (i.e. that XFS_INEW is set).
0652      * The ip->i_flags_lock that protects the XFS_INEW flag forms the
0653      * memory barrier that ensures this detection works correctly at lookup
0654      * time.
0655      */
0656     iflags = XFS_INEW;
0657     if (flags & XFS_IGET_DONTCACHE)
0658         d_mark_dontcache(VFS_I(ip));
0659     ip->i_udquot = NULL;
0660     ip->i_gdquot = NULL;
0661     ip->i_pdquot = NULL;
0662     xfs_iflags_set(ip, iflags);
0663 
0664     /* insert the new inode */
0665     spin_lock(&pag->pag_ici_lock);
0666     error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
0667     if (unlikely(error)) {
0668         WARN_ON(error != -EEXIST);
0669         XFS_STATS_INC(mp, xs_ig_dup);
0670         error = -EAGAIN;
0671         goto out_preload_end;
0672     }
0673     spin_unlock(&pag->pag_ici_lock);
0674     radix_tree_preload_end();
0675 
0676     *ipp = ip;
0677     return 0;
0678 
0679 out_preload_end:
0680     spin_unlock(&pag->pag_ici_lock);
0681     radix_tree_preload_end();
0682     if (lock_flags)
0683         xfs_iunlock(ip, lock_flags);
0684 out_destroy:
0685     __destroy_inode(VFS_I(ip));
0686     xfs_inode_free(ip);
0687     return error;
0688 }
0689 
0690 /*
0691  * Look up an inode by number in the given file system.  The inode is looked up
0692  * in the cache held in each AG.  If the inode is found in the cache, initialise
0693  * the vfs inode if necessary.
0694  *
0695  * If it is not in core, read it in from the file system's device, add it to the
0696  * cache and initialise the vfs inode.
0697  *
0698  * The inode is locked according to the value of the lock_flags parameter.
0699  * Inode lookup is only done during metadata operations and not as part of the
0700  * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
0701  */
0702 int
0703 xfs_iget(
0704     struct xfs_mount    *mp,
0705     struct xfs_trans    *tp,
0706     xfs_ino_t       ino,
0707     uint            flags,
0708     uint            lock_flags,
0709     struct xfs_inode    **ipp)
0710 {
0711     struct xfs_inode    *ip;
0712     struct xfs_perag    *pag;
0713     xfs_agino_t     agino;
0714     int         error;
0715 
0716     ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
0717 
0718     /* reject inode numbers outside existing AGs */
0719     if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
0720         return -EINVAL;
0721 
0722     XFS_STATS_INC(mp, xs_ig_attempts);
0723 
0724     /* get the perag structure and ensure that it's inode capable */
0725     pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
0726     agino = XFS_INO_TO_AGINO(mp, ino);
0727 
0728 again:
0729     error = 0;
0730     rcu_read_lock();
0731     ip = radix_tree_lookup(&pag->pag_ici_root, agino);
0732 
0733     if (ip) {
0734         error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
0735         if (error)
0736             goto out_error_or_again;
0737     } else {
0738         rcu_read_unlock();
0739         if (flags & XFS_IGET_INCORE) {
0740             error = -ENODATA;
0741             goto out_error_or_again;
0742         }
0743         XFS_STATS_INC(mp, xs_ig_missed);
0744 
0745         error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
0746                             flags, lock_flags);
0747         if (error)
0748             goto out_error_or_again;
0749     }
0750     xfs_perag_put(pag);
0751 
0752     *ipp = ip;
0753 
0754     /*
0755      * If we have a real type for an on-disk inode, we can setup the inode
0756      * now.  If it's a new inode being created, xfs_init_new_inode will
0757      * handle it.
0758      */
0759     if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
0760         xfs_setup_existing_inode(ip);
0761     return 0;
0762 
0763 out_error_or_again:
0764     if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
0765         delay(1);
0766         goto again;
0767     }
0768     xfs_perag_put(pag);
0769     return error;
0770 }
0771 
0772 /*
0773  * "Is this a cached inode that's also allocated?"
0774  *
0775  * Look up an inode by number in the given file system.  If the inode is
0776  * in cache and isn't in purgatory, return 1 if the inode is allocated
0777  * and 0 if it is not.  For all other cases (not in cache, being torn
0778  * down, etc.), return a negative error code.
0779  *
0780  * The caller has to prevent inode allocation and freeing activity,
0781  * presumably by locking the AGI buffer.   This is to ensure that an
0782  * inode cannot transition from allocated to freed until the caller is
0783  * ready to allow that.  If the inode is in an intermediate state (new,
0784  * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
0785  * inode is not in the cache, -ENOENT will be returned.  The caller must
0786  * deal with these scenarios appropriately.
0787  *
0788  * This is a specialized use case for the online scrubber; if you're
0789  * reading this, you probably want xfs_iget.
0790  */
0791 int
0792 xfs_icache_inode_is_allocated(
0793     struct xfs_mount    *mp,
0794     struct xfs_trans    *tp,
0795     xfs_ino_t       ino,
0796     bool            *inuse)
0797 {
0798     struct xfs_inode    *ip;
0799     int         error;
0800 
0801     error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
0802     if (error)
0803         return error;
0804 
0805     *inuse = !!(VFS_I(ip)->i_mode);
0806     xfs_irele(ip);
0807     return 0;
0808 }
0809 
0810 /*
0811  * Grab the inode for reclaim exclusively.
0812  *
0813  * We have found this inode via a lookup under RCU, so the inode may have
0814  * already been freed, or it may be in the process of being recycled by
0815  * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
0816  * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
0817  * will not be set. Hence we need to check for both these flag conditions to
0818  * avoid inodes that are no longer reclaim candidates.
0819  *
0820  * Note: checking for other state flags here, under the i_flags_lock or not, is
0821  * racy and should be avoided. Those races should be resolved only after we have
0822  * ensured that we are able to reclaim this inode and the world can see that we
0823  * are going to reclaim it.
0824  *
0825  * Return true if we grabbed it, false otherwise.
0826  */
0827 static bool
0828 xfs_reclaim_igrab(
0829     struct xfs_inode    *ip,
0830     struct xfs_icwalk   *icw)
0831 {
0832     ASSERT(rcu_read_lock_held());
0833 
0834     spin_lock(&ip->i_flags_lock);
0835     if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
0836         __xfs_iflags_test(ip, XFS_IRECLAIM)) {
0837         /* not a reclaim candidate. */
0838         spin_unlock(&ip->i_flags_lock);
0839         return false;
0840     }
0841 
0842     /* Don't reclaim a sick inode unless the caller asked for it. */
0843     if (ip->i_sick &&
0844         (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
0845         spin_unlock(&ip->i_flags_lock);
0846         return false;
0847     }
0848 
0849     __xfs_iflags_set(ip, XFS_IRECLAIM);
0850     spin_unlock(&ip->i_flags_lock);
0851     return true;
0852 }
0853 
0854 /*
0855  * Inode reclaim is non-blocking, so the default action if progress cannot be
0856  * made is to "requeue" the inode for reclaim by unlocking it and clearing the
0857  * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
0858  * blocking anymore and hence we can wait for the inode to be able to reclaim
0859  * it.
0860  *
0861  * We do no IO here - if callers require inodes to be cleaned they must push the
0862  * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
0863  * done in the background in a non-blocking manner, and enables memory reclaim
0864  * to make progress without blocking.
0865  */
0866 static void
0867 xfs_reclaim_inode(
0868     struct xfs_inode    *ip,
0869     struct xfs_perag    *pag)
0870 {
0871     xfs_ino_t       ino = ip->i_ino; /* for radix_tree_delete */
0872 
0873     if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
0874         goto out;
0875     if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
0876         goto out_iunlock;
0877 
0878     /*
0879      * Check for log shutdown because aborting the inode can move the log
0880      * tail and corrupt in memory state. This is fine if the log is shut
0881      * down, but if the log is still active and only the mount is shut down
0882      * then the in-memory log tail movement caused by the abort can be
0883      * incorrectly propagated to disk.
0884      */
0885     if (xlog_is_shutdown(ip->i_mount->m_log)) {
0886         xfs_iunpin_wait(ip);
0887         xfs_iflush_shutdown_abort(ip);
0888         goto reclaim;
0889     }
0890     if (xfs_ipincount(ip))
0891         goto out_clear_flush;
0892     if (!xfs_inode_clean(ip))
0893         goto out_clear_flush;
0894 
0895     xfs_iflags_clear(ip, XFS_IFLUSHING);
0896 reclaim:
0897     trace_xfs_inode_reclaiming(ip);
0898 
0899     /*
0900      * Because we use RCU freeing we need to ensure the inode always appears
0901      * to be reclaimed with an invalid inode number when in the free state.
0902      * We do this as early as possible under the ILOCK so that
0903      * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
0904      * detect races with us here. By doing this, we guarantee that once
0905      * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
0906      * it will see either a valid inode that will serialise correctly, or it
0907      * will see an invalid inode that it can skip.
0908      */
0909     spin_lock(&ip->i_flags_lock);
0910     ip->i_flags = XFS_IRECLAIM;
0911     ip->i_ino = 0;
0912     ip->i_sick = 0;
0913     ip->i_checked = 0;
0914     spin_unlock(&ip->i_flags_lock);
0915 
0916     ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
0917     xfs_iunlock(ip, XFS_ILOCK_EXCL);
0918 
0919     XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
0920     /*
0921      * Remove the inode from the per-AG radix tree.
0922      *
0923      * Because radix_tree_delete won't complain even if the item was never
0924      * added to the tree assert that it's been there before to catch
0925      * problems with the inode life time early on.
0926      */
0927     spin_lock(&pag->pag_ici_lock);
0928     if (!radix_tree_delete(&pag->pag_ici_root,
0929                 XFS_INO_TO_AGINO(ip->i_mount, ino)))
0930         ASSERT(0);
0931     xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
0932     spin_unlock(&pag->pag_ici_lock);
0933 
0934     /*
0935      * Here we do an (almost) spurious inode lock in order to coordinate
0936      * with inode cache radix tree lookups.  This is because the lookup
0937      * can reference the inodes in the cache without taking references.
0938      *
0939      * We make that OK here by ensuring that we wait until the inode is
0940      * unlocked after the lookup before we go ahead and free it.
0941      */
0942     xfs_ilock(ip, XFS_ILOCK_EXCL);
0943     ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
0944     xfs_iunlock(ip, XFS_ILOCK_EXCL);
0945     ASSERT(xfs_inode_clean(ip));
0946 
0947     __xfs_inode_free(ip);
0948     return;
0949 
0950 out_clear_flush:
0951     xfs_iflags_clear(ip, XFS_IFLUSHING);
0952 out_iunlock:
0953     xfs_iunlock(ip, XFS_ILOCK_EXCL);
0954 out:
0955     xfs_iflags_clear(ip, XFS_IRECLAIM);
0956 }
0957 
0958 /* Reclaim sick inodes if we're unmounting or the fs went down. */
0959 static inline bool
0960 xfs_want_reclaim_sick(
0961     struct xfs_mount    *mp)
0962 {
0963     return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
0964            xfs_is_shutdown(mp);
0965 }
0966 
0967 void
0968 xfs_reclaim_inodes(
0969     struct xfs_mount    *mp)
0970 {
0971     struct xfs_icwalk   icw = {
0972         .icw_flags  = 0,
0973     };
0974 
0975     if (xfs_want_reclaim_sick(mp))
0976         icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
0977 
0978     while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
0979         xfs_ail_push_all_sync(mp->m_ail);
0980         xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
0981     }
0982 }
0983 
0984 /*
0985  * The shrinker infrastructure determines how many inodes we should scan for
0986  * reclaim. We want as many clean inodes ready to reclaim as possible, so we
0987  * push the AIL here. We also want to proactively free up memory if we can to
0988  * minimise the amount of work memory reclaim has to do so we kick the
0989  * background reclaim if it isn't already scheduled.
0990  */
0991 long
0992 xfs_reclaim_inodes_nr(
0993     struct xfs_mount    *mp,
0994     unsigned long       nr_to_scan)
0995 {
0996     struct xfs_icwalk   icw = {
0997         .icw_flags  = XFS_ICWALK_FLAG_SCAN_LIMIT,
0998         .icw_scan_limit = min_t(unsigned long, LONG_MAX, nr_to_scan),
0999     };
1000 
1001     if (xfs_want_reclaim_sick(mp))
1002         icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1003 
1004     /* kick background reclaimer and push the AIL */
1005     xfs_reclaim_work_queue(mp);
1006     xfs_ail_push_all(mp->m_ail);
1007 
1008     xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1009     return 0;
1010 }
1011 
1012 /*
1013  * Return the number of reclaimable inodes in the filesystem for
1014  * the shrinker to determine how much to reclaim.
1015  */
1016 long
1017 xfs_reclaim_inodes_count(
1018     struct xfs_mount    *mp)
1019 {
1020     struct xfs_perag    *pag;
1021     xfs_agnumber_t      ag = 0;
1022     long            reclaimable = 0;
1023 
1024     while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1025         ag = pag->pag_agno + 1;
1026         reclaimable += pag->pag_ici_reclaimable;
1027         xfs_perag_put(pag);
1028     }
1029     return reclaimable;
1030 }
1031 
1032 STATIC bool
1033 xfs_icwalk_match_id(
1034     struct xfs_inode    *ip,
1035     struct xfs_icwalk   *icw)
1036 {
1037     if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1038         !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1039         return false;
1040 
1041     if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1042         !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1043         return false;
1044 
1045     if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1046         ip->i_projid != icw->icw_prid)
1047         return false;
1048 
1049     return true;
1050 }
1051 
1052 /*
1053  * A union-based inode filtering algorithm. Process the inode if any of the
1054  * criteria match. This is for global/internal scans only.
1055  */
1056 STATIC bool
1057 xfs_icwalk_match_id_union(
1058     struct xfs_inode    *ip,
1059     struct xfs_icwalk   *icw)
1060 {
1061     if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1062         uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1063         return true;
1064 
1065     if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1066         gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1067         return true;
1068 
1069     if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1070         ip->i_projid == icw->icw_prid)
1071         return true;
1072 
1073     return false;
1074 }
1075 
1076 /*
1077  * Is this inode @ip eligible for eof/cow block reclamation, given some
1078  * filtering parameters @icw?  The inode is eligible if @icw is null or
1079  * if the predicate functions match.
1080  */
1081 static bool
1082 xfs_icwalk_match(
1083     struct xfs_inode    *ip,
1084     struct xfs_icwalk   *icw)
1085 {
1086     bool            match;
1087 
1088     if (!icw)
1089         return true;
1090 
1091     if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1092         match = xfs_icwalk_match_id_union(ip, icw);
1093     else
1094         match = xfs_icwalk_match_id(ip, icw);
1095     if (!match)
1096         return false;
1097 
1098     /* skip the inode if the file size is too small */
1099     if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1100         XFS_ISIZE(ip) < icw->icw_min_file_size)
1101         return false;
1102 
1103     return true;
1104 }
1105 
1106 /*
1107  * This is a fast pass over the inode cache to try to get reclaim moving on as
1108  * many inodes as possible in a short period of time. It kicks itself every few
1109  * seconds, as well as being kicked by the inode cache shrinker when memory
1110  * goes low.
1111  */
1112 void
1113 xfs_reclaim_worker(
1114     struct work_struct *work)
1115 {
1116     struct xfs_mount *mp = container_of(to_delayed_work(work),
1117                     struct xfs_mount, m_reclaim_work);
1118 
1119     xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1120     xfs_reclaim_work_queue(mp);
1121 }
1122 
1123 STATIC int
1124 xfs_inode_free_eofblocks(
1125     struct xfs_inode    *ip,
1126     struct xfs_icwalk   *icw,
1127     unsigned int        *lockflags)
1128 {
1129     bool            wait;
1130 
1131     wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1132 
1133     if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1134         return 0;
1135 
1136     /*
1137      * If the mapping is dirty the operation can block and wait for some
1138      * time. Unless we are waiting, skip it.
1139      */
1140     if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1141         return 0;
1142 
1143     if (!xfs_icwalk_match(ip, icw))
1144         return 0;
1145 
1146     /*
1147      * If the caller is waiting, return -EAGAIN to keep the background
1148      * scanner moving and revisit the inode in a subsequent pass.
1149      */
1150     if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1151         if (wait)
1152             return -EAGAIN;
1153         return 0;
1154     }
1155     *lockflags |= XFS_IOLOCK_EXCL;
1156 
1157     if (xfs_can_free_eofblocks(ip, false))
1158         return xfs_free_eofblocks(ip);
1159 
1160     /* inode could be preallocated or append-only */
1161     trace_xfs_inode_free_eofblocks_invalid(ip);
1162     xfs_inode_clear_eofblocks_tag(ip);
1163     return 0;
1164 }
1165 
1166 static void
1167 xfs_blockgc_set_iflag(
1168     struct xfs_inode    *ip,
1169     unsigned long       iflag)
1170 {
1171     struct xfs_mount    *mp = ip->i_mount;
1172     struct xfs_perag    *pag;
1173 
1174     ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1175 
1176     /*
1177      * Don't bother locking the AG and looking up in the radix trees
1178      * if we already know that we have the tag set.
1179      */
1180     if (ip->i_flags & iflag)
1181         return;
1182     spin_lock(&ip->i_flags_lock);
1183     ip->i_flags |= iflag;
1184     spin_unlock(&ip->i_flags_lock);
1185 
1186     pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1187     spin_lock(&pag->pag_ici_lock);
1188 
1189     xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1190             XFS_ICI_BLOCKGC_TAG);
1191 
1192     spin_unlock(&pag->pag_ici_lock);
1193     xfs_perag_put(pag);
1194 }
1195 
1196 void
1197 xfs_inode_set_eofblocks_tag(
1198     xfs_inode_t *ip)
1199 {
1200     trace_xfs_inode_set_eofblocks_tag(ip);
1201     return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1202 }
1203 
1204 static void
1205 xfs_blockgc_clear_iflag(
1206     struct xfs_inode    *ip,
1207     unsigned long       iflag)
1208 {
1209     struct xfs_mount    *mp = ip->i_mount;
1210     struct xfs_perag    *pag;
1211     bool            clear_tag;
1212 
1213     ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1214 
1215     spin_lock(&ip->i_flags_lock);
1216     ip->i_flags &= ~iflag;
1217     clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1218     spin_unlock(&ip->i_flags_lock);
1219 
1220     if (!clear_tag)
1221         return;
1222 
1223     pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1224     spin_lock(&pag->pag_ici_lock);
1225 
1226     xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1227             XFS_ICI_BLOCKGC_TAG);
1228 
1229     spin_unlock(&pag->pag_ici_lock);
1230     xfs_perag_put(pag);
1231 }
1232 
1233 void
1234 xfs_inode_clear_eofblocks_tag(
1235     xfs_inode_t *ip)
1236 {
1237     trace_xfs_inode_clear_eofblocks_tag(ip);
1238     return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1239 }
1240 
1241 /*
1242  * Set ourselves up to free CoW blocks from this file.  If it's already clean
1243  * then we can bail out quickly, but otherwise we must back off if the file
1244  * is undergoing some kind of write.
1245  */
1246 static bool
1247 xfs_prep_free_cowblocks(
1248     struct xfs_inode    *ip)
1249 {
1250     /*
1251      * Just clear the tag if we have an empty cow fork or none at all. It's
1252      * possible the inode was fully unshared since it was originally tagged.
1253      */
1254     if (!xfs_inode_has_cow_data(ip)) {
1255         trace_xfs_inode_free_cowblocks_invalid(ip);
1256         xfs_inode_clear_cowblocks_tag(ip);
1257         return false;
1258     }
1259 
1260     /*
1261      * If the mapping is dirty or under writeback we cannot touch the
1262      * CoW fork.  Leave it alone if we're in the midst of a directio.
1263      */
1264     if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1265         mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1266         mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1267         atomic_read(&VFS_I(ip)->i_dio_count))
1268         return false;
1269 
1270     return true;
1271 }
1272 
1273 /*
1274  * Automatic CoW Reservation Freeing
1275  *
1276  * These functions automatically garbage collect leftover CoW reservations
1277  * that were made on behalf of a cowextsize hint when we start to run out
1278  * of quota or when the reservations sit around for too long.  If the file
1279  * has dirty pages or is undergoing writeback, its CoW reservations will
1280  * be retained.
1281  *
1282  * The actual garbage collection piggybacks off the same code that runs
1283  * the speculative EOF preallocation garbage collector.
1284  */
1285 STATIC int
1286 xfs_inode_free_cowblocks(
1287     struct xfs_inode    *ip,
1288     struct xfs_icwalk   *icw,
1289     unsigned int        *lockflags)
1290 {
1291     bool            wait;
1292     int         ret = 0;
1293 
1294     wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1295 
1296     if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1297         return 0;
1298 
1299     if (!xfs_prep_free_cowblocks(ip))
1300         return 0;
1301 
1302     if (!xfs_icwalk_match(ip, icw))
1303         return 0;
1304 
1305     /*
1306      * If the caller is waiting, return -EAGAIN to keep the background
1307      * scanner moving and revisit the inode in a subsequent pass.
1308      */
1309     if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1310         !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1311         if (wait)
1312             return -EAGAIN;
1313         return 0;
1314     }
1315     *lockflags |= XFS_IOLOCK_EXCL;
1316 
1317     if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1318         if (wait)
1319             return -EAGAIN;
1320         return 0;
1321     }
1322     *lockflags |= XFS_MMAPLOCK_EXCL;
1323 
1324     /*
1325      * Check again, nobody else should be able to dirty blocks or change
1326      * the reflink iflag now that we have the first two locks held.
1327      */
1328     if (xfs_prep_free_cowblocks(ip))
1329         ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1330     return ret;
1331 }
1332 
1333 void
1334 xfs_inode_set_cowblocks_tag(
1335     xfs_inode_t *ip)
1336 {
1337     trace_xfs_inode_set_cowblocks_tag(ip);
1338     return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1339 }
1340 
1341 void
1342 xfs_inode_clear_cowblocks_tag(
1343     xfs_inode_t *ip)
1344 {
1345     trace_xfs_inode_clear_cowblocks_tag(ip);
1346     return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1347 }
1348 
1349 /* Disable post-EOF and CoW block auto-reclamation. */
1350 void
1351 xfs_blockgc_stop(
1352     struct xfs_mount    *mp)
1353 {
1354     struct xfs_perag    *pag;
1355     xfs_agnumber_t      agno;
1356 
1357     if (!xfs_clear_blockgc_enabled(mp))
1358         return;
1359 
1360     for_each_perag(mp, agno, pag)
1361         cancel_delayed_work_sync(&pag->pag_blockgc_work);
1362     trace_xfs_blockgc_stop(mp, __return_address);
1363 }
1364 
1365 /* Enable post-EOF and CoW block auto-reclamation. */
1366 void
1367 xfs_blockgc_start(
1368     struct xfs_mount    *mp)
1369 {
1370     struct xfs_perag    *pag;
1371     xfs_agnumber_t      agno;
1372 
1373     if (xfs_set_blockgc_enabled(mp))
1374         return;
1375 
1376     trace_xfs_blockgc_start(mp, __return_address);
1377     for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1378         xfs_blockgc_queue(pag);
1379 }
1380 
1381 /* Don't try to run block gc on an inode that's in any of these states. */
1382 #define XFS_BLOCKGC_NOGRAB_IFLAGS   (XFS_INEW | \
1383                      XFS_NEED_INACTIVE | \
1384                      XFS_INACTIVATING | \
1385                      XFS_IRECLAIMABLE | \
1386                      XFS_IRECLAIM)
1387 /*
1388  * Decide if the given @ip is eligible for garbage collection of speculative
1389  * preallocations, and grab it if so.  Returns true if it's ready to go or
1390  * false if we should just ignore it.
1391  */
1392 static bool
1393 xfs_blockgc_igrab(
1394     struct xfs_inode    *ip)
1395 {
1396     struct inode        *inode = VFS_I(ip);
1397 
1398     ASSERT(rcu_read_lock_held());
1399 
1400     /* Check for stale RCU freed inode */
1401     spin_lock(&ip->i_flags_lock);
1402     if (!ip->i_ino)
1403         goto out_unlock_noent;
1404 
1405     if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1406         goto out_unlock_noent;
1407     spin_unlock(&ip->i_flags_lock);
1408 
1409     /* nothing to sync during shutdown */
1410     if (xfs_is_shutdown(ip->i_mount))
1411         return false;
1412 
1413     /* If we can't grab the inode, it must on it's way to reclaim. */
1414     if (!igrab(inode))
1415         return false;
1416 
1417     /* inode is valid */
1418     return true;
1419 
1420 out_unlock_noent:
1421     spin_unlock(&ip->i_flags_lock);
1422     return false;
1423 }
1424 
1425 /* Scan one incore inode for block preallocations that we can remove. */
1426 static int
1427 xfs_blockgc_scan_inode(
1428     struct xfs_inode    *ip,
1429     struct xfs_icwalk   *icw)
1430 {
1431     unsigned int        lockflags = 0;
1432     int         error;
1433 
1434     error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1435     if (error)
1436         goto unlock;
1437 
1438     error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1439 unlock:
1440     if (lockflags)
1441         xfs_iunlock(ip, lockflags);
1442     xfs_irele(ip);
1443     return error;
1444 }
1445 
1446 /* Background worker that trims preallocated space. */
1447 void
1448 xfs_blockgc_worker(
1449     struct work_struct  *work)
1450 {
1451     struct xfs_perag    *pag = container_of(to_delayed_work(work),
1452                     struct xfs_perag, pag_blockgc_work);
1453     struct xfs_mount    *mp = pag->pag_mount;
1454     int         error;
1455 
1456     trace_xfs_blockgc_worker(mp, __return_address);
1457 
1458     error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1459     if (error)
1460         xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1461                 pag->pag_agno, error);
1462     xfs_blockgc_queue(pag);
1463 }
1464 
1465 /*
1466  * Try to free space in the filesystem by purging inactive inodes, eofblocks
1467  * and cowblocks.
1468  */
1469 int
1470 xfs_blockgc_free_space(
1471     struct xfs_mount    *mp,
1472     struct xfs_icwalk   *icw)
1473 {
1474     int         error;
1475 
1476     trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1477 
1478     error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1479     if (error)
1480         return error;
1481 
1482     xfs_inodegc_flush(mp);
1483     return 0;
1484 }
1485 
1486 /*
1487  * Reclaim all the free space that we can by scheduling the background blockgc
1488  * and inodegc workers immediately and waiting for them all to clear.
1489  */
1490 void
1491 xfs_blockgc_flush_all(
1492     struct xfs_mount    *mp)
1493 {
1494     struct xfs_perag    *pag;
1495     xfs_agnumber_t      agno;
1496 
1497     trace_xfs_blockgc_flush_all(mp, __return_address);
1498 
1499     /*
1500      * For each blockgc worker, move its queue time up to now.  If it
1501      * wasn't queued, it will not be requeued.  Then flush whatever's
1502      * left.
1503      */
1504     for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1505         mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1506                 &pag->pag_blockgc_work, 0);
1507 
1508     for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1509         flush_delayed_work(&pag->pag_blockgc_work);
1510 
1511     xfs_inodegc_flush(mp);
1512 }
1513 
1514 /*
1515  * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1516  * quota caused an allocation failure, so we make a best effort by including
1517  * each quota under low free space conditions (less than 1% free space) in the
1518  * scan.
1519  *
1520  * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1521  * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1522  * MMAPLOCK.
1523  */
1524 int
1525 xfs_blockgc_free_dquots(
1526     struct xfs_mount    *mp,
1527     struct xfs_dquot    *udqp,
1528     struct xfs_dquot    *gdqp,
1529     struct xfs_dquot    *pdqp,
1530     unsigned int        iwalk_flags)
1531 {
1532     struct xfs_icwalk   icw = {0};
1533     bool            do_work = false;
1534 
1535     if (!udqp && !gdqp && !pdqp)
1536         return 0;
1537 
1538     /*
1539      * Run a scan to free blocks using the union filter to cover all
1540      * applicable quotas in a single scan.
1541      */
1542     icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1543 
1544     if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1545         icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1546         icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1547         do_work = true;
1548     }
1549 
1550     if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1551         icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1552         icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1553         do_work = true;
1554     }
1555 
1556     if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1557         icw.icw_prid = pdqp->q_id;
1558         icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1559         do_work = true;
1560     }
1561 
1562     if (!do_work)
1563         return 0;
1564 
1565     return xfs_blockgc_free_space(mp, &icw);
1566 }
1567 
1568 /* Run cow/eofblocks scans on the quotas attached to the inode. */
1569 int
1570 xfs_blockgc_free_quota(
1571     struct xfs_inode    *ip,
1572     unsigned int        iwalk_flags)
1573 {
1574     return xfs_blockgc_free_dquots(ip->i_mount,
1575             xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1576             xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1577             xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1578 }
1579 
1580 /* XFS Inode Cache Walking Code */
1581 
1582 /*
1583  * The inode lookup is done in batches to keep the amount of lock traffic and
1584  * radix tree lookups to a minimum. The batch size is a trade off between
1585  * lookup reduction and stack usage. This is in the reclaim path, so we can't
1586  * be too greedy.
1587  */
1588 #define XFS_LOOKUP_BATCH    32
1589 
1590 
1591 /*
1592  * Decide if we want to grab this inode in anticipation of doing work towards
1593  * the goal.
1594  */
1595 static inline bool
1596 xfs_icwalk_igrab(
1597     enum xfs_icwalk_goal    goal,
1598     struct xfs_inode    *ip,
1599     struct xfs_icwalk   *icw)
1600 {
1601     switch (goal) {
1602     case XFS_ICWALK_BLOCKGC:
1603         return xfs_blockgc_igrab(ip);
1604     case XFS_ICWALK_RECLAIM:
1605         return xfs_reclaim_igrab(ip, icw);
1606     default:
1607         return false;
1608     }
1609 }
1610 
1611 /*
1612  * Process an inode.  Each processing function must handle any state changes
1613  * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1614  */
1615 static inline int
1616 xfs_icwalk_process_inode(
1617     enum xfs_icwalk_goal    goal,
1618     struct xfs_inode    *ip,
1619     struct xfs_perag    *pag,
1620     struct xfs_icwalk   *icw)
1621 {
1622     int         error = 0;
1623 
1624     switch (goal) {
1625     case XFS_ICWALK_BLOCKGC:
1626         error = xfs_blockgc_scan_inode(ip, icw);
1627         break;
1628     case XFS_ICWALK_RECLAIM:
1629         xfs_reclaim_inode(ip, pag);
1630         break;
1631     }
1632     return error;
1633 }
1634 
1635 /*
1636  * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1637  * process them in some manner.
1638  */
1639 static int
1640 xfs_icwalk_ag(
1641     struct xfs_perag    *pag,
1642     enum xfs_icwalk_goal    goal,
1643     struct xfs_icwalk   *icw)
1644 {
1645     struct xfs_mount    *mp = pag->pag_mount;
1646     uint32_t        first_index;
1647     int         last_error = 0;
1648     int         skipped;
1649     bool            done;
1650     int         nr_found;
1651 
1652 restart:
1653     done = false;
1654     skipped = 0;
1655     if (goal == XFS_ICWALK_RECLAIM)
1656         first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1657     else
1658         first_index = 0;
1659     nr_found = 0;
1660     do {
1661         struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1662         int     error = 0;
1663         int     i;
1664 
1665         rcu_read_lock();
1666 
1667         nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1668                 (void **) batch, first_index,
1669                 XFS_LOOKUP_BATCH, goal);
1670         if (!nr_found) {
1671             done = true;
1672             rcu_read_unlock();
1673             break;
1674         }
1675 
1676         /*
1677          * Grab the inodes before we drop the lock. if we found
1678          * nothing, nr == 0 and the loop will be skipped.
1679          */
1680         for (i = 0; i < nr_found; i++) {
1681             struct xfs_inode *ip = batch[i];
1682 
1683             if (done || !xfs_icwalk_igrab(goal, ip, icw))
1684                 batch[i] = NULL;
1685 
1686             /*
1687              * Update the index for the next lookup. Catch
1688              * overflows into the next AG range which can occur if
1689              * we have inodes in the last block of the AG and we
1690              * are currently pointing to the last inode.
1691              *
1692              * Because we may see inodes that are from the wrong AG
1693              * due to RCU freeing and reallocation, only update the
1694              * index if it lies in this AG. It was a race that lead
1695              * us to see this inode, so another lookup from the
1696              * same index will not find it again.
1697              */
1698             if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1699                 continue;
1700             first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1701             if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1702                 done = true;
1703         }
1704 
1705         /* unlock now we've grabbed the inodes. */
1706         rcu_read_unlock();
1707 
1708         for (i = 0; i < nr_found; i++) {
1709             if (!batch[i])
1710                 continue;
1711             error = xfs_icwalk_process_inode(goal, batch[i], pag,
1712                     icw);
1713             if (error == -EAGAIN) {
1714                 skipped++;
1715                 continue;
1716             }
1717             if (error && last_error != -EFSCORRUPTED)
1718                 last_error = error;
1719         }
1720 
1721         /* bail out if the filesystem is corrupted.  */
1722         if (error == -EFSCORRUPTED)
1723             break;
1724 
1725         cond_resched();
1726 
1727         if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1728             icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1729             if (icw->icw_scan_limit <= 0)
1730                 break;
1731         }
1732     } while (nr_found && !done);
1733 
1734     if (goal == XFS_ICWALK_RECLAIM) {
1735         if (done)
1736             first_index = 0;
1737         WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1738     }
1739 
1740     if (skipped) {
1741         delay(1);
1742         goto restart;
1743     }
1744     return last_error;
1745 }
1746 
1747 /* Walk all incore inodes to achieve a given goal. */
1748 static int
1749 xfs_icwalk(
1750     struct xfs_mount    *mp,
1751     enum xfs_icwalk_goal    goal,
1752     struct xfs_icwalk   *icw)
1753 {
1754     struct xfs_perag    *pag;
1755     int         error = 0;
1756     int         last_error = 0;
1757     xfs_agnumber_t      agno;
1758 
1759     for_each_perag_tag(mp, agno, pag, goal) {
1760         error = xfs_icwalk_ag(pag, goal, icw);
1761         if (error) {
1762             last_error = error;
1763             if (error == -EFSCORRUPTED) {
1764                 xfs_perag_put(pag);
1765                 break;
1766             }
1767         }
1768     }
1769     return last_error;
1770     BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1771 }
1772 
1773 #ifdef DEBUG
1774 static void
1775 xfs_check_delalloc(
1776     struct xfs_inode    *ip,
1777     int         whichfork)
1778 {
1779     struct xfs_ifork    *ifp = xfs_ifork_ptr(ip, whichfork);
1780     struct xfs_bmbt_irec    got;
1781     struct xfs_iext_cursor  icur;
1782 
1783     if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1784         return;
1785     do {
1786         if (isnullstartblock(got.br_startblock)) {
1787             xfs_warn(ip->i_mount,
1788     "ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1789                 ip->i_ino,
1790                 whichfork == XFS_DATA_FORK ? "data" : "cow",
1791                 got.br_startoff, got.br_blockcount);
1792         }
1793     } while (xfs_iext_next_extent(ifp, &icur, &got));
1794 }
1795 #else
1796 #define xfs_check_delalloc(ip, whichfork)   do { } while (0)
1797 #endif
1798 
1799 /* Schedule the inode for reclaim. */
1800 static void
1801 xfs_inodegc_set_reclaimable(
1802     struct xfs_inode    *ip)
1803 {
1804     struct xfs_mount    *mp = ip->i_mount;
1805     struct xfs_perag    *pag;
1806 
1807     if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1808         xfs_check_delalloc(ip, XFS_DATA_FORK);
1809         xfs_check_delalloc(ip, XFS_COW_FORK);
1810         ASSERT(0);
1811     }
1812 
1813     pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1814     spin_lock(&pag->pag_ici_lock);
1815     spin_lock(&ip->i_flags_lock);
1816 
1817     trace_xfs_inode_set_reclaimable(ip);
1818     ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1819     ip->i_flags |= XFS_IRECLAIMABLE;
1820     xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1821             XFS_ICI_RECLAIM_TAG);
1822 
1823     spin_unlock(&ip->i_flags_lock);
1824     spin_unlock(&pag->pag_ici_lock);
1825     xfs_perag_put(pag);
1826 }
1827 
1828 /*
1829  * Free all speculative preallocations and possibly even the inode itself.
1830  * This is the last chance to make changes to an otherwise unreferenced file
1831  * before incore reclamation happens.
1832  */
1833 static void
1834 xfs_inodegc_inactivate(
1835     struct xfs_inode    *ip)
1836 {
1837     trace_xfs_inode_inactivating(ip);
1838     xfs_inactive(ip);
1839     xfs_inodegc_set_reclaimable(ip);
1840 }
1841 
1842 void
1843 xfs_inodegc_worker(
1844     struct work_struct  *work)
1845 {
1846     struct xfs_inodegc  *gc = container_of(to_delayed_work(work),
1847                         struct xfs_inodegc, work);
1848     struct llist_node   *node = llist_del_all(&gc->list);
1849     struct xfs_inode    *ip, *n;
1850 
1851     WRITE_ONCE(gc->items, 0);
1852 
1853     if (!node)
1854         return;
1855 
1856     ip = llist_entry(node, struct xfs_inode, i_gclist);
1857     trace_xfs_inodegc_worker(ip->i_mount, READ_ONCE(gc->shrinker_hits));
1858 
1859     WRITE_ONCE(gc->shrinker_hits, 0);
1860     llist_for_each_entry_safe(ip, n, node, i_gclist) {
1861         xfs_iflags_set(ip, XFS_INACTIVATING);
1862         xfs_inodegc_inactivate(ip);
1863     }
1864 }
1865 
1866 /*
1867  * Expedite all pending inodegc work to run immediately. This does not wait for
1868  * completion of the work.
1869  */
1870 void
1871 xfs_inodegc_push(
1872     struct xfs_mount    *mp)
1873 {
1874     if (!xfs_is_inodegc_enabled(mp))
1875         return;
1876     trace_xfs_inodegc_push(mp, __return_address);
1877     xfs_inodegc_queue_all(mp);
1878 }
1879 
1880 /*
1881  * Force all currently queued inode inactivation work to run immediately and
1882  * wait for the work to finish.
1883  */
1884 void
1885 xfs_inodegc_flush(
1886     struct xfs_mount    *mp)
1887 {
1888     xfs_inodegc_push(mp);
1889     trace_xfs_inodegc_flush(mp, __return_address);
1890     flush_workqueue(mp->m_inodegc_wq);
1891 }
1892 
1893 /*
1894  * Flush all the pending work and then disable the inode inactivation background
1895  * workers and wait for them to stop.
1896  */
1897 void
1898 xfs_inodegc_stop(
1899     struct xfs_mount    *mp)
1900 {
1901     if (!xfs_clear_inodegc_enabled(mp))
1902         return;
1903 
1904     xfs_inodegc_queue_all(mp);
1905     drain_workqueue(mp->m_inodegc_wq);
1906 
1907     trace_xfs_inodegc_stop(mp, __return_address);
1908 }
1909 
1910 /*
1911  * Enable the inode inactivation background workers and schedule deferred inode
1912  * inactivation work if there is any.
1913  */
1914 void
1915 xfs_inodegc_start(
1916     struct xfs_mount    *mp)
1917 {
1918     if (xfs_set_inodegc_enabled(mp))
1919         return;
1920 
1921     trace_xfs_inodegc_start(mp, __return_address);
1922     xfs_inodegc_queue_all(mp);
1923 }
1924 
1925 #ifdef CONFIG_XFS_RT
1926 static inline bool
1927 xfs_inodegc_want_queue_rt_file(
1928     struct xfs_inode    *ip)
1929 {
1930     struct xfs_mount    *mp = ip->i_mount;
1931 
1932     if (!XFS_IS_REALTIME_INODE(ip))
1933         return false;
1934 
1935     if (__percpu_counter_compare(&mp->m_frextents,
1936                 mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1937                 XFS_FDBLOCKS_BATCH) < 0)
1938         return true;
1939 
1940     return false;
1941 }
1942 #else
1943 # define xfs_inodegc_want_queue_rt_file(ip) (false)
1944 #endif /* CONFIG_XFS_RT */
1945 
1946 /*
1947  * Schedule the inactivation worker when:
1948  *
1949  *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1950  *  - There is less than 5% free space left.
1951  *  - Any of the quotas for this inode are near an enforcement limit.
1952  */
1953 static inline bool
1954 xfs_inodegc_want_queue_work(
1955     struct xfs_inode    *ip,
1956     unsigned int        items)
1957 {
1958     struct xfs_mount    *mp = ip->i_mount;
1959 
1960     if (items > mp->m_ino_geo.inodes_per_cluster)
1961         return true;
1962 
1963     if (__percpu_counter_compare(&mp->m_fdblocks,
1964                 mp->m_low_space[XFS_LOWSP_5_PCNT],
1965                 XFS_FDBLOCKS_BATCH) < 0)
1966         return true;
1967 
1968     if (xfs_inodegc_want_queue_rt_file(ip))
1969         return true;
1970 
1971     if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
1972         return true;
1973 
1974     if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
1975         return true;
1976 
1977     if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
1978         return true;
1979 
1980     return false;
1981 }
1982 
1983 /*
1984  * Upper bound on the number of inodes in each AG that can be queued for
1985  * inactivation at any given time, to avoid monopolizing the workqueue.
1986  */
1987 #define XFS_INODEGC_MAX_BACKLOG     (4 * XFS_INODES_PER_CHUNK)
1988 
1989 /*
1990  * Make the frontend wait for inactivations when:
1991  *
1992  *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
1993  *  - The queue depth exceeds the maximum allowable percpu backlog.
1994  *
1995  * Note: If the current thread is running a transaction, we don't ever want to
1996  * wait for other transactions because that could introduce a deadlock.
1997  */
1998 static inline bool
1999 xfs_inodegc_want_flush_work(
2000     struct xfs_inode    *ip,
2001     unsigned int        items,
2002     unsigned int        shrinker_hits)
2003 {
2004     if (current->journal_info)
2005         return false;
2006 
2007     if (shrinker_hits > 0)
2008         return true;
2009 
2010     if (items > XFS_INODEGC_MAX_BACKLOG)
2011         return true;
2012 
2013     return false;
2014 }
2015 
2016 /*
2017  * Queue a background inactivation worker if there are inodes that need to be
2018  * inactivated and higher level xfs code hasn't disabled the background
2019  * workers.
2020  */
2021 static void
2022 xfs_inodegc_queue(
2023     struct xfs_inode    *ip)
2024 {
2025     struct xfs_mount    *mp = ip->i_mount;
2026     struct xfs_inodegc  *gc;
2027     int         items;
2028     unsigned int        shrinker_hits;
2029     unsigned long       queue_delay = 1;
2030 
2031     trace_xfs_inode_set_need_inactive(ip);
2032     spin_lock(&ip->i_flags_lock);
2033     ip->i_flags |= XFS_NEED_INACTIVE;
2034     spin_unlock(&ip->i_flags_lock);
2035 
2036     gc = get_cpu_ptr(mp->m_inodegc);
2037     llist_add(&ip->i_gclist, &gc->list);
2038     items = READ_ONCE(gc->items);
2039     WRITE_ONCE(gc->items, items + 1);
2040     shrinker_hits = READ_ONCE(gc->shrinker_hits);
2041 
2042     /*
2043      * We queue the work while holding the current CPU so that the work
2044      * is scheduled to run on this CPU.
2045      */
2046     if (!xfs_is_inodegc_enabled(mp)) {
2047         put_cpu_ptr(gc);
2048         return;
2049     }
2050 
2051     if (xfs_inodegc_want_queue_work(ip, items))
2052         queue_delay = 0;
2053 
2054     trace_xfs_inodegc_queue(mp, __return_address);
2055     mod_delayed_work(mp->m_inodegc_wq, &gc->work, queue_delay);
2056     put_cpu_ptr(gc);
2057 
2058     if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2059         trace_xfs_inodegc_throttle(mp, __return_address);
2060         flush_delayed_work(&gc->work);
2061     }
2062 }
2063 
2064 /*
2065  * Fold the dead CPU inodegc queue into the current CPUs queue.
2066  */
2067 void
2068 xfs_inodegc_cpu_dead(
2069     struct xfs_mount    *mp,
2070     unsigned int        dead_cpu)
2071 {
2072     struct xfs_inodegc  *dead_gc, *gc;
2073     struct llist_node   *first, *last;
2074     unsigned int        count = 0;
2075 
2076     dead_gc = per_cpu_ptr(mp->m_inodegc, dead_cpu);
2077     cancel_delayed_work_sync(&dead_gc->work);
2078 
2079     if (llist_empty(&dead_gc->list))
2080         return;
2081 
2082     first = dead_gc->list.first;
2083     last = first;
2084     while (last->next) {
2085         last = last->next;
2086         count++;
2087     }
2088     dead_gc->list.first = NULL;
2089     dead_gc->items = 0;
2090 
2091     /* Add pending work to current CPU */
2092     gc = get_cpu_ptr(mp->m_inodegc);
2093     llist_add_batch(first, last, &gc->list);
2094     count += READ_ONCE(gc->items);
2095     WRITE_ONCE(gc->items, count);
2096 
2097     if (xfs_is_inodegc_enabled(mp)) {
2098         trace_xfs_inodegc_queue(mp, __return_address);
2099         mod_delayed_work(mp->m_inodegc_wq, &gc->work, 0);
2100     }
2101     put_cpu_ptr(gc);
2102 }
2103 
2104 /*
2105  * We set the inode flag atomically with the radix tree tag.  Once we get tag
2106  * lookups on the radix tree, this inode flag can go away.
2107  *
2108  * We always use background reclaim here because even if the inode is clean, it
2109  * still may be under IO and hence we have wait for IO completion to occur
2110  * before we can reclaim the inode. The background reclaim path handles this
2111  * more efficiently than we can here, so simply let background reclaim tear down
2112  * all inodes.
2113  */
2114 void
2115 xfs_inode_mark_reclaimable(
2116     struct xfs_inode    *ip)
2117 {
2118     struct xfs_mount    *mp = ip->i_mount;
2119     bool            need_inactive;
2120 
2121     XFS_STATS_INC(mp, vn_reclaim);
2122 
2123     /*
2124      * We should never get here with any of the reclaim flags already set.
2125      */
2126     ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2127 
2128     need_inactive = xfs_inode_needs_inactive(ip);
2129     if (need_inactive) {
2130         xfs_inodegc_queue(ip);
2131         return;
2132     }
2133 
2134     /* Going straight to reclaim, so drop the dquots. */
2135     xfs_qm_dqdetach(ip);
2136     xfs_inodegc_set_reclaimable(ip);
2137 }
2138 
2139 /*
2140  * Register a phony shrinker so that we can run background inodegc sooner when
2141  * there's memory pressure.  Inactivation does not itself free any memory but
2142  * it does make inodes reclaimable, which eventually frees memory.
2143  *
2144  * The count function, seek value, and batch value are crafted to trigger the
2145  * scan function during the second round of scanning.  Hopefully this means
2146  * that we reclaimed enough memory that initiating metadata transactions won't
2147  * make things worse.
2148  */
2149 #define XFS_INODEGC_SHRINKER_COUNT  (1UL << DEF_PRIORITY)
2150 #define XFS_INODEGC_SHRINKER_BATCH  ((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2151 
2152 static unsigned long
2153 xfs_inodegc_shrinker_count(
2154     struct shrinker     *shrink,
2155     struct shrink_control   *sc)
2156 {
2157     struct xfs_mount    *mp = container_of(shrink, struct xfs_mount,
2158                            m_inodegc_shrinker);
2159     struct xfs_inodegc  *gc;
2160     int         cpu;
2161 
2162     if (!xfs_is_inodegc_enabled(mp))
2163         return 0;
2164 
2165     for_each_online_cpu(cpu) {
2166         gc = per_cpu_ptr(mp->m_inodegc, cpu);
2167         if (!llist_empty(&gc->list))
2168             return XFS_INODEGC_SHRINKER_COUNT;
2169     }
2170 
2171     return 0;
2172 }
2173 
2174 static unsigned long
2175 xfs_inodegc_shrinker_scan(
2176     struct shrinker     *shrink,
2177     struct shrink_control   *sc)
2178 {
2179     struct xfs_mount    *mp = container_of(shrink, struct xfs_mount,
2180                            m_inodegc_shrinker);
2181     struct xfs_inodegc  *gc;
2182     int         cpu;
2183     bool            no_items = true;
2184 
2185     if (!xfs_is_inodegc_enabled(mp))
2186         return SHRINK_STOP;
2187 
2188     trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2189 
2190     for_each_online_cpu(cpu) {
2191         gc = per_cpu_ptr(mp->m_inodegc, cpu);
2192         if (!llist_empty(&gc->list)) {
2193             unsigned int    h = READ_ONCE(gc->shrinker_hits);
2194 
2195             WRITE_ONCE(gc->shrinker_hits, h + 1);
2196             mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2197             no_items = false;
2198         }
2199     }
2200 
2201     /*
2202      * If there are no inodes to inactivate, we don't want the shrinker
2203      * to think there's deferred work to call us back about.
2204      */
2205     if (no_items)
2206         return LONG_MAX;
2207 
2208     return SHRINK_STOP;
2209 }
2210 
2211 /* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2212 int
2213 xfs_inodegc_register_shrinker(
2214     struct xfs_mount    *mp)
2215 {
2216     struct shrinker     *shrink = &mp->m_inodegc_shrinker;
2217 
2218     shrink->count_objects = xfs_inodegc_shrinker_count;
2219     shrink->scan_objects = xfs_inodegc_shrinker_scan;
2220     shrink->seeks = 0;
2221     shrink->flags = SHRINKER_NONSLAB;
2222     shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2223 
2224     return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id);
2225 }