Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
0004  * All Rights Reserved.
0005  */
0006 #include "xfs.h"
0007 #include "xfs_fs.h"
0008 #include "xfs_shared.h"
0009 #include "xfs_format.h"
0010 #include "xfs_log_format.h"
0011 #include "xfs_trans_resv.h"
0012 #include "xfs_bit.h"
0013 #include "xfs_mount.h"
0014 #include "xfs_inode.h"
0015 #include "xfs_trans.h"
0016 #include "xfs_buf_item.h"
0017 #include "xfs_btree.h"
0018 #include "xfs_errortag.h"
0019 #include "xfs_error.h"
0020 #include "xfs_trace.h"
0021 #include "xfs_alloc.h"
0022 #include "xfs_log.h"
0023 #include "xfs_btree_staging.h"
0024 #include "xfs_ag.h"
0025 #include "xfs_alloc_btree.h"
0026 #include "xfs_ialloc_btree.h"
0027 #include "xfs_bmap_btree.h"
0028 #include "xfs_rmap_btree.h"
0029 #include "xfs_refcount_btree.h"
0030 
0031 /*
0032  * Btree magic numbers.
0033  */
0034 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
0035     { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
0036       XFS_FIBT_MAGIC, 0 },
0037     { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
0038       XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
0039       XFS_REFC_CRC_MAGIC }
0040 };
0041 
0042 uint32_t
0043 xfs_btree_magic(
0044     int         crc,
0045     xfs_btnum_t     btnum)
0046 {
0047     uint32_t        magic = xfs_magics[crc][btnum];
0048 
0049     /* Ensure we asked for crc for crc-only magics. */
0050     ASSERT(magic != 0);
0051     return magic;
0052 }
0053 
0054 /*
0055  * These sibling pointer checks are optimised for null sibling pointers. This
0056  * happens a lot, and we don't need to byte swap at runtime if the sibling
0057  * pointer is NULL.
0058  *
0059  * These are explicitly marked at inline because the cost of calling them as
0060  * functions instead of inlining them is about 36 bytes extra code per call site
0061  * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
0062  * two sibling check functions reduces the compiled code size by over 300
0063  * bytes.
0064  */
0065 static inline xfs_failaddr_t
0066 xfs_btree_check_lblock_siblings(
0067     struct xfs_mount    *mp,
0068     struct xfs_btree_cur    *cur,
0069     int         level,
0070     xfs_fsblock_t       fsb,
0071     __be64          dsibling)
0072 {
0073     xfs_fsblock_t       sibling;
0074 
0075     if (dsibling == cpu_to_be64(NULLFSBLOCK))
0076         return NULL;
0077 
0078     sibling = be64_to_cpu(dsibling);
0079     if (sibling == fsb)
0080         return __this_address;
0081     if (level >= 0) {
0082         if (!xfs_btree_check_lptr(cur, sibling, level + 1))
0083             return __this_address;
0084     } else {
0085         if (!xfs_verify_fsbno(mp, sibling))
0086             return __this_address;
0087     }
0088 
0089     return NULL;
0090 }
0091 
0092 static inline xfs_failaddr_t
0093 xfs_btree_check_sblock_siblings(
0094     struct xfs_perag    *pag,
0095     struct xfs_btree_cur    *cur,
0096     int         level,
0097     xfs_agblock_t       agbno,
0098     __be32          dsibling)
0099 {
0100     xfs_agblock_t       sibling;
0101 
0102     if (dsibling == cpu_to_be32(NULLAGBLOCK))
0103         return NULL;
0104 
0105     sibling = be32_to_cpu(dsibling);
0106     if (sibling == agbno)
0107         return __this_address;
0108     if (level >= 0) {
0109         if (!xfs_btree_check_sptr(cur, sibling, level + 1))
0110             return __this_address;
0111     } else {
0112         if (!xfs_verify_agbno(pag, sibling))
0113             return __this_address;
0114     }
0115     return NULL;
0116 }
0117 
0118 /*
0119  * Check a long btree block header.  Return the address of the failing check,
0120  * or NULL if everything is ok.
0121  */
0122 xfs_failaddr_t
0123 __xfs_btree_check_lblock(
0124     struct xfs_btree_cur    *cur,
0125     struct xfs_btree_block  *block,
0126     int         level,
0127     struct xfs_buf      *bp)
0128 {
0129     struct xfs_mount    *mp = cur->bc_mp;
0130     xfs_btnum_t     btnum = cur->bc_btnum;
0131     int         crc = xfs_has_crc(mp);
0132     xfs_failaddr_t      fa;
0133     xfs_fsblock_t       fsb = NULLFSBLOCK;
0134 
0135     if (crc) {
0136         if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
0137             return __this_address;
0138         if (block->bb_u.l.bb_blkno !=
0139             cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
0140             return __this_address;
0141         if (block->bb_u.l.bb_pad != cpu_to_be32(0))
0142             return __this_address;
0143     }
0144 
0145     if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
0146         return __this_address;
0147     if (be16_to_cpu(block->bb_level) != level)
0148         return __this_address;
0149     if (be16_to_cpu(block->bb_numrecs) >
0150         cur->bc_ops->get_maxrecs(cur, level))
0151         return __this_address;
0152 
0153     if (bp)
0154         fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
0155 
0156     fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
0157             block->bb_u.l.bb_leftsib);
0158     if (!fa)
0159         fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
0160                 block->bb_u.l.bb_rightsib);
0161     return fa;
0162 }
0163 
0164 /* Check a long btree block header. */
0165 static int
0166 xfs_btree_check_lblock(
0167     struct xfs_btree_cur    *cur,
0168     struct xfs_btree_block  *block,
0169     int         level,
0170     struct xfs_buf      *bp)
0171 {
0172     struct xfs_mount    *mp = cur->bc_mp;
0173     xfs_failaddr_t      fa;
0174 
0175     fa = __xfs_btree_check_lblock(cur, block, level, bp);
0176     if (XFS_IS_CORRUPT(mp, fa != NULL) ||
0177         XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
0178         if (bp)
0179             trace_xfs_btree_corrupt(bp, _RET_IP_);
0180         return -EFSCORRUPTED;
0181     }
0182     return 0;
0183 }
0184 
0185 /*
0186  * Check a short btree block header.  Return the address of the failing check,
0187  * or NULL if everything is ok.
0188  */
0189 xfs_failaddr_t
0190 __xfs_btree_check_sblock(
0191     struct xfs_btree_cur    *cur,
0192     struct xfs_btree_block  *block,
0193     int         level,
0194     struct xfs_buf      *bp)
0195 {
0196     struct xfs_mount    *mp = cur->bc_mp;
0197     struct xfs_perag    *pag = cur->bc_ag.pag;
0198     xfs_btnum_t     btnum = cur->bc_btnum;
0199     int         crc = xfs_has_crc(mp);
0200     xfs_failaddr_t      fa;
0201     xfs_agblock_t       agbno = NULLAGBLOCK;
0202 
0203     if (crc) {
0204         if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
0205             return __this_address;
0206         if (block->bb_u.s.bb_blkno !=
0207             cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
0208             return __this_address;
0209     }
0210 
0211     if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
0212         return __this_address;
0213     if (be16_to_cpu(block->bb_level) != level)
0214         return __this_address;
0215     if (be16_to_cpu(block->bb_numrecs) >
0216         cur->bc_ops->get_maxrecs(cur, level))
0217         return __this_address;
0218 
0219     if (bp)
0220         agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
0221 
0222     fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
0223             block->bb_u.s.bb_leftsib);
0224     if (!fa)
0225         fa = xfs_btree_check_sblock_siblings(pag, cur, level, agbno,
0226                 block->bb_u.s.bb_rightsib);
0227     return fa;
0228 }
0229 
0230 /* Check a short btree block header. */
0231 STATIC int
0232 xfs_btree_check_sblock(
0233     struct xfs_btree_cur    *cur,
0234     struct xfs_btree_block  *block,
0235     int         level,
0236     struct xfs_buf      *bp)
0237 {
0238     struct xfs_mount    *mp = cur->bc_mp;
0239     xfs_failaddr_t      fa;
0240 
0241     fa = __xfs_btree_check_sblock(cur, block, level, bp);
0242     if (XFS_IS_CORRUPT(mp, fa != NULL) ||
0243         XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
0244         if (bp)
0245             trace_xfs_btree_corrupt(bp, _RET_IP_);
0246         return -EFSCORRUPTED;
0247     }
0248     return 0;
0249 }
0250 
0251 /*
0252  * Debug routine: check that block header is ok.
0253  */
0254 int
0255 xfs_btree_check_block(
0256     struct xfs_btree_cur    *cur,   /* btree cursor */
0257     struct xfs_btree_block  *block, /* generic btree block pointer */
0258     int         level,  /* level of the btree block */
0259     struct xfs_buf      *bp)    /* buffer containing block, if any */
0260 {
0261     if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
0262         return xfs_btree_check_lblock(cur, block, level, bp);
0263     else
0264         return xfs_btree_check_sblock(cur, block, level, bp);
0265 }
0266 
0267 /* Check that this long pointer is valid and points within the fs. */
0268 bool
0269 xfs_btree_check_lptr(
0270     struct xfs_btree_cur    *cur,
0271     xfs_fsblock_t       fsbno,
0272     int         level)
0273 {
0274     if (level <= 0)
0275         return false;
0276     return xfs_verify_fsbno(cur->bc_mp, fsbno);
0277 }
0278 
0279 /* Check that this short pointer is valid and points within the AG. */
0280 bool
0281 xfs_btree_check_sptr(
0282     struct xfs_btree_cur    *cur,
0283     xfs_agblock_t       agbno,
0284     int         level)
0285 {
0286     if (level <= 0)
0287         return false;
0288     return xfs_verify_agbno(cur->bc_ag.pag, agbno);
0289 }
0290 
0291 /*
0292  * Check that a given (indexed) btree pointer at a certain level of a
0293  * btree is valid and doesn't point past where it should.
0294  */
0295 static int
0296 xfs_btree_check_ptr(
0297     struct xfs_btree_cur        *cur,
0298     const union xfs_btree_ptr   *ptr,
0299     int             index,
0300     int             level)
0301 {
0302     if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
0303         if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
0304                 level))
0305             return 0;
0306         xfs_err(cur->bc_mp,
0307 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
0308                 cur->bc_ino.ip->i_ino,
0309                 cur->bc_ino.whichfork, cur->bc_btnum,
0310                 level, index);
0311     } else {
0312         if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
0313                 level))
0314             return 0;
0315         xfs_err(cur->bc_mp,
0316 "AG %u: Corrupt btree %d pointer at level %d index %d.",
0317                 cur->bc_ag.pag->pag_agno, cur->bc_btnum,
0318                 level, index);
0319     }
0320 
0321     return -EFSCORRUPTED;
0322 }
0323 
0324 #ifdef DEBUG
0325 # define xfs_btree_debug_check_ptr  xfs_btree_check_ptr
0326 #else
0327 # define xfs_btree_debug_check_ptr(...) (0)
0328 #endif
0329 
0330 /*
0331  * Calculate CRC on the whole btree block and stuff it into the
0332  * long-form btree header.
0333  *
0334  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
0335  * it into the buffer so recovery knows what the last modification was that made
0336  * it to disk.
0337  */
0338 void
0339 xfs_btree_lblock_calc_crc(
0340     struct xfs_buf      *bp)
0341 {
0342     struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
0343     struct xfs_buf_log_item *bip = bp->b_log_item;
0344 
0345     if (!xfs_has_crc(bp->b_mount))
0346         return;
0347     if (bip)
0348         block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
0349     xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
0350 }
0351 
0352 bool
0353 xfs_btree_lblock_verify_crc(
0354     struct xfs_buf      *bp)
0355 {
0356     struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
0357     struct xfs_mount    *mp = bp->b_mount;
0358 
0359     if (xfs_has_crc(mp)) {
0360         if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
0361             return false;
0362         return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
0363     }
0364 
0365     return true;
0366 }
0367 
0368 /*
0369  * Calculate CRC on the whole btree block and stuff it into the
0370  * short-form btree header.
0371  *
0372  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
0373  * it into the buffer so recovery knows what the last modification was that made
0374  * it to disk.
0375  */
0376 void
0377 xfs_btree_sblock_calc_crc(
0378     struct xfs_buf      *bp)
0379 {
0380     struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
0381     struct xfs_buf_log_item *bip = bp->b_log_item;
0382 
0383     if (!xfs_has_crc(bp->b_mount))
0384         return;
0385     if (bip)
0386         block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
0387     xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
0388 }
0389 
0390 bool
0391 xfs_btree_sblock_verify_crc(
0392     struct xfs_buf      *bp)
0393 {
0394     struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
0395     struct xfs_mount    *mp = bp->b_mount;
0396 
0397     if (xfs_has_crc(mp)) {
0398         if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
0399             return false;
0400         return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
0401     }
0402 
0403     return true;
0404 }
0405 
0406 static int
0407 xfs_btree_free_block(
0408     struct xfs_btree_cur    *cur,
0409     struct xfs_buf      *bp)
0410 {
0411     int         error;
0412 
0413     error = cur->bc_ops->free_block(cur, bp);
0414     if (!error) {
0415         xfs_trans_binval(cur->bc_tp, bp);
0416         XFS_BTREE_STATS_INC(cur, free);
0417     }
0418     return error;
0419 }
0420 
0421 /*
0422  * Delete the btree cursor.
0423  */
0424 void
0425 xfs_btree_del_cursor(
0426     struct xfs_btree_cur    *cur,       /* btree cursor */
0427     int         error)      /* del because of error */
0428 {
0429     int         i;      /* btree level */
0430 
0431     /*
0432      * Clear the buffer pointers and release the buffers. If we're doing
0433      * this because of an error, inspect all of the entries in the bc_bufs
0434      * array for buffers to be unlocked. This is because some of the btree
0435      * code works from level n down to 0, and if we get an error along the
0436      * way we won't have initialized all the entries down to 0.
0437      */
0438     for (i = 0; i < cur->bc_nlevels; i++) {
0439         if (cur->bc_levels[i].bp)
0440             xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
0441         else if (!error)
0442             break;
0443     }
0444 
0445     /*
0446      * If we are doing a BMBT update, the number of unaccounted blocks
0447      * allocated during this cursor life time should be zero. If it's not
0448      * zero, then we should be shut down or on our way to shutdown due to
0449      * cancelling a dirty transaction on error.
0450      */
0451     ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
0452            xfs_is_shutdown(cur->bc_mp) || error != 0);
0453     if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
0454         kmem_free(cur->bc_ops);
0455     if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
0456         xfs_perag_put(cur->bc_ag.pag);
0457     kmem_cache_free(cur->bc_cache, cur);
0458 }
0459 
0460 /*
0461  * Duplicate the btree cursor.
0462  * Allocate a new one, copy the record, re-get the buffers.
0463  */
0464 int                 /* error */
0465 xfs_btree_dup_cursor(
0466     struct xfs_btree_cur *cur,      /* input cursor */
0467     struct xfs_btree_cur **ncur)        /* output cursor */
0468 {
0469     struct xfs_buf  *bp;        /* btree block's buffer pointer */
0470     int     error;      /* error return value */
0471     int     i;      /* level number of btree block */
0472     xfs_mount_t *mp;        /* mount structure for filesystem */
0473     struct xfs_btree_cur *new;      /* new cursor value */
0474     xfs_trans_t *tp;        /* transaction pointer, can be NULL */
0475 
0476     tp = cur->bc_tp;
0477     mp = cur->bc_mp;
0478 
0479     /*
0480      * Allocate a new cursor like the old one.
0481      */
0482     new = cur->bc_ops->dup_cursor(cur);
0483 
0484     /*
0485      * Copy the record currently in the cursor.
0486      */
0487     new->bc_rec = cur->bc_rec;
0488 
0489     /*
0490      * For each level current, re-get the buffer and copy the ptr value.
0491      */
0492     for (i = 0; i < new->bc_nlevels; i++) {
0493         new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
0494         new->bc_levels[i].ra = cur->bc_levels[i].ra;
0495         bp = cur->bc_levels[i].bp;
0496         if (bp) {
0497             error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
0498                            xfs_buf_daddr(bp), mp->m_bsize,
0499                            0, &bp,
0500                            cur->bc_ops->buf_ops);
0501             if (error) {
0502                 xfs_btree_del_cursor(new, error);
0503                 *ncur = NULL;
0504                 return error;
0505             }
0506         }
0507         new->bc_levels[i].bp = bp;
0508     }
0509     *ncur = new;
0510     return 0;
0511 }
0512 
0513 /*
0514  * XFS btree block layout and addressing:
0515  *
0516  * There are two types of blocks in the btree: leaf and non-leaf blocks.
0517  *
0518  * The leaf record start with a header then followed by records containing
0519  * the values.  A non-leaf block also starts with the same header, and
0520  * then first contains lookup keys followed by an equal number of pointers
0521  * to the btree blocks at the previous level.
0522  *
0523  *      +--------+-------+-------+-------+-------+-------+-------+
0524  * Leaf:    | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
0525  *      +--------+-------+-------+-------+-------+-------+-------+
0526  *
0527  *      +--------+-------+-------+-------+-------+-------+-------+
0528  * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
0529  *      +--------+-------+-------+-------+-------+-------+-------+
0530  *
0531  * The header is called struct xfs_btree_block for reasons better left unknown
0532  * and comes in different versions for short (32bit) and long (64bit) block
0533  * pointers.  The record and key structures are defined by the btree instances
0534  * and opaque to the btree core.  The block pointers are simple disk endian
0535  * integers, available in a short (32bit) and long (64bit) variant.
0536  *
0537  * The helpers below calculate the offset of a given record, key or pointer
0538  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
0539  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
0540  * inside the btree block is done using indices starting at one, not zero!
0541  *
0542  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
0543  * overlapping intervals.  In such a tree, records are still sorted lowest to
0544  * highest and indexed by the smallest key value that refers to the record.
0545  * However, nodes are different: each pointer has two associated keys -- one
0546  * indexing the lowest key available in the block(s) below (the same behavior
0547  * as the key in a regular btree) and another indexing the highest key
0548  * available in the block(s) below.  Because records are /not/ sorted by the
0549  * highest key, all leaf block updates require us to compute the highest key
0550  * that matches any record in the leaf and to recursively update the high keys
0551  * in the nodes going further up in the tree, if necessary.  Nodes look like
0552  * this:
0553  *
0554  *      +--------+-----+-----+-----+-----+-----+-------+-------+-----+
0555  * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
0556  *      +--------+-----+-----+-----+-----+-----+-------+-------+-----+
0557  *
0558  * To perform an interval query on an overlapped tree, perform the usual
0559  * depth-first search and use the low and high keys to decide if we can skip
0560  * that particular node.  If a leaf node is reached, return the records that
0561  * intersect the interval.  Note that an interval query may return numerous
0562  * entries.  For a non-overlapped tree, simply search for the record associated
0563  * with the lowest key and iterate forward until a non-matching record is
0564  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
0565  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
0566  * more detail.
0567  *
0568  * Why do we care about overlapping intervals?  Let's say you have a bunch of
0569  * reverse mapping records on a reflink filesystem:
0570  *
0571  * 1: +- file A startblock B offset C length D -----------+
0572  * 2:      +- file E startblock F offset G length H --------------+
0573  * 3:      +- file I startblock F offset J length K --+
0574  * 4:                                                        +- file L... --+
0575  *
0576  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
0577  * we'd simply increment the length of record 1.  But how do we find the record
0578  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
0579  * record 3 because the keys are ordered first by startblock.  An interval
0580  * query would return records 1 and 2 because they both overlap (B+D-1), and
0581  * from that we can pick out record 1 as the appropriate left neighbor.
0582  *
0583  * In the non-overlapped case you can do a LE lookup and decrement the cursor
0584  * because a record's interval must end before the next record.
0585  */
0586 
0587 /*
0588  * Return size of the btree block header for this btree instance.
0589  */
0590 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
0591 {
0592     if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
0593         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
0594             return XFS_BTREE_LBLOCK_CRC_LEN;
0595         return XFS_BTREE_LBLOCK_LEN;
0596     }
0597     if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
0598         return XFS_BTREE_SBLOCK_CRC_LEN;
0599     return XFS_BTREE_SBLOCK_LEN;
0600 }
0601 
0602 /*
0603  * Return size of btree block pointers for this btree instance.
0604  */
0605 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
0606 {
0607     return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
0608         sizeof(__be64) : sizeof(__be32);
0609 }
0610 
0611 /*
0612  * Calculate offset of the n-th record in a btree block.
0613  */
0614 STATIC size_t
0615 xfs_btree_rec_offset(
0616     struct xfs_btree_cur    *cur,
0617     int         n)
0618 {
0619     return xfs_btree_block_len(cur) +
0620         (n - 1) * cur->bc_ops->rec_len;
0621 }
0622 
0623 /*
0624  * Calculate offset of the n-th key in a btree block.
0625  */
0626 STATIC size_t
0627 xfs_btree_key_offset(
0628     struct xfs_btree_cur    *cur,
0629     int         n)
0630 {
0631     return xfs_btree_block_len(cur) +
0632         (n - 1) * cur->bc_ops->key_len;
0633 }
0634 
0635 /*
0636  * Calculate offset of the n-th high key in a btree block.
0637  */
0638 STATIC size_t
0639 xfs_btree_high_key_offset(
0640     struct xfs_btree_cur    *cur,
0641     int         n)
0642 {
0643     return xfs_btree_block_len(cur) +
0644         (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
0645 }
0646 
0647 /*
0648  * Calculate offset of the n-th block pointer in a btree block.
0649  */
0650 STATIC size_t
0651 xfs_btree_ptr_offset(
0652     struct xfs_btree_cur    *cur,
0653     int         n,
0654     int         level)
0655 {
0656     return xfs_btree_block_len(cur) +
0657         cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
0658         (n - 1) * xfs_btree_ptr_len(cur);
0659 }
0660 
0661 /*
0662  * Return a pointer to the n-th record in the btree block.
0663  */
0664 union xfs_btree_rec *
0665 xfs_btree_rec_addr(
0666     struct xfs_btree_cur    *cur,
0667     int         n,
0668     struct xfs_btree_block  *block)
0669 {
0670     return (union xfs_btree_rec *)
0671         ((char *)block + xfs_btree_rec_offset(cur, n));
0672 }
0673 
0674 /*
0675  * Return a pointer to the n-th key in the btree block.
0676  */
0677 union xfs_btree_key *
0678 xfs_btree_key_addr(
0679     struct xfs_btree_cur    *cur,
0680     int         n,
0681     struct xfs_btree_block  *block)
0682 {
0683     return (union xfs_btree_key *)
0684         ((char *)block + xfs_btree_key_offset(cur, n));
0685 }
0686 
0687 /*
0688  * Return a pointer to the n-th high key in the btree block.
0689  */
0690 union xfs_btree_key *
0691 xfs_btree_high_key_addr(
0692     struct xfs_btree_cur    *cur,
0693     int         n,
0694     struct xfs_btree_block  *block)
0695 {
0696     return (union xfs_btree_key *)
0697         ((char *)block + xfs_btree_high_key_offset(cur, n));
0698 }
0699 
0700 /*
0701  * Return a pointer to the n-th block pointer in the btree block.
0702  */
0703 union xfs_btree_ptr *
0704 xfs_btree_ptr_addr(
0705     struct xfs_btree_cur    *cur,
0706     int         n,
0707     struct xfs_btree_block  *block)
0708 {
0709     int         level = xfs_btree_get_level(block);
0710 
0711     ASSERT(block->bb_level != 0);
0712 
0713     return (union xfs_btree_ptr *)
0714         ((char *)block + xfs_btree_ptr_offset(cur, n, level));
0715 }
0716 
0717 struct xfs_ifork *
0718 xfs_btree_ifork_ptr(
0719     struct xfs_btree_cur    *cur)
0720 {
0721     ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
0722 
0723     if (cur->bc_flags & XFS_BTREE_STAGING)
0724         return cur->bc_ino.ifake->if_fork;
0725     return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
0726 }
0727 
0728 /*
0729  * Get the root block which is stored in the inode.
0730  *
0731  * For now this btree implementation assumes the btree root is always
0732  * stored in the if_broot field of an inode fork.
0733  */
0734 STATIC struct xfs_btree_block *
0735 xfs_btree_get_iroot(
0736     struct xfs_btree_cur    *cur)
0737 {
0738     struct xfs_ifork    *ifp = xfs_btree_ifork_ptr(cur);
0739 
0740     return (struct xfs_btree_block *)ifp->if_broot;
0741 }
0742 
0743 /*
0744  * Retrieve the block pointer from the cursor at the given level.
0745  * This may be an inode btree root or from a buffer.
0746  */
0747 struct xfs_btree_block *        /* generic btree block pointer */
0748 xfs_btree_get_block(
0749     struct xfs_btree_cur    *cur,   /* btree cursor */
0750     int         level,  /* level in btree */
0751     struct xfs_buf      **bpp)  /* buffer containing the block */
0752 {
0753     if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
0754         (level == cur->bc_nlevels - 1)) {
0755         *bpp = NULL;
0756         return xfs_btree_get_iroot(cur);
0757     }
0758 
0759     *bpp = cur->bc_levels[level].bp;
0760     return XFS_BUF_TO_BLOCK(*bpp);
0761 }
0762 
0763 /*
0764  * Change the cursor to point to the first record at the given level.
0765  * Other levels are unaffected.
0766  */
0767 STATIC int              /* success=1, failure=0 */
0768 xfs_btree_firstrec(
0769     struct xfs_btree_cur    *cur,   /* btree cursor */
0770     int         level)  /* level to change */
0771 {
0772     struct xfs_btree_block  *block; /* generic btree block pointer */
0773     struct xfs_buf      *bp;    /* buffer containing block */
0774 
0775     /*
0776      * Get the block pointer for this level.
0777      */
0778     block = xfs_btree_get_block(cur, level, &bp);
0779     if (xfs_btree_check_block(cur, block, level, bp))
0780         return 0;
0781     /*
0782      * It's empty, there is no such record.
0783      */
0784     if (!block->bb_numrecs)
0785         return 0;
0786     /*
0787      * Set the ptr value to 1, that's the first record/key.
0788      */
0789     cur->bc_levels[level].ptr = 1;
0790     return 1;
0791 }
0792 
0793 /*
0794  * Change the cursor to point to the last record in the current block
0795  * at the given level.  Other levels are unaffected.
0796  */
0797 STATIC int              /* success=1, failure=0 */
0798 xfs_btree_lastrec(
0799     struct xfs_btree_cur    *cur,   /* btree cursor */
0800     int         level)  /* level to change */
0801 {
0802     struct xfs_btree_block  *block; /* generic btree block pointer */
0803     struct xfs_buf      *bp;    /* buffer containing block */
0804 
0805     /*
0806      * Get the block pointer for this level.
0807      */
0808     block = xfs_btree_get_block(cur, level, &bp);
0809     if (xfs_btree_check_block(cur, block, level, bp))
0810         return 0;
0811     /*
0812      * It's empty, there is no such record.
0813      */
0814     if (!block->bb_numrecs)
0815         return 0;
0816     /*
0817      * Set the ptr value to numrecs, that's the last record/key.
0818      */
0819     cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
0820     return 1;
0821 }
0822 
0823 /*
0824  * Compute first and last byte offsets for the fields given.
0825  * Interprets the offsets table, which contains struct field offsets.
0826  */
0827 void
0828 xfs_btree_offsets(
0829     uint32_t    fields,     /* bitmask of fields */
0830     const short *offsets,   /* table of field offsets */
0831     int     nbits,      /* number of bits to inspect */
0832     int     *first,     /* output: first byte offset */
0833     int     *last)      /* output: last byte offset */
0834 {
0835     int     i;      /* current bit number */
0836     uint32_t    imask;      /* mask for current bit number */
0837 
0838     ASSERT(fields != 0);
0839     /*
0840      * Find the lowest bit, so the first byte offset.
0841      */
0842     for (i = 0, imask = 1u; ; i++, imask <<= 1) {
0843         if (imask & fields) {
0844             *first = offsets[i];
0845             break;
0846         }
0847     }
0848     /*
0849      * Find the highest bit, so the last byte offset.
0850      */
0851     for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
0852         if (imask & fields) {
0853             *last = offsets[i + 1] - 1;
0854             break;
0855         }
0856     }
0857 }
0858 
0859 /*
0860  * Get a buffer for the block, return it read in.
0861  * Long-form addressing.
0862  */
0863 int
0864 xfs_btree_read_bufl(
0865     struct xfs_mount    *mp,        /* file system mount point */
0866     struct xfs_trans    *tp,        /* transaction pointer */
0867     xfs_fsblock_t       fsbno,      /* file system block number */
0868     struct xfs_buf      **bpp,      /* buffer for fsbno */
0869     int         refval,     /* ref count value for buffer */
0870     const struct xfs_buf_ops *ops)
0871 {
0872     struct xfs_buf      *bp;        /* return value */
0873     xfs_daddr_t     d;      /* real disk block address */
0874     int         error;
0875 
0876     if (!xfs_verify_fsbno(mp, fsbno))
0877         return -EFSCORRUPTED;
0878     d = XFS_FSB_TO_DADDR(mp, fsbno);
0879     error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
0880                    mp->m_bsize, 0, &bp, ops);
0881     if (error)
0882         return error;
0883     if (bp)
0884         xfs_buf_set_ref(bp, refval);
0885     *bpp = bp;
0886     return 0;
0887 }
0888 
0889 /*
0890  * Read-ahead the block, don't wait for it, don't return a buffer.
0891  * Long-form addressing.
0892  */
0893 /* ARGSUSED */
0894 void
0895 xfs_btree_reada_bufl(
0896     struct xfs_mount    *mp,        /* file system mount point */
0897     xfs_fsblock_t       fsbno,      /* file system block number */
0898     xfs_extlen_t        count,      /* count of filesystem blocks */
0899     const struct xfs_buf_ops *ops)
0900 {
0901     xfs_daddr_t     d;
0902 
0903     ASSERT(fsbno != NULLFSBLOCK);
0904     d = XFS_FSB_TO_DADDR(mp, fsbno);
0905     xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
0906 }
0907 
0908 /*
0909  * Read-ahead the block, don't wait for it, don't return a buffer.
0910  * Short-form addressing.
0911  */
0912 /* ARGSUSED */
0913 void
0914 xfs_btree_reada_bufs(
0915     struct xfs_mount    *mp,        /* file system mount point */
0916     xfs_agnumber_t      agno,       /* allocation group number */
0917     xfs_agblock_t       agbno,      /* allocation group block number */
0918     xfs_extlen_t        count,      /* count of filesystem blocks */
0919     const struct xfs_buf_ops *ops)
0920 {
0921     xfs_daddr_t     d;
0922 
0923     ASSERT(agno != NULLAGNUMBER);
0924     ASSERT(agbno != NULLAGBLOCK);
0925     d = XFS_AGB_TO_DADDR(mp, agno, agbno);
0926     xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
0927 }
0928 
0929 STATIC int
0930 xfs_btree_readahead_lblock(
0931     struct xfs_btree_cur    *cur,
0932     int         lr,
0933     struct xfs_btree_block  *block)
0934 {
0935     int         rval = 0;
0936     xfs_fsblock_t       left = be64_to_cpu(block->bb_u.l.bb_leftsib);
0937     xfs_fsblock_t       right = be64_to_cpu(block->bb_u.l.bb_rightsib);
0938 
0939     if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
0940         xfs_btree_reada_bufl(cur->bc_mp, left, 1,
0941                      cur->bc_ops->buf_ops);
0942         rval++;
0943     }
0944 
0945     if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
0946         xfs_btree_reada_bufl(cur->bc_mp, right, 1,
0947                      cur->bc_ops->buf_ops);
0948         rval++;
0949     }
0950 
0951     return rval;
0952 }
0953 
0954 STATIC int
0955 xfs_btree_readahead_sblock(
0956     struct xfs_btree_cur    *cur,
0957     int         lr,
0958     struct xfs_btree_block *block)
0959 {
0960     int         rval = 0;
0961     xfs_agblock_t       left = be32_to_cpu(block->bb_u.s.bb_leftsib);
0962     xfs_agblock_t       right = be32_to_cpu(block->bb_u.s.bb_rightsib);
0963 
0964 
0965     if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
0966         xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
0967                      left, 1, cur->bc_ops->buf_ops);
0968         rval++;
0969     }
0970 
0971     if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
0972         xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
0973                      right, 1, cur->bc_ops->buf_ops);
0974         rval++;
0975     }
0976 
0977     return rval;
0978 }
0979 
0980 /*
0981  * Read-ahead btree blocks, at the given level.
0982  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
0983  */
0984 STATIC int
0985 xfs_btree_readahead(
0986     struct xfs_btree_cur    *cur,       /* btree cursor */
0987     int         lev,        /* level in btree */
0988     int         lr)     /* left/right bits */
0989 {
0990     struct xfs_btree_block  *block;
0991 
0992     /*
0993      * No readahead needed if we are at the root level and the
0994      * btree root is stored in the inode.
0995      */
0996     if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
0997         (lev == cur->bc_nlevels - 1))
0998         return 0;
0999 
1000     if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1001         return 0;
1002 
1003     cur->bc_levels[lev].ra |= lr;
1004     block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1005 
1006     if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1007         return xfs_btree_readahead_lblock(cur, lr, block);
1008     return xfs_btree_readahead_sblock(cur, lr, block);
1009 }
1010 
1011 STATIC int
1012 xfs_btree_ptr_to_daddr(
1013     struct xfs_btree_cur        *cur,
1014     const union xfs_btree_ptr   *ptr,
1015     xfs_daddr_t         *daddr)
1016 {
1017     xfs_fsblock_t       fsbno;
1018     xfs_agblock_t       agbno;
1019     int         error;
1020 
1021     error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1022     if (error)
1023         return error;
1024 
1025     if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1026         fsbno = be64_to_cpu(ptr->l);
1027         *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1028     } else {
1029         agbno = be32_to_cpu(ptr->s);
1030         *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1031                 agbno);
1032     }
1033 
1034     return 0;
1035 }
1036 
1037 /*
1038  * Readahead @count btree blocks at the given @ptr location.
1039  *
1040  * We don't need to care about long or short form btrees here as we have a
1041  * method of converting the ptr directly to a daddr available to us.
1042  */
1043 STATIC void
1044 xfs_btree_readahead_ptr(
1045     struct xfs_btree_cur    *cur,
1046     union xfs_btree_ptr *ptr,
1047     xfs_extlen_t        count)
1048 {
1049     xfs_daddr_t     daddr;
1050 
1051     if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1052         return;
1053     xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1054               cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1055 }
1056 
1057 /*
1058  * Set the buffer for level "lev" in the cursor to bp, releasing
1059  * any previous buffer.
1060  */
1061 STATIC void
1062 xfs_btree_setbuf(
1063     struct xfs_btree_cur    *cur,   /* btree cursor */
1064     int         lev,    /* level in btree */
1065     struct xfs_buf      *bp)    /* new buffer to set */
1066 {
1067     struct xfs_btree_block  *b; /* btree block */
1068 
1069     if (cur->bc_levels[lev].bp)
1070         xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1071     cur->bc_levels[lev].bp = bp;
1072     cur->bc_levels[lev].ra = 0;
1073 
1074     b = XFS_BUF_TO_BLOCK(bp);
1075     if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1076         if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1077             cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1078         if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1079             cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1080     } else {
1081         if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1082             cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1083         if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1084             cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1085     }
1086 }
1087 
1088 bool
1089 xfs_btree_ptr_is_null(
1090     struct xfs_btree_cur        *cur,
1091     const union xfs_btree_ptr   *ptr)
1092 {
1093     if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1094         return ptr->l == cpu_to_be64(NULLFSBLOCK);
1095     else
1096         return ptr->s == cpu_to_be32(NULLAGBLOCK);
1097 }
1098 
1099 void
1100 xfs_btree_set_ptr_null(
1101     struct xfs_btree_cur    *cur,
1102     union xfs_btree_ptr *ptr)
1103 {
1104     if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1105         ptr->l = cpu_to_be64(NULLFSBLOCK);
1106     else
1107         ptr->s = cpu_to_be32(NULLAGBLOCK);
1108 }
1109 
1110 /*
1111  * Get/set/init sibling pointers
1112  */
1113 void
1114 xfs_btree_get_sibling(
1115     struct xfs_btree_cur    *cur,
1116     struct xfs_btree_block  *block,
1117     union xfs_btree_ptr *ptr,
1118     int         lr)
1119 {
1120     ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1121 
1122     if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1123         if (lr == XFS_BB_RIGHTSIB)
1124             ptr->l = block->bb_u.l.bb_rightsib;
1125         else
1126             ptr->l = block->bb_u.l.bb_leftsib;
1127     } else {
1128         if (lr == XFS_BB_RIGHTSIB)
1129             ptr->s = block->bb_u.s.bb_rightsib;
1130         else
1131             ptr->s = block->bb_u.s.bb_leftsib;
1132     }
1133 }
1134 
1135 void
1136 xfs_btree_set_sibling(
1137     struct xfs_btree_cur        *cur,
1138     struct xfs_btree_block      *block,
1139     const union xfs_btree_ptr   *ptr,
1140     int             lr)
1141 {
1142     ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1143 
1144     if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1145         if (lr == XFS_BB_RIGHTSIB)
1146             block->bb_u.l.bb_rightsib = ptr->l;
1147         else
1148             block->bb_u.l.bb_leftsib = ptr->l;
1149     } else {
1150         if (lr == XFS_BB_RIGHTSIB)
1151             block->bb_u.s.bb_rightsib = ptr->s;
1152         else
1153             block->bb_u.s.bb_leftsib = ptr->s;
1154     }
1155 }
1156 
1157 void
1158 xfs_btree_init_block_int(
1159     struct xfs_mount    *mp,
1160     struct xfs_btree_block  *buf,
1161     xfs_daddr_t     blkno,
1162     xfs_btnum_t     btnum,
1163     __u16           level,
1164     __u16           numrecs,
1165     __u64           owner,
1166     unsigned int        flags)
1167 {
1168     int         crc = xfs_has_crc(mp);
1169     __u32           magic = xfs_btree_magic(crc, btnum);
1170 
1171     buf->bb_magic = cpu_to_be32(magic);
1172     buf->bb_level = cpu_to_be16(level);
1173     buf->bb_numrecs = cpu_to_be16(numrecs);
1174 
1175     if (flags & XFS_BTREE_LONG_PTRS) {
1176         buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1177         buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1178         if (crc) {
1179             buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1180             buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1181             uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1182             buf->bb_u.l.bb_pad = 0;
1183             buf->bb_u.l.bb_lsn = 0;
1184         }
1185     } else {
1186         /* owner is a 32 bit value on short blocks */
1187         __u32 __owner = (__u32)owner;
1188 
1189         buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1190         buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1191         if (crc) {
1192             buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1193             buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1194             uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1195             buf->bb_u.s.bb_lsn = 0;
1196         }
1197     }
1198 }
1199 
1200 void
1201 xfs_btree_init_block(
1202     struct xfs_mount *mp,
1203     struct xfs_buf  *bp,
1204     xfs_btnum_t btnum,
1205     __u16       level,
1206     __u16       numrecs,
1207     __u64       owner)
1208 {
1209     xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1210                  btnum, level, numrecs, owner, 0);
1211 }
1212 
1213 void
1214 xfs_btree_init_block_cur(
1215     struct xfs_btree_cur    *cur,
1216     struct xfs_buf      *bp,
1217     int         level,
1218     int         numrecs)
1219 {
1220     __u64           owner;
1221 
1222     /*
1223      * we can pull the owner from the cursor right now as the different
1224      * owners align directly with the pointer size of the btree. This may
1225      * change in future, but is safe for current users of the generic btree
1226      * code.
1227      */
1228     if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1229         owner = cur->bc_ino.ip->i_ino;
1230     else
1231         owner = cur->bc_ag.pag->pag_agno;
1232 
1233     xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1234                 xfs_buf_daddr(bp), cur->bc_btnum, level,
1235                 numrecs, owner, cur->bc_flags);
1236 }
1237 
1238 /*
1239  * Return true if ptr is the last record in the btree and
1240  * we need to track updates to this record.  The decision
1241  * will be further refined in the update_lastrec method.
1242  */
1243 STATIC int
1244 xfs_btree_is_lastrec(
1245     struct xfs_btree_cur    *cur,
1246     struct xfs_btree_block  *block,
1247     int         level)
1248 {
1249     union xfs_btree_ptr ptr;
1250 
1251     if (level > 0)
1252         return 0;
1253     if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1254         return 0;
1255 
1256     xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1257     if (!xfs_btree_ptr_is_null(cur, &ptr))
1258         return 0;
1259     return 1;
1260 }
1261 
1262 STATIC void
1263 xfs_btree_buf_to_ptr(
1264     struct xfs_btree_cur    *cur,
1265     struct xfs_buf      *bp,
1266     union xfs_btree_ptr *ptr)
1267 {
1268     if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1269         ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1270                     xfs_buf_daddr(bp)));
1271     else {
1272         ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1273                     xfs_buf_daddr(bp)));
1274     }
1275 }
1276 
1277 STATIC void
1278 xfs_btree_set_refs(
1279     struct xfs_btree_cur    *cur,
1280     struct xfs_buf      *bp)
1281 {
1282     switch (cur->bc_btnum) {
1283     case XFS_BTNUM_BNO:
1284     case XFS_BTNUM_CNT:
1285         xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1286         break;
1287     case XFS_BTNUM_INO:
1288     case XFS_BTNUM_FINO:
1289         xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1290         break;
1291     case XFS_BTNUM_BMAP:
1292         xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1293         break;
1294     case XFS_BTNUM_RMAP:
1295         xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1296         break;
1297     case XFS_BTNUM_REFC:
1298         xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1299         break;
1300     default:
1301         ASSERT(0);
1302     }
1303 }
1304 
1305 int
1306 xfs_btree_get_buf_block(
1307     struct xfs_btree_cur        *cur,
1308     const union xfs_btree_ptr   *ptr,
1309     struct xfs_btree_block      **block,
1310     struct xfs_buf          **bpp)
1311 {
1312     struct xfs_mount    *mp = cur->bc_mp;
1313     xfs_daddr_t     d;
1314     int         error;
1315 
1316     error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1317     if (error)
1318         return error;
1319     error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1320             0, bpp);
1321     if (error)
1322         return error;
1323 
1324     (*bpp)->b_ops = cur->bc_ops->buf_ops;
1325     *block = XFS_BUF_TO_BLOCK(*bpp);
1326     return 0;
1327 }
1328 
1329 /*
1330  * Read in the buffer at the given ptr and return the buffer and
1331  * the block pointer within the buffer.
1332  */
1333 STATIC int
1334 xfs_btree_read_buf_block(
1335     struct xfs_btree_cur        *cur,
1336     const union xfs_btree_ptr   *ptr,
1337     int             flags,
1338     struct xfs_btree_block      **block,
1339     struct xfs_buf          **bpp)
1340 {
1341     struct xfs_mount    *mp = cur->bc_mp;
1342     xfs_daddr_t     d;
1343     int         error;
1344 
1345     /* need to sort out how callers deal with failures first */
1346     ASSERT(!(flags & XBF_TRYLOCK));
1347 
1348     error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1349     if (error)
1350         return error;
1351     error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1352                    mp->m_bsize, flags, bpp,
1353                    cur->bc_ops->buf_ops);
1354     if (error)
1355         return error;
1356 
1357     xfs_btree_set_refs(cur, *bpp);
1358     *block = XFS_BUF_TO_BLOCK(*bpp);
1359     return 0;
1360 }
1361 
1362 /*
1363  * Copy keys from one btree block to another.
1364  */
1365 void
1366 xfs_btree_copy_keys(
1367     struct xfs_btree_cur        *cur,
1368     union xfs_btree_key     *dst_key,
1369     const union xfs_btree_key   *src_key,
1370     int             numkeys)
1371 {
1372     ASSERT(numkeys >= 0);
1373     memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1374 }
1375 
1376 /*
1377  * Copy records from one btree block to another.
1378  */
1379 STATIC void
1380 xfs_btree_copy_recs(
1381     struct xfs_btree_cur    *cur,
1382     union xfs_btree_rec *dst_rec,
1383     union xfs_btree_rec *src_rec,
1384     int         numrecs)
1385 {
1386     ASSERT(numrecs >= 0);
1387     memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1388 }
1389 
1390 /*
1391  * Copy block pointers from one btree block to another.
1392  */
1393 void
1394 xfs_btree_copy_ptrs(
1395     struct xfs_btree_cur    *cur,
1396     union xfs_btree_ptr *dst_ptr,
1397     const union xfs_btree_ptr *src_ptr,
1398     int         numptrs)
1399 {
1400     ASSERT(numptrs >= 0);
1401     memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1402 }
1403 
1404 /*
1405  * Shift keys one index left/right inside a single btree block.
1406  */
1407 STATIC void
1408 xfs_btree_shift_keys(
1409     struct xfs_btree_cur    *cur,
1410     union xfs_btree_key *key,
1411     int         dir,
1412     int         numkeys)
1413 {
1414     char            *dst_key;
1415 
1416     ASSERT(numkeys >= 0);
1417     ASSERT(dir == 1 || dir == -1);
1418 
1419     dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1420     memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1421 }
1422 
1423 /*
1424  * Shift records one index left/right inside a single btree block.
1425  */
1426 STATIC void
1427 xfs_btree_shift_recs(
1428     struct xfs_btree_cur    *cur,
1429     union xfs_btree_rec *rec,
1430     int         dir,
1431     int         numrecs)
1432 {
1433     char            *dst_rec;
1434 
1435     ASSERT(numrecs >= 0);
1436     ASSERT(dir == 1 || dir == -1);
1437 
1438     dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1439     memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1440 }
1441 
1442 /*
1443  * Shift block pointers one index left/right inside a single btree block.
1444  */
1445 STATIC void
1446 xfs_btree_shift_ptrs(
1447     struct xfs_btree_cur    *cur,
1448     union xfs_btree_ptr *ptr,
1449     int         dir,
1450     int         numptrs)
1451 {
1452     char            *dst_ptr;
1453 
1454     ASSERT(numptrs >= 0);
1455     ASSERT(dir == 1 || dir == -1);
1456 
1457     dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1458     memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1459 }
1460 
1461 /*
1462  * Log key values from the btree block.
1463  */
1464 STATIC void
1465 xfs_btree_log_keys(
1466     struct xfs_btree_cur    *cur,
1467     struct xfs_buf      *bp,
1468     int         first,
1469     int         last)
1470 {
1471 
1472     if (bp) {
1473         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1474         xfs_trans_log_buf(cur->bc_tp, bp,
1475                   xfs_btree_key_offset(cur, first),
1476                   xfs_btree_key_offset(cur, last + 1) - 1);
1477     } else {
1478         xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1479                 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1480     }
1481 }
1482 
1483 /*
1484  * Log record values from the btree block.
1485  */
1486 void
1487 xfs_btree_log_recs(
1488     struct xfs_btree_cur    *cur,
1489     struct xfs_buf      *bp,
1490     int         first,
1491     int         last)
1492 {
1493 
1494     xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1495     xfs_trans_log_buf(cur->bc_tp, bp,
1496               xfs_btree_rec_offset(cur, first),
1497               xfs_btree_rec_offset(cur, last + 1) - 1);
1498 
1499 }
1500 
1501 /*
1502  * Log block pointer fields from a btree block (nonleaf).
1503  */
1504 STATIC void
1505 xfs_btree_log_ptrs(
1506     struct xfs_btree_cur    *cur,   /* btree cursor */
1507     struct xfs_buf      *bp,    /* buffer containing btree block */
1508     int         first,  /* index of first pointer to log */
1509     int         last)   /* index of last pointer to log */
1510 {
1511 
1512     if (bp) {
1513         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1514         int         level = xfs_btree_get_level(block);
1515 
1516         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1517         xfs_trans_log_buf(cur->bc_tp, bp,
1518                 xfs_btree_ptr_offset(cur, first, level),
1519                 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1520     } else {
1521         xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1522             xfs_ilog_fbroot(cur->bc_ino.whichfork));
1523     }
1524 
1525 }
1526 
1527 /*
1528  * Log fields from a btree block header.
1529  */
1530 void
1531 xfs_btree_log_block(
1532     struct xfs_btree_cur    *cur,   /* btree cursor */
1533     struct xfs_buf      *bp,    /* buffer containing btree block */
1534     uint32_t        fields) /* mask of fields: XFS_BB_... */
1535 {
1536     int         first;  /* first byte offset logged */
1537     int         last;   /* last byte offset logged */
1538     static const short  soffsets[] = {  /* table of offsets (short) */
1539         offsetof(struct xfs_btree_block, bb_magic),
1540         offsetof(struct xfs_btree_block, bb_level),
1541         offsetof(struct xfs_btree_block, bb_numrecs),
1542         offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1543         offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1544         offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1545         offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1546         offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1547         offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1548         offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1549         XFS_BTREE_SBLOCK_CRC_LEN
1550     };
1551     static const short  loffsets[] = {  /* table of offsets (long) */
1552         offsetof(struct xfs_btree_block, bb_magic),
1553         offsetof(struct xfs_btree_block, bb_level),
1554         offsetof(struct xfs_btree_block, bb_numrecs),
1555         offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1556         offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1557         offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1558         offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1559         offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1560         offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1561         offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1562         offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1563         XFS_BTREE_LBLOCK_CRC_LEN
1564     };
1565 
1566     if (bp) {
1567         int nbits;
1568 
1569         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1570             /*
1571              * We don't log the CRC when updating a btree
1572              * block but instead recreate it during log
1573              * recovery.  As the log buffers have checksums
1574              * of their own this is safe and avoids logging a crc
1575              * update in a lot of places.
1576              */
1577             if (fields == XFS_BB_ALL_BITS)
1578                 fields = XFS_BB_ALL_BITS_CRC;
1579             nbits = XFS_BB_NUM_BITS_CRC;
1580         } else {
1581             nbits = XFS_BB_NUM_BITS;
1582         }
1583         xfs_btree_offsets(fields,
1584                   (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1585                     loffsets : soffsets,
1586                   nbits, &first, &last);
1587         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1588         xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1589     } else {
1590         xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1591             xfs_ilog_fbroot(cur->bc_ino.whichfork));
1592     }
1593 }
1594 
1595 /*
1596  * Increment cursor by one record at the level.
1597  * For nonzero levels the leaf-ward information is untouched.
1598  */
1599 int                     /* error */
1600 xfs_btree_increment(
1601     struct xfs_btree_cur    *cur,
1602     int         level,
1603     int         *stat)      /* success/failure */
1604 {
1605     struct xfs_btree_block  *block;
1606     union xfs_btree_ptr ptr;
1607     struct xfs_buf      *bp;
1608     int         error;      /* error return value */
1609     int         lev;
1610 
1611     ASSERT(level < cur->bc_nlevels);
1612 
1613     /* Read-ahead to the right at this level. */
1614     xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1615 
1616     /* Get a pointer to the btree block. */
1617     block = xfs_btree_get_block(cur, level, &bp);
1618 
1619 #ifdef DEBUG
1620     error = xfs_btree_check_block(cur, block, level, bp);
1621     if (error)
1622         goto error0;
1623 #endif
1624 
1625     /* We're done if we remain in the block after the increment. */
1626     if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1627         goto out1;
1628 
1629     /* Fail if we just went off the right edge of the tree. */
1630     xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1631     if (xfs_btree_ptr_is_null(cur, &ptr))
1632         goto out0;
1633 
1634     XFS_BTREE_STATS_INC(cur, increment);
1635 
1636     /*
1637      * March up the tree incrementing pointers.
1638      * Stop when we don't go off the right edge of a block.
1639      */
1640     for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1641         block = xfs_btree_get_block(cur, lev, &bp);
1642 
1643 #ifdef DEBUG
1644         error = xfs_btree_check_block(cur, block, lev, bp);
1645         if (error)
1646             goto error0;
1647 #endif
1648 
1649         if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1650             break;
1651 
1652         /* Read-ahead the right block for the next loop. */
1653         xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1654     }
1655 
1656     /*
1657      * If we went off the root then we are either seriously
1658      * confused or have the tree root in an inode.
1659      */
1660     if (lev == cur->bc_nlevels) {
1661         if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1662             goto out0;
1663         ASSERT(0);
1664         error = -EFSCORRUPTED;
1665         goto error0;
1666     }
1667     ASSERT(lev < cur->bc_nlevels);
1668 
1669     /*
1670      * Now walk back down the tree, fixing up the cursor's buffer
1671      * pointers and key numbers.
1672      */
1673     for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1674         union xfs_btree_ptr *ptrp;
1675 
1676         ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1677         --lev;
1678         error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1679         if (error)
1680             goto error0;
1681 
1682         xfs_btree_setbuf(cur, lev, bp);
1683         cur->bc_levels[lev].ptr = 1;
1684     }
1685 out1:
1686     *stat = 1;
1687     return 0;
1688 
1689 out0:
1690     *stat = 0;
1691     return 0;
1692 
1693 error0:
1694     return error;
1695 }
1696 
1697 /*
1698  * Decrement cursor by one record at the level.
1699  * For nonzero levels the leaf-ward information is untouched.
1700  */
1701 int                     /* error */
1702 xfs_btree_decrement(
1703     struct xfs_btree_cur    *cur,
1704     int         level,
1705     int         *stat)      /* success/failure */
1706 {
1707     struct xfs_btree_block  *block;
1708     struct xfs_buf      *bp;
1709     int         error;      /* error return value */
1710     int         lev;
1711     union xfs_btree_ptr ptr;
1712 
1713     ASSERT(level < cur->bc_nlevels);
1714 
1715     /* Read-ahead to the left at this level. */
1716     xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1717 
1718     /* We're done if we remain in the block after the decrement. */
1719     if (--cur->bc_levels[level].ptr > 0)
1720         goto out1;
1721 
1722     /* Get a pointer to the btree block. */
1723     block = xfs_btree_get_block(cur, level, &bp);
1724 
1725 #ifdef DEBUG
1726     error = xfs_btree_check_block(cur, block, level, bp);
1727     if (error)
1728         goto error0;
1729 #endif
1730 
1731     /* Fail if we just went off the left edge of the tree. */
1732     xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1733     if (xfs_btree_ptr_is_null(cur, &ptr))
1734         goto out0;
1735 
1736     XFS_BTREE_STATS_INC(cur, decrement);
1737 
1738     /*
1739      * March up the tree decrementing pointers.
1740      * Stop when we don't go off the left edge of a block.
1741      */
1742     for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1743         if (--cur->bc_levels[lev].ptr > 0)
1744             break;
1745         /* Read-ahead the left block for the next loop. */
1746         xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1747     }
1748 
1749     /*
1750      * If we went off the root then we are seriously confused.
1751      * or the root of the tree is in an inode.
1752      */
1753     if (lev == cur->bc_nlevels) {
1754         if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1755             goto out0;
1756         ASSERT(0);
1757         error = -EFSCORRUPTED;
1758         goto error0;
1759     }
1760     ASSERT(lev < cur->bc_nlevels);
1761 
1762     /*
1763      * Now walk back down the tree, fixing up the cursor's buffer
1764      * pointers and key numbers.
1765      */
1766     for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1767         union xfs_btree_ptr *ptrp;
1768 
1769         ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1770         --lev;
1771         error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1772         if (error)
1773             goto error0;
1774         xfs_btree_setbuf(cur, lev, bp);
1775         cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1776     }
1777 out1:
1778     *stat = 1;
1779     return 0;
1780 
1781 out0:
1782     *stat = 0;
1783     return 0;
1784 
1785 error0:
1786     return error;
1787 }
1788 
1789 int
1790 xfs_btree_lookup_get_block(
1791     struct xfs_btree_cur        *cur,   /* btree cursor */
1792     int             level,  /* level in the btree */
1793     const union xfs_btree_ptr   *pp,    /* ptr to btree block */
1794     struct xfs_btree_block      **blkp) /* return btree block */
1795 {
1796     struct xfs_buf      *bp;    /* buffer pointer for btree block */
1797     xfs_daddr_t     daddr;
1798     int         error = 0;
1799 
1800     /* special case the root block if in an inode */
1801     if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1802         (level == cur->bc_nlevels - 1)) {
1803         *blkp = xfs_btree_get_iroot(cur);
1804         return 0;
1805     }
1806 
1807     /*
1808      * If the old buffer at this level for the disk address we are
1809      * looking for re-use it.
1810      *
1811      * Otherwise throw it away and get a new one.
1812      */
1813     bp = cur->bc_levels[level].bp;
1814     error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1815     if (error)
1816         return error;
1817     if (bp && xfs_buf_daddr(bp) == daddr) {
1818         *blkp = XFS_BUF_TO_BLOCK(bp);
1819         return 0;
1820     }
1821 
1822     error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1823     if (error)
1824         return error;
1825 
1826     /* Check the inode owner since the verifiers don't. */
1827     if (xfs_has_crc(cur->bc_mp) &&
1828         !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1829         (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1830         be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1831             cur->bc_ino.ip->i_ino)
1832         goto out_bad;
1833 
1834     /* Did we get the level we were looking for? */
1835     if (be16_to_cpu((*blkp)->bb_level) != level)
1836         goto out_bad;
1837 
1838     /* Check that internal nodes have at least one record. */
1839     if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1840         goto out_bad;
1841 
1842     xfs_btree_setbuf(cur, level, bp);
1843     return 0;
1844 
1845 out_bad:
1846     *blkp = NULL;
1847     xfs_buf_mark_corrupt(bp);
1848     xfs_trans_brelse(cur->bc_tp, bp);
1849     return -EFSCORRUPTED;
1850 }
1851 
1852 /*
1853  * Get current search key.  For level 0 we don't actually have a key
1854  * structure so we make one up from the record.  For all other levels
1855  * we just return the right key.
1856  */
1857 STATIC union xfs_btree_key *
1858 xfs_lookup_get_search_key(
1859     struct xfs_btree_cur    *cur,
1860     int         level,
1861     int         keyno,
1862     struct xfs_btree_block  *block,
1863     union xfs_btree_key *kp)
1864 {
1865     if (level == 0) {
1866         cur->bc_ops->init_key_from_rec(kp,
1867                 xfs_btree_rec_addr(cur, keyno, block));
1868         return kp;
1869     }
1870 
1871     return xfs_btree_key_addr(cur, keyno, block);
1872 }
1873 
1874 /*
1875  * Lookup the record.  The cursor is made to point to it, based on dir.
1876  * stat is set to 0 if can't find any such record, 1 for success.
1877  */
1878 int                 /* error */
1879 xfs_btree_lookup(
1880     struct xfs_btree_cur    *cur,   /* btree cursor */
1881     xfs_lookup_t        dir,    /* <=, ==, or >= */
1882     int         *stat)  /* success/failure */
1883 {
1884     struct xfs_btree_block  *block; /* current btree block */
1885     int64_t         diff;   /* difference for the current key */
1886     int         error;  /* error return value */
1887     int         keyno;  /* current key number */
1888     int         level;  /* level in the btree */
1889     union xfs_btree_ptr *pp;    /* ptr to btree block */
1890     union xfs_btree_ptr ptr;    /* ptr to btree block */
1891 
1892     XFS_BTREE_STATS_INC(cur, lookup);
1893 
1894     /* No such thing as a zero-level tree. */
1895     if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1896         return -EFSCORRUPTED;
1897 
1898     block = NULL;
1899     keyno = 0;
1900 
1901     /* initialise start pointer from cursor */
1902     cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1903     pp = &ptr;
1904 
1905     /*
1906      * Iterate over each level in the btree, starting at the root.
1907      * For each level above the leaves, find the key we need, based
1908      * on the lookup record, then follow the corresponding block
1909      * pointer down to the next level.
1910      */
1911     for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1912         /* Get the block we need to do the lookup on. */
1913         error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1914         if (error)
1915             goto error0;
1916 
1917         if (diff == 0) {
1918             /*
1919              * If we already had a key match at a higher level, we
1920              * know we need to use the first entry in this block.
1921              */
1922             keyno = 1;
1923         } else {
1924             /* Otherwise search this block. Do a binary search. */
1925 
1926             int high;   /* high entry number */
1927             int low;    /* low entry number */
1928 
1929             /* Set low and high entry numbers, 1-based. */
1930             low = 1;
1931             high = xfs_btree_get_numrecs(block);
1932             if (!high) {
1933                 /* Block is empty, must be an empty leaf. */
1934                 if (level != 0 || cur->bc_nlevels != 1) {
1935                     XFS_CORRUPTION_ERROR(__func__,
1936                             XFS_ERRLEVEL_LOW,
1937                             cur->bc_mp, block,
1938                             sizeof(*block));
1939                     return -EFSCORRUPTED;
1940                 }
1941 
1942                 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
1943                 *stat = 0;
1944                 return 0;
1945             }
1946 
1947             /* Binary search the block. */
1948             while (low <= high) {
1949                 union xfs_btree_key key;
1950                 union xfs_btree_key *kp;
1951 
1952                 XFS_BTREE_STATS_INC(cur, compare);
1953 
1954                 /* keyno is average of low and high. */
1955                 keyno = (low + high) >> 1;
1956 
1957                 /* Get current search key */
1958                 kp = xfs_lookup_get_search_key(cur, level,
1959                         keyno, block, &key);
1960 
1961                 /*
1962                  * Compute difference to get next direction:
1963                  *  - less than, move right
1964                  *  - greater than, move left
1965                  *  - equal, we're done
1966                  */
1967                 diff = cur->bc_ops->key_diff(cur, kp);
1968                 if (diff < 0)
1969                     low = keyno + 1;
1970                 else if (diff > 0)
1971                     high = keyno - 1;
1972                 else
1973                     break;
1974             }
1975         }
1976 
1977         /*
1978          * If there are more levels, set up for the next level
1979          * by getting the block number and filling in the cursor.
1980          */
1981         if (level > 0) {
1982             /*
1983              * If we moved left, need the previous key number,
1984              * unless there isn't one.
1985              */
1986             if (diff > 0 && --keyno < 1)
1987                 keyno = 1;
1988             pp = xfs_btree_ptr_addr(cur, keyno, block);
1989 
1990             error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1991             if (error)
1992                 goto error0;
1993 
1994             cur->bc_levels[level].ptr = keyno;
1995         }
1996     }
1997 
1998     /* Done with the search. See if we need to adjust the results. */
1999     if (dir != XFS_LOOKUP_LE && diff < 0) {
2000         keyno++;
2001         /*
2002          * If ge search and we went off the end of the block, but it's
2003          * not the last block, we're in the wrong block.
2004          */
2005         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2006         if (dir == XFS_LOOKUP_GE &&
2007             keyno > xfs_btree_get_numrecs(block) &&
2008             !xfs_btree_ptr_is_null(cur, &ptr)) {
2009             int i;
2010 
2011             cur->bc_levels[0].ptr = keyno;
2012             error = xfs_btree_increment(cur, 0, &i);
2013             if (error)
2014                 goto error0;
2015             if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
2016                 return -EFSCORRUPTED;
2017             *stat = 1;
2018             return 0;
2019         }
2020     } else if (dir == XFS_LOOKUP_LE && diff > 0)
2021         keyno--;
2022     cur->bc_levels[0].ptr = keyno;
2023 
2024     /* Return if we succeeded or not. */
2025     if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2026         *stat = 0;
2027     else if (dir != XFS_LOOKUP_EQ || diff == 0)
2028         *stat = 1;
2029     else
2030         *stat = 0;
2031     return 0;
2032 
2033 error0:
2034     return error;
2035 }
2036 
2037 /* Find the high key storage area from a regular key. */
2038 union xfs_btree_key *
2039 xfs_btree_high_key_from_key(
2040     struct xfs_btree_cur    *cur,
2041     union xfs_btree_key *key)
2042 {
2043     ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2044     return (union xfs_btree_key *)((char *)key +
2045             (cur->bc_ops->key_len / 2));
2046 }
2047 
2048 /* Determine the low (and high if overlapped) keys of a leaf block */
2049 STATIC void
2050 xfs_btree_get_leaf_keys(
2051     struct xfs_btree_cur    *cur,
2052     struct xfs_btree_block  *block,
2053     union xfs_btree_key *key)
2054 {
2055     union xfs_btree_key max_hkey;
2056     union xfs_btree_key hkey;
2057     union xfs_btree_rec *rec;
2058     union xfs_btree_key *high;
2059     int         n;
2060 
2061     rec = xfs_btree_rec_addr(cur, 1, block);
2062     cur->bc_ops->init_key_from_rec(key, rec);
2063 
2064     if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2065 
2066         cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2067         for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2068             rec = xfs_btree_rec_addr(cur, n, block);
2069             cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2070             if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2071                     > 0)
2072                 max_hkey = hkey;
2073         }
2074 
2075         high = xfs_btree_high_key_from_key(cur, key);
2076         memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2077     }
2078 }
2079 
2080 /* Determine the low (and high if overlapped) keys of a node block */
2081 STATIC void
2082 xfs_btree_get_node_keys(
2083     struct xfs_btree_cur    *cur,
2084     struct xfs_btree_block  *block,
2085     union xfs_btree_key *key)
2086 {
2087     union xfs_btree_key *hkey;
2088     union xfs_btree_key *max_hkey;
2089     union xfs_btree_key *high;
2090     int         n;
2091 
2092     if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2093         memcpy(key, xfs_btree_key_addr(cur, 1, block),
2094                 cur->bc_ops->key_len / 2);
2095 
2096         max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2097         for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2098             hkey = xfs_btree_high_key_addr(cur, n, block);
2099             if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2100                 max_hkey = hkey;
2101         }
2102 
2103         high = xfs_btree_high_key_from_key(cur, key);
2104         memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2105     } else {
2106         memcpy(key, xfs_btree_key_addr(cur, 1, block),
2107                 cur->bc_ops->key_len);
2108     }
2109 }
2110 
2111 /* Derive the keys for any btree block. */
2112 void
2113 xfs_btree_get_keys(
2114     struct xfs_btree_cur    *cur,
2115     struct xfs_btree_block  *block,
2116     union xfs_btree_key *key)
2117 {
2118     if (be16_to_cpu(block->bb_level) == 0)
2119         xfs_btree_get_leaf_keys(cur, block, key);
2120     else
2121         xfs_btree_get_node_keys(cur, block, key);
2122 }
2123 
2124 /*
2125  * Decide if we need to update the parent keys of a btree block.  For
2126  * a standard btree this is only necessary if we're updating the first
2127  * record/key.  For an overlapping btree, we must always update the
2128  * keys because the highest key can be in any of the records or keys
2129  * in the block.
2130  */
2131 static inline bool
2132 xfs_btree_needs_key_update(
2133     struct xfs_btree_cur    *cur,
2134     int         ptr)
2135 {
2136     return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2137 }
2138 
2139 /*
2140  * Update the low and high parent keys of the given level, progressing
2141  * towards the root.  If force_all is false, stop if the keys for a given
2142  * level do not need updating.
2143  */
2144 STATIC int
2145 __xfs_btree_updkeys(
2146     struct xfs_btree_cur    *cur,
2147     int         level,
2148     struct xfs_btree_block  *block,
2149     struct xfs_buf      *bp0,
2150     bool            force_all)
2151 {
2152     union xfs_btree_key key;    /* keys from current level */
2153     union xfs_btree_key *lkey;  /* keys from the next level up */
2154     union xfs_btree_key *hkey;
2155     union xfs_btree_key *nlkey; /* keys from the next level up */
2156     union xfs_btree_key *nhkey;
2157     struct xfs_buf      *bp;
2158     int         ptr;
2159 
2160     ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2161 
2162     /* Exit if there aren't any parent levels to update. */
2163     if (level + 1 >= cur->bc_nlevels)
2164         return 0;
2165 
2166     trace_xfs_btree_updkeys(cur, level, bp0);
2167 
2168     lkey = &key;
2169     hkey = xfs_btree_high_key_from_key(cur, lkey);
2170     xfs_btree_get_keys(cur, block, lkey);
2171     for (level++; level < cur->bc_nlevels; level++) {
2172 #ifdef DEBUG
2173         int     error;
2174 #endif
2175         block = xfs_btree_get_block(cur, level, &bp);
2176         trace_xfs_btree_updkeys(cur, level, bp);
2177 #ifdef DEBUG
2178         error = xfs_btree_check_block(cur, block, level, bp);
2179         if (error)
2180             return error;
2181 #endif
2182         ptr = cur->bc_levels[level].ptr;
2183         nlkey = xfs_btree_key_addr(cur, ptr, block);
2184         nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2185         if (!force_all &&
2186             !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2187               cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2188             break;
2189         xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2190         xfs_btree_log_keys(cur, bp, ptr, ptr);
2191         if (level + 1 >= cur->bc_nlevels)
2192             break;
2193         xfs_btree_get_node_keys(cur, block, lkey);
2194     }
2195 
2196     return 0;
2197 }
2198 
2199 /* Update all the keys from some level in cursor back to the root. */
2200 STATIC int
2201 xfs_btree_updkeys_force(
2202     struct xfs_btree_cur    *cur,
2203     int         level)
2204 {
2205     struct xfs_buf      *bp;
2206     struct xfs_btree_block  *block;
2207 
2208     block = xfs_btree_get_block(cur, level, &bp);
2209     return __xfs_btree_updkeys(cur, level, block, bp, true);
2210 }
2211 
2212 /*
2213  * Update the parent keys of the given level, progressing towards the root.
2214  */
2215 STATIC int
2216 xfs_btree_update_keys(
2217     struct xfs_btree_cur    *cur,
2218     int         level)
2219 {
2220     struct xfs_btree_block  *block;
2221     struct xfs_buf      *bp;
2222     union xfs_btree_key *kp;
2223     union xfs_btree_key key;
2224     int         ptr;
2225 
2226     ASSERT(level >= 0);
2227 
2228     block = xfs_btree_get_block(cur, level, &bp);
2229     if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2230         return __xfs_btree_updkeys(cur, level, block, bp, false);
2231 
2232     /*
2233      * Go up the tree from this level toward the root.
2234      * At each level, update the key value to the value input.
2235      * Stop when we reach a level where the cursor isn't pointing
2236      * at the first entry in the block.
2237      */
2238     xfs_btree_get_keys(cur, block, &key);
2239     for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2240 #ifdef DEBUG
2241         int     error;
2242 #endif
2243         block = xfs_btree_get_block(cur, level, &bp);
2244 #ifdef DEBUG
2245         error = xfs_btree_check_block(cur, block, level, bp);
2246         if (error)
2247             return error;
2248 #endif
2249         ptr = cur->bc_levels[level].ptr;
2250         kp = xfs_btree_key_addr(cur, ptr, block);
2251         xfs_btree_copy_keys(cur, kp, &key, 1);
2252         xfs_btree_log_keys(cur, bp, ptr, ptr);
2253     }
2254 
2255     return 0;
2256 }
2257 
2258 /*
2259  * Update the record referred to by cur to the value in the
2260  * given record. This either works (return 0) or gets an
2261  * EFSCORRUPTED error.
2262  */
2263 int
2264 xfs_btree_update(
2265     struct xfs_btree_cur    *cur,
2266     union xfs_btree_rec *rec)
2267 {
2268     struct xfs_btree_block  *block;
2269     struct xfs_buf      *bp;
2270     int         error;
2271     int         ptr;
2272     union xfs_btree_rec *rp;
2273 
2274     /* Pick up the current block. */
2275     block = xfs_btree_get_block(cur, 0, &bp);
2276 
2277 #ifdef DEBUG
2278     error = xfs_btree_check_block(cur, block, 0, bp);
2279     if (error)
2280         goto error0;
2281 #endif
2282     /* Get the address of the rec to be updated. */
2283     ptr = cur->bc_levels[0].ptr;
2284     rp = xfs_btree_rec_addr(cur, ptr, block);
2285 
2286     /* Fill in the new contents and log them. */
2287     xfs_btree_copy_recs(cur, rp, rec, 1);
2288     xfs_btree_log_recs(cur, bp, ptr, ptr);
2289 
2290     /*
2291      * If we are tracking the last record in the tree and
2292      * we are at the far right edge of the tree, update it.
2293      */
2294     if (xfs_btree_is_lastrec(cur, block, 0)) {
2295         cur->bc_ops->update_lastrec(cur, block, rec,
2296                         ptr, LASTREC_UPDATE);
2297     }
2298 
2299     /* Pass new key value up to our parent. */
2300     if (xfs_btree_needs_key_update(cur, ptr)) {
2301         error = xfs_btree_update_keys(cur, 0);
2302         if (error)
2303             goto error0;
2304     }
2305 
2306     return 0;
2307 
2308 error0:
2309     return error;
2310 }
2311 
2312 /*
2313  * Move 1 record left from cur/level if possible.
2314  * Update cur to reflect the new path.
2315  */
2316 STATIC int                  /* error */
2317 xfs_btree_lshift(
2318     struct xfs_btree_cur    *cur,
2319     int         level,
2320     int         *stat)      /* success/failure */
2321 {
2322     struct xfs_buf      *lbp;       /* left buffer pointer */
2323     struct xfs_btree_block  *left;      /* left btree block */
2324     int         lrecs;      /* left record count */
2325     struct xfs_buf      *rbp;       /* right buffer pointer */
2326     struct xfs_btree_block  *right;     /* right btree block */
2327     struct xfs_btree_cur    *tcur;      /* temporary btree cursor */
2328     int         rrecs;      /* right record count */
2329     union xfs_btree_ptr lptr;       /* left btree pointer */
2330     union xfs_btree_key *rkp = NULL;    /* right btree key */
2331     union xfs_btree_ptr *rpp = NULL;    /* right address pointer */
2332     union xfs_btree_rec *rrp = NULL;    /* right record pointer */
2333     int         error;      /* error return value */
2334     int         i;
2335 
2336     if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2337         level == cur->bc_nlevels - 1)
2338         goto out0;
2339 
2340     /* Set up variables for this block as "right". */
2341     right = xfs_btree_get_block(cur, level, &rbp);
2342 
2343 #ifdef DEBUG
2344     error = xfs_btree_check_block(cur, right, level, rbp);
2345     if (error)
2346         goto error0;
2347 #endif
2348 
2349     /* If we've got no left sibling then we can't shift an entry left. */
2350     xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2351     if (xfs_btree_ptr_is_null(cur, &lptr))
2352         goto out0;
2353 
2354     /*
2355      * If the cursor entry is the one that would be moved, don't
2356      * do it... it's too complicated.
2357      */
2358     if (cur->bc_levels[level].ptr <= 1)
2359         goto out0;
2360 
2361     /* Set up the left neighbor as "left". */
2362     error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2363     if (error)
2364         goto error0;
2365 
2366     /* If it's full, it can't take another entry. */
2367     lrecs = xfs_btree_get_numrecs(left);
2368     if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2369         goto out0;
2370 
2371     rrecs = xfs_btree_get_numrecs(right);
2372 
2373     /*
2374      * We add one entry to the left side and remove one for the right side.
2375      * Account for it here, the changes will be updated on disk and logged
2376      * later.
2377      */
2378     lrecs++;
2379     rrecs--;
2380 
2381     XFS_BTREE_STATS_INC(cur, lshift);
2382     XFS_BTREE_STATS_ADD(cur, moves, 1);
2383 
2384     /*
2385      * If non-leaf, copy a key and a ptr to the left block.
2386      * Log the changes to the left block.
2387      */
2388     if (level > 0) {
2389         /* It's a non-leaf.  Move keys and pointers. */
2390         union xfs_btree_key *lkp;   /* left btree key */
2391         union xfs_btree_ptr *lpp;   /* left address pointer */
2392 
2393         lkp = xfs_btree_key_addr(cur, lrecs, left);
2394         rkp = xfs_btree_key_addr(cur, 1, right);
2395 
2396         lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2397         rpp = xfs_btree_ptr_addr(cur, 1, right);
2398 
2399         error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2400         if (error)
2401             goto error0;
2402 
2403         xfs_btree_copy_keys(cur, lkp, rkp, 1);
2404         xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2405 
2406         xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2407         xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2408 
2409         ASSERT(cur->bc_ops->keys_inorder(cur,
2410             xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2411     } else {
2412         /* It's a leaf.  Move records.  */
2413         union xfs_btree_rec *lrp;   /* left record pointer */
2414 
2415         lrp = xfs_btree_rec_addr(cur, lrecs, left);
2416         rrp = xfs_btree_rec_addr(cur, 1, right);
2417 
2418         xfs_btree_copy_recs(cur, lrp, rrp, 1);
2419         xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2420 
2421         ASSERT(cur->bc_ops->recs_inorder(cur,
2422             xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2423     }
2424 
2425     xfs_btree_set_numrecs(left, lrecs);
2426     xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2427 
2428     xfs_btree_set_numrecs(right, rrecs);
2429     xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2430 
2431     /*
2432      * Slide the contents of right down one entry.
2433      */
2434     XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2435     if (level > 0) {
2436         /* It's a nonleaf. operate on keys and ptrs */
2437         for (i = 0; i < rrecs; i++) {
2438             error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2439             if (error)
2440                 goto error0;
2441         }
2442 
2443         xfs_btree_shift_keys(cur,
2444                 xfs_btree_key_addr(cur, 2, right),
2445                 -1, rrecs);
2446         xfs_btree_shift_ptrs(cur,
2447                 xfs_btree_ptr_addr(cur, 2, right),
2448                 -1, rrecs);
2449 
2450         xfs_btree_log_keys(cur, rbp, 1, rrecs);
2451         xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2452     } else {
2453         /* It's a leaf. operate on records */
2454         xfs_btree_shift_recs(cur,
2455             xfs_btree_rec_addr(cur, 2, right),
2456             -1, rrecs);
2457         xfs_btree_log_recs(cur, rbp, 1, rrecs);
2458     }
2459 
2460     /*
2461      * Using a temporary cursor, update the parent key values of the
2462      * block on the left.
2463      */
2464     if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2465         error = xfs_btree_dup_cursor(cur, &tcur);
2466         if (error)
2467             goto error0;
2468         i = xfs_btree_firstrec(tcur, level);
2469         if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2470             error = -EFSCORRUPTED;
2471             goto error0;
2472         }
2473 
2474         error = xfs_btree_decrement(tcur, level, &i);
2475         if (error)
2476             goto error1;
2477 
2478         /* Update the parent high keys of the left block, if needed. */
2479         error = xfs_btree_update_keys(tcur, level);
2480         if (error)
2481             goto error1;
2482 
2483         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2484     }
2485 
2486     /* Update the parent keys of the right block. */
2487     error = xfs_btree_update_keys(cur, level);
2488     if (error)
2489         goto error0;
2490 
2491     /* Slide the cursor value left one. */
2492     cur->bc_levels[level].ptr--;
2493 
2494     *stat = 1;
2495     return 0;
2496 
2497 out0:
2498     *stat = 0;
2499     return 0;
2500 
2501 error0:
2502     return error;
2503 
2504 error1:
2505     xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2506     return error;
2507 }
2508 
2509 /*
2510  * Move 1 record right from cur/level if possible.
2511  * Update cur to reflect the new path.
2512  */
2513 STATIC int                  /* error */
2514 xfs_btree_rshift(
2515     struct xfs_btree_cur    *cur,
2516     int         level,
2517     int         *stat)      /* success/failure */
2518 {
2519     struct xfs_buf      *lbp;       /* left buffer pointer */
2520     struct xfs_btree_block  *left;      /* left btree block */
2521     struct xfs_buf      *rbp;       /* right buffer pointer */
2522     struct xfs_btree_block  *right;     /* right btree block */
2523     struct xfs_btree_cur    *tcur;      /* temporary btree cursor */
2524     union xfs_btree_ptr rptr;       /* right block pointer */
2525     union xfs_btree_key *rkp;       /* right btree key */
2526     int         rrecs;      /* right record count */
2527     int         lrecs;      /* left record count */
2528     int         error;      /* error return value */
2529     int         i;      /* loop counter */
2530 
2531     if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2532         (level == cur->bc_nlevels - 1))
2533         goto out0;
2534 
2535     /* Set up variables for this block as "left". */
2536     left = xfs_btree_get_block(cur, level, &lbp);
2537 
2538 #ifdef DEBUG
2539     error = xfs_btree_check_block(cur, left, level, lbp);
2540     if (error)
2541         goto error0;
2542 #endif
2543 
2544     /* If we've got no right sibling then we can't shift an entry right. */
2545     xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2546     if (xfs_btree_ptr_is_null(cur, &rptr))
2547         goto out0;
2548 
2549     /*
2550      * If the cursor entry is the one that would be moved, don't
2551      * do it... it's too complicated.
2552      */
2553     lrecs = xfs_btree_get_numrecs(left);
2554     if (cur->bc_levels[level].ptr >= lrecs)
2555         goto out0;
2556 
2557     /* Set up the right neighbor as "right". */
2558     error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2559     if (error)
2560         goto error0;
2561 
2562     /* If it's full, it can't take another entry. */
2563     rrecs = xfs_btree_get_numrecs(right);
2564     if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2565         goto out0;
2566 
2567     XFS_BTREE_STATS_INC(cur, rshift);
2568     XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2569 
2570     /*
2571      * Make a hole at the start of the right neighbor block, then
2572      * copy the last left block entry to the hole.
2573      */
2574     if (level > 0) {
2575         /* It's a nonleaf. make a hole in the keys and ptrs */
2576         union xfs_btree_key *lkp;
2577         union xfs_btree_ptr *lpp;
2578         union xfs_btree_ptr *rpp;
2579 
2580         lkp = xfs_btree_key_addr(cur, lrecs, left);
2581         lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2582         rkp = xfs_btree_key_addr(cur, 1, right);
2583         rpp = xfs_btree_ptr_addr(cur, 1, right);
2584 
2585         for (i = rrecs - 1; i >= 0; i--) {
2586             error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2587             if (error)
2588                 goto error0;
2589         }
2590 
2591         xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2592         xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2593 
2594         error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2595         if (error)
2596             goto error0;
2597 
2598         /* Now put the new data in, and log it. */
2599         xfs_btree_copy_keys(cur, rkp, lkp, 1);
2600         xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2601 
2602         xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2603         xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2604 
2605         ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2606             xfs_btree_key_addr(cur, 2, right)));
2607     } else {
2608         /* It's a leaf. make a hole in the records */
2609         union xfs_btree_rec *lrp;
2610         union xfs_btree_rec *rrp;
2611 
2612         lrp = xfs_btree_rec_addr(cur, lrecs, left);
2613         rrp = xfs_btree_rec_addr(cur, 1, right);
2614 
2615         xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2616 
2617         /* Now put the new data in, and log it. */
2618         xfs_btree_copy_recs(cur, rrp, lrp, 1);
2619         xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2620     }
2621 
2622     /*
2623      * Decrement and log left's numrecs, bump and log right's numrecs.
2624      */
2625     xfs_btree_set_numrecs(left, --lrecs);
2626     xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2627 
2628     xfs_btree_set_numrecs(right, ++rrecs);
2629     xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2630 
2631     /*
2632      * Using a temporary cursor, update the parent key values of the
2633      * block on the right.
2634      */
2635     error = xfs_btree_dup_cursor(cur, &tcur);
2636     if (error)
2637         goto error0;
2638     i = xfs_btree_lastrec(tcur, level);
2639     if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2640         error = -EFSCORRUPTED;
2641         goto error0;
2642     }
2643 
2644     error = xfs_btree_increment(tcur, level, &i);
2645     if (error)
2646         goto error1;
2647 
2648     /* Update the parent high keys of the left block, if needed. */
2649     if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2650         error = xfs_btree_update_keys(cur, level);
2651         if (error)
2652             goto error1;
2653     }
2654 
2655     /* Update the parent keys of the right block. */
2656     error = xfs_btree_update_keys(tcur, level);
2657     if (error)
2658         goto error1;
2659 
2660     xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2661 
2662     *stat = 1;
2663     return 0;
2664 
2665 out0:
2666     *stat = 0;
2667     return 0;
2668 
2669 error0:
2670     return error;
2671 
2672 error1:
2673     xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2674     return error;
2675 }
2676 
2677 /*
2678  * Split cur/level block in half.
2679  * Return new block number and the key to its first
2680  * record (to be inserted into parent).
2681  */
2682 STATIC int                  /* error */
2683 __xfs_btree_split(
2684     struct xfs_btree_cur    *cur,
2685     int         level,
2686     union xfs_btree_ptr *ptrp,
2687     union xfs_btree_key *key,
2688     struct xfs_btree_cur    **curp,
2689     int         *stat)      /* success/failure */
2690 {
2691     union xfs_btree_ptr lptr;       /* left sibling block ptr */
2692     struct xfs_buf      *lbp;       /* left buffer pointer */
2693     struct xfs_btree_block  *left;      /* left btree block */
2694     union xfs_btree_ptr rptr;       /* right sibling block ptr */
2695     struct xfs_buf      *rbp;       /* right buffer pointer */
2696     struct xfs_btree_block  *right;     /* right btree block */
2697     union xfs_btree_ptr rrptr;      /* right-right sibling ptr */
2698     struct xfs_buf      *rrbp;      /* right-right buffer pointer */
2699     struct xfs_btree_block  *rrblock;   /* right-right btree block */
2700     int         lrecs;
2701     int         rrecs;
2702     int         src_index;
2703     int         error;      /* error return value */
2704     int         i;
2705 
2706     XFS_BTREE_STATS_INC(cur, split);
2707 
2708     /* Set up left block (current one). */
2709     left = xfs_btree_get_block(cur, level, &lbp);
2710 
2711 #ifdef DEBUG
2712     error = xfs_btree_check_block(cur, left, level, lbp);
2713     if (error)
2714         goto error0;
2715 #endif
2716 
2717     xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2718 
2719     /* Allocate the new block. If we can't do it, we're toast. Give up. */
2720     error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2721     if (error)
2722         goto error0;
2723     if (*stat == 0)
2724         goto out0;
2725     XFS_BTREE_STATS_INC(cur, alloc);
2726 
2727     /* Set up the new block as "right". */
2728     error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2729     if (error)
2730         goto error0;
2731 
2732     /* Fill in the btree header for the new right block. */
2733     xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2734 
2735     /*
2736      * Split the entries between the old and the new block evenly.
2737      * Make sure that if there's an odd number of entries now, that
2738      * each new block will have the same number of entries.
2739      */
2740     lrecs = xfs_btree_get_numrecs(left);
2741     rrecs = lrecs / 2;
2742     if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2743         rrecs++;
2744     src_index = (lrecs - rrecs + 1);
2745 
2746     XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2747 
2748     /* Adjust numrecs for the later get_*_keys() calls. */
2749     lrecs -= rrecs;
2750     xfs_btree_set_numrecs(left, lrecs);
2751     xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2752 
2753     /*
2754      * Copy btree block entries from the left block over to the
2755      * new block, the right. Update the right block and log the
2756      * changes.
2757      */
2758     if (level > 0) {
2759         /* It's a non-leaf.  Move keys and pointers. */
2760         union xfs_btree_key *lkp;   /* left btree key */
2761         union xfs_btree_ptr *lpp;   /* left address pointer */
2762         union xfs_btree_key *rkp;   /* right btree key */
2763         union xfs_btree_ptr *rpp;   /* right address pointer */
2764 
2765         lkp = xfs_btree_key_addr(cur, src_index, left);
2766         lpp = xfs_btree_ptr_addr(cur, src_index, left);
2767         rkp = xfs_btree_key_addr(cur, 1, right);
2768         rpp = xfs_btree_ptr_addr(cur, 1, right);
2769 
2770         for (i = src_index; i < rrecs; i++) {
2771             error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2772             if (error)
2773                 goto error0;
2774         }
2775 
2776         /* Copy the keys & pointers to the new block. */
2777         xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2778         xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2779 
2780         xfs_btree_log_keys(cur, rbp, 1, rrecs);
2781         xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2782 
2783         /* Stash the keys of the new block for later insertion. */
2784         xfs_btree_get_node_keys(cur, right, key);
2785     } else {
2786         /* It's a leaf.  Move records.  */
2787         union xfs_btree_rec *lrp;   /* left record pointer */
2788         union xfs_btree_rec *rrp;   /* right record pointer */
2789 
2790         lrp = xfs_btree_rec_addr(cur, src_index, left);
2791         rrp = xfs_btree_rec_addr(cur, 1, right);
2792 
2793         /* Copy records to the new block. */
2794         xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2795         xfs_btree_log_recs(cur, rbp, 1, rrecs);
2796 
2797         /* Stash the keys of the new block for later insertion. */
2798         xfs_btree_get_leaf_keys(cur, right, key);
2799     }
2800 
2801     /*
2802      * Find the left block number by looking in the buffer.
2803      * Adjust sibling pointers.
2804      */
2805     xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2806     xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2807     xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2808     xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2809 
2810     xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2811     xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2812 
2813     /*
2814      * If there's a block to the new block's right, make that block
2815      * point back to right instead of to left.
2816      */
2817     if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2818         error = xfs_btree_read_buf_block(cur, &rrptr,
2819                             0, &rrblock, &rrbp);
2820         if (error)
2821             goto error0;
2822         xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2823         xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2824     }
2825 
2826     /* Update the parent high keys of the left block, if needed. */
2827     if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2828         error = xfs_btree_update_keys(cur, level);
2829         if (error)
2830             goto error0;
2831     }
2832 
2833     /*
2834      * If the cursor is really in the right block, move it there.
2835      * If it's just pointing past the last entry in left, then we'll
2836      * insert there, so don't change anything in that case.
2837      */
2838     if (cur->bc_levels[level].ptr > lrecs + 1) {
2839         xfs_btree_setbuf(cur, level, rbp);
2840         cur->bc_levels[level].ptr -= lrecs;
2841     }
2842     /*
2843      * If there are more levels, we'll need another cursor which refers
2844      * the right block, no matter where this cursor was.
2845      */
2846     if (level + 1 < cur->bc_nlevels) {
2847         error = xfs_btree_dup_cursor(cur, curp);
2848         if (error)
2849             goto error0;
2850         (*curp)->bc_levels[level + 1].ptr++;
2851     }
2852     *ptrp = rptr;
2853     *stat = 1;
2854     return 0;
2855 out0:
2856     *stat = 0;
2857     return 0;
2858 
2859 error0:
2860     return error;
2861 }
2862 
2863 #ifdef __KERNEL__
2864 struct xfs_btree_split_args {
2865     struct xfs_btree_cur    *cur;
2866     int         level;
2867     union xfs_btree_ptr *ptrp;
2868     union xfs_btree_key *key;
2869     struct xfs_btree_cur    **curp;
2870     int         *stat;      /* success/failure */
2871     int         result;
2872     bool            kswapd; /* allocation in kswapd context */
2873     struct completion   *done;
2874     struct work_struct  work;
2875 };
2876 
2877 /*
2878  * Stack switching interfaces for allocation
2879  */
2880 static void
2881 xfs_btree_split_worker(
2882     struct work_struct  *work)
2883 {
2884     struct xfs_btree_split_args *args = container_of(work,
2885                         struct xfs_btree_split_args, work);
2886     unsigned long       pflags;
2887     unsigned long       new_pflags = 0;
2888 
2889     /*
2890      * we are in a transaction context here, but may also be doing work
2891      * in kswapd context, and hence we may need to inherit that state
2892      * temporarily to ensure that we don't block waiting for memory reclaim
2893      * in any way.
2894      */
2895     if (args->kswapd)
2896         new_pflags |= PF_MEMALLOC | PF_KSWAPD;
2897 
2898     current_set_flags_nested(&pflags, new_pflags);
2899     xfs_trans_set_context(args->cur->bc_tp);
2900 
2901     args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2902                      args->key, args->curp, args->stat);
2903 
2904     xfs_trans_clear_context(args->cur->bc_tp);
2905     current_restore_flags_nested(&pflags, new_pflags);
2906 
2907     /*
2908      * Do not access args after complete() has run here. We don't own args
2909      * and the owner may run and free args before we return here.
2910      */
2911     complete(args->done);
2912 
2913 }
2914 
2915 /*
2916  * BMBT split requests often come in with little stack to work on. Push
2917  * them off to a worker thread so there is lots of stack to use. For the other
2918  * btree types, just call directly to avoid the context switch overhead here.
2919  */
2920 STATIC int                  /* error */
2921 xfs_btree_split(
2922     struct xfs_btree_cur    *cur,
2923     int         level,
2924     union xfs_btree_ptr *ptrp,
2925     union xfs_btree_key *key,
2926     struct xfs_btree_cur    **curp,
2927     int         *stat)      /* success/failure */
2928 {
2929     struct xfs_btree_split_args args;
2930     DECLARE_COMPLETION_ONSTACK(done);
2931 
2932     if (cur->bc_btnum != XFS_BTNUM_BMAP)
2933         return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2934 
2935     args.cur = cur;
2936     args.level = level;
2937     args.ptrp = ptrp;
2938     args.key = key;
2939     args.curp = curp;
2940     args.stat = stat;
2941     args.done = &done;
2942     args.kswapd = current_is_kswapd();
2943     INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2944     queue_work(xfs_alloc_wq, &args.work);
2945     wait_for_completion(&done);
2946     destroy_work_on_stack(&args.work);
2947     return args.result;
2948 }
2949 #else
2950 #define xfs_btree_split __xfs_btree_split
2951 #endif /* __KERNEL__ */
2952 
2953 
2954 /*
2955  * Copy the old inode root contents into a real block and make the
2956  * broot point to it.
2957  */
2958 int                     /* error */
2959 xfs_btree_new_iroot(
2960     struct xfs_btree_cur    *cur,       /* btree cursor */
2961     int         *logflags,  /* logging flags for inode */
2962     int         *stat)      /* return status - 0 fail */
2963 {
2964     struct xfs_buf      *cbp;       /* buffer for cblock */
2965     struct xfs_btree_block  *block;     /* btree block */
2966     struct xfs_btree_block  *cblock;    /* child btree block */
2967     union xfs_btree_key *ckp;       /* child key pointer */
2968     union xfs_btree_ptr *cpp;       /* child ptr pointer */
2969     union xfs_btree_key *kp;        /* pointer to btree key */
2970     union xfs_btree_ptr *pp;        /* pointer to block addr */
2971     union xfs_btree_ptr nptr;       /* new block addr */
2972     int         level;      /* btree level */
2973     int         error;      /* error return code */
2974     int         i;      /* loop counter */
2975 
2976     XFS_BTREE_STATS_INC(cur, newroot);
2977 
2978     ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2979 
2980     level = cur->bc_nlevels - 1;
2981 
2982     block = xfs_btree_get_iroot(cur);
2983     pp = xfs_btree_ptr_addr(cur, 1, block);
2984 
2985     /* Allocate the new block. If we can't do it, we're toast. Give up. */
2986     error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2987     if (error)
2988         goto error0;
2989     if (*stat == 0)
2990         return 0;
2991 
2992     XFS_BTREE_STATS_INC(cur, alloc);
2993 
2994     /* Copy the root into a real block. */
2995     error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2996     if (error)
2997         goto error0;
2998 
2999     /*
3000      * we can't just memcpy() the root in for CRC enabled btree blocks.
3001      * In that case have to also ensure the blkno remains correct
3002      */
3003     memcpy(cblock, block, xfs_btree_block_len(cur));
3004     if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3005         __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3006         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3007             cblock->bb_u.l.bb_blkno = bno;
3008         else
3009             cblock->bb_u.s.bb_blkno = bno;
3010     }
3011 
3012     be16_add_cpu(&block->bb_level, 1);
3013     xfs_btree_set_numrecs(block, 1);
3014     cur->bc_nlevels++;
3015     ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3016     cur->bc_levels[level + 1].ptr = 1;
3017 
3018     kp = xfs_btree_key_addr(cur, 1, block);
3019     ckp = xfs_btree_key_addr(cur, 1, cblock);
3020     xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3021 
3022     cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3023     for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3024         error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3025         if (error)
3026             goto error0;
3027     }
3028 
3029     xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3030 
3031     error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3032     if (error)
3033         goto error0;
3034 
3035     xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3036 
3037     xfs_iroot_realloc(cur->bc_ino.ip,
3038               1 - xfs_btree_get_numrecs(cblock),
3039               cur->bc_ino.whichfork);
3040 
3041     xfs_btree_setbuf(cur, level, cbp);
3042 
3043     /*
3044      * Do all this logging at the end so that
3045      * the root is at the right level.
3046      */
3047     xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3048     xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3049     xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3050 
3051     *logflags |=
3052         XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3053     *stat = 1;
3054     return 0;
3055 error0:
3056     return error;
3057 }
3058 
3059 /*
3060  * Allocate a new root block, fill it in.
3061  */
3062 STATIC int              /* error */
3063 xfs_btree_new_root(
3064     struct xfs_btree_cur    *cur,   /* btree cursor */
3065     int         *stat)  /* success/failure */
3066 {
3067     struct xfs_btree_block  *block; /* one half of the old root block */
3068     struct xfs_buf      *bp;    /* buffer containing block */
3069     int         error;  /* error return value */
3070     struct xfs_buf      *lbp;   /* left buffer pointer */
3071     struct xfs_btree_block  *left;  /* left btree block */
3072     struct xfs_buf      *nbp;   /* new (root) buffer */
3073     struct xfs_btree_block  *new;   /* new (root) btree block */
3074     int         nptr;   /* new value for key index, 1 or 2 */
3075     struct xfs_buf      *rbp;   /* right buffer pointer */
3076     struct xfs_btree_block  *right; /* right btree block */
3077     union xfs_btree_ptr rptr;
3078     union xfs_btree_ptr lptr;
3079 
3080     XFS_BTREE_STATS_INC(cur, newroot);
3081 
3082     /* initialise our start point from the cursor */
3083     cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3084 
3085     /* Allocate the new block. If we can't do it, we're toast. Give up. */
3086     error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3087     if (error)
3088         goto error0;
3089     if (*stat == 0)
3090         goto out0;
3091     XFS_BTREE_STATS_INC(cur, alloc);
3092 
3093     /* Set up the new block. */
3094     error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3095     if (error)
3096         goto error0;
3097 
3098     /* Set the root in the holding structure  increasing the level by 1. */
3099     cur->bc_ops->set_root(cur, &lptr, 1);
3100 
3101     /*
3102      * At the previous root level there are now two blocks: the old root,
3103      * and the new block generated when it was split.  We don't know which
3104      * one the cursor is pointing at, so we set up variables "left" and
3105      * "right" for each case.
3106      */
3107     block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3108 
3109 #ifdef DEBUG
3110     error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3111     if (error)
3112         goto error0;
3113 #endif
3114 
3115     xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3116     if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3117         /* Our block is left, pick up the right block. */
3118         lbp = bp;
3119         xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3120         left = block;
3121         error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3122         if (error)
3123             goto error0;
3124         bp = rbp;
3125         nptr = 1;
3126     } else {
3127         /* Our block is right, pick up the left block. */
3128         rbp = bp;
3129         xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3130         right = block;
3131         xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3132         error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3133         if (error)
3134             goto error0;
3135         bp = lbp;
3136         nptr = 2;
3137     }
3138 
3139     /* Fill in the new block's btree header and log it. */
3140     xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3141     xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3142     ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3143             !xfs_btree_ptr_is_null(cur, &rptr));
3144 
3145     /* Fill in the key data in the new root. */
3146     if (xfs_btree_get_level(left) > 0) {
3147         /*
3148          * Get the keys for the left block's keys and put them directly
3149          * in the parent block.  Do the same for the right block.
3150          */
3151         xfs_btree_get_node_keys(cur, left,
3152                 xfs_btree_key_addr(cur, 1, new));
3153         xfs_btree_get_node_keys(cur, right,
3154                 xfs_btree_key_addr(cur, 2, new));
3155     } else {
3156         /*
3157          * Get the keys for the left block's records and put them
3158          * directly in the parent block.  Do the same for the right
3159          * block.
3160          */
3161         xfs_btree_get_leaf_keys(cur, left,
3162             xfs_btree_key_addr(cur, 1, new));
3163         xfs_btree_get_leaf_keys(cur, right,
3164             xfs_btree_key_addr(cur, 2, new));
3165     }
3166     xfs_btree_log_keys(cur, nbp, 1, 2);
3167 
3168     /* Fill in the pointer data in the new root. */
3169     xfs_btree_copy_ptrs(cur,
3170         xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3171     xfs_btree_copy_ptrs(cur,
3172         xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3173     xfs_btree_log_ptrs(cur, nbp, 1, 2);
3174 
3175     /* Fix up the cursor. */
3176     xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3177     cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3178     cur->bc_nlevels++;
3179     ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3180     *stat = 1;
3181     return 0;
3182 error0:
3183     return error;
3184 out0:
3185     *stat = 0;
3186     return 0;
3187 }
3188 
3189 STATIC int
3190 xfs_btree_make_block_unfull(
3191     struct xfs_btree_cur    *cur,   /* btree cursor */
3192     int         level,  /* btree level */
3193     int         numrecs,/* # of recs in block */
3194     int         *oindex,/* old tree index */
3195     int         *index, /* new tree index */
3196     union xfs_btree_ptr *nptr,  /* new btree ptr */
3197     struct xfs_btree_cur    **ncur, /* new btree cursor */
3198     union xfs_btree_key *key,   /* key of new block */
3199     int         *stat)
3200 {
3201     int         error = 0;
3202 
3203     if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3204         level == cur->bc_nlevels - 1) {
3205         struct xfs_inode *ip = cur->bc_ino.ip;
3206 
3207         if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3208             /* A root block that can be made bigger. */
3209             xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3210             *stat = 1;
3211         } else {
3212             /* A root block that needs replacing */
3213             int logflags = 0;
3214 
3215             error = xfs_btree_new_iroot(cur, &logflags, stat);
3216             if (error || *stat == 0)
3217                 return error;
3218 
3219             xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3220         }
3221 
3222         return 0;
3223     }
3224 
3225     /* First, try shifting an entry to the right neighbor. */
3226     error = xfs_btree_rshift(cur, level, stat);
3227     if (error || *stat)
3228         return error;
3229 
3230     /* Next, try shifting an entry to the left neighbor. */
3231     error = xfs_btree_lshift(cur, level, stat);
3232     if (error)
3233         return error;
3234 
3235     if (*stat) {
3236         *oindex = *index = cur->bc_levels[level].ptr;
3237         return 0;
3238     }
3239 
3240     /*
3241      * Next, try splitting the current block in half.
3242      *
3243      * If this works we have to re-set our variables because we
3244      * could be in a different block now.
3245      */
3246     error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3247     if (error || *stat == 0)
3248         return error;
3249 
3250 
3251     *index = cur->bc_levels[level].ptr;
3252     return 0;
3253 }
3254 
3255 /*
3256  * Insert one record/level.  Return information to the caller
3257  * allowing the next level up to proceed if necessary.
3258  */
3259 STATIC int
3260 xfs_btree_insrec(
3261     struct xfs_btree_cur    *cur,   /* btree cursor */
3262     int         level,  /* level to insert record at */
3263     union xfs_btree_ptr *ptrp,  /* i/o: block number inserted */
3264     union xfs_btree_rec *rec,   /* record to insert */
3265     union xfs_btree_key *key,   /* i/o: block key for ptrp */
3266     struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3267     int         *stat)  /* success/failure */
3268 {
3269     struct xfs_btree_block  *block; /* btree block */
3270     struct xfs_buf      *bp;    /* buffer for block */
3271     union xfs_btree_ptr nptr;   /* new block ptr */
3272     struct xfs_btree_cur    *ncur = NULL;   /* new btree cursor */
3273     union xfs_btree_key nkey;   /* new block key */
3274     union xfs_btree_key *lkey;
3275     int         optr;   /* old key/record index */
3276     int         ptr;    /* key/record index */
3277     int         numrecs;/* number of records */
3278     int         error;  /* error return value */
3279     int         i;
3280     xfs_daddr_t     old_bn;
3281 
3282     ncur = NULL;
3283     lkey = &nkey;
3284 
3285     /*
3286      * If we have an external root pointer, and we've made it to the
3287      * root level, allocate a new root block and we're done.
3288      */
3289     if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3290         (level >= cur->bc_nlevels)) {
3291         error = xfs_btree_new_root(cur, stat);
3292         xfs_btree_set_ptr_null(cur, ptrp);
3293 
3294         return error;
3295     }
3296 
3297     /* If we're off the left edge, return failure. */
3298     ptr = cur->bc_levels[level].ptr;
3299     if (ptr == 0) {
3300         *stat = 0;
3301         return 0;
3302     }
3303 
3304     optr = ptr;
3305 
3306     XFS_BTREE_STATS_INC(cur, insrec);
3307 
3308     /* Get pointers to the btree buffer and block. */
3309     block = xfs_btree_get_block(cur, level, &bp);
3310     old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3311     numrecs = xfs_btree_get_numrecs(block);
3312 
3313 #ifdef DEBUG
3314     error = xfs_btree_check_block(cur, block, level, bp);
3315     if (error)
3316         goto error0;
3317 
3318     /* Check that the new entry is being inserted in the right place. */
3319     if (ptr <= numrecs) {
3320         if (level == 0) {
3321             ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3322                 xfs_btree_rec_addr(cur, ptr, block)));
3323         } else {
3324             ASSERT(cur->bc_ops->keys_inorder(cur, key,
3325                 xfs_btree_key_addr(cur, ptr, block)));
3326         }
3327     }
3328 #endif
3329 
3330     /*
3331      * If the block is full, we can't insert the new entry until we
3332      * make the block un-full.
3333      */
3334     xfs_btree_set_ptr_null(cur, &nptr);
3335     if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3336         error = xfs_btree_make_block_unfull(cur, level, numrecs,
3337                     &optr, &ptr, &nptr, &ncur, lkey, stat);
3338         if (error || *stat == 0)
3339             goto error0;
3340     }
3341 
3342     /*
3343      * The current block may have changed if the block was
3344      * previously full and we have just made space in it.
3345      */
3346     block = xfs_btree_get_block(cur, level, &bp);
3347     numrecs = xfs_btree_get_numrecs(block);
3348 
3349 #ifdef DEBUG
3350     error = xfs_btree_check_block(cur, block, level, bp);
3351     if (error)
3352         goto error0;
3353 #endif
3354 
3355     /*
3356      * At this point we know there's room for our new entry in the block
3357      * we're pointing at.
3358      */
3359     XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3360 
3361     if (level > 0) {
3362         /* It's a nonleaf. make a hole in the keys and ptrs */
3363         union xfs_btree_key *kp;
3364         union xfs_btree_ptr *pp;
3365 
3366         kp = xfs_btree_key_addr(cur, ptr, block);
3367         pp = xfs_btree_ptr_addr(cur, ptr, block);
3368 
3369         for (i = numrecs - ptr; i >= 0; i--) {
3370             error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3371             if (error)
3372                 goto error0;
3373         }
3374 
3375         xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3376         xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3377 
3378         error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3379         if (error)
3380             goto error0;
3381 
3382         /* Now put the new data in, bump numrecs and log it. */
3383         xfs_btree_copy_keys(cur, kp, key, 1);
3384         xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3385         numrecs++;
3386         xfs_btree_set_numrecs(block, numrecs);
3387         xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3388         xfs_btree_log_keys(cur, bp, ptr, numrecs);
3389 #ifdef DEBUG
3390         if (ptr < numrecs) {
3391             ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3392                 xfs_btree_key_addr(cur, ptr + 1, block)));
3393         }
3394 #endif
3395     } else {
3396         /* It's a leaf. make a hole in the records */
3397         union xfs_btree_rec             *rp;
3398 
3399         rp = xfs_btree_rec_addr(cur, ptr, block);
3400 
3401         xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3402 
3403         /* Now put the new data in, bump numrecs and log it. */
3404         xfs_btree_copy_recs(cur, rp, rec, 1);
3405         xfs_btree_set_numrecs(block, ++numrecs);
3406         xfs_btree_log_recs(cur, bp, ptr, numrecs);
3407 #ifdef DEBUG
3408         if (ptr < numrecs) {
3409             ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3410                 xfs_btree_rec_addr(cur, ptr + 1, block)));
3411         }
3412 #endif
3413     }
3414 
3415     /* Log the new number of records in the btree header. */
3416     xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3417 
3418     /*
3419      * If we just inserted into a new tree block, we have to
3420      * recalculate nkey here because nkey is out of date.
3421      *
3422      * Otherwise we're just updating an existing block (having shoved
3423      * some records into the new tree block), so use the regular key
3424      * update mechanism.
3425      */
3426     if (bp && xfs_buf_daddr(bp) != old_bn) {
3427         xfs_btree_get_keys(cur, block, lkey);
3428     } else if (xfs_btree_needs_key_update(cur, optr)) {
3429         error = xfs_btree_update_keys(cur, level);
3430         if (error)
3431             goto error0;
3432     }
3433 
3434     /*
3435      * If we are tracking the last record in the tree and
3436      * we are at the far right edge of the tree, update it.
3437      */
3438     if (xfs_btree_is_lastrec(cur, block, level)) {
3439         cur->bc_ops->update_lastrec(cur, block, rec,
3440                         ptr, LASTREC_INSREC);
3441     }
3442 
3443     /*
3444      * Return the new block number, if any.
3445      * If there is one, give back a record value and a cursor too.
3446      */
3447     *ptrp = nptr;
3448     if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3449         xfs_btree_copy_keys(cur, key, lkey, 1);
3450         *curp = ncur;
3451     }
3452 
3453     *stat = 1;
3454     return 0;
3455 
3456 error0:
3457     if (ncur)
3458         xfs_btree_del_cursor(ncur, error);
3459     return error;
3460 }
3461 
3462 /*
3463  * Insert the record at the point referenced by cur.
3464  *
3465  * A multi-level split of the tree on insert will invalidate the original
3466  * cursor.  All callers of this function should assume that the cursor is
3467  * no longer valid and revalidate it.
3468  */
3469 int
3470 xfs_btree_insert(
3471     struct xfs_btree_cur    *cur,
3472     int         *stat)
3473 {
3474     int         error;  /* error return value */
3475     int         i;  /* result value, 0 for failure */
3476     int         level;  /* current level number in btree */
3477     union xfs_btree_ptr nptr;   /* new block number (split result) */
3478     struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3479     struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3480     union xfs_btree_key bkey;   /* key of block to insert */
3481     union xfs_btree_key *key;
3482     union xfs_btree_rec rec;    /* record to insert */
3483 
3484     level = 0;
3485     ncur = NULL;
3486     pcur = cur;
3487     key = &bkey;
3488 
3489     xfs_btree_set_ptr_null(cur, &nptr);
3490 
3491     /* Make a key out of the record data to be inserted, and save it. */
3492     cur->bc_ops->init_rec_from_cur(cur, &rec);
3493     cur->bc_ops->init_key_from_rec(key, &rec);
3494 
3495     /*
3496      * Loop going up the tree, starting at the leaf level.
3497      * Stop when we don't get a split block, that must mean that
3498      * the insert is finished with this level.
3499      */
3500     do {
3501         /*
3502          * Insert nrec/nptr into this level of the tree.
3503          * Note if we fail, nptr will be null.
3504          */
3505         error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3506                 &ncur, &i);
3507         if (error) {
3508             if (pcur != cur)
3509                 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3510             goto error0;
3511         }
3512 
3513         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3514             error = -EFSCORRUPTED;
3515             goto error0;
3516         }
3517         level++;
3518 
3519         /*
3520          * See if the cursor we just used is trash.
3521          * Can't trash the caller's cursor, but otherwise we should
3522          * if ncur is a new cursor or we're about to be done.
3523          */
3524         if (pcur != cur &&
3525             (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3526             /* Save the state from the cursor before we trash it */
3527             if (cur->bc_ops->update_cursor)
3528                 cur->bc_ops->update_cursor(pcur, cur);
3529             cur->bc_nlevels = pcur->bc_nlevels;
3530             xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3531         }
3532         /* If we got a new cursor, switch to it. */
3533         if (ncur) {
3534             pcur = ncur;
3535             ncur = NULL;
3536         }
3537     } while (!xfs_btree_ptr_is_null(cur, &nptr));
3538 
3539     *stat = i;
3540     return 0;
3541 error0:
3542     return error;
3543 }
3544 
3545 /*
3546  * Try to merge a non-leaf block back into the inode root.
3547  *
3548  * Note: the killroot names comes from the fact that we're effectively
3549  * killing the old root block.  But because we can't just delete the
3550  * inode we have to copy the single block it was pointing to into the
3551  * inode.
3552  */
3553 STATIC int
3554 xfs_btree_kill_iroot(
3555     struct xfs_btree_cur    *cur)
3556 {
3557     int         whichfork = cur->bc_ino.whichfork;
3558     struct xfs_inode    *ip = cur->bc_ino.ip;
3559     struct xfs_ifork    *ifp = xfs_ifork_ptr(ip, whichfork);
3560     struct xfs_btree_block  *block;
3561     struct xfs_btree_block  *cblock;
3562     union xfs_btree_key *kp;
3563     union xfs_btree_key *ckp;
3564     union xfs_btree_ptr *pp;
3565     union xfs_btree_ptr *cpp;
3566     struct xfs_buf      *cbp;
3567     int         level;
3568     int         index;
3569     int         numrecs;
3570     int         error;
3571 #ifdef DEBUG
3572     union xfs_btree_ptr ptr;
3573 #endif
3574     int         i;
3575 
3576     ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3577     ASSERT(cur->bc_nlevels > 1);
3578 
3579     /*
3580      * Don't deal with the root block needs to be a leaf case.
3581      * We're just going to turn the thing back into extents anyway.
3582      */
3583     level = cur->bc_nlevels - 1;
3584     if (level == 1)
3585         goto out0;
3586 
3587     /*
3588      * Give up if the root has multiple children.
3589      */
3590     block = xfs_btree_get_iroot(cur);
3591     if (xfs_btree_get_numrecs(block) != 1)
3592         goto out0;
3593 
3594     cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3595     numrecs = xfs_btree_get_numrecs(cblock);
3596 
3597     /*
3598      * Only do this if the next level will fit.
3599      * Then the data must be copied up to the inode,
3600      * instead of freeing the root you free the next level.
3601      */
3602     if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3603         goto out0;
3604 
3605     XFS_BTREE_STATS_INC(cur, killroot);
3606 
3607 #ifdef DEBUG
3608     xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3609     ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3610     xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3611     ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3612 #endif
3613 
3614     index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3615     if (index) {
3616         xfs_iroot_realloc(cur->bc_ino.ip, index,
3617                   cur->bc_ino.whichfork);
3618         block = ifp->if_broot;
3619     }
3620 
3621     be16_add_cpu(&block->bb_numrecs, index);
3622     ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3623 
3624     kp = xfs_btree_key_addr(cur, 1, block);
3625     ckp = xfs_btree_key_addr(cur, 1, cblock);
3626     xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3627 
3628     pp = xfs_btree_ptr_addr(cur, 1, block);
3629     cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3630 
3631     for (i = 0; i < numrecs; i++) {
3632         error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3633         if (error)
3634             return error;
3635     }
3636 
3637     xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3638 
3639     error = xfs_btree_free_block(cur, cbp);
3640     if (error)
3641         return error;
3642 
3643     cur->bc_levels[level - 1].bp = NULL;
3644     be16_add_cpu(&block->bb_level, -1);
3645     xfs_trans_log_inode(cur->bc_tp, ip,
3646         XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3647     cur->bc_nlevels--;
3648 out0:
3649     return 0;
3650 }
3651 
3652 /*
3653  * Kill the current root node, and replace it with it's only child node.
3654  */
3655 STATIC int
3656 xfs_btree_kill_root(
3657     struct xfs_btree_cur    *cur,
3658     struct xfs_buf      *bp,
3659     int         level,
3660     union xfs_btree_ptr *newroot)
3661 {
3662     int         error;
3663 
3664     XFS_BTREE_STATS_INC(cur, killroot);
3665 
3666     /*
3667      * Update the root pointer, decreasing the level by 1 and then
3668      * free the old root.
3669      */
3670     cur->bc_ops->set_root(cur, newroot, -1);
3671 
3672     error = xfs_btree_free_block(cur, bp);
3673     if (error)
3674         return error;
3675 
3676     cur->bc_levels[level].bp = NULL;
3677     cur->bc_levels[level].ra = 0;
3678     cur->bc_nlevels--;
3679 
3680     return 0;
3681 }
3682 
3683 STATIC int
3684 xfs_btree_dec_cursor(
3685     struct xfs_btree_cur    *cur,
3686     int         level,
3687     int         *stat)
3688 {
3689     int         error;
3690     int         i;
3691 
3692     if (level > 0) {
3693         error = xfs_btree_decrement(cur, level, &i);
3694         if (error)
3695             return error;
3696     }
3697 
3698     *stat = 1;
3699     return 0;
3700 }
3701 
3702 /*
3703  * Single level of the btree record deletion routine.
3704  * Delete record pointed to by cur/level.
3705  * Remove the record from its block then rebalance the tree.
3706  * Return 0 for error, 1 for done, 2 to go on to the next level.
3707  */
3708 STATIC int                  /* error */
3709 xfs_btree_delrec(
3710     struct xfs_btree_cur    *cur,       /* btree cursor */
3711     int         level,      /* level removing record from */
3712     int         *stat)      /* fail/done/go-on */
3713 {
3714     struct xfs_btree_block  *block;     /* btree block */
3715     union xfs_btree_ptr cptr;       /* current block ptr */
3716     struct xfs_buf      *bp;        /* buffer for block */
3717     int         error;      /* error return value */
3718     int         i;      /* loop counter */
3719     union xfs_btree_ptr lptr;       /* left sibling block ptr */
3720     struct xfs_buf      *lbp;       /* left buffer pointer */
3721     struct xfs_btree_block  *left;      /* left btree block */
3722     int         lrecs = 0;  /* left record count */
3723     int         ptr;        /* key/record index */
3724     union xfs_btree_ptr rptr;       /* right sibling block ptr */
3725     struct xfs_buf      *rbp;       /* right buffer pointer */
3726     struct xfs_btree_block  *right;     /* right btree block */
3727     struct xfs_btree_block  *rrblock;   /* right-right btree block */
3728     struct xfs_buf      *rrbp;      /* right-right buffer pointer */
3729     int         rrecs = 0;  /* right record count */
3730     struct xfs_btree_cur    *tcur;      /* temporary btree cursor */
3731     int         numrecs;    /* temporary numrec count */
3732 
3733     tcur = NULL;
3734 
3735     /* Get the index of the entry being deleted, check for nothing there. */
3736     ptr = cur->bc_levels[level].ptr;
3737     if (ptr == 0) {
3738         *stat = 0;
3739         return 0;
3740     }
3741 
3742     /* Get the buffer & block containing the record or key/ptr. */
3743     block = xfs_btree_get_block(cur, level, &bp);
3744     numrecs = xfs_btree_get_numrecs(block);
3745 
3746 #ifdef DEBUG
3747     error = xfs_btree_check_block(cur, block, level, bp);
3748     if (error)
3749         goto error0;
3750 #endif
3751 
3752     /* Fail if we're off the end of the block. */
3753     if (ptr > numrecs) {
3754         *stat = 0;
3755         return 0;
3756     }
3757 
3758     XFS_BTREE_STATS_INC(cur, delrec);
3759     XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3760 
3761     /* Excise the entries being deleted. */
3762     if (level > 0) {
3763         /* It's a nonleaf. operate on keys and ptrs */
3764         union xfs_btree_key *lkp;
3765         union xfs_btree_ptr *lpp;
3766 
3767         lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3768         lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3769 
3770         for (i = 0; i < numrecs - ptr; i++) {
3771             error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3772             if (error)
3773                 goto error0;
3774         }
3775 
3776         if (ptr < numrecs) {
3777             xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3778             xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3779             xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3780             xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3781         }
3782     } else {
3783         /* It's a leaf. operate on records */
3784         if (ptr < numrecs) {
3785             xfs_btree_shift_recs(cur,
3786                 xfs_btree_rec_addr(cur, ptr + 1, block),
3787                 -1, numrecs - ptr);
3788             xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3789         }
3790     }
3791 
3792     /*
3793      * Decrement and log the number of entries in the block.
3794      */
3795     xfs_btree_set_numrecs(block, --numrecs);
3796     xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3797 
3798     /*
3799      * If we are tracking the last record in the tree and
3800      * we are at the far right edge of the tree, update it.
3801      */
3802     if (xfs_btree_is_lastrec(cur, block, level)) {
3803         cur->bc_ops->update_lastrec(cur, block, NULL,
3804                         ptr, LASTREC_DELREC);
3805     }
3806 
3807     /*
3808      * We're at the root level.  First, shrink the root block in-memory.
3809      * Try to get rid of the next level down.  If we can't then there's
3810      * nothing left to do.
3811      */
3812     if (level == cur->bc_nlevels - 1) {
3813         if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3814             xfs_iroot_realloc(cur->bc_ino.ip, -1,
3815                       cur->bc_ino.whichfork);
3816 
3817             error = xfs_btree_kill_iroot(cur);
3818             if (error)
3819                 goto error0;
3820 
3821             error = xfs_btree_dec_cursor(cur, level, stat);
3822             if (error)
3823                 goto error0;
3824             *stat = 1;
3825             return 0;
3826         }
3827 
3828         /*
3829          * If this is the root level, and there's only one entry left,
3830          * and it's NOT the leaf level, then we can get rid of this
3831          * level.
3832          */
3833         if (numrecs == 1 && level > 0) {
3834             union xfs_btree_ptr *pp;
3835             /*
3836              * pp is still set to the first pointer in the block.
3837              * Make it the new root of the btree.
3838              */
3839             pp = xfs_btree_ptr_addr(cur, 1, block);
3840             error = xfs_btree_kill_root(cur, bp, level, pp);
3841             if (error)
3842                 goto error0;
3843         } else if (level > 0) {
3844             error = xfs_btree_dec_cursor(cur, level, stat);
3845             if (error)
3846                 goto error0;
3847         }
3848         *stat = 1;
3849         return 0;
3850     }
3851 
3852     /*
3853      * If we deleted the leftmost entry in the block, update the
3854      * key values above us in the tree.
3855      */
3856     if (xfs_btree_needs_key_update(cur, ptr)) {
3857         error = xfs_btree_update_keys(cur, level);
3858         if (error)
3859             goto error0;
3860     }
3861 
3862     /*
3863      * If the number of records remaining in the block is at least
3864      * the minimum, we're done.
3865      */
3866     if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3867         error = xfs_btree_dec_cursor(cur, level, stat);
3868         if (error)
3869             goto error0;
3870         return 0;
3871     }
3872 
3873     /*
3874      * Otherwise, we have to move some records around to keep the
3875      * tree balanced.  Look at the left and right sibling blocks to
3876      * see if we can re-balance by moving only one record.
3877      */
3878     xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3879     xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3880 
3881     if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3882         /*
3883          * One child of root, need to get a chance to copy its contents
3884          * into the root and delete it. Can't go up to next level,
3885          * there's nothing to delete there.
3886          */
3887         if (xfs_btree_ptr_is_null(cur, &rptr) &&
3888             xfs_btree_ptr_is_null(cur, &lptr) &&
3889             level == cur->bc_nlevels - 2) {
3890             error = xfs_btree_kill_iroot(cur);
3891             if (!error)
3892                 error = xfs_btree_dec_cursor(cur, level, stat);
3893             if (error)
3894                 goto error0;
3895             return 0;
3896         }
3897     }
3898 
3899     ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3900            !xfs_btree_ptr_is_null(cur, &lptr));
3901 
3902     /*
3903      * Duplicate the cursor so our btree manipulations here won't
3904      * disrupt the next level up.
3905      */
3906     error = xfs_btree_dup_cursor(cur, &tcur);
3907     if (error)
3908         goto error0;
3909 
3910     /*
3911      * If there's a right sibling, see if it's ok to shift an entry
3912      * out of it.
3913      */
3914     if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3915         /*
3916          * Move the temp cursor to the last entry in the next block.
3917          * Actually any entry but the first would suffice.
3918          */
3919         i = xfs_btree_lastrec(tcur, level);
3920         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3921             error = -EFSCORRUPTED;
3922             goto error0;
3923         }
3924 
3925         error = xfs_btree_increment(tcur, level, &i);
3926         if (error)
3927             goto error0;
3928         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3929             error = -EFSCORRUPTED;
3930             goto error0;
3931         }
3932 
3933         i = xfs_btree_lastrec(tcur, level);
3934         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3935             error = -EFSCORRUPTED;
3936             goto error0;
3937         }
3938 
3939         /* Grab a pointer to the block. */
3940         right = xfs_btree_get_block(tcur, level, &rbp);
3941 #ifdef DEBUG
3942         error = xfs_btree_check_block(tcur, right, level, rbp);
3943         if (error)
3944             goto error0;
3945 #endif
3946         /* Grab the current block number, for future use. */
3947         xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3948 
3949         /*
3950          * If right block is full enough so that removing one entry
3951          * won't make it too empty, and left-shifting an entry out
3952          * of right to us works, we're done.
3953          */
3954         if (xfs_btree_get_numrecs(right) - 1 >=
3955             cur->bc_ops->get_minrecs(tcur, level)) {
3956             error = xfs_btree_lshift(tcur, level, &i);
3957             if (error)
3958                 goto error0;
3959             if (i) {
3960                 ASSERT(xfs_btree_get_numrecs(block) >=
3961                        cur->bc_ops->get_minrecs(tcur, level));
3962 
3963                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3964                 tcur = NULL;
3965 
3966                 error = xfs_btree_dec_cursor(cur, level, stat);
3967                 if (error)
3968                     goto error0;
3969                 return 0;
3970             }
3971         }
3972 
3973         /*
3974          * Otherwise, grab the number of records in right for
3975          * future reference, and fix up the temp cursor to point
3976          * to our block again (last record).
3977          */
3978         rrecs = xfs_btree_get_numrecs(right);
3979         if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3980             i = xfs_btree_firstrec(tcur, level);
3981             if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3982                 error = -EFSCORRUPTED;
3983                 goto error0;
3984             }
3985 
3986             error = xfs_btree_decrement(tcur, level, &i);
3987             if (error)
3988                 goto error0;
3989             if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3990                 error = -EFSCORRUPTED;
3991                 goto error0;
3992             }
3993         }
3994     }
3995 
3996     /*
3997      * If there's a left sibling, see if it's ok to shift an entry
3998      * out of it.
3999      */
4000     if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4001         /*
4002          * Move the temp cursor to the first entry in the
4003          * previous block.
4004          */
4005         i = xfs_btree_firstrec(tcur, level);
4006         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4007             error = -EFSCORRUPTED;
4008             goto error0;
4009         }
4010 
4011         error = xfs_btree_decrement(tcur, level, &i);
4012         if (error)
4013             goto error0;
4014         i = xfs_btree_firstrec(tcur, level);
4015         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4016             error = -EFSCORRUPTED;
4017             goto error0;
4018         }
4019 
4020         /* Grab a pointer to the block. */
4021         left = xfs_btree_get_block(tcur, level, &lbp);
4022 #ifdef DEBUG
4023         error = xfs_btree_check_block(cur, left, level, lbp);
4024         if (error)
4025             goto error0;
4026 #endif
4027         /* Grab the current block number, for future use. */
4028         xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4029 
4030         /*
4031          * If left block is full enough so that removing one entry
4032          * won't make it too empty, and right-shifting an entry out
4033          * of left to us works, we're done.
4034          */
4035         if (xfs_btree_get_numrecs(left) - 1 >=
4036             cur->bc_ops->get_minrecs(tcur, level)) {
4037             error = xfs_btree_rshift(tcur, level, &i);
4038             if (error)
4039                 goto error0;
4040             if (i) {
4041                 ASSERT(xfs_btree_get_numrecs(block) >=
4042                        cur->bc_ops->get_minrecs(tcur, level));
4043                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4044                 tcur = NULL;
4045                 if (level == 0)
4046                     cur->bc_levels[0].ptr++;
4047 
4048                 *stat = 1;
4049                 return 0;
4050             }
4051         }
4052 
4053         /*
4054          * Otherwise, grab the number of records in right for
4055          * future reference.
4056          */
4057         lrecs = xfs_btree_get_numrecs(left);
4058     }
4059 
4060     /* Delete the temp cursor, we're done with it. */
4061     xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4062     tcur = NULL;
4063 
4064     /* If here, we need to do a join to keep the tree balanced. */
4065     ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4066 
4067     if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4068         lrecs + xfs_btree_get_numrecs(block) <=
4069             cur->bc_ops->get_maxrecs(cur, level)) {
4070         /*
4071          * Set "right" to be the starting block,
4072          * "left" to be the left neighbor.
4073          */
4074         rptr = cptr;
4075         right = block;
4076         rbp = bp;
4077         error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4078         if (error)
4079             goto error0;
4080 
4081     /*
4082      * If that won't work, see if we can join with the right neighbor block.
4083      */
4084     } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4085            rrecs + xfs_btree_get_numrecs(block) <=
4086             cur->bc_ops->get_maxrecs(cur, level)) {
4087         /*
4088          * Set "left" to be the starting block,
4089          * "right" to be the right neighbor.
4090          */
4091         lptr = cptr;
4092         left = block;
4093         lbp = bp;
4094         error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4095         if (error)
4096             goto error0;
4097 
4098     /*
4099      * Otherwise, we can't fix the imbalance.
4100      * Just return.  This is probably a logic error, but it's not fatal.
4101      */
4102     } else {
4103         error = xfs_btree_dec_cursor(cur, level, stat);
4104         if (error)
4105             goto error0;
4106         return 0;
4107     }
4108 
4109     rrecs = xfs_btree_get_numrecs(right);
4110     lrecs = xfs_btree_get_numrecs(left);
4111 
4112     /*
4113      * We're now going to join "left" and "right" by moving all the stuff
4114      * in "right" to "left" and deleting "right".
4115      */
4116     XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4117     if (level > 0) {
4118         /* It's a non-leaf.  Move keys and pointers. */
4119         union xfs_btree_key *lkp;   /* left btree key */
4120         union xfs_btree_ptr *lpp;   /* left address pointer */
4121         union xfs_btree_key *rkp;   /* right btree key */
4122         union xfs_btree_ptr *rpp;   /* right address pointer */
4123 
4124         lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4125         lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4126         rkp = xfs_btree_key_addr(cur, 1, right);
4127         rpp = xfs_btree_ptr_addr(cur, 1, right);
4128 
4129         for (i = 1; i < rrecs; i++) {
4130             error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4131             if (error)
4132                 goto error0;
4133         }
4134 
4135         xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4136         xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4137 
4138         xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4139         xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4140     } else {
4141         /* It's a leaf.  Move records.  */
4142         union xfs_btree_rec *lrp;   /* left record pointer */
4143         union xfs_btree_rec *rrp;   /* right record pointer */
4144 
4145         lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4146         rrp = xfs_btree_rec_addr(cur, 1, right);
4147 
4148         xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4149         xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4150     }
4151 
4152     XFS_BTREE_STATS_INC(cur, join);
4153 
4154     /*
4155      * Fix up the number of records and right block pointer in the
4156      * surviving block, and log it.
4157      */
4158     xfs_btree_set_numrecs(left, lrecs + rrecs);
4159     xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4160     xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4161     xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4162 
4163     /* If there is a right sibling, point it to the remaining block. */
4164     xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4165     if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4166         error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4167         if (error)
4168             goto error0;
4169         xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4170         xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4171     }
4172 
4173     /* Free the deleted block. */
4174     error = xfs_btree_free_block(cur, rbp);
4175     if (error)
4176         goto error0;
4177 
4178     /*
4179      * If we joined with the left neighbor, set the buffer in the
4180      * cursor to the left block, and fix up the index.
4181      */
4182     if (bp != lbp) {
4183         cur->bc_levels[level].bp = lbp;
4184         cur->bc_levels[level].ptr += lrecs;
4185         cur->bc_levels[level].ra = 0;
4186     }
4187     /*
4188      * If we joined with the right neighbor and there's a level above
4189      * us, increment the cursor at that level.
4190      */
4191     else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4192            (level + 1 < cur->bc_nlevels)) {
4193         error = xfs_btree_increment(cur, level + 1, &i);
4194         if (error)
4195             goto error0;
4196     }
4197 
4198     /*
4199      * Readjust the ptr at this level if it's not a leaf, since it's
4200      * still pointing at the deletion point, which makes the cursor
4201      * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4202      * We can't use decrement because it would change the next level up.
4203      */
4204     if (level > 0)
4205         cur->bc_levels[level].ptr--;
4206 
4207     /*
4208      * We combined blocks, so we have to update the parent keys if the
4209      * btree supports overlapped intervals.  However,
4210      * bc_levels[level + 1].ptr points to the old block so that the caller
4211      * knows which record to delete.  Therefore, the caller must be savvy
4212      * enough to call updkeys for us if we return stat == 2.  The other
4213      * exit points from this function don't require deletions further up
4214      * the tree, so they can call updkeys directly.
4215      */
4216 
4217     /* Return value means the next level up has something to do. */
4218     *stat = 2;
4219     return 0;
4220 
4221 error0:
4222     if (tcur)
4223         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4224     return error;
4225 }
4226 
4227 /*
4228  * Delete the record pointed to by cur.
4229  * The cursor refers to the place where the record was (could be inserted)
4230  * when the operation returns.
4231  */
4232 int                 /* error */
4233 xfs_btree_delete(
4234     struct xfs_btree_cur    *cur,
4235     int         *stat)  /* success/failure */
4236 {
4237     int         error;  /* error return value */
4238     int         level;
4239     int         i;
4240     bool            joined = false;
4241 
4242     /*
4243      * Go up the tree, starting at leaf level.
4244      *
4245      * If 2 is returned then a join was done; go to the next level.
4246      * Otherwise we are done.
4247      */
4248     for (level = 0, i = 2; i == 2; level++) {
4249         error = xfs_btree_delrec(cur, level, &i);
4250         if (error)
4251             goto error0;
4252         if (i == 2)
4253             joined = true;
4254     }
4255 
4256     /*
4257      * If we combined blocks as part of deleting the record, delrec won't
4258      * have updated the parent high keys so we have to do that here.
4259      */
4260     if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4261         error = xfs_btree_updkeys_force(cur, 0);
4262         if (error)
4263             goto error0;
4264     }
4265 
4266     if (i == 0) {
4267         for (level = 1; level < cur->bc_nlevels; level++) {
4268             if (cur->bc_levels[level].ptr == 0) {
4269                 error = xfs_btree_decrement(cur, level, &i);
4270                 if (error)
4271                     goto error0;
4272                 break;
4273             }
4274         }
4275     }
4276 
4277     *stat = i;
4278     return 0;
4279 error0:
4280     return error;
4281 }
4282 
4283 /*
4284  * Get the data from the pointed-to record.
4285  */
4286 int                 /* error */
4287 xfs_btree_get_rec(
4288     struct xfs_btree_cur    *cur,   /* btree cursor */
4289     union xfs_btree_rec **recp, /* output: btree record */
4290     int         *stat)  /* output: success/failure */
4291 {
4292     struct xfs_btree_block  *block; /* btree block */
4293     struct xfs_buf      *bp;    /* buffer pointer */
4294     int         ptr;    /* record number */
4295 #ifdef DEBUG
4296     int         error;  /* error return value */
4297 #endif
4298 
4299     ptr = cur->bc_levels[0].ptr;
4300     block = xfs_btree_get_block(cur, 0, &bp);
4301 
4302 #ifdef DEBUG
4303     error = xfs_btree_check_block(cur, block, 0, bp);
4304     if (error)
4305         return error;
4306 #endif
4307 
4308     /*
4309      * Off the right end or left end, return failure.
4310      */
4311     if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4312         *stat = 0;
4313         return 0;
4314     }
4315 
4316     /*
4317      * Point to the record and extract its data.
4318      */
4319     *recp = xfs_btree_rec_addr(cur, ptr, block);
4320     *stat = 1;
4321     return 0;
4322 }
4323 
4324 /* Visit a block in a btree. */
4325 STATIC int
4326 xfs_btree_visit_block(
4327     struct xfs_btree_cur        *cur,
4328     int             level,
4329     xfs_btree_visit_blocks_fn   fn,
4330     void                *data)
4331 {
4332     struct xfs_btree_block      *block;
4333     struct xfs_buf          *bp;
4334     union xfs_btree_ptr     rptr;
4335     int             error;
4336 
4337     /* do right sibling readahead */
4338     xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4339     block = xfs_btree_get_block(cur, level, &bp);
4340 
4341     /* process the block */
4342     error = fn(cur, level, data);
4343     if (error)
4344         return error;
4345 
4346     /* now read rh sibling block for next iteration */
4347     xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4348     if (xfs_btree_ptr_is_null(cur, &rptr))
4349         return -ENOENT;
4350 
4351     /*
4352      * We only visit blocks once in this walk, so we have to avoid the
4353      * internal xfs_btree_lookup_get_block() optimisation where it will
4354      * return the same block without checking if the right sibling points
4355      * back to us and creates a cyclic reference in the btree.
4356      */
4357     if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4358         if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4359                             xfs_buf_daddr(bp)))
4360             return -EFSCORRUPTED;
4361     } else {
4362         if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4363                             xfs_buf_daddr(bp)))
4364             return -EFSCORRUPTED;
4365     }
4366     return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4367 }
4368 
4369 
4370 /* Visit every block in a btree. */
4371 int
4372 xfs_btree_visit_blocks(
4373     struct xfs_btree_cur        *cur,
4374     xfs_btree_visit_blocks_fn   fn,
4375     unsigned int            flags,
4376     void                *data)
4377 {
4378     union xfs_btree_ptr     lptr;
4379     int             level;
4380     struct xfs_btree_block      *block = NULL;
4381     int             error = 0;
4382 
4383     cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4384 
4385     /* for each level */
4386     for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4387         /* grab the left hand block */
4388         error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4389         if (error)
4390             return error;
4391 
4392         /* readahead the left most block for the next level down */
4393         if (level > 0) {
4394             union xfs_btree_ptr     *ptr;
4395 
4396             ptr = xfs_btree_ptr_addr(cur, 1, block);
4397             xfs_btree_readahead_ptr(cur, ptr, 1);
4398 
4399             /* save for the next iteration of the loop */
4400             xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4401 
4402             if (!(flags & XFS_BTREE_VISIT_LEAVES))
4403                 continue;
4404         } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4405             continue;
4406         }
4407 
4408         /* for each buffer in the level */
4409         do {
4410             error = xfs_btree_visit_block(cur, level, fn, data);
4411         } while (!error);
4412 
4413         if (error != -ENOENT)
4414             return error;
4415     }
4416 
4417     return 0;
4418 }
4419 
4420 /*
4421  * Change the owner of a btree.
4422  *
4423  * The mechanism we use here is ordered buffer logging. Because we don't know
4424  * how many buffers were are going to need to modify, we don't really want to
4425  * have to make transaction reservations for the worst case of every buffer in a
4426  * full size btree as that may be more space that we can fit in the log....
4427  *
4428  * We do the btree walk in the most optimal manner possible - we have sibling
4429  * pointers so we can just walk all the blocks on each level from left to right
4430  * in a single pass, and then move to the next level and do the same. We can
4431  * also do readahead on the sibling pointers to get IO moving more quickly,
4432  * though for slow disks this is unlikely to make much difference to performance
4433  * as the amount of CPU work we have to do before moving to the next block is
4434  * relatively small.
4435  *
4436  * For each btree block that we load, modify the owner appropriately, set the
4437  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4438  * we mark the region we change dirty so that if the buffer is relogged in
4439  * a subsequent transaction the changes we make here as an ordered buffer are
4440  * correctly relogged in that transaction.  If we are in recovery context, then
4441  * just queue the modified buffer as delayed write buffer so the transaction
4442  * recovery completion writes the changes to disk.
4443  */
4444 struct xfs_btree_block_change_owner_info {
4445     uint64_t        new_owner;
4446     struct list_head    *buffer_list;
4447 };
4448 
4449 static int
4450 xfs_btree_block_change_owner(
4451     struct xfs_btree_cur    *cur,
4452     int         level,
4453     void            *data)
4454 {
4455     struct xfs_btree_block_change_owner_info    *bbcoi = data;
4456     struct xfs_btree_block  *block;
4457     struct xfs_buf      *bp;
4458 
4459     /* modify the owner */
4460     block = xfs_btree_get_block(cur, level, &bp);
4461     if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4462         if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4463             return 0;
4464         block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4465     } else {
4466         if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4467             return 0;
4468         block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4469     }
4470 
4471     /*
4472      * If the block is a root block hosted in an inode, we might not have a
4473      * buffer pointer here and we shouldn't attempt to log the change as the
4474      * information is already held in the inode and discarded when the root
4475      * block is formatted into the on-disk inode fork. We still change it,
4476      * though, so everything is consistent in memory.
4477      */
4478     if (!bp) {
4479         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4480         ASSERT(level == cur->bc_nlevels - 1);
4481         return 0;
4482     }
4483 
4484     if (cur->bc_tp) {
4485         if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4486             xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4487             return -EAGAIN;
4488         }
4489     } else {
4490         xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4491     }
4492 
4493     return 0;
4494 }
4495 
4496 int
4497 xfs_btree_change_owner(
4498     struct xfs_btree_cur    *cur,
4499     uint64_t        new_owner,
4500     struct list_head    *buffer_list)
4501 {
4502     struct xfs_btree_block_change_owner_info    bbcoi;
4503 
4504     bbcoi.new_owner = new_owner;
4505     bbcoi.buffer_list = buffer_list;
4506 
4507     return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4508             XFS_BTREE_VISIT_ALL, &bbcoi);
4509 }
4510 
4511 /* Verify the v5 fields of a long-format btree block. */
4512 xfs_failaddr_t
4513 xfs_btree_lblock_v5hdr_verify(
4514     struct xfs_buf      *bp,
4515     uint64_t        owner)
4516 {
4517     struct xfs_mount    *mp = bp->b_mount;
4518     struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4519 
4520     if (!xfs_has_crc(mp))
4521         return __this_address;
4522     if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4523         return __this_address;
4524     if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4525         return __this_address;
4526     if (owner != XFS_RMAP_OWN_UNKNOWN &&
4527         be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4528         return __this_address;
4529     return NULL;
4530 }
4531 
4532 /* Verify a long-format btree block. */
4533 xfs_failaddr_t
4534 xfs_btree_lblock_verify(
4535     struct xfs_buf      *bp,
4536     unsigned int        max_recs)
4537 {
4538     struct xfs_mount    *mp = bp->b_mount;
4539     struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4540     xfs_fsblock_t       fsb;
4541     xfs_failaddr_t      fa;
4542 
4543     /* numrecs verification */
4544     if (be16_to_cpu(block->bb_numrecs) > max_recs)
4545         return __this_address;
4546 
4547     /* sibling pointer verification */
4548     fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4549     fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4550             block->bb_u.l.bb_leftsib);
4551     if (!fa)
4552         fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4553                 block->bb_u.l.bb_rightsib);
4554     return fa;
4555 }
4556 
4557 /**
4558  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4559  *                    btree block
4560  *
4561  * @bp: buffer containing the btree block
4562  */
4563 xfs_failaddr_t
4564 xfs_btree_sblock_v5hdr_verify(
4565     struct xfs_buf      *bp)
4566 {
4567     struct xfs_mount    *mp = bp->b_mount;
4568     struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4569     struct xfs_perag    *pag = bp->b_pag;
4570 
4571     if (!xfs_has_crc(mp))
4572         return __this_address;
4573     if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4574         return __this_address;
4575     if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4576         return __this_address;
4577     if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4578         return __this_address;
4579     return NULL;
4580 }
4581 
4582 /**
4583  * xfs_btree_sblock_verify() -- verify a short-format btree block
4584  *
4585  * @bp: buffer containing the btree block
4586  * @max_recs: maximum records allowed in this btree node
4587  */
4588 xfs_failaddr_t
4589 xfs_btree_sblock_verify(
4590     struct xfs_buf      *bp,
4591     unsigned int        max_recs)
4592 {
4593     struct xfs_mount    *mp = bp->b_mount;
4594     struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4595     xfs_agblock_t       agbno;
4596     xfs_failaddr_t      fa;
4597 
4598     /* numrecs verification */
4599     if (be16_to_cpu(block->bb_numrecs) > max_recs)
4600         return __this_address;
4601 
4602     /* sibling pointer verification */
4603     agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4604     fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4605             block->bb_u.s.bb_leftsib);
4606     if (!fa)
4607         fa = xfs_btree_check_sblock_siblings(bp->b_pag, NULL, -1, agbno,
4608                 block->bb_u.s.bb_rightsib);
4609     return fa;
4610 }
4611 
4612 /*
4613  * For the given limits on leaf and keyptr records per block, calculate the
4614  * height of the tree needed to index the number of leaf records.
4615  */
4616 unsigned int
4617 xfs_btree_compute_maxlevels(
4618     const unsigned int  *limits,
4619     unsigned long long  records)
4620 {
4621     unsigned long long  level_blocks = howmany_64(records, limits[0]);
4622     unsigned int        height = 1;
4623 
4624     while (level_blocks > 1) {
4625         level_blocks = howmany_64(level_blocks, limits[1]);
4626         height++;
4627     }
4628 
4629     return height;
4630 }
4631 
4632 /*
4633  * For the given limits on leaf and keyptr records per block, calculate the
4634  * number of blocks needed to index the given number of leaf records.
4635  */
4636 unsigned long long
4637 xfs_btree_calc_size(
4638     const unsigned int  *limits,
4639     unsigned long long  records)
4640 {
4641     unsigned long long  level_blocks = howmany_64(records, limits[0]);
4642     unsigned long long  blocks = level_blocks;
4643 
4644     while (level_blocks > 1) {
4645         level_blocks = howmany_64(level_blocks, limits[1]);
4646         blocks += level_blocks;
4647     }
4648 
4649     return blocks;
4650 }
4651 
4652 /*
4653  * Given a number of available blocks for the btree to consume with records and
4654  * pointers, calculate the height of the tree needed to index all the records
4655  * that space can hold based on the number of pointers each interior node
4656  * holds.
4657  *
4658  * We start by assuming a single level tree consumes a single block, then track
4659  * the number of blocks each node level consumes until we no longer have space
4660  * to store the next node level. At this point, we are indexing all the leaf
4661  * blocks in the space, and there's no more free space to split the tree any
4662  * further. That's our maximum btree height.
4663  */
4664 unsigned int
4665 xfs_btree_space_to_height(
4666     const unsigned int  *limits,
4667     unsigned long long  leaf_blocks)
4668 {
4669     unsigned long long  node_blocks = limits[1];
4670     unsigned long long  blocks_left = leaf_blocks - 1;
4671     unsigned int        height = 1;
4672 
4673     if (leaf_blocks < 1)
4674         return 0;
4675 
4676     while (node_blocks < blocks_left) {
4677         blocks_left -= node_blocks;
4678         node_blocks *= limits[1];
4679         height++;
4680     }
4681 
4682     return height;
4683 }
4684 
4685 /*
4686  * Query a regular btree for all records overlapping a given interval.
4687  * Start with a LE lookup of the key of low_rec and return all records
4688  * until we find a record with a key greater than the key of high_rec.
4689  */
4690 STATIC int
4691 xfs_btree_simple_query_range(
4692     struct xfs_btree_cur        *cur,
4693     const union xfs_btree_key   *low_key,
4694     const union xfs_btree_key   *high_key,
4695     xfs_btree_query_range_fn    fn,
4696     void                *priv)
4697 {
4698     union xfs_btree_rec     *recp;
4699     union xfs_btree_key     rec_key;
4700     int64_t             diff;
4701     int             stat;
4702     bool                firstrec = true;
4703     int             error;
4704 
4705     ASSERT(cur->bc_ops->init_high_key_from_rec);
4706     ASSERT(cur->bc_ops->diff_two_keys);
4707 
4708     /*
4709      * Find the leftmost record.  The btree cursor must be set
4710      * to the low record used to generate low_key.
4711      */
4712     stat = 0;
4713     error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4714     if (error)
4715         goto out;
4716 
4717     /* Nothing?  See if there's anything to the right. */
4718     if (!stat) {
4719         error = xfs_btree_increment(cur, 0, &stat);
4720         if (error)
4721             goto out;
4722     }
4723 
4724     while (stat) {
4725         /* Find the record. */
4726         error = xfs_btree_get_rec(cur, &recp, &stat);
4727         if (error || !stat)
4728             break;
4729 
4730         /* Skip if high_key(rec) < low_key. */
4731         if (firstrec) {
4732             cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4733             firstrec = false;
4734             diff = cur->bc_ops->diff_two_keys(cur, low_key,
4735                     &rec_key);
4736             if (diff > 0)
4737                 goto advloop;
4738         }
4739 
4740         /* Stop if high_key < low_key(rec). */
4741         cur->bc_ops->init_key_from_rec(&rec_key, recp);
4742         diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4743         if (diff > 0)
4744             break;
4745 
4746         /* Callback */
4747         error = fn(cur, recp, priv);
4748         if (error)
4749             break;
4750 
4751 advloop:
4752         /* Move on to the next record. */
4753         error = xfs_btree_increment(cur, 0, &stat);
4754         if (error)
4755             break;
4756     }
4757 
4758 out:
4759     return error;
4760 }
4761 
4762 /*
4763  * Query an overlapped interval btree for all records overlapping a given
4764  * interval.  This function roughly follows the algorithm given in
4765  * "Interval Trees" of _Introduction to Algorithms_, which is section
4766  * 14.3 in the 2nd and 3rd editions.
4767  *
4768  * First, generate keys for the low and high records passed in.
4769  *
4770  * For any leaf node, generate the high and low keys for the record.
4771  * If the record keys overlap with the query low/high keys, pass the
4772  * record to the function iterator.
4773  *
4774  * For any internal node, compare the low and high keys of each
4775  * pointer against the query low/high keys.  If there's an overlap,
4776  * follow the pointer.
4777  *
4778  * As an optimization, we stop scanning a block when we find a low key
4779  * that is greater than the query's high key.
4780  */
4781 STATIC int
4782 xfs_btree_overlapped_query_range(
4783     struct xfs_btree_cur        *cur,
4784     const union xfs_btree_key   *low_key,
4785     const union xfs_btree_key   *high_key,
4786     xfs_btree_query_range_fn    fn,
4787     void                *priv)
4788 {
4789     union xfs_btree_ptr     ptr;
4790     union xfs_btree_ptr     *pp;
4791     union xfs_btree_key     rec_key;
4792     union xfs_btree_key     rec_hkey;
4793     union xfs_btree_key     *lkp;
4794     union xfs_btree_key     *hkp;
4795     union xfs_btree_rec     *recp;
4796     struct xfs_btree_block      *block;
4797     int64_t             ldiff;
4798     int64_t             hdiff;
4799     int             level;
4800     struct xfs_buf          *bp;
4801     int             i;
4802     int             error;
4803 
4804     /* Load the root of the btree. */
4805     level = cur->bc_nlevels - 1;
4806     cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4807     error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4808     if (error)
4809         return error;
4810     xfs_btree_get_block(cur, level, &bp);
4811     trace_xfs_btree_overlapped_query_range(cur, level, bp);
4812 #ifdef DEBUG
4813     error = xfs_btree_check_block(cur, block, level, bp);
4814     if (error)
4815         goto out;
4816 #endif
4817     cur->bc_levels[level].ptr = 1;
4818 
4819     while (level < cur->bc_nlevels) {
4820         block = xfs_btree_get_block(cur, level, &bp);
4821 
4822         /* End of node, pop back towards the root. */
4823         if (cur->bc_levels[level].ptr >
4824                     be16_to_cpu(block->bb_numrecs)) {
4825 pop_up:
4826             if (level < cur->bc_nlevels - 1)
4827                 cur->bc_levels[level + 1].ptr++;
4828             level++;
4829             continue;
4830         }
4831 
4832         if (level == 0) {
4833             /* Handle a leaf node. */
4834             recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
4835                     block);
4836 
4837             cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4838             ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4839                     low_key);
4840 
4841             cur->bc_ops->init_key_from_rec(&rec_key, recp);
4842             hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4843                     &rec_key);
4844 
4845             /*
4846              * If (record's high key >= query's low key) and
4847              *    (query's high key >= record's low key), then
4848              * this record overlaps the query range; callback.
4849              */
4850             if (ldiff >= 0 && hdiff >= 0) {
4851                 error = fn(cur, recp, priv);
4852                 if (error)
4853                     break;
4854             } else if (hdiff < 0) {
4855                 /* Record is larger than high key; pop. */
4856                 goto pop_up;
4857             }
4858             cur->bc_levels[level].ptr++;
4859             continue;
4860         }
4861 
4862         /* Handle an internal node. */
4863         lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
4864         hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
4865                 block);
4866         pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
4867 
4868         ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4869         hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4870 
4871         /*
4872          * If (pointer's high key >= query's low key) and
4873          *    (query's high key >= pointer's low key), then
4874          * this record overlaps the query range; follow pointer.
4875          */
4876         if (ldiff >= 0 && hdiff >= 0) {
4877             level--;
4878             error = xfs_btree_lookup_get_block(cur, level, pp,
4879                     &block);
4880             if (error)
4881                 goto out;
4882             xfs_btree_get_block(cur, level, &bp);
4883             trace_xfs_btree_overlapped_query_range(cur, level, bp);
4884 #ifdef DEBUG
4885             error = xfs_btree_check_block(cur, block, level, bp);
4886             if (error)
4887                 goto out;
4888 #endif
4889             cur->bc_levels[level].ptr = 1;
4890             continue;
4891         } else if (hdiff < 0) {
4892             /* The low key is larger than the upper range; pop. */
4893             goto pop_up;
4894         }
4895         cur->bc_levels[level].ptr++;
4896     }
4897 
4898 out:
4899     /*
4900      * If we don't end this function with the cursor pointing at a record
4901      * block, a subsequent non-error cursor deletion will not release
4902      * node-level buffers, causing a buffer leak.  This is quite possible
4903      * with a zero-results range query, so release the buffers if we
4904      * failed to return any results.
4905      */
4906     if (cur->bc_levels[0].bp == NULL) {
4907         for (i = 0; i < cur->bc_nlevels; i++) {
4908             if (cur->bc_levels[i].bp) {
4909                 xfs_trans_brelse(cur->bc_tp,
4910                         cur->bc_levels[i].bp);
4911                 cur->bc_levels[i].bp = NULL;
4912                 cur->bc_levels[i].ptr = 0;
4913                 cur->bc_levels[i].ra = 0;
4914             }
4915         }
4916     }
4917 
4918     return error;
4919 }
4920 
4921 /*
4922  * Query a btree for all records overlapping a given interval of keys.  The
4923  * supplied function will be called with each record found; return one of the
4924  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4925  * code.  This function returns -ECANCELED, zero, or a negative error code.
4926  */
4927 int
4928 xfs_btree_query_range(
4929     struct xfs_btree_cur        *cur,
4930     const union xfs_btree_irec  *low_rec,
4931     const union xfs_btree_irec  *high_rec,
4932     xfs_btree_query_range_fn    fn,
4933     void                *priv)
4934 {
4935     union xfs_btree_rec     rec;
4936     union xfs_btree_key     low_key;
4937     union xfs_btree_key     high_key;
4938 
4939     /* Find the keys of both ends of the interval. */
4940     cur->bc_rec = *high_rec;
4941     cur->bc_ops->init_rec_from_cur(cur, &rec);
4942     cur->bc_ops->init_key_from_rec(&high_key, &rec);
4943 
4944     cur->bc_rec = *low_rec;
4945     cur->bc_ops->init_rec_from_cur(cur, &rec);
4946     cur->bc_ops->init_key_from_rec(&low_key, &rec);
4947 
4948     /* Enforce low key < high key. */
4949     if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4950         return -EINVAL;
4951 
4952     if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4953         return xfs_btree_simple_query_range(cur, &low_key,
4954                 &high_key, fn, priv);
4955     return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4956             fn, priv);
4957 }
4958 
4959 /* Query a btree for all records. */
4960 int
4961 xfs_btree_query_all(
4962     struct xfs_btree_cur        *cur,
4963     xfs_btree_query_range_fn    fn,
4964     void                *priv)
4965 {
4966     union xfs_btree_key     low_key;
4967     union xfs_btree_key     high_key;
4968 
4969     memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4970     memset(&low_key, 0, sizeof(low_key));
4971     memset(&high_key, 0xFF, sizeof(high_key));
4972 
4973     return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4974 }
4975 
4976 static int
4977 xfs_btree_count_blocks_helper(
4978     struct xfs_btree_cur    *cur,
4979     int         level,
4980     void            *data)
4981 {
4982     xfs_extlen_t        *blocks = data;
4983     (*blocks)++;
4984 
4985     return 0;
4986 }
4987 
4988 /* Count the blocks in a btree and return the result in *blocks. */
4989 int
4990 xfs_btree_count_blocks(
4991     struct xfs_btree_cur    *cur,
4992     xfs_extlen_t        *blocks)
4993 {
4994     *blocks = 0;
4995     return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4996             XFS_BTREE_VISIT_ALL, blocks);
4997 }
4998 
4999 /* Compare two btree pointers. */
5000 int64_t
5001 xfs_btree_diff_two_ptrs(
5002     struct xfs_btree_cur        *cur,
5003     const union xfs_btree_ptr   *a,
5004     const union xfs_btree_ptr   *b)
5005 {
5006     if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5007         return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5008     return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5009 }
5010 
5011 /* If there's an extent, we're done. */
5012 STATIC int
5013 xfs_btree_has_record_helper(
5014     struct xfs_btree_cur        *cur,
5015     const union xfs_btree_rec   *rec,
5016     void                *priv)
5017 {
5018     return -ECANCELED;
5019 }
5020 
5021 /* Is there a record covering a given range of keys? */
5022 int
5023 xfs_btree_has_record(
5024     struct xfs_btree_cur        *cur,
5025     const union xfs_btree_irec  *low,
5026     const union xfs_btree_irec  *high,
5027     bool                *exists)
5028 {
5029     int             error;
5030 
5031     error = xfs_btree_query_range(cur, low, high,
5032             &xfs_btree_has_record_helper, NULL);
5033     if (error == -ECANCELED) {
5034         *exists = true;
5035         return 0;
5036     }
5037     *exists = false;
5038     return error;
5039 }
5040 
5041 /* Are there more records in this btree? */
5042 bool
5043 xfs_btree_has_more_records(
5044     struct xfs_btree_cur    *cur)
5045 {
5046     struct xfs_btree_block  *block;
5047     struct xfs_buf      *bp;
5048 
5049     block = xfs_btree_get_block(cur, 0, &bp);
5050 
5051     /* There are still records in this block. */
5052     if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5053         return true;
5054 
5055     /* There are more record blocks. */
5056     if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5057         return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5058     else
5059         return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5060 }
5061 
5062 /* Set up all the btree cursor caches. */
5063 int __init
5064 xfs_btree_init_cur_caches(void)
5065 {
5066     int     error;
5067 
5068     error = xfs_allocbt_init_cur_cache();
5069     if (error)
5070         return error;
5071     error = xfs_inobt_init_cur_cache();
5072     if (error)
5073         goto err;
5074     error = xfs_bmbt_init_cur_cache();
5075     if (error)
5076         goto err;
5077     error = xfs_rmapbt_init_cur_cache();
5078     if (error)
5079         goto err;
5080     error = xfs_refcountbt_init_cur_cache();
5081     if (error)
5082         goto err;
5083 
5084     return 0;
5085 err:
5086     xfs_btree_destroy_cur_caches();
5087     return error;
5088 }
5089 
5090 /* Destroy all the btree cursor caches, if they've been allocated. */
5091 void
5092 xfs_btree_destroy_cur_caches(void)
5093 {
5094     xfs_allocbt_destroy_cur_cache();
5095     xfs_inobt_destroy_cur_cache();
5096     xfs_bmbt_destroy_cur_cache();
5097     xfs_rmapbt_destroy_cur_cache();
5098     xfs_refcountbt_destroy_cur_cache();
5099 }