Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
0004  * All Rights Reserved.
0005  */
0006 #include "xfs.h"
0007 #include "xfs_fs.h"
0008 #include "xfs_shared.h"
0009 #include "xfs_format.h"
0010 #include "xfs_log_format.h"
0011 #include "xfs_trans_resv.h"
0012 #include "xfs_bit.h"
0013 #include "xfs_mount.h"
0014 #include "xfs_inode.h"
0015 #include "xfs_btree.h"
0016 #include "xfs_ialloc.h"
0017 #include "xfs_ialloc_btree.h"
0018 #include "xfs_alloc.h"
0019 #include "xfs_errortag.h"
0020 #include "xfs_error.h"
0021 #include "xfs_bmap.h"
0022 #include "xfs_trans.h"
0023 #include "xfs_buf_item.h"
0024 #include "xfs_icreate_item.h"
0025 #include "xfs_icache.h"
0026 #include "xfs_trace.h"
0027 #include "xfs_log.h"
0028 #include "xfs_rmap.h"
0029 #include "xfs_ag.h"
0030 
0031 /*
0032  * Lookup a record by ino in the btree given by cur.
0033  */
0034 int                 /* error */
0035 xfs_inobt_lookup(
0036     struct xfs_btree_cur    *cur,   /* btree cursor */
0037     xfs_agino_t     ino,    /* starting inode of chunk */
0038     xfs_lookup_t        dir,    /* <=, >=, == */
0039     int         *stat)  /* success/failure */
0040 {
0041     cur->bc_rec.i.ir_startino = ino;
0042     cur->bc_rec.i.ir_holemask = 0;
0043     cur->bc_rec.i.ir_count = 0;
0044     cur->bc_rec.i.ir_freecount = 0;
0045     cur->bc_rec.i.ir_free = 0;
0046     return xfs_btree_lookup(cur, dir, stat);
0047 }
0048 
0049 /*
0050  * Update the record referred to by cur to the value given.
0051  * This either works (return 0) or gets an EFSCORRUPTED error.
0052  */
0053 STATIC int              /* error */
0054 xfs_inobt_update(
0055     struct xfs_btree_cur    *cur,   /* btree cursor */
0056     xfs_inobt_rec_incore_t  *irec)  /* btree record */
0057 {
0058     union xfs_btree_rec rec;
0059 
0060     rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
0061     if (xfs_has_sparseinodes(cur->bc_mp)) {
0062         rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
0063         rec.inobt.ir_u.sp.ir_count = irec->ir_count;
0064         rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
0065     } else {
0066         /* ir_holemask/ir_count not supported on-disk */
0067         rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
0068     }
0069     rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
0070     return xfs_btree_update(cur, &rec);
0071 }
0072 
0073 /* Convert on-disk btree record to incore inobt record. */
0074 void
0075 xfs_inobt_btrec_to_irec(
0076     struct xfs_mount        *mp,
0077     const union xfs_btree_rec   *rec,
0078     struct xfs_inobt_rec_incore *irec)
0079 {
0080     irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
0081     if (xfs_has_sparseinodes(mp)) {
0082         irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
0083         irec->ir_count = rec->inobt.ir_u.sp.ir_count;
0084         irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
0085     } else {
0086         /*
0087          * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
0088          * values for full inode chunks.
0089          */
0090         irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
0091         irec->ir_count = XFS_INODES_PER_CHUNK;
0092         irec->ir_freecount =
0093                 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
0094     }
0095     irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
0096 }
0097 
0098 /*
0099  * Get the data from the pointed-to record.
0100  */
0101 int
0102 xfs_inobt_get_rec(
0103     struct xfs_btree_cur        *cur,
0104     struct xfs_inobt_rec_incore *irec,
0105     int             *stat)
0106 {
0107     struct xfs_mount        *mp = cur->bc_mp;
0108     union xfs_btree_rec     *rec;
0109     int             error;
0110     uint64_t            realfree;
0111 
0112     error = xfs_btree_get_rec(cur, &rec, stat);
0113     if (error || *stat == 0)
0114         return error;
0115 
0116     xfs_inobt_btrec_to_irec(mp, rec, irec);
0117 
0118     if (!xfs_verify_agino(cur->bc_ag.pag, irec->ir_startino))
0119         goto out_bad_rec;
0120     if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
0121         irec->ir_count > XFS_INODES_PER_CHUNK)
0122         goto out_bad_rec;
0123     if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
0124         goto out_bad_rec;
0125 
0126     /* if there are no holes, return the first available offset */
0127     if (!xfs_inobt_issparse(irec->ir_holemask))
0128         realfree = irec->ir_free;
0129     else
0130         realfree = irec->ir_free & xfs_inobt_irec_to_allocmask(irec);
0131     if (hweight64(realfree) != irec->ir_freecount)
0132         goto out_bad_rec;
0133 
0134     return 0;
0135 
0136 out_bad_rec:
0137     xfs_warn(mp,
0138         "%s Inode BTree record corruption in AG %d detected!",
0139         cur->bc_btnum == XFS_BTNUM_INO ? "Used" : "Free",
0140         cur->bc_ag.pag->pag_agno);
0141     xfs_warn(mp,
0142 "start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
0143         irec->ir_startino, irec->ir_count, irec->ir_freecount,
0144         irec->ir_free, irec->ir_holemask);
0145     return -EFSCORRUPTED;
0146 }
0147 
0148 /*
0149  * Insert a single inobt record. Cursor must already point to desired location.
0150  */
0151 int
0152 xfs_inobt_insert_rec(
0153     struct xfs_btree_cur    *cur,
0154     uint16_t        holemask,
0155     uint8_t         count,
0156     int32_t         freecount,
0157     xfs_inofree_t       free,
0158     int         *stat)
0159 {
0160     cur->bc_rec.i.ir_holemask = holemask;
0161     cur->bc_rec.i.ir_count = count;
0162     cur->bc_rec.i.ir_freecount = freecount;
0163     cur->bc_rec.i.ir_free = free;
0164     return xfs_btree_insert(cur, stat);
0165 }
0166 
0167 /*
0168  * Insert records describing a newly allocated inode chunk into the inobt.
0169  */
0170 STATIC int
0171 xfs_inobt_insert(
0172     struct xfs_mount    *mp,
0173     struct xfs_trans    *tp,
0174     struct xfs_buf      *agbp,
0175     struct xfs_perag    *pag,
0176     xfs_agino_t     newino,
0177     xfs_agino_t     newlen,
0178     xfs_btnum_t     btnum)
0179 {
0180     struct xfs_btree_cur    *cur;
0181     xfs_agino_t     thisino;
0182     int         i;
0183     int         error;
0184 
0185     cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
0186 
0187     for (thisino = newino;
0188          thisino < newino + newlen;
0189          thisino += XFS_INODES_PER_CHUNK) {
0190         error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
0191         if (error) {
0192             xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
0193             return error;
0194         }
0195         ASSERT(i == 0);
0196 
0197         error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
0198                          XFS_INODES_PER_CHUNK,
0199                          XFS_INODES_PER_CHUNK,
0200                          XFS_INOBT_ALL_FREE, &i);
0201         if (error) {
0202             xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
0203             return error;
0204         }
0205         ASSERT(i == 1);
0206     }
0207 
0208     xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
0209 
0210     return 0;
0211 }
0212 
0213 /*
0214  * Verify that the number of free inodes in the AGI is correct.
0215  */
0216 #ifdef DEBUG
0217 static int
0218 xfs_check_agi_freecount(
0219     struct xfs_btree_cur    *cur)
0220 {
0221     if (cur->bc_nlevels == 1) {
0222         xfs_inobt_rec_incore_t rec;
0223         int     freecount = 0;
0224         int     error;
0225         int     i;
0226 
0227         error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
0228         if (error)
0229             return error;
0230 
0231         do {
0232             error = xfs_inobt_get_rec(cur, &rec, &i);
0233             if (error)
0234                 return error;
0235 
0236             if (i) {
0237                 freecount += rec.ir_freecount;
0238                 error = xfs_btree_increment(cur, 0, &i);
0239                 if (error)
0240                     return error;
0241             }
0242         } while (i == 1);
0243 
0244         if (!xfs_is_shutdown(cur->bc_mp))
0245             ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
0246     }
0247     return 0;
0248 }
0249 #else
0250 #define xfs_check_agi_freecount(cur)    0
0251 #endif
0252 
0253 /*
0254  * Initialise a new set of inodes. When called without a transaction context
0255  * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
0256  * than logging them (which in a transaction context puts them into the AIL
0257  * for writeback rather than the xfsbufd queue).
0258  */
0259 int
0260 xfs_ialloc_inode_init(
0261     struct xfs_mount    *mp,
0262     struct xfs_trans    *tp,
0263     struct list_head    *buffer_list,
0264     int         icount,
0265     xfs_agnumber_t      agno,
0266     xfs_agblock_t       agbno,
0267     xfs_agblock_t       length,
0268     unsigned int        gen)
0269 {
0270     struct xfs_buf      *fbuf;
0271     struct xfs_dinode   *free;
0272     int         nbufs;
0273     int         version;
0274     int         i, j;
0275     xfs_daddr_t     d;
0276     xfs_ino_t       ino = 0;
0277     int         error;
0278 
0279     /*
0280      * Loop over the new block(s), filling in the inodes.  For small block
0281      * sizes, manipulate the inodes in buffers  which are multiples of the
0282      * blocks size.
0283      */
0284     nbufs = length / M_IGEO(mp)->blocks_per_cluster;
0285 
0286     /*
0287      * Figure out what version number to use in the inodes we create.  If
0288      * the superblock version has caught up to the one that supports the new
0289      * inode format, then use the new inode version.  Otherwise use the old
0290      * version so that old kernels will continue to be able to use the file
0291      * system.
0292      *
0293      * For v3 inodes, we also need to write the inode number into the inode,
0294      * so calculate the first inode number of the chunk here as
0295      * XFS_AGB_TO_AGINO() only works within a filesystem block, not
0296      * across multiple filesystem blocks (such as a cluster) and so cannot
0297      * be used in the cluster buffer loop below.
0298      *
0299      * Further, because we are writing the inode directly into the buffer
0300      * and calculating a CRC on the entire inode, we have ot log the entire
0301      * inode so that the entire range the CRC covers is present in the log.
0302      * That means for v3 inode we log the entire buffer rather than just the
0303      * inode cores.
0304      */
0305     if (xfs_has_v3inodes(mp)) {
0306         version = 3;
0307         ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
0308 
0309         /*
0310          * log the initialisation that is about to take place as an
0311          * logical operation. This means the transaction does not
0312          * need to log the physical changes to the inode buffers as log
0313          * recovery will know what initialisation is actually needed.
0314          * Hence we only need to log the buffers as "ordered" buffers so
0315          * they track in the AIL as if they were physically logged.
0316          */
0317         if (tp)
0318             xfs_icreate_log(tp, agno, agbno, icount,
0319                     mp->m_sb.sb_inodesize, length, gen);
0320     } else
0321         version = 2;
0322 
0323     for (j = 0; j < nbufs; j++) {
0324         /*
0325          * Get the block.
0326          */
0327         d = XFS_AGB_TO_DADDR(mp, agno, agbno +
0328                 (j * M_IGEO(mp)->blocks_per_cluster));
0329         error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
0330                 mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
0331                 XBF_UNMAPPED, &fbuf);
0332         if (error)
0333             return error;
0334 
0335         /* Initialize the inode buffers and log them appropriately. */
0336         fbuf->b_ops = &xfs_inode_buf_ops;
0337         xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
0338         for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
0339             int ioffset = i << mp->m_sb.sb_inodelog;
0340 
0341             free = xfs_make_iptr(mp, fbuf, i);
0342             free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
0343             free->di_version = version;
0344             free->di_gen = cpu_to_be32(gen);
0345             free->di_next_unlinked = cpu_to_be32(NULLAGINO);
0346 
0347             if (version == 3) {
0348                 free->di_ino = cpu_to_be64(ino);
0349                 ino++;
0350                 uuid_copy(&free->di_uuid,
0351                       &mp->m_sb.sb_meta_uuid);
0352                 xfs_dinode_calc_crc(mp, free);
0353             } else if (tp) {
0354                 /* just log the inode core */
0355                 xfs_trans_log_buf(tp, fbuf, ioffset,
0356                       ioffset + XFS_DINODE_SIZE(mp) - 1);
0357             }
0358         }
0359 
0360         if (tp) {
0361             /*
0362              * Mark the buffer as an inode allocation buffer so it
0363              * sticks in AIL at the point of this allocation
0364              * transaction. This ensures the they are on disk before
0365              * the tail of the log can be moved past this
0366              * transaction (i.e. by preventing relogging from moving
0367              * it forward in the log).
0368              */
0369             xfs_trans_inode_alloc_buf(tp, fbuf);
0370             if (version == 3) {
0371                 /*
0372                  * Mark the buffer as ordered so that they are
0373                  * not physically logged in the transaction but
0374                  * still tracked in the AIL as part of the
0375                  * transaction and pin the log appropriately.
0376                  */
0377                 xfs_trans_ordered_buf(tp, fbuf);
0378             }
0379         } else {
0380             fbuf->b_flags |= XBF_DONE;
0381             xfs_buf_delwri_queue(fbuf, buffer_list);
0382             xfs_buf_relse(fbuf);
0383         }
0384     }
0385     return 0;
0386 }
0387 
0388 /*
0389  * Align startino and allocmask for a recently allocated sparse chunk such that
0390  * they are fit for insertion (or merge) into the on-disk inode btrees.
0391  *
0392  * Background:
0393  *
0394  * When enabled, sparse inode support increases the inode alignment from cluster
0395  * size to inode chunk size. This means that the minimum range between two
0396  * non-adjacent inode records in the inobt is large enough for a full inode
0397  * record. This allows for cluster sized, cluster aligned block allocation
0398  * without need to worry about whether the resulting inode record overlaps with
0399  * another record in the tree. Without this basic rule, we would have to deal
0400  * with the consequences of overlap by potentially undoing recent allocations in
0401  * the inode allocation codepath.
0402  *
0403  * Because of this alignment rule (which is enforced on mount), there are two
0404  * inobt possibilities for newly allocated sparse chunks. One is that the
0405  * aligned inode record for the chunk covers a range of inodes not already
0406  * covered in the inobt (i.e., it is safe to insert a new sparse record). The
0407  * other is that a record already exists at the aligned startino that considers
0408  * the newly allocated range as sparse. In the latter case, record content is
0409  * merged in hope that sparse inode chunks fill to full chunks over time.
0410  */
0411 STATIC void
0412 xfs_align_sparse_ino(
0413     struct xfs_mount        *mp,
0414     xfs_agino_t         *startino,
0415     uint16_t            *allocmask)
0416 {
0417     xfs_agblock_t           agbno;
0418     xfs_agblock_t           mod;
0419     int             offset;
0420 
0421     agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
0422     mod = agbno % mp->m_sb.sb_inoalignmt;
0423     if (!mod)
0424         return;
0425 
0426     /* calculate the inode offset and align startino */
0427     offset = XFS_AGB_TO_AGINO(mp, mod);
0428     *startino -= offset;
0429 
0430     /*
0431      * Since startino has been aligned down, left shift allocmask such that
0432      * it continues to represent the same physical inodes relative to the
0433      * new startino.
0434      */
0435     *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
0436 }
0437 
0438 /*
0439  * Determine whether the source inode record can merge into the target. Both
0440  * records must be sparse, the inode ranges must match and there must be no
0441  * allocation overlap between the records.
0442  */
0443 STATIC bool
0444 __xfs_inobt_can_merge(
0445     struct xfs_inobt_rec_incore *trec,  /* tgt record */
0446     struct xfs_inobt_rec_incore *srec)  /* src record */
0447 {
0448     uint64_t            talloc;
0449     uint64_t            salloc;
0450 
0451     /* records must cover the same inode range */
0452     if (trec->ir_startino != srec->ir_startino)
0453         return false;
0454 
0455     /* both records must be sparse */
0456     if (!xfs_inobt_issparse(trec->ir_holemask) ||
0457         !xfs_inobt_issparse(srec->ir_holemask))
0458         return false;
0459 
0460     /* both records must track some inodes */
0461     if (!trec->ir_count || !srec->ir_count)
0462         return false;
0463 
0464     /* can't exceed capacity of a full record */
0465     if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
0466         return false;
0467 
0468     /* verify there is no allocation overlap */
0469     talloc = xfs_inobt_irec_to_allocmask(trec);
0470     salloc = xfs_inobt_irec_to_allocmask(srec);
0471     if (talloc & salloc)
0472         return false;
0473 
0474     return true;
0475 }
0476 
0477 /*
0478  * Merge the source inode record into the target. The caller must call
0479  * __xfs_inobt_can_merge() to ensure the merge is valid.
0480  */
0481 STATIC void
0482 __xfs_inobt_rec_merge(
0483     struct xfs_inobt_rec_incore *trec,  /* target */
0484     struct xfs_inobt_rec_incore *srec)  /* src */
0485 {
0486     ASSERT(trec->ir_startino == srec->ir_startino);
0487 
0488     /* combine the counts */
0489     trec->ir_count += srec->ir_count;
0490     trec->ir_freecount += srec->ir_freecount;
0491 
0492     /*
0493      * Merge the holemask and free mask. For both fields, 0 bits refer to
0494      * allocated inodes. We combine the allocated ranges with bitwise AND.
0495      */
0496     trec->ir_holemask &= srec->ir_holemask;
0497     trec->ir_free &= srec->ir_free;
0498 }
0499 
0500 /*
0501  * Insert a new sparse inode chunk into the associated inode btree. The inode
0502  * record for the sparse chunk is pre-aligned to a startino that should match
0503  * any pre-existing sparse inode record in the tree. This allows sparse chunks
0504  * to fill over time.
0505  *
0506  * This function supports two modes of handling preexisting records depending on
0507  * the merge flag. If merge is true, the provided record is merged with the
0508  * existing record and updated in place. The merged record is returned in nrec.
0509  * If merge is false, an existing record is replaced with the provided record.
0510  * If no preexisting record exists, the provided record is always inserted.
0511  *
0512  * It is considered corruption if a merge is requested and not possible. Given
0513  * the sparse inode alignment constraints, this should never happen.
0514  */
0515 STATIC int
0516 xfs_inobt_insert_sprec(
0517     struct xfs_mount        *mp,
0518     struct xfs_trans        *tp,
0519     struct xfs_buf          *agbp,
0520     struct xfs_perag        *pag,
0521     int             btnum,
0522     struct xfs_inobt_rec_incore *nrec,  /* in/out: new/merged rec. */
0523     bool                merge)  /* merge or replace */
0524 {
0525     struct xfs_btree_cur        *cur;
0526     int             error;
0527     int             i;
0528     struct xfs_inobt_rec_incore rec;
0529 
0530     cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, btnum);
0531 
0532     /* the new record is pre-aligned so we know where to look */
0533     error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
0534     if (error)
0535         goto error;
0536     /* if nothing there, insert a new record and return */
0537     if (i == 0) {
0538         error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
0539                          nrec->ir_count, nrec->ir_freecount,
0540                          nrec->ir_free, &i);
0541         if (error)
0542             goto error;
0543         if (XFS_IS_CORRUPT(mp, i != 1)) {
0544             error = -EFSCORRUPTED;
0545             goto error;
0546         }
0547 
0548         goto out;
0549     }
0550 
0551     /*
0552      * A record exists at this startino. Merge or replace the record
0553      * depending on what we've been asked to do.
0554      */
0555     if (merge) {
0556         error = xfs_inobt_get_rec(cur, &rec, &i);
0557         if (error)
0558             goto error;
0559         if (XFS_IS_CORRUPT(mp, i != 1)) {
0560             error = -EFSCORRUPTED;
0561             goto error;
0562         }
0563         if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
0564             error = -EFSCORRUPTED;
0565             goto error;
0566         }
0567 
0568         /*
0569          * This should never fail. If we have coexisting records that
0570          * cannot merge, something is seriously wrong.
0571          */
0572         if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
0573             error = -EFSCORRUPTED;
0574             goto error;
0575         }
0576 
0577         trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
0578                      rec.ir_holemask, nrec->ir_startino,
0579                      nrec->ir_holemask);
0580 
0581         /* merge to nrec to output the updated record */
0582         __xfs_inobt_rec_merge(nrec, &rec);
0583 
0584         trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
0585                       nrec->ir_holemask);
0586 
0587         error = xfs_inobt_rec_check_count(mp, nrec);
0588         if (error)
0589             goto error;
0590     }
0591 
0592     error = xfs_inobt_update(cur, nrec);
0593     if (error)
0594         goto error;
0595 
0596 out:
0597     xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
0598     return 0;
0599 error:
0600     xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
0601     return error;
0602 }
0603 
0604 /*
0605  * Allocate new inodes in the allocation group specified by agbp.  Returns 0 if
0606  * inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
0607  * the caller knows it can try another AG, a hard -ENOSPC when over the maximum
0608  * inode count threshold, or the usual negative error code for other errors.
0609  */
0610 STATIC int
0611 xfs_ialloc_ag_alloc(
0612     struct xfs_trans    *tp,
0613     struct xfs_buf      *agbp,
0614     struct xfs_perag    *pag)
0615 {
0616     struct xfs_agi      *agi;
0617     struct xfs_alloc_arg    args;
0618     int         error;
0619     xfs_agino_t     newino;     /* new first inode's number */
0620     xfs_agino_t     newlen;     /* new number of inodes */
0621     int         isaligned = 0;  /* inode allocation at stripe */
0622                         /* unit boundary */
0623     /* init. to full chunk */
0624     struct xfs_inobt_rec_incore rec;
0625     struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
0626     uint16_t        allocmask = (uint16_t) -1;
0627     int         do_sparse = 0;
0628 
0629     memset(&args, 0, sizeof(args));
0630     args.tp = tp;
0631     args.mp = tp->t_mountp;
0632     args.fsbno = NULLFSBLOCK;
0633     args.oinfo = XFS_RMAP_OINFO_INODES;
0634 
0635 #ifdef DEBUG
0636     /* randomly do sparse inode allocations */
0637     if (xfs_has_sparseinodes(tp->t_mountp) &&
0638         igeo->ialloc_min_blks < igeo->ialloc_blks)
0639         do_sparse = prandom_u32() & 1;
0640 #endif
0641 
0642     /*
0643      * Locking will ensure that we don't have two callers in here
0644      * at one time.
0645      */
0646     newlen = igeo->ialloc_inos;
0647     if (igeo->maxicount &&
0648         percpu_counter_read_positive(&args.mp->m_icount) + newlen >
0649                             igeo->maxicount)
0650         return -ENOSPC;
0651     args.minlen = args.maxlen = igeo->ialloc_blks;
0652     /*
0653      * First try to allocate inodes contiguous with the last-allocated
0654      * chunk of inodes.  If the filesystem is striped, this will fill
0655      * an entire stripe unit with inodes.
0656      */
0657     agi = agbp->b_addr;
0658     newino = be32_to_cpu(agi->agi_newino);
0659     args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
0660              igeo->ialloc_blks;
0661     if (do_sparse)
0662         goto sparse_alloc;
0663     if (likely(newino != NULLAGINO &&
0664           (args.agbno < be32_to_cpu(agi->agi_length)))) {
0665         args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
0666         args.type = XFS_ALLOCTYPE_THIS_BNO;
0667         args.prod = 1;
0668 
0669         /*
0670          * We need to take into account alignment here to ensure that
0671          * we don't modify the free list if we fail to have an exact
0672          * block. If we don't have an exact match, and every oher
0673          * attempt allocation attempt fails, we'll end up cancelling
0674          * a dirty transaction and shutting down.
0675          *
0676          * For an exact allocation, alignment must be 1,
0677          * however we need to take cluster alignment into account when
0678          * fixing up the freelist. Use the minalignslop field to
0679          * indicate that extra blocks might be required for alignment,
0680          * but not to use them in the actual exact allocation.
0681          */
0682         args.alignment = 1;
0683         args.minalignslop = igeo->cluster_align - 1;
0684 
0685         /* Allow space for the inode btree to split. */
0686         args.minleft = igeo->inobt_maxlevels;
0687         if ((error = xfs_alloc_vextent(&args)))
0688             return error;
0689 
0690         /*
0691          * This request might have dirtied the transaction if the AG can
0692          * satisfy the request, but the exact block was not available.
0693          * If the allocation did fail, subsequent requests will relax
0694          * the exact agbno requirement and increase the alignment
0695          * instead. It is critical that the total size of the request
0696          * (len + alignment + slop) does not increase from this point
0697          * on, so reset minalignslop to ensure it is not included in
0698          * subsequent requests.
0699          */
0700         args.minalignslop = 0;
0701     }
0702 
0703     if (unlikely(args.fsbno == NULLFSBLOCK)) {
0704         /*
0705          * Set the alignment for the allocation.
0706          * If stripe alignment is turned on then align at stripe unit
0707          * boundary.
0708          * If the cluster size is smaller than a filesystem block
0709          * then we're doing I/O for inodes in filesystem block size
0710          * pieces, so don't need alignment anyway.
0711          */
0712         isaligned = 0;
0713         if (igeo->ialloc_align) {
0714             ASSERT(!xfs_has_noalign(args.mp));
0715             args.alignment = args.mp->m_dalign;
0716             isaligned = 1;
0717         } else
0718             args.alignment = igeo->cluster_align;
0719         /*
0720          * Need to figure out where to allocate the inode blocks.
0721          * Ideally they should be spaced out through the a.g.
0722          * For now, just allocate blocks up front.
0723          */
0724         args.agbno = be32_to_cpu(agi->agi_root);
0725         args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
0726         /*
0727          * Allocate a fixed-size extent of inodes.
0728          */
0729         args.type = XFS_ALLOCTYPE_NEAR_BNO;
0730         args.prod = 1;
0731         /*
0732          * Allow space for the inode btree to split.
0733          */
0734         args.minleft = igeo->inobt_maxlevels;
0735         if ((error = xfs_alloc_vextent(&args)))
0736             return error;
0737     }
0738 
0739     /*
0740      * If stripe alignment is turned on, then try again with cluster
0741      * alignment.
0742      */
0743     if (isaligned && args.fsbno == NULLFSBLOCK) {
0744         args.type = XFS_ALLOCTYPE_NEAR_BNO;
0745         args.agbno = be32_to_cpu(agi->agi_root);
0746         args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
0747         args.alignment = igeo->cluster_align;
0748         if ((error = xfs_alloc_vextent(&args)))
0749             return error;
0750     }
0751 
0752     /*
0753      * Finally, try a sparse allocation if the filesystem supports it and
0754      * the sparse allocation length is smaller than a full chunk.
0755      */
0756     if (xfs_has_sparseinodes(args.mp) &&
0757         igeo->ialloc_min_blks < igeo->ialloc_blks &&
0758         args.fsbno == NULLFSBLOCK) {
0759 sparse_alloc:
0760         args.type = XFS_ALLOCTYPE_NEAR_BNO;
0761         args.agbno = be32_to_cpu(agi->agi_root);
0762         args.fsbno = XFS_AGB_TO_FSB(args.mp, pag->pag_agno, args.agbno);
0763         args.alignment = args.mp->m_sb.sb_spino_align;
0764         args.prod = 1;
0765 
0766         args.minlen = igeo->ialloc_min_blks;
0767         args.maxlen = args.minlen;
0768 
0769         /*
0770          * The inode record will be aligned to full chunk size. We must
0771          * prevent sparse allocation from AG boundaries that result in
0772          * invalid inode records, such as records that start at agbno 0
0773          * or extend beyond the AG.
0774          *
0775          * Set min agbno to the first aligned, non-zero agbno and max to
0776          * the last aligned agbno that is at least one full chunk from
0777          * the end of the AG.
0778          */
0779         args.min_agbno = args.mp->m_sb.sb_inoalignmt;
0780         args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
0781                         args.mp->m_sb.sb_inoalignmt) -
0782                  igeo->ialloc_blks;
0783 
0784         error = xfs_alloc_vextent(&args);
0785         if (error)
0786             return error;
0787 
0788         newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
0789         ASSERT(newlen <= XFS_INODES_PER_CHUNK);
0790         allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
0791     }
0792 
0793     if (args.fsbno == NULLFSBLOCK)
0794         return -EAGAIN;
0795 
0796     ASSERT(args.len == args.minlen);
0797 
0798     /*
0799      * Stamp and write the inode buffers.
0800      *
0801      * Seed the new inode cluster with a random generation number. This
0802      * prevents short-term reuse of generation numbers if a chunk is
0803      * freed and then immediately reallocated. We use random numbers
0804      * rather than a linear progression to prevent the next generation
0805      * number from being easily guessable.
0806      */
0807     error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
0808             args.agbno, args.len, prandom_u32());
0809 
0810     if (error)
0811         return error;
0812     /*
0813      * Convert the results.
0814      */
0815     newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
0816 
0817     if (xfs_inobt_issparse(~allocmask)) {
0818         /*
0819          * We've allocated a sparse chunk. Align the startino and mask.
0820          */
0821         xfs_align_sparse_ino(args.mp, &newino, &allocmask);
0822 
0823         rec.ir_startino = newino;
0824         rec.ir_holemask = ~allocmask;
0825         rec.ir_count = newlen;
0826         rec.ir_freecount = newlen;
0827         rec.ir_free = XFS_INOBT_ALL_FREE;
0828 
0829         /*
0830          * Insert the sparse record into the inobt and allow for a merge
0831          * if necessary. If a merge does occur, rec is updated to the
0832          * merged record.
0833          */
0834         error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
0835                 XFS_BTNUM_INO, &rec, true);
0836         if (error == -EFSCORRUPTED) {
0837             xfs_alert(args.mp,
0838     "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
0839                   XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
0840                            rec.ir_startino),
0841                   rec.ir_holemask, rec.ir_count);
0842             xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
0843         }
0844         if (error)
0845             return error;
0846 
0847         /*
0848          * We can't merge the part we've just allocated as for the inobt
0849          * due to finobt semantics. The original record may or may not
0850          * exist independent of whether physical inodes exist in this
0851          * sparse chunk.
0852          *
0853          * We must update the finobt record based on the inobt record.
0854          * rec contains the fully merged and up to date inobt record
0855          * from the previous call. Set merge false to replace any
0856          * existing record with this one.
0857          */
0858         if (xfs_has_finobt(args.mp)) {
0859             error = xfs_inobt_insert_sprec(args.mp, tp, agbp, pag,
0860                        XFS_BTNUM_FINO, &rec, false);
0861             if (error)
0862                 return error;
0863         }
0864     } else {
0865         /* full chunk - insert new records to both btrees */
0866         error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino, newlen,
0867                      XFS_BTNUM_INO);
0868         if (error)
0869             return error;
0870 
0871         if (xfs_has_finobt(args.mp)) {
0872             error = xfs_inobt_insert(args.mp, tp, agbp, pag, newino,
0873                          newlen, XFS_BTNUM_FINO);
0874             if (error)
0875                 return error;
0876         }
0877     }
0878 
0879     /*
0880      * Update AGI counts and newino.
0881      */
0882     be32_add_cpu(&agi->agi_count, newlen);
0883     be32_add_cpu(&agi->agi_freecount, newlen);
0884     pag->pagi_freecount += newlen;
0885     pag->pagi_count += newlen;
0886     agi->agi_newino = cpu_to_be32(newino);
0887 
0888     /*
0889      * Log allocation group header fields
0890      */
0891     xfs_ialloc_log_agi(tp, agbp,
0892         XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
0893     /*
0894      * Modify/log superblock values for inode count and inode free count.
0895      */
0896     xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
0897     xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
0898     return 0;
0899 }
0900 
0901 /*
0902  * Try to retrieve the next record to the left/right from the current one.
0903  */
0904 STATIC int
0905 xfs_ialloc_next_rec(
0906     struct xfs_btree_cur    *cur,
0907     xfs_inobt_rec_incore_t  *rec,
0908     int         *done,
0909     int         left)
0910 {
0911     int                     error;
0912     int         i;
0913 
0914     if (left)
0915         error = xfs_btree_decrement(cur, 0, &i);
0916     else
0917         error = xfs_btree_increment(cur, 0, &i);
0918 
0919     if (error)
0920         return error;
0921     *done = !i;
0922     if (i) {
0923         error = xfs_inobt_get_rec(cur, rec, &i);
0924         if (error)
0925             return error;
0926         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
0927             return -EFSCORRUPTED;
0928     }
0929 
0930     return 0;
0931 }
0932 
0933 STATIC int
0934 xfs_ialloc_get_rec(
0935     struct xfs_btree_cur    *cur,
0936     xfs_agino_t     agino,
0937     xfs_inobt_rec_incore_t  *rec,
0938     int         *done)
0939 {
0940     int                     error;
0941     int         i;
0942 
0943     error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
0944     if (error)
0945         return error;
0946     *done = !i;
0947     if (i) {
0948         error = xfs_inobt_get_rec(cur, rec, &i);
0949         if (error)
0950             return error;
0951         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
0952             return -EFSCORRUPTED;
0953     }
0954 
0955     return 0;
0956 }
0957 
0958 /*
0959  * Return the offset of the first free inode in the record. If the inode chunk
0960  * is sparsely allocated, we convert the record holemask to inode granularity
0961  * and mask off the unallocated regions from the inode free mask.
0962  */
0963 STATIC int
0964 xfs_inobt_first_free_inode(
0965     struct xfs_inobt_rec_incore *rec)
0966 {
0967     xfs_inofree_t           realfree;
0968 
0969     /* if there are no holes, return the first available offset */
0970     if (!xfs_inobt_issparse(rec->ir_holemask))
0971         return xfs_lowbit64(rec->ir_free);
0972 
0973     realfree = xfs_inobt_irec_to_allocmask(rec);
0974     realfree &= rec->ir_free;
0975 
0976     return xfs_lowbit64(realfree);
0977 }
0978 
0979 /*
0980  * Allocate an inode using the inobt-only algorithm.
0981  */
0982 STATIC int
0983 xfs_dialloc_ag_inobt(
0984     struct xfs_trans    *tp,
0985     struct xfs_buf      *agbp,
0986     struct xfs_perag    *pag,
0987     xfs_ino_t       parent,
0988     xfs_ino_t       *inop)
0989 {
0990     struct xfs_mount    *mp = tp->t_mountp;
0991     struct xfs_agi      *agi = agbp->b_addr;
0992     xfs_agnumber_t      pagno = XFS_INO_TO_AGNO(mp, parent);
0993     xfs_agino_t     pagino = XFS_INO_TO_AGINO(mp, parent);
0994     struct xfs_btree_cur    *cur, *tcur;
0995     struct xfs_inobt_rec_incore rec, trec;
0996     xfs_ino_t       ino;
0997     int         error;
0998     int         offset;
0999     int         i, j;
1000     int         searchdistance = 10;
1001 
1002     ASSERT(pag->pagi_init);
1003     ASSERT(pag->pagi_inodeok);
1004     ASSERT(pag->pagi_freecount > 0);
1005 
1006  restart_pagno:
1007     cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1008     /*
1009      * If pagino is 0 (this is the root inode allocation) use newino.
1010      * This must work because we've just allocated some.
1011      */
1012     if (!pagino)
1013         pagino = be32_to_cpu(agi->agi_newino);
1014 
1015     error = xfs_check_agi_freecount(cur);
1016     if (error)
1017         goto error0;
1018 
1019     /*
1020      * If in the same AG as the parent, try to get near the parent.
1021      */
1022     if (pagno == pag->pag_agno) {
1023         int     doneleft;   /* done, to the left */
1024         int     doneright;  /* done, to the right */
1025 
1026         error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1027         if (error)
1028             goto error0;
1029         if (XFS_IS_CORRUPT(mp, i != 1)) {
1030             error = -EFSCORRUPTED;
1031             goto error0;
1032         }
1033 
1034         error = xfs_inobt_get_rec(cur, &rec, &j);
1035         if (error)
1036             goto error0;
1037         if (XFS_IS_CORRUPT(mp, j != 1)) {
1038             error = -EFSCORRUPTED;
1039             goto error0;
1040         }
1041 
1042         if (rec.ir_freecount > 0) {
1043             /*
1044              * Found a free inode in the same chunk
1045              * as the parent, done.
1046              */
1047             goto alloc_inode;
1048         }
1049 
1050 
1051         /*
1052          * In the same AG as parent, but parent's chunk is full.
1053          */
1054 
1055         /* duplicate the cursor, search left & right simultaneously */
1056         error = xfs_btree_dup_cursor(cur, &tcur);
1057         if (error)
1058             goto error0;
1059 
1060         /*
1061          * Skip to last blocks looked up if same parent inode.
1062          */
1063         if (pagino != NULLAGINO &&
1064             pag->pagl_pagino == pagino &&
1065             pag->pagl_leftrec != NULLAGINO &&
1066             pag->pagl_rightrec != NULLAGINO) {
1067             error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1068                            &trec, &doneleft);
1069             if (error)
1070                 goto error1;
1071 
1072             error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1073                            &rec, &doneright);
1074             if (error)
1075                 goto error1;
1076         } else {
1077             /* search left with tcur, back up 1 record */
1078             error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1079             if (error)
1080                 goto error1;
1081 
1082             /* search right with cur, go forward 1 record. */
1083             error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1084             if (error)
1085                 goto error1;
1086         }
1087 
1088         /*
1089          * Loop until we find an inode chunk with a free inode.
1090          */
1091         while (--searchdistance > 0 && (!doneleft || !doneright)) {
1092             int useleft;  /* using left inode chunk this time */
1093 
1094             /* figure out the closer block if both are valid. */
1095             if (!doneleft && !doneright) {
1096                 useleft = pagino -
1097                  (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1098                   rec.ir_startino - pagino;
1099             } else {
1100                 useleft = !doneleft;
1101             }
1102 
1103             /* free inodes to the left? */
1104             if (useleft && trec.ir_freecount) {
1105                 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1106                 cur = tcur;
1107 
1108                 pag->pagl_leftrec = trec.ir_startino;
1109                 pag->pagl_rightrec = rec.ir_startino;
1110                 pag->pagl_pagino = pagino;
1111                 rec = trec;
1112                 goto alloc_inode;
1113             }
1114 
1115             /* free inodes to the right? */
1116             if (!useleft && rec.ir_freecount) {
1117                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1118 
1119                 pag->pagl_leftrec = trec.ir_startino;
1120                 pag->pagl_rightrec = rec.ir_startino;
1121                 pag->pagl_pagino = pagino;
1122                 goto alloc_inode;
1123             }
1124 
1125             /* get next record to check */
1126             if (useleft) {
1127                 error = xfs_ialloc_next_rec(tcur, &trec,
1128                                  &doneleft, 1);
1129             } else {
1130                 error = xfs_ialloc_next_rec(cur, &rec,
1131                                  &doneright, 0);
1132             }
1133             if (error)
1134                 goto error1;
1135         }
1136 
1137         if (searchdistance <= 0) {
1138             /*
1139              * Not in range - save last search
1140              * location and allocate a new inode
1141              */
1142             xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1143             pag->pagl_leftrec = trec.ir_startino;
1144             pag->pagl_rightrec = rec.ir_startino;
1145             pag->pagl_pagino = pagino;
1146 
1147         } else {
1148             /*
1149              * We've reached the end of the btree. because
1150              * we are only searching a small chunk of the
1151              * btree each search, there is obviously free
1152              * inodes closer to the parent inode than we
1153              * are now. restart the search again.
1154              */
1155             pag->pagl_pagino = NULLAGINO;
1156             pag->pagl_leftrec = NULLAGINO;
1157             pag->pagl_rightrec = NULLAGINO;
1158             xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1159             xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1160             goto restart_pagno;
1161         }
1162     }
1163 
1164     /*
1165      * In a different AG from the parent.
1166      * See if the most recently allocated block has any free.
1167      */
1168     if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1169         error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1170                      XFS_LOOKUP_EQ, &i);
1171         if (error)
1172             goto error0;
1173 
1174         if (i == 1) {
1175             error = xfs_inobt_get_rec(cur, &rec, &j);
1176             if (error)
1177                 goto error0;
1178 
1179             if (j == 1 && rec.ir_freecount > 0) {
1180                 /*
1181                  * The last chunk allocated in the group
1182                  * still has a free inode.
1183                  */
1184                 goto alloc_inode;
1185             }
1186         }
1187     }
1188 
1189     /*
1190      * None left in the last group, search the whole AG
1191      */
1192     error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1193     if (error)
1194         goto error0;
1195     if (XFS_IS_CORRUPT(mp, i != 1)) {
1196         error = -EFSCORRUPTED;
1197         goto error0;
1198     }
1199 
1200     for (;;) {
1201         error = xfs_inobt_get_rec(cur, &rec, &i);
1202         if (error)
1203             goto error0;
1204         if (XFS_IS_CORRUPT(mp, i != 1)) {
1205             error = -EFSCORRUPTED;
1206             goto error0;
1207         }
1208         if (rec.ir_freecount > 0)
1209             break;
1210         error = xfs_btree_increment(cur, 0, &i);
1211         if (error)
1212             goto error0;
1213         if (XFS_IS_CORRUPT(mp, i != 1)) {
1214             error = -EFSCORRUPTED;
1215             goto error0;
1216         }
1217     }
1218 
1219 alloc_inode:
1220     offset = xfs_inobt_first_free_inode(&rec);
1221     ASSERT(offset >= 0);
1222     ASSERT(offset < XFS_INODES_PER_CHUNK);
1223     ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1224                    XFS_INODES_PER_CHUNK) == 0);
1225     ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1226     rec.ir_free &= ~XFS_INOBT_MASK(offset);
1227     rec.ir_freecount--;
1228     error = xfs_inobt_update(cur, &rec);
1229     if (error)
1230         goto error0;
1231     be32_add_cpu(&agi->agi_freecount, -1);
1232     xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1233     pag->pagi_freecount--;
1234 
1235     error = xfs_check_agi_freecount(cur);
1236     if (error)
1237         goto error0;
1238 
1239     xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1240     xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1241     *inop = ino;
1242     return 0;
1243 error1:
1244     xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1245 error0:
1246     xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1247     return error;
1248 }
1249 
1250 /*
1251  * Use the free inode btree to allocate an inode based on distance from the
1252  * parent. Note that the provided cursor may be deleted and replaced.
1253  */
1254 STATIC int
1255 xfs_dialloc_ag_finobt_near(
1256     xfs_agino_t         pagino,
1257     struct xfs_btree_cur        **ocur,
1258     struct xfs_inobt_rec_incore *rec)
1259 {
1260     struct xfs_btree_cur        *lcur = *ocur;  /* left search cursor */
1261     struct xfs_btree_cur        *rcur;  /* right search cursor */
1262     struct xfs_inobt_rec_incore rrec;
1263     int             error;
1264     int             i, j;
1265 
1266     error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1267     if (error)
1268         return error;
1269 
1270     if (i == 1) {
1271         error = xfs_inobt_get_rec(lcur, rec, &i);
1272         if (error)
1273             return error;
1274         if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1))
1275             return -EFSCORRUPTED;
1276 
1277         /*
1278          * See if we've landed in the parent inode record. The finobt
1279          * only tracks chunks with at least one free inode, so record
1280          * existence is enough.
1281          */
1282         if (pagino >= rec->ir_startino &&
1283             pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1284             return 0;
1285     }
1286 
1287     error = xfs_btree_dup_cursor(lcur, &rcur);
1288     if (error)
1289         return error;
1290 
1291     error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1292     if (error)
1293         goto error_rcur;
1294     if (j == 1) {
1295         error = xfs_inobt_get_rec(rcur, &rrec, &j);
1296         if (error)
1297             goto error_rcur;
1298         if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
1299             error = -EFSCORRUPTED;
1300             goto error_rcur;
1301         }
1302     }
1303 
1304     if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
1305         error = -EFSCORRUPTED;
1306         goto error_rcur;
1307     }
1308     if (i == 1 && j == 1) {
1309         /*
1310          * Both the left and right records are valid. Choose the closer
1311          * inode chunk to the target.
1312          */
1313         if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1314             (rrec.ir_startino - pagino)) {
1315             *rec = rrec;
1316             xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1317             *ocur = rcur;
1318         } else {
1319             xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1320         }
1321     } else if (j == 1) {
1322         /* only the right record is valid */
1323         *rec = rrec;
1324         xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1325         *ocur = rcur;
1326     } else if (i == 1) {
1327         /* only the left record is valid */
1328         xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1329     }
1330 
1331     return 0;
1332 
1333 error_rcur:
1334     xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1335     return error;
1336 }
1337 
1338 /*
1339  * Use the free inode btree to find a free inode based on a newino hint. If
1340  * the hint is NULL, find the first free inode in the AG.
1341  */
1342 STATIC int
1343 xfs_dialloc_ag_finobt_newino(
1344     struct xfs_agi          *agi,
1345     struct xfs_btree_cur        *cur,
1346     struct xfs_inobt_rec_incore *rec)
1347 {
1348     int error;
1349     int i;
1350 
1351     if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1352         error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1353                      XFS_LOOKUP_EQ, &i);
1354         if (error)
1355             return error;
1356         if (i == 1) {
1357             error = xfs_inobt_get_rec(cur, rec, &i);
1358             if (error)
1359                 return error;
1360             if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1361                 return -EFSCORRUPTED;
1362             return 0;
1363         }
1364     }
1365 
1366     /*
1367      * Find the first inode available in the AG.
1368      */
1369     error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1370     if (error)
1371         return error;
1372     if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1373         return -EFSCORRUPTED;
1374 
1375     error = xfs_inobt_get_rec(cur, rec, &i);
1376     if (error)
1377         return error;
1378     if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1379         return -EFSCORRUPTED;
1380 
1381     return 0;
1382 }
1383 
1384 /*
1385  * Update the inobt based on a modification made to the finobt. Also ensure that
1386  * the records from both trees are equivalent post-modification.
1387  */
1388 STATIC int
1389 xfs_dialloc_ag_update_inobt(
1390     struct xfs_btree_cur        *cur,   /* inobt cursor */
1391     struct xfs_inobt_rec_incore *frec,  /* finobt record */
1392     int             offset) /* inode offset */
1393 {
1394     struct xfs_inobt_rec_incore rec;
1395     int             error;
1396     int             i;
1397 
1398     error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1399     if (error)
1400         return error;
1401     if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1402         return -EFSCORRUPTED;
1403 
1404     error = xfs_inobt_get_rec(cur, &rec, &i);
1405     if (error)
1406         return error;
1407     if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1408         return -EFSCORRUPTED;
1409     ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1410                    XFS_INODES_PER_CHUNK) == 0);
1411 
1412     rec.ir_free &= ~XFS_INOBT_MASK(offset);
1413     rec.ir_freecount--;
1414 
1415     if (XFS_IS_CORRUPT(cur->bc_mp,
1416                rec.ir_free != frec->ir_free ||
1417                rec.ir_freecount != frec->ir_freecount))
1418         return -EFSCORRUPTED;
1419 
1420     return xfs_inobt_update(cur, &rec);
1421 }
1422 
1423 /*
1424  * Allocate an inode using the free inode btree, if available. Otherwise, fall
1425  * back to the inobt search algorithm.
1426  *
1427  * The caller selected an AG for us, and made sure that free inodes are
1428  * available.
1429  */
1430 static int
1431 xfs_dialloc_ag(
1432     struct xfs_trans    *tp,
1433     struct xfs_buf      *agbp,
1434     struct xfs_perag    *pag,
1435     xfs_ino_t       parent,
1436     xfs_ino_t       *inop)
1437 {
1438     struct xfs_mount        *mp = tp->t_mountp;
1439     struct xfs_agi          *agi = agbp->b_addr;
1440     xfs_agnumber_t          pagno = XFS_INO_TO_AGNO(mp, parent);
1441     xfs_agino_t         pagino = XFS_INO_TO_AGINO(mp, parent);
1442     struct xfs_btree_cur        *cur;   /* finobt cursor */
1443     struct xfs_btree_cur        *icur;  /* inobt cursor */
1444     struct xfs_inobt_rec_incore rec;
1445     xfs_ino_t           ino;
1446     int             error;
1447     int             offset;
1448     int             i;
1449 
1450     if (!xfs_has_finobt(mp))
1451         return xfs_dialloc_ag_inobt(tp, agbp, pag, parent, inop);
1452 
1453     /*
1454      * If pagino is 0 (this is the root inode allocation) use newino.
1455      * This must work because we've just allocated some.
1456      */
1457     if (!pagino)
1458         pagino = be32_to_cpu(agi->agi_newino);
1459 
1460     cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
1461 
1462     error = xfs_check_agi_freecount(cur);
1463     if (error)
1464         goto error_cur;
1465 
1466     /*
1467      * The search algorithm depends on whether we're in the same AG as the
1468      * parent. If so, find the closest available inode to the parent. If
1469      * not, consider the agi hint or find the first free inode in the AG.
1470      */
1471     if (pag->pag_agno == pagno)
1472         error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1473     else
1474         error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1475     if (error)
1476         goto error_cur;
1477 
1478     offset = xfs_inobt_first_free_inode(&rec);
1479     ASSERT(offset >= 0);
1480     ASSERT(offset < XFS_INODES_PER_CHUNK);
1481     ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1482                    XFS_INODES_PER_CHUNK) == 0);
1483     ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
1484 
1485     /*
1486      * Modify or remove the finobt record.
1487      */
1488     rec.ir_free &= ~XFS_INOBT_MASK(offset);
1489     rec.ir_freecount--;
1490     if (rec.ir_freecount)
1491         error = xfs_inobt_update(cur, &rec);
1492     else
1493         error = xfs_btree_delete(cur, &i);
1494     if (error)
1495         goto error_cur;
1496 
1497     /*
1498      * The finobt has now been updated appropriately. We haven't updated the
1499      * agi and superblock yet, so we can create an inobt cursor and validate
1500      * the original freecount. If all is well, make the equivalent update to
1501      * the inobt using the finobt record and offset information.
1502      */
1503     icur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1504 
1505     error = xfs_check_agi_freecount(icur);
1506     if (error)
1507         goto error_icur;
1508 
1509     error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1510     if (error)
1511         goto error_icur;
1512 
1513     /*
1514      * Both trees have now been updated. We must update the perag and
1515      * superblock before we can check the freecount for each btree.
1516      */
1517     be32_add_cpu(&agi->agi_freecount, -1);
1518     xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1519     pag->pagi_freecount--;
1520 
1521     xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1522 
1523     error = xfs_check_agi_freecount(icur);
1524     if (error)
1525         goto error_icur;
1526     error = xfs_check_agi_freecount(cur);
1527     if (error)
1528         goto error_icur;
1529 
1530     xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1531     xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1532     *inop = ino;
1533     return 0;
1534 
1535 error_icur:
1536     xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1537 error_cur:
1538     xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1539     return error;
1540 }
1541 
1542 static int
1543 xfs_dialloc_roll(
1544     struct xfs_trans    **tpp,
1545     struct xfs_buf      *agibp)
1546 {
1547     struct xfs_trans    *tp = *tpp;
1548     struct xfs_dquot_acct   *dqinfo;
1549     int         error;
1550 
1551     /*
1552      * Hold to on to the agibp across the commit so no other allocation can
1553      * come in and take the free inodes we just allocated for our caller.
1554      */
1555     xfs_trans_bhold(tp, agibp);
1556 
1557     /*
1558      * We want the quota changes to be associated with the next transaction,
1559      * NOT this one. So, detach the dqinfo from this and attach it to the
1560      * next transaction.
1561      */
1562     dqinfo = tp->t_dqinfo;
1563     tp->t_dqinfo = NULL;
1564 
1565     error = xfs_trans_roll(&tp);
1566 
1567     /* Re-attach the quota info that we detached from prev trx. */
1568     tp->t_dqinfo = dqinfo;
1569 
1570     /*
1571      * Join the buffer even on commit error so that the buffer is released
1572      * when the caller cancels the transaction and doesn't have to handle
1573      * this error case specially.
1574      */
1575     xfs_trans_bjoin(tp, agibp);
1576     *tpp = tp;
1577     return error;
1578 }
1579 
1580 static xfs_agnumber_t
1581 xfs_ialloc_next_ag(
1582     xfs_mount_t *mp)
1583 {
1584     xfs_agnumber_t  agno;
1585 
1586     spin_lock(&mp->m_agirotor_lock);
1587     agno = mp->m_agirotor;
1588     if (++mp->m_agirotor >= mp->m_maxagi)
1589         mp->m_agirotor = 0;
1590     spin_unlock(&mp->m_agirotor_lock);
1591 
1592     return agno;
1593 }
1594 
1595 static bool
1596 xfs_dialloc_good_ag(
1597     struct xfs_trans    *tp,
1598     struct xfs_perag    *pag,
1599     umode_t         mode,
1600     int         flags,
1601     bool            ok_alloc)
1602 {
1603     struct xfs_mount    *mp = tp->t_mountp;
1604     xfs_extlen_t        ineed;
1605     xfs_extlen_t        longest = 0;
1606     int         needspace;
1607     int         error;
1608 
1609     if (!pag->pagi_inodeok)
1610         return false;
1611 
1612     if (!pag->pagi_init) {
1613         error = xfs_ialloc_read_agi(pag, tp, NULL);
1614         if (error)
1615             return false;
1616     }
1617 
1618     if (pag->pagi_freecount)
1619         return true;
1620     if (!ok_alloc)
1621         return false;
1622 
1623     if (!pag->pagf_init) {
1624         error = xfs_alloc_read_agf(pag, tp, flags, NULL);
1625         if (error)
1626             return false;
1627     }
1628 
1629     /*
1630      * Check that there is enough free space for the file plus a chunk of
1631      * inodes if we need to allocate some. If this is the first pass across
1632      * the AGs, take into account the potential space needed for alignment
1633      * of inode chunks when checking the longest contiguous free space in
1634      * the AG - this prevents us from getting ENOSPC because we have free
1635      * space larger than ialloc_blks but alignment constraints prevent us
1636      * from using it.
1637      *
1638      * If we can't find an AG with space for full alignment slack to be
1639      * taken into account, we must be near ENOSPC in all AGs.  Hence we
1640      * don't include alignment for the second pass and so if we fail
1641      * allocation due to alignment issues then it is most likely a real
1642      * ENOSPC condition.
1643      *
1644      * XXX(dgc): this calculation is now bogus thanks to the per-ag
1645      * reservations that xfs_alloc_fix_freelist() now does via
1646      * xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
1647      * be more than large enough for the check below to succeed, but
1648      * xfs_alloc_space_available() will fail because of the non-zero
1649      * metadata reservation and hence we won't actually be able to allocate
1650      * more inodes in this AG. We do soooo much unnecessary work near ENOSPC
1651      * because of this.
1652      */
1653     ineed = M_IGEO(mp)->ialloc_min_blks;
1654     if (flags && ineed > 1)
1655         ineed += M_IGEO(mp)->cluster_align;
1656     longest = pag->pagf_longest;
1657     if (!longest)
1658         longest = pag->pagf_flcount > 0;
1659     needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
1660 
1661     if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
1662         return false;
1663     return true;
1664 }
1665 
1666 static int
1667 xfs_dialloc_try_ag(
1668     struct xfs_trans    **tpp,
1669     struct xfs_perag    *pag,
1670     xfs_ino_t       parent,
1671     xfs_ino_t       *new_ino,
1672     bool            ok_alloc)
1673 {
1674     struct xfs_buf      *agbp;
1675     xfs_ino_t       ino;
1676     int         error;
1677 
1678     /*
1679      * Then read in the AGI buffer and recheck with the AGI buffer
1680      * lock held.
1681      */
1682     error = xfs_ialloc_read_agi(pag, *tpp, &agbp);
1683     if (error)
1684         return error;
1685 
1686     if (!pag->pagi_freecount) {
1687         if (!ok_alloc) {
1688             error = -EAGAIN;
1689             goto out_release;
1690         }
1691 
1692         error = xfs_ialloc_ag_alloc(*tpp, agbp, pag);
1693         if (error < 0)
1694             goto out_release;
1695 
1696         /*
1697          * We successfully allocated space for an inode cluster in this
1698          * AG.  Roll the transaction so that we can allocate one of the
1699          * new inodes.
1700          */
1701         ASSERT(pag->pagi_freecount > 0);
1702         error = xfs_dialloc_roll(tpp, agbp);
1703         if (error)
1704             goto out_release;
1705     }
1706 
1707     /* Allocate an inode in the found AG */
1708     error = xfs_dialloc_ag(*tpp, agbp, pag, parent, &ino);
1709     if (!error)
1710         *new_ino = ino;
1711     return error;
1712 
1713 out_release:
1714     xfs_trans_brelse(*tpp, agbp);
1715     return error;
1716 }
1717 
1718 /*
1719  * Allocate an on-disk inode.
1720  *
1721  * Mode is used to tell whether the new inode is a directory and hence where to
1722  * locate it. The on-disk inode that is allocated will be returned in @new_ino
1723  * on success, otherwise an error will be set to indicate the failure (e.g.
1724  * -ENOSPC).
1725  */
1726 int
1727 xfs_dialloc(
1728     struct xfs_trans    **tpp,
1729     xfs_ino_t       parent,
1730     umode_t         mode,
1731     xfs_ino_t       *new_ino)
1732 {
1733     struct xfs_mount    *mp = (*tpp)->t_mountp;
1734     xfs_agnumber_t      agno;
1735     int         error = 0;
1736     xfs_agnumber_t      start_agno;
1737     struct xfs_perag    *pag;
1738     struct xfs_ino_geometry *igeo = M_IGEO(mp);
1739     bool            ok_alloc = true;
1740     int         flags;
1741     xfs_ino_t       ino;
1742 
1743     /*
1744      * Directories, symlinks, and regular files frequently allocate at least
1745      * one block, so factor that potential expansion when we examine whether
1746      * an AG has enough space for file creation.
1747      */
1748     if (S_ISDIR(mode))
1749         start_agno = xfs_ialloc_next_ag(mp);
1750     else {
1751         start_agno = XFS_INO_TO_AGNO(mp, parent);
1752         if (start_agno >= mp->m_maxagi)
1753             start_agno = 0;
1754     }
1755 
1756     /*
1757      * If we have already hit the ceiling of inode blocks then clear
1758      * ok_alloc so we scan all available agi structures for a free
1759      * inode.
1760      *
1761      * Read rough value of mp->m_icount by percpu_counter_read_positive,
1762      * which will sacrifice the preciseness but improve the performance.
1763      */
1764     if (igeo->maxicount &&
1765         percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
1766                             > igeo->maxicount) {
1767         ok_alloc = false;
1768     }
1769 
1770     /*
1771      * Loop until we find an allocation group that either has free inodes
1772      * or in which we can allocate some inodes.  Iterate through the
1773      * allocation groups upward, wrapping at the end.
1774      */
1775     agno = start_agno;
1776     flags = XFS_ALLOC_FLAG_TRYLOCK;
1777     for (;;) {
1778         pag = xfs_perag_get(mp, agno);
1779         if (xfs_dialloc_good_ag(*tpp, pag, mode, flags, ok_alloc)) {
1780             error = xfs_dialloc_try_ag(tpp, pag, parent,
1781                     &ino, ok_alloc);
1782             if (error != -EAGAIN)
1783                 break;
1784         }
1785 
1786         if (xfs_is_shutdown(mp)) {
1787             error = -EFSCORRUPTED;
1788             break;
1789         }
1790         if (++agno == mp->m_maxagi)
1791             agno = 0;
1792         if (agno == start_agno) {
1793             if (!flags) {
1794                 error = -ENOSPC;
1795                 break;
1796             }
1797             flags = 0;
1798         }
1799         xfs_perag_put(pag);
1800     }
1801 
1802     if (!error)
1803         *new_ino = ino;
1804     xfs_perag_put(pag);
1805     return error;
1806 }
1807 
1808 /*
1809  * Free the blocks of an inode chunk. We must consider that the inode chunk
1810  * might be sparse and only free the regions that are allocated as part of the
1811  * chunk.
1812  */
1813 STATIC void
1814 xfs_difree_inode_chunk(
1815     struct xfs_trans        *tp,
1816     xfs_agnumber_t          agno,
1817     struct xfs_inobt_rec_incore *rec)
1818 {
1819     struct xfs_mount        *mp = tp->t_mountp;
1820     xfs_agblock_t           sagbno = XFS_AGINO_TO_AGBNO(mp,
1821                             rec->ir_startino);
1822     int             startidx, endidx;
1823     int             nextbit;
1824     xfs_agblock_t           agbno;
1825     int             contigblk;
1826     DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1827 
1828     if (!xfs_inobt_issparse(rec->ir_holemask)) {
1829         /* not sparse, calculate extent info directly */
1830         xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, sagbno),
1831                   M_IGEO(mp)->ialloc_blks,
1832                   &XFS_RMAP_OINFO_INODES);
1833         return;
1834     }
1835 
1836     /* holemask is only 16-bits (fits in an unsigned long) */
1837     ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1838     holemask[0] = rec->ir_holemask;
1839 
1840     /*
1841      * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1842      * holemask and convert the start/end index of each range to an extent.
1843      * We start with the start and end index both pointing at the first 0 in
1844      * the mask.
1845      */
1846     startidx = endidx = find_first_zero_bit(holemask,
1847                         XFS_INOBT_HOLEMASK_BITS);
1848     nextbit = startidx + 1;
1849     while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1850         nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1851                          nextbit);
1852         /*
1853          * If the next zero bit is contiguous, update the end index of
1854          * the current range and continue.
1855          */
1856         if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1857             nextbit == endidx + 1) {
1858             endidx = nextbit;
1859             goto next;
1860         }
1861 
1862         /*
1863          * nextbit is not contiguous with the current end index. Convert
1864          * the current start/end to an extent and add it to the free
1865          * list.
1866          */
1867         agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1868                   mp->m_sb.sb_inopblock;
1869         contigblk = ((endidx - startidx + 1) *
1870                  XFS_INODES_PER_HOLEMASK_BIT) /
1871                 mp->m_sb.sb_inopblock;
1872 
1873         ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1874         ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1875         xfs_free_extent_later(tp, XFS_AGB_TO_FSB(mp, agno, agbno),
1876                   contigblk, &XFS_RMAP_OINFO_INODES);
1877 
1878         /* reset range to current bit and carry on... */
1879         startidx = endidx = nextbit;
1880 
1881 next:
1882         nextbit++;
1883     }
1884 }
1885 
1886 STATIC int
1887 xfs_difree_inobt(
1888     struct xfs_mount        *mp,
1889     struct xfs_trans        *tp,
1890     struct xfs_buf          *agbp,
1891     struct xfs_perag        *pag,
1892     xfs_agino_t         agino,
1893     struct xfs_icluster     *xic,
1894     struct xfs_inobt_rec_incore *orec)
1895 {
1896     struct xfs_agi          *agi = agbp->b_addr;
1897     struct xfs_btree_cur        *cur;
1898     struct xfs_inobt_rec_incore rec;
1899     int             ilen;
1900     int             error;
1901     int             i;
1902     int             off;
1903 
1904     ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1905     ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1906 
1907     /*
1908      * Initialize the cursor.
1909      */
1910     cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
1911 
1912     error = xfs_check_agi_freecount(cur);
1913     if (error)
1914         goto error0;
1915 
1916     /*
1917      * Look for the entry describing this inode.
1918      */
1919     if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1920         xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1921             __func__, error);
1922         goto error0;
1923     }
1924     if (XFS_IS_CORRUPT(mp, i != 1)) {
1925         error = -EFSCORRUPTED;
1926         goto error0;
1927     }
1928     error = xfs_inobt_get_rec(cur, &rec, &i);
1929     if (error) {
1930         xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1931             __func__, error);
1932         goto error0;
1933     }
1934     if (XFS_IS_CORRUPT(mp, i != 1)) {
1935         error = -EFSCORRUPTED;
1936         goto error0;
1937     }
1938     /*
1939      * Get the offset in the inode chunk.
1940      */
1941     off = agino - rec.ir_startino;
1942     ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1943     ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1944     /*
1945      * Mark the inode free & increment the count.
1946      */
1947     rec.ir_free |= XFS_INOBT_MASK(off);
1948     rec.ir_freecount++;
1949 
1950     /*
1951      * When an inode chunk is free, it becomes eligible for removal. Don't
1952      * remove the chunk if the block size is large enough for multiple inode
1953      * chunks (that might not be free).
1954      */
1955     if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
1956         mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1957         struct xfs_perag    *pag = agbp->b_pag;
1958 
1959         xic->deleted = true;
1960         xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
1961                 rec.ir_startino);
1962         xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1963 
1964         /*
1965          * Remove the inode cluster from the AGI B+Tree, adjust the
1966          * AGI and Superblock inode counts, and mark the disk space
1967          * to be freed when the transaction is committed.
1968          */
1969         ilen = rec.ir_freecount;
1970         be32_add_cpu(&agi->agi_count, -ilen);
1971         be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1972         xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1973         pag->pagi_freecount -= ilen - 1;
1974         pag->pagi_count -= ilen;
1975         xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1976         xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1977 
1978         if ((error = xfs_btree_delete(cur, &i))) {
1979             xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1980                 __func__, error);
1981             goto error0;
1982         }
1983 
1984         xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
1985     } else {
1986         xic->deleted = false;
1987 
1988         error = xfs_inobt_update(cur, &rec);
1989         if (error) {
1990             xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1991                 __func__, error);
1992             goto error0;
1993         }
1994 
1995         /*
1996          * Change the inode free counts and log the ag/sb changes.
1997          */
1998         be32_add_cpu(&agi->agi_freecount, 1);
1999         xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2000         pag->pagi_freecount++;
2001         xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2002     }
2003 
2004     error = xfs_check_agi_freecount(cur);
2005     if (error)
2006         goto error0;
2007 
2008     *orec = rec;
2009     xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2010     return 0;
2011 
2012 error0:
2013     xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2014     return error;
2015 }
2016 
2017 /*
2018  * Free an inode in the free inode btree.
2019  */
2020 STATIC int
2021 xfs_difree_finobt(
2022     struct xfs_mount        *mp,
2023     struct xfs_trans        *tp,
2024     struct xfs_buf          *agbp,
2025     struct xfs_perag        *pag,
2026     xfs_agino_t         agino,
2027     struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2028 {
2029     struct xfs_btree_cur        *cur;
2030     struct xfs_inobt_rec_incore rec;
2031     int             offset = agino - ibtrec->ir_startino;
2032     int             error;
2033     int             i;
2034 
2035     cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_FINO);
2036 
2037     error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2038     if (error)
2039         goto error;
2040     if (i == 0) {
2041         /*
2042          * If the record does not exist in the finobt, we must have just
2043          * freed an inode in a previously fully allocated chunk. If not,
2044          * something is out of sync.
2045          */
2046         if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
2047             error = -EFSCORRUPTED;
2048             goto error;
2049         }
2050 
2051         error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2052                          ibtrec->ir_count,
2053                          ibtrec->ir_freecount,
2054                          ibtrec->ir_free, &i);
2055         if (error)
2056             goto error;
2057         ASSERT(i == 1);
2058 
2059         goto out;
2060     }
2061 
2062     /*
2063      * Read and update the existing record. We could just copy the ibtrec
2064      * across here, but that would defeat the purpose of having redundant
2065      * metadata. By making the modifications independently, we can catch
2066      * corruptions that we wouldn't see if we just copied from one record
2067      * to another.
2068      */
2069     error = xfs_inobt_get_rec(cur, &rec, &i);
2070     if (error)
2071         goto error;
2072     if (XFS_IS_CORRUPT(mp, i != 1)) {
2073         error = -EFSCORRUPTED;
2074         goto error;
2075     }
2076 
2077     rec.ir_free |= XFS_INOBT_MASK(offset);
2078     rec.ir_freecount++;
2079 
2080     if (XFS_IS_CORRUPT(mp,
2081                rec.ir_free != ibtrec->ir_free ||
2082                rec.ir_freecount != ibtrec->ir_freecount)) {
2083         error = -EFSCORRUPTED;
2084         goto error;
2085     }
2086 
2087     /*
2088      * The content of inobt records should always match between the inobt
2089      * and finobt. The lifecycle of records in the finobt is different from
2090      * the inobt in that the finobt only tracks records with at least one
2091      * free inode. Hence, if all of the inodes are free and we aren't
2092      * keeping inode chunks permanently on disk, remove the record.
2093      * Otherwise, update the record with the new information.
2094      *
2095      * Note that we currently can't free chunks when the block size is large
2096      * enough for multiple chunks. Leave the finobt record to remain in sync
2097      * with the inobt.
2098      */
2099     if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
2100         mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
2101         error = xfs_btree_delete(cur, &i);
2102         if (error)
2103             goto error;
2104         ASSERT(i == 1);
2105     } else {
2106         error = xfs_inobt_update(cur, &rec);
2107         if (error)
2108             goto error;
2109     }
2110 
2111 out:
2112     error = xfs_check_agi_freecount(cur);
2113     if (error)
2114         goto error;
2115 
2116     xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2117     return 0;
2118 
2119 error:
2120     xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2121     return error;
2122 }
2123 
2124 /*
2125  * Free disk inode.  Carefully avoids touching the incore inode, all
2126  * manipulations incore are the caller's responsibility.
2127  * The on-disk inode is not changed by this operation, only the
2128  * btree (free inode mask) is changed.
2129  */
2130 int
2131 xfs_difree(
2132     struct xfs_trans    *tp,
2133     struct xfs_perag    *pag,
2134     xfs_ino_t       inode,
2135     struct xfs_icluster *xic)
2136 {
2137     /* REFERENCED */
2138     xfs_agblock_t       agbno;  /* block number containing inode */
2139     struct xfs_buf      *agbp;  /* buffer for allocation group header */
2140     xfs_agino_t     agino;  /* allocation group inode number */
2141     int         error;  /* error return value */
2142     struct xfs_mount    *mp = tp->t_mountp;
2143     struct xfs_inobt_rec_incore rec;/* btree record */
2144 
2145     /*
2146      * Break up inode number into its components.
2147      */
2148     if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
2149         xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
2150             __func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
2151         ASSERT(0);
2152         return -EINVAL;
2153     }
2154     agino = XFS_INO_TO_AGINO(mp, inode);
2155     if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino))  {
2156         xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2157             __func__, (unsigned long long)inode,
2158             (unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2159         ASSERT(0);
2160         return -EINVAL;
2161     }
2162     agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2163     if (agbno >= mp->m_sb.sb_agblocks)  {
2164         xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2165             __func__, agbno, mp->m_sb.sb_agblocks);
2166         ASSERT(0);
2167         return -EINVAL;
2168     }
2169     /*
2170      * Get the allocation group header.
2171      */
2172     error = xfs_ialloc_read_agi(pag, tp, &agbp);
2173     if (error) {
2174         xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2175             __func__, error);
2176         return error;
2177     }
2178 
2179     /*
2180      * Fix up the inode allocation btree.
2181      */
2182     error = xfs_difree_inobt(mp, tp, agbp, pag, agino, xic, &rec);
2183     if (error)
2184         goto error0;
2185 
2186     /*
2187      * Fix up the free inode btree.
2188      */
2189     if (xfs_has_finobt(mp)) {
2190         error = xfs_difree_finobt(mp, tp, agbp, pag, agino, &rec);
2191         if (error)
2192             goto error0;
2193     }
2194 
2195     return 0;
2196 
2197 error0:
2198     return error;
2199 }
2200 
2201 STATIC int
2202 xfs_imap_lookup(
2203     struct xfs_mount    *mp,
2204     struct xfs_trans    *tp,
2205     struct xfs_perag    *pag,
2206     xfs_agino_t     agino,
2207     xfs_agblock_t       agbno,
2208     xfs_agblock_t       *chunk_agbno,
2209     xfs_agblock_t       *offset_agbno,
2210     int         flags)
2211 {
2212     struct xfs_inobt_rec_incore rec;
2213     struct xfs_btree_cur    *cur;
2214     struct xfs_buf      *agbp;
2215     int         error;
2216     int         i;
2217 
2218     error = xfs_ialloc_read_agi(pag, tp, &agbp);
2219     if (error) {
2220         xfs_alert(mp,
2221             "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2222             __func__, error, pag->pag_agno);
2223         return error;
2224     }
2225 
2226     /*
2227      * Lookup the inode record for the given agino. If the record cannot be
2228      * found, then it's an invalid inode number and we should abort. Once
2229      * we have a record, we need to ensure it contains the inode number
2230      * we are looking up.
2231      */
2232     cur = xfs_inobt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_INO);
2233     error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2234     if (!error) {
2235         if (i)
2236             error = xfs_inobt_get_rec(cur, &rec, &i);
2237         if (!error && i == 0)
2238             error = -EINVAL;
2239     }
2240 
2241     xfs_trans_brelse(tp, agbp);
2242     xfs_btree_del_cursor(cur, error);
2243     if (error)
2244         return error;
2245 
2246     /* check that the returned record contains the required inode */
2247     if (rec.ir_startino > agino ||
2248         rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
2249         return -EINVAL;
2250 
2251     /* for untrusted inodes check it is allocated first */
2252     if ((flags & XFS_IGET_UNTRUSTED) &&
2253         (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2254         return -EINVAL;
2255 
2256     *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2257     *offset_agbno = agbno - *chunk_agbno;
2258     return 0;
2259 }
2260 
2261 /*
2262  * Return the location of the inode in imap, for mapping it into a buffer.
2263  */
2264 int
2265 xfs_imap(
2266     struct xfs_mount     *mp,   /* file system mount structure */
2267     struct xfs_trans     *tp,   /* transaction pointer */
2268     xfs_ino_t       ino,    /* inode to locate */
2269     struct xfs_imap     *imap,  /* location map structure */
2270     uint            flags)  /* flags for inode btree lookup */
2271 {
2272     xfs_agblock_t       agbno;  /* block number of inode in the alloc group */
2273     xfs_agino_t     agino;  /* inode number within alloc group */
2274     xfs_agblock_t       chunk_agbno;    /* first block in inode chunk */
2275     xfs_agblock_t       cluster_agbno;  /* first block in inode cluster */
2276     int         error;  /* error code */
2277     int         offset; /* index of inode in its buffer */
2278     xfs_agblock_t       offset_agbno;   /* blks from chunk start to inode */
2279     struct xfs_perag    *pag;
2280 
2281     ASSERT(ino != NULLFSINO);
2282 
2283     /*
2284      * Split up the inode number into its parts.
2285      */
2286     pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
2287     agino = XFS_INO_TO_AGINO(mp, ino);
2288     agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2289     if (!pag || agbno >= mp->m_sb.sb_agblocks ||
2290         ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2291         error = -EINVAL;
2292 #ifdef DEBUG
2293         /*
2294          * Don't output diagnostic information for untrusted inodes
2295          * as they can be invalid without implying corruption.
2296          */
2297         if (flags & XFS_IGET_UNTRUSTED)
2298             goto out_drop;
2299         if (!pag) {
2300             xfs_alert(mp,
2301                 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2302                 __func__, XFS_INO_TO_AGNO(mp, ino),
2303                 mp->m_sb.sb_agcount);
2304         }
2305         if (agbno >= mp->m_sb.sb_agblocks) {
2306             xfs_alert(mp,
2307         "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2308                 __func__, (unsigned long long)agbno,
2309                 (unsigned long)mp->m_sb.sb_agblocks);
2310         }
2311         if (pag && ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
2312             xfs_alert(mp,
2313         "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2314                 __func__, ino,
2315                 XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
2316         }
2317         xfs_stack_trace();
2318 #endif /* DEBUG */
2319         goto out_drop;
2320     }
2321 
2322     /*
2323      * For bulkstat and handle lookups, we have an untrusted inode number
2324      * that we have to verify is valid. We cannot do this just by reading
2325      * the inode buffer as it may have been unlinked and removed leaving
2326      * inodes in stale state on disk. Hence we have to do a btree lookup
2327      * in all cases where an untrusted inode number is passed.
2328      */
2329     if (flags & XFS_IGET_UNTRUSTED) {
2330         error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2331                     &chunk_agbno, &offset_agbno, flags);
2332         if (error)
2333             goto out_drop;
2334         goto out_map;
2335     }
2336 
2337     /*
2338      * If the inode cluster size is the same as the blocksize or
2339      * smaller we get to the buffer by simple arithmetics.
2340      */
2341     if (M_IGEO(mp)->blocks_per_cluster == 1) {
2342         offset = XFS_INO_TO_OFFSET(mp, ino);
2343         ASSERT(offset < mp->m_sb.sb_inopblock);
2344 
2345         imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
2346         imap->im_len = XFS_FSB_TO_BB(mp, 1);
2347         imap->im_boffset = (unsigned short)(offset <<
2348                             mp->m_sb.sb_inodelog);
2349         error = 0;
2350         goto out_drop;
2351     }
2352 
2353     /*
2354      * If the inode chunks are aligned then use simple maths to
2355      * find the location. Otherwise we have to do a btree
2356      * lookup to find the location.
2357      */
2358     if (M_IGEO(mp)->inoalign_mask) {
2359         offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
2360         chunk_agbno = agbno - offset_agbno;
2361     } else {
2362         error = xfs_imap_lookup(mp, tp, pag, agino, agbno,
2363                     &chunk_agbno, &offset_agbno, flags);
2364         if (error)
2365             goto out_drop;
2366     }
2367 
2368 out_map:
2369     ASSERT(agbno >= chunk_agbno);
2370     cluster_agbno = chunk_agbno +
2371         ((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
2372          M_IGEO(mp)->blocks_per_cluster);
2373     offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2374         XFS_INO_TO_OFFSET(mp, ino);
2375 
2376     imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
2377     imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
2378     imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2379 
2380     /*
2381      * If the inode number maps to a block outside the bounds
2382      * of the file system then return NULL rather than calling
2383      * read_buf and panicing when we get an error from the
2384      * driver.
2385      */
2386     if ((imap->im_blkno + imap->im_len) >
2387         XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2388         xfs_alert(mp,
2389     "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2390             __func__, (unsigned long long) imap->im_blkno,
2391             (unsigned long long) imap->im_len,
2392             XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2393         error = -EINVAL;
2394         goto out_drop;
2395     }
2396     error = 0;
2397 out_drop:
2398     if (pag)
2399         xfs_perag_put(pag);
2400     return error;
2401 }
2402 
2403 /*
2404  * Log specified fields for the ag hdr (inode section). The growth of the agi
2405  * structure over time requires that we interpret the buffer as two logical
2406  * regions delineated by the end of the unlinked list. This is due to the size
2407  * of the hash table and its location in the middle of the agi.
2408  *
2409  * For example, a request to log a field before agi_unlinked and a field after
2410  * agi_unlinked could cause us to log the entire hash table and use an excessive
2411  * amount of log space. To avoid this behavior, log the region up through
2412  * agi_unlinked in one call and the region after agi_unlinked through the end of
2413  * the structure in another.
2414  */
2415 void
2416 xfs_ialloc_log_agi(
2417     struct xfs_trans    *tp,
2418     struct xfs_buf      *bp,
2419     uint32_t        fields)
2420 {
2421     int         first;      /* first byte number */
2422     int         last;       /* last byte number */
2423     static const short  offsets[] = {   /* field starting offsets */
2424                     /* keep in sync with bit definitions */
2425         offsetof(xfs_agi_t, agi_magicnum),
2426         offsetof(xfs_agi_t, agi_versionnum),
2427         offsetof(xfs_agi_t, agi_seqno),
2428         offsetof(xfs_agi_t, agi_length),
2429         offsetof(xfs_agi_t, agi_count),
2430         offsetof(xfs_agi_t, agi_root),
2431         offsetof(xfs_agi_t, agi_level),
2432         offsetof(xfs_agi_t, agi_freecount),
2433         offsetof(xfs_agi_t, agi_newino),
2434         offsetof(xfs_agi_t, agi_dirino),
2435         offsetof(xfs_agi_t, agi_unlinked),
2436         offsetof(xfs_agi_t, agi_free_root),
2437         offsetof(xfs_agi_t, agi_free_level),
2438         offsetof(xfs_agi_t, agi_iblocks),
2439         sizeof(xfs_agi_t)
2440     };
2441 #ifdef DEBUG
2442     struct xfs_agi      *agi = bp->b_addr;
2443 
2444     ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2445 #endif
2446 
2447     /*
2448      * Compute byte offsets for the first and last fields in the first
2449      * region and log the agi buffer. This only logs up through
2450      * agi_unlinked.
2451      */
2452     if (fields & XFS_AGI_ALL_BITS_R1) {
2453         xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2454                   &first, &last);
2455         xfs_trans_log_buf(tp, bp, first, last);
2456     }
2457 
2458     /*
2459      * Mask off the bits in the first region and calculate the first and
2460      * last field offsets for any bits in the second region.
2461      */
2462     fields &= ~XFS_AGI_ALL_BITS_R1;
2463     if (fields) {
2464         xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2465                   &first, &last);
2466         xfs_trans_log_buf(tp, bp, first, last);
2467     }
2468 }
2469 
2470 static xfs_failaddr_t
2471 xfs_agi_verify(
2472     struct xfs_buf  *bp)
2473 {
2474     struct xfs_mount *mp = bp->b_mount;
2475     struct xfs_agi  *agi = bp->b_addr;
2476     int     i;
2477 
2478     if (xfs_has_crc(mp)) {
2479         if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2480             return __this_address;
2481         if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
2482             return __this_address;
2483     }
2484 
2485     /*
2486      * Validate the magic number of the agi block.
2487      */
2488     if (!xfs_verify_magic(bp, agi->agi_magicnum))
2489         return __this_address;
2490     if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2491         return __this_address;
2492 
2493     if (be32_to_cpu(agi->agi_level) < 1 ||
2494         be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
2495         return __this_address;
2496 
2497     if (xfs_has_finobt(mp) &&
2498         (be32_to_cpu(agi->agi_free_level) < 1 ||
2499          be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
2500         return __this_address;
2501 
2502     /*
2503      * during growfs operations, the perag is not fully initialised,
2504      * so we can't use it for any useful checking. growfs ensures we can't
2505      * use it by using uncached buffers that don't have the perag attached
2506      * so we can detect and avoid this problem.
2507      */
2508     if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2509         return __this_address;
2510 
2511     for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
2512         if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
2513             continue;
2514         if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
2515             return __this_address;
2516     }
2517 
2518     return NULL;
2519 }
2520 
2521 static void
2522 xfs_agi_read_verify(
2523     struct xfs_buf  *bp)
2524 {
2525     struct xfs_mount *mp = bp->b_mount;
2526     xfs_failaddr_t  fa;
2527 
2528     if (xfs_has_crc(mp) &&
2529         !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2530         xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2531     else {
2532         fa = xfs_agi_verify(bp);
2533         if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2534             xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2535     }
2536 }
2537 
2538 static void
2539 xfs_agi_write_verify(
2540     struct xfs_buf  *bp)
2541 {
2542     struct xfs_mount    *mp = bp->b_mount;
2543     struct xfs_buf_log_item *bip = bp->b_log_item;
2544     struct xfs_agi      *agi = bp->b_addr;
2545     xfs_failaddr_t      fa;
2546 
2547     fa = xfs_agi_verify(bp);
2548     if (fa) {
2549         xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2550         return;
2551     }
2552 
2553     if (!xfs_has_crc(mp))
2554         return;
2555 
2556     if (bip)
2557         agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2558     xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2559 }
2560 
2561 const struct xfs_buf_ops xfs_agi_buf_ops = {
2562     .name = "xfs_agi",
2563     .magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
2564     .verify_read = xfs_agi_read_verify,
2565     .verify_write = xfs_agi_write_verify,
2566     .verify_struct = xfs_agi_verify,
2567 };
2568 
2569 /*
2570  * Read in the allocation group header (inode allocation section)
2571  */
2572 int
2573 xfs_read_agi(
2574     struct xfs_perag    *pag,
2575     struct xfs_trans    *tp,
2576     struct xfs_buf      **agibpp)
2577 {
2578     struct xfs_mount    *mp = pag->pag_mount;
2579     int         error;
2580 
2581     trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
2582 
2583     error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2584             XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
2585             XFS_FSS_TO_BB(mp, 1), 0, agibpp, &xfs_agi_buf_ops);
2586     if (error)
2587         return error;
2588     if (tp)
2589         xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
2590 
2591     xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
2592     return 0;
2593 }
2594 
2595 /*
2596  * Read in the agi and initialise the per-ag data. If the caller supplies a
2597  * @agibpp, return the locked AGI buffer to them, otherwise release it.
2598  */
2599 int
2600 xfs_ialloc_read_agi(
2601     struct xfs_perag    *pag,
2602     struct xfs_trans    *tp,
2603     struct xfs_buf      **agibpp)
2604 {
2605     struct xfs_buf      *agibp;
2606     struct xfs_agi      *agi;
2607     int         error;
2608 
2609     trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
2610 
2611     error = xfs_read_agi(pag, tp, &agibp);
2612     if (error)
2613         return error;
2614 
2615     agi = agibp->b_addr;
2616     if (!pag->pagi_init) {
2617         pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2618         pag->pagi_count = be32_to_cpu(agi->agi_count);
2619         pag->pagi_init = 1;
2620     }
2621 
2622     /*
2623      * It's possible for these to be out of sync if
2624      * we are in the middle of a forced shutdown.
2625      */
2626     ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2627         xfs_is_shutdown(pag->pag_mount));
2628     if (agibpp)
2629         *agibpp = agibp;
2630     else
2631         xfs_trans_brelse(tp, agibp);
2632     return 0;
2633 }
2634 
2635 /* Is there an inode record covering a given range of inode numbers? */
2636 int
2637 xfs_ialloc_has_inode_record(
2638     struct xfs_btree_cur    *cur,
2639     xfs_agino_t     low,
2640     xfs_agino_t     high,
2641     bool            *exists)
2642 {
2643     struct xfs_inobt_rec_incore irec;
2644     xfs_agino_t     agino;
2645     uint16_t        holemask;
2646     int         has_record;
2647     int         i;
2648     int         error;
2649 
2650     *exists = false;
2651     error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2652     while (error == 0 && has_record) {
2653         error = xfs_inobt_get_rec(cur, &irec, &has_record);
2654         if (error || irec.ir_startino > high)
2655             break;
2656 
2657         agino = irec.ir_startino;
2658         holemask = irec.ir_holemask;
2659         for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2660                 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2661             if (holemask & 1)
2662                 continue;
2663             if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2664                     agino <= high) {
2665                 *exists = true;
2666                 return 0;
2667             }
2668         }
2669 
2670         error = xfs_btree_increment(cur, 0, &has_record);
2671     }
2672     return error;
2673 }
2674 
2675 /* Is there an inode record covering a given extent? */
2676 int
2677 xfs_ialloc_has_inodes_at_extent(
2678     struct xfs_btree_cur    *cur,
2679     xfs_agblock_t       bno,
2680     xfs_extlen_t        len,
2681     bool            *exists)
2682 {
2683     xfs_agino_t     low;
2684     xfs_agino_t     high;
2685 
2686     low = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
2687     high = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
2688 
2689     return xfs_ialloc_has_inode_record(cur, low, high, exists);
2690 }
2691 
2692 struct xfs_ialloc_count_inodes {
2693     xfs_agino_t         count;
2694     xfs_agino_t         freecount;
2695 };
2696 
2697 /* Record inode counts across all inobt records. */
2698 STATIC int
2699 xfs_ialloc_count_inodes_rec(
2700     struct xfs_btree_cur        *cur,
2701     const union xfs_btree_rec   *rec,
2702     void                *priv)
2703 {
2704     struct xfs_inobt_rec_incore irec;
2705     struct xfs_ialloc_count_inodes  *ci = priv;
2706 
2707     xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2708     ci->count += irec.ir_count;
2709     ci->freecount += irec.ir_freecount;
2710 
2711     return 0;
2712 }
2713 
2714 /* Count allocated and free inodes under an inobt. */
2715 int
2716 xfs_ialloc_count_inodes(
2717     struct xfs_btree_cur        *cur,
2718     xfs_agino_t         *count,
2719     xfs_agino_t         *freecount)
2720 {
2721     struct xfs_ialloc_count_inodes  ci = {0};
2722     int             error;
2723 
2724     ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2725     error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2726     if (error)
2727         return error;
2728 
2729     *count = ci.count;
2730     *freecount = ci.freecount;
2731     return 0;
2732 }
2733 
2734 /*
2735  * Initialize inode-related geometry information.
2736  *
2737  * Compute the inode btree min and max levels and set maxicount.
2738  *
2739  * Set the inode cluster size.  This may still be overridden by the file
2740  * system block size if it is larger than the chosen cluster size.
2741  *
2742  * For v5 filesystems, scale the cluster size with the inode size to keep a
2743  * constant ratio of inode per cluster buffer, but only if mkfs has set the
2744  * inode alignment value appropriately for larger cluster sizes.
2745  *
2746  * Then compute the inode cluster alignment information.
2747  */
2748 void
2749 xfs_ialloc_setup_geometry(
2750     struct xfs_mount    *mp)
2751 {
2752     struct xfs_sb       *sbp = &mp->m_sb;
2753     struct xfs_ino_geometry *igeo = M_IGEO(mp);
2754     uint64_t        icount;
2755     uint            inodes;
2756 
2757     igeo->new_diflags2 = 0;
2758     if (xfs_has_bigtime(mp))
2759         igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
2760     if (xfs_has_large_extent_counts(mp))
2761         igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
2762 
2763     /* Compute inode btree geometry. */
2764     igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
2765     igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
2766     igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
2767     igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
2768     igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
2769 
2770     igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
2771             sbp->sb_inopblock);
2772     igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
2773 
2774     if (sbp->sb_spino_align)
2775         igeo->ialloc_min_blks = sbp->sb_spino_align;
2776     else
2777         igeo->ialloc_min_blks = igeo->ialloc_blks;
2778 
2779     /* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
2780     inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2781     igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
2782             inodes);
2783     ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
2784 
2785     /*
2786      * Set the maximum inode count for this filesystem, being careful not
2787      * to use obviously garbage sb_inopblog/sb_inopblock values.  Regular
2788      * users should never get here due to failing sb verification, but
2789      * certain users (xfs_db) need to be usable even with corrupt metadata.
2790      */
2791     if (sbp->sb_imax_pct && igeo->ialloc_blks) {
2792         /*
2793          * Make sure the maximum inode count is a multiple
2794          * of the units we allocate inodes in.
2795          */
2796         icount = sbp->sb_dblocks * sbp->sb_imax_pct;
2797         do_div(icount, 100);
2798         do_div(icount, igeo->ialloc_blks);
2799         igeo->maxicount = XFS_FSB_TO_INO(mp,
2800                 icount * igeo->ialloc_blks);
2801     } else {
2802         igeo->maxicount = 0;
2803     }
2804 
2805     /*
2806      * Compute the desired size of an inode cluster buffer size, which
2807      * starts at 8K and (on v5 filesystems) scales up with larger inode
2808      * sizes.
2809      *
2810      * Preserve the desired inode cluster size because the sparse inodes
2811      * feature uses that desired size (not the actual size) to compute the
2812      * sparse inode alignment.  The mount code validates this value, so we
2813      * cannot change the behavior.
2814      */
2815     igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
2816     if (xfs_has_v3inodes(mp)) {
2817         int new_size = igeo->inode_cluster_size_raw;
2818 
2819         new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
2820         if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
2821             igeo->inode_cluster_size_raw = new_size;
2822     }
2823 
2824     /* Calculate inode cluster ratios. */
2825     if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
2826         igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
2827                 igeo->inode_cluster_size_raw);
2828     else
2829         igeo->blocks_per_cluster = 1;
2830     igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
2831     igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
2832 
2833     /* Calculate inode cluster alignment. */
2834     if (xfs_has_align(mp) &&
2835         mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
2836         igeo->cluster_align = mp->m_sb.sb_inoalignmt;
2837     else
2838         igeo->cluster_align = 1;
2839     igeo->inoalign_mask = igeo->cluster_align - 1;
2840     igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
2841 
2842     /*
2843      * If we are using stripe alignment, check whether
2844      * the stripe unit is a multiple of the inode alignment
2845      */
2846     if (mp->m_dalign && igeo->inoalign_mask &&
2847         !(mp->m_dalign & igeo->inoalign_mask))
2848         igeo->ialloc_align = mp->m_dalign;
2849     else
2850         igeo->ialloc_align = 0;
2851 }
2852 
2853 /* Compute the location of the root directory inode that is laid out by mkfs. */
2854 xfs_ino_t
2855 xfs_ialloc_calc_rootino(
2856     struct xfs_mount    *mp,
2857     int         sunit)
2858 {
2859     struct xfs_ino_geometry *igeo = M_IGEO(mp);
2860     xfs_agblock_t       first_bno;
2861 
2862     /*
2863      * Pre-calculate the geometry of AG 0.  We know what it looks like
2864      * because libxfs knows how to create allocation groups now.
2865      *
2866      * first_bno is the first block in which mkfs could possibly have
2867      * allocated the root directory inode, once we factor in the metadata
2868      * that mkfs formats before it.  Namely, the four AG headers...
2869      */
2870     first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
2871 
2872     /* ...the two free space btree roots... */
2873     first_bno += 2;
2874 
2875     /* ...the inode btree root... */
2876     first_bno += 1;
2877 
2878     /* ...the initial AGFL... */
2879     first_bno += xfs_alloc_min_freelist(mp, NULL);
2880 
2881     /* ...the free inode btree root... */
2882     if (xfs_has_finobt(mp))
2883         first_bno++;
2884 
2885     /* ...the reverse mapping btree root... */
2886     if (xfs_has_rmapbt(mp))
2887         first_bno++;
2888 
2889     /* ...the reference count btree... */
2890     if (xfs_has_reflink(mp))
2891         first_bno++;
2892 
2893     /*
2894      * ...and the log, if it is allocated in the first allocation group.
2895      *
2896      * This can happen with filesystems that only have a single
2897      * allocation group, or very odd geometries created by old mkfs
2898      * versions on very small filesystems.
2899      */
2900     if (xfs_ag_contains_log(mp, 0))
2901          first_bno += mp->m_sb.sb_logblocks;
2902 
2903     /*
2904      * Now round first_bno up to whatever allocation alignment is given
2905      * by the filesystem or was passed in.
2906      */
2907     if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
2908         first_bno = roundup(first_bno, sunit);
2909     else if (xfs_has_align(mp) &&
2910             mp->m_sb.sb_inoalignmt > 1)
2911         first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
2912 
2913     return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
2914 }
2915 
2916 /*
2917  * Ensure there are not sparse inode clusters that cross the new EOAG.
2918  *
2919  * This is a no-op for non-spinode filesystems since clusters are always fully
2920  * allocated and checking the bnobt suffices.  However, a spinode filesystem
2921  * could have a record where the upper inodes are free blocks.  If those blocks
2922  * were removed from the filesystem, the inode record would extend beyond EOAG,
2923  * which will be flagged as corruption.
2924  */
2925 int
2926 xfs_ialloc_check_shrink(
2927     struct xfs_trans    *tp,
2928     xfs_agnumber_t      agno,
2929     struct xfs_buf      *agibp,
2930     xfs_agblock_t       new_length)
2931 {
2932     struct xfs_inobt_rec_incore rec;
2933     struct xfs_btree_cur    *cur;
2934     struct xfs_mount    *mp = tp->t_mountp;
2935     struct xfs_perag    *pag;
2936     xfs_agino_t     agino = XFS_AGB_TO_AGINO(mp, new_length);
2937     int         has;
2938     int         error;
2939 
2940     if (!xfs_has_sparseinodes(mp))
2941         return 0;
2942 
2943     pag = xfs_perag_get(mp, agno);
2944     cur = xfs_inobt_init_cursor(mp, tp, agibp, pag, XFS_BTNUM_INO);
2945 
2946     /* Look up the inobt record that would correspond to the new EOFS. */
2947     error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
2948     if (error || !has)
2949         goto out;
2950 
2951     error = xfs_inobt_get_rec(cur, &rec, &has);
2952     if (error)
2953         goto out;
2954 
2955     if (!has) {
2956         error = -EFSCORRUPTED;
2957         goto out;
2958     }
2959 
2960     /* If the record covers inodes that would be beyond EOFS, bail out. */
2961     if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
2962         error = -ENOSPC;
2963         goto out;
2964     }
2965 out:
2966     xfs_btree_del_cursor(cur, error);
2967     xfs_perag_put(pag);
2968     return error;
2969 }