Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  *  linux/fs/ufs/inode.c
0004  *
0005  * Copyright (C) 1998
0006  * Daniel Pirkl <daniel.pirkl@email.cz>
0007  * Charles University, Faculty of Mathematics and Physics
0008  *
0009  *  from
0010  *
0011  *  linux/fs/ext2/inode.c
0012  *
0013  * Copyright (C) 1992, 1993, 1994, 1995
0014  * Remy Card (card@masi.ibp.fr)
0015  * Laboratoire MASI - Institut Blaise Pascal
0016  * Universite Pierre et Marie Curie (Paris VI)
0017  *
0018  *  from
0019  *
0020  *  linux/fs/minix/inode.c
0021  *
0022  *  Copyright (C) 1991, 1992  Linus Torvalds
0023  *
0024  *  Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
0025  *  Big-endian to little-endian byte-swapping/bitmaps by
0026  *        David S. Miller (davem@caip.rutgers.edu), 1995
0027  */
0028 
0029 #include <linux/uaccess.h>
0030 
0031 #include <linux/errno.h>
0032 #include <linux/fs.h>
0033 #include <linux/time.h>
0034 #include <linux/stat.h>
0035 #include <linux/string.h>
0036 #include <linux/mm.h>
0037 #include <linux/buffer_head.h>
0038 #include <linux/writeback.h>
0039 #include <linux/iversion.h>
0040 
0041 #include "ufs_fs.h"
0042 #include "ufs.h"
0043 #include "swab.h"
0044 #include "util.h"
0045 
0046 static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4])
0047 {
0048     struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
0049     int ptrs = uspi->s_apb;
0050     int ptrs_bits = uspi->s_apbshift;
0051     const long direct_blocks = UFS_NDADDR,
0052         indirect_blocks = ptrs,
0053         double_blocks = (1 << (ptrs_bits * 2));
0054     int n = 0;
0055 
0056 
0057     UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
0058     if (i_block < direct_blocks) {
0059         offsets[n++] = i_block;
0060     } else if ((i_block -= direct_blocks) < indirect_blocks) {
0061         offsets[n++] = UFS_IND_BLOCK;
0062         offsets[n++] = i_block;
0063     } else if ((i_block -= indirect_blocks) < double_blocks) {
0064         offsets[n++] = UFS_DIND_BLOCK;
0065         offsets[n++] = i_block >> ptrs_bits;
0066         offsets[n++] = i_block & (ptrs - 1);
0067     } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
0068         offsets[n++] = UFS_TIND_BLOCK;
0069         offsets[n++] = i_block >> (ptrs_bits * 2);
0070         offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
0071         offsets[n++] = i_block & (ptrs - 1);
0072     } else {
0073         ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
0074     }
0075     return n;
0076 }
0077 
0078 typedef struct {
0079     void    *p;
0080     union {
0081         __fs32  key32;
0082         __fs64  key64;
0083     };
0084     struct buffer_head *bh;
0085 } Indirect;
0086 
0087 static inline int grow_chain32(struct ufs_inode_info *ufsi,
0088                    struct buffer_head *bh, __fs32 *v,
0089                    Indirect *from, Indirect *to)
0090 {
0091     Indirect *p;
0092     unsigned seq;
0093     to->bh = bh;
0094     do {
0095         seq = read_seqbegin(&ufsi->meta_lock);
0096         to->key32 = *(__fs32 *)(to->p = v);
0097         for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++)
0098             ;
0099     } while (read_seqretry(&ufsi->meta_lock, seq));
0100     return (p > to);
0101 }
0102 
0103 static inline int grow_chain64(struct ufs_inode_info *ufsi,
0104                    struct buffer_head *bh, __fs64 *v,
0105                    Indirect *from, Indirect *to)
0106 {
0107     Indirect *p;
0108     unsigned seq;
0109     to->bh = bh;
0110     do {
0111         seq = read_seqbegin(&ufsi->meta_lock);
0112         to->key64 = *(__fs64 *)(to->p = v);
0113         for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++)
0114             ;
0115     } while (read_seqretry(&ufsi->meta_lock, seq));
0116     return (p > to);
0117 }
0118 
0119 /*
0120  * Returns the location of the fragment from
0121  * the beginning of the filesystem.
0122  */
0123 
0124 static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth)
0125 {
0126     struct ufs_inode_info *ufsi = UFS_I(inode);
0127     struct super_block *sb = inode->i_sb;
0128     struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
0129     u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
0130     int shift = uspi->s_apbshift-uspi->s_fpbshift;
0131     Indirect chain[4], *q = chain;
0132     unsigned *p;
0133     unsigned flags = UFS_SB(sb)->s_flags;
0134     u64 res = 0;
0135 
0136     UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
0137         uspi->s_fpbshift, uspi->s_apbmask,
0138         (unsigned long long)mask);
0139 
0140     if (depth == 0)
0141         goto no_block;
0142 
0143 again:
0144     p = offsets;
0145 
0146     if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
0147         goto ufs2;
0148 
0149     if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q))
0150         goto changed;
0151     if (!q->key32)
0152         goto no_block;
0153     while (--depth) {
0154         __fs32 *ptr;
0155         struct buffer_head *bh;
0156         unsigned n = *p++;
0157 
0158         bh = sb_bread(sb, uspi->s_sbbase +
0159                   fs32_to_cpu(sb, q->key32) + (n>>shift));
0160         if (!bh)
0161             goto no_block;
0162         ptr = (__fs32 *)bh->b_data + (n & mask);
0163         if (!grow_chain32(ufsi, bh, ptr, chain, ++q))
0164             goto changed;
0165         if (!q->key32)
0166             goto no_block;
0167     }
0168     res = fs32_to_cpu(sb, q->key32);
0169     goto found;
0170 
0171 ufs2:
0172     if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q))
0173         goto changed;
0174     if (!q->key64)
0175         goto no_block;
0176 
0177     while (--depth) {
0178         __fs64 *ptr;
0179         struct buffer_head *bh;
0180         unsigned n = *p++;
0181 
0182         bh = sb_bread(sb, uspi->s_sbbase +
0183                   fs64_to_cpu(sb, q->key64) + (n>>shift));
0184         if (!bh)
0185             goto no_block;
0186         ptr = (__fs64 *)bh->b_data + (n & mask);
0187         if (!grow_chain64(ufsi, bh, ptr, chain, ++q))
0188             goto changed;
0189         if (!q->key64)
0190             goto no_block;
0191     }
0192     res = fs64_to_cpu(sb, q->key64);
0193 found:
0194     res += uspi->s_sbbase;
0195 no_block:
0196     while (q > chain) {
0197         brelse(q->bh);
0198         q--;
0199     }
0200     return res;
0201 
0202 changed:
0203     while (q > chain) {
0204         brelse(q->bh);
0205         q--;
0206     }
0207     goto again;
0208 }
0209 
0210 /*
0211  * Unpacking tails: we have a file with partial final block and
0212  * we had been asked to extend it.  If the fragment being written
0213  * is within the same block, we need to extend the tail just to cover
0214  * that fragment.  Otherwise the tail is extended to full block.
0215  *
0216  * Note that we might need to create a _new_ tail, but that will
0217  * be handled elsewhere; this is strictly for resizing old
0218  * ones.
0219  */
0220 static bool
0221 ufs_extend_tail(struct inode *inode, u64 writes_to,
0222           int *err, struct page *locked_page)
0223 {
0224     struct ufs_inode_info *ufsi = UFS_I(inode);
0225     struct super_block *sb = inode->i_sb;
0226     struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
0227     unsigned lastfrag = ufsi->i_lastfrag;   /* it's a short file, so unsigned is enough */
0228     unsigned block = ufs_fragstoblks(lastfrag);
0229     unsigned new_size;
0230     void *p;
0231     u64 tmp;
0232 
0233     if (writes_to < (lastfrag | uspi->s_fpbmask))
0234         new_size = (writes_to & uspi->s_fpbmask) + 1;
0235     else
0236         new_size = uspi->s_fpb;
0237 
0238     p = ufs_get_direct_data_ptr(uspi, ufsi, block);
0239     tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p),
0240                 new_size - (lastfrag & uspi->s_fpbmask), err,
0241                 locked_page);
0242     return tmp != 0;
0243 }
0244 
0245 /**
0246  * ufs_inode_getfrag() - allocate new fragment(s)
0247  * @inode: pointer to inode
0248  * @index: number of block pointer within the inode's array.
0249  * @new_fragment: number of new allocated fragment(s)
0250  * @err: we set it if something wrong
0251  * @new: we set it if we allocate new block
0252  * @locked_page: for ufs_new_fragments()
0253  */
0254 static u64
0255 ufs_inode_getfrag(struct inode *inode, unsigned index,
0256           sector_t new_fragment, int *err,
0257           int *new, struct page *locked_page)
0258 {
0259     struct ufs_inode_info *ufsi = UFS_I(inode);
0260     struct super_block *sb = inode->i_sb;
0261     struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
0262     u64 tmp, goal, lastfrag;
0263     unsigned nfrags = uspi->s_fpb;
0264     void *p;
0265 
0266         /* TODO : to be done for write support
0267         if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
0268              goto ufs2;
0269          */
0270 
0271     p = ufs_get_direct_data_ptr(uspi, ufsi, index);
0272     tmp = ufs_data_ptr_to_cpu(sb, p);
0273     if (tmp)
0274         goto out;
0275 
0276     lastfrag = ufsi->i_lastfrag;
0277 
0278     /* will that be a new tail? */
0279     if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag)
0280         nfrags = (new_fragment & uspi->s_fpbmask) + 1;
0281 
0282     goal = 0;
0283     if (index) {
0284         goal = ufs_data_ptr_to_cpu(sb,
0285                  ufs_get_direct_data_ptr(uspi, ufsi, index - 1));
0286         if (goal)
0287             goal += uspi->s_fpb;
0288     }
0289     tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment),
0290                 goal, nfrags, err, locked_page);
0291 
0292     if (!tmp) {
0293         *err = -ENOSPC;
0294         return 0;
0295     }
0296 
0297     if (new)
0298         *new = 1;
0299     inode->i_ctime = current_time(inode);
0300     if (IS_SYNC(inode))
0301         ufs_sync_inode (inode);
0302     mark_inode_dirty(inode);
0303 out:
0304     return tmp + uspi->s_sbbase;
0305 
0306      /* This part : To be implemented ....
0307         Required only for writing, not required for READ-ONLY.
0308 ufs2:
0309 
0310     u2_block = ufs_fragstoblks(fragment);
0311     u2_blockoff = ufs_fragnum(fragment);
0312     p = ufsi->i_u1.u2_i_data + block;
0313     goal = 0;
0314 
0315 repeat2:
0316     tmp = fs32_to_cpu(sb, *p);
0317     lastfrag = ufsi->i_lastfrag;
0318 
0319      */
0320 }
0321 
0322 /**
0323  * ufs_inode_getblock() - allocate new block
0324  * @inode: pointer to inode
0325  * @ind_block: block number of the indirect block
0326  * @index: number of pointer within the indirect block
0327  * @new_fragment: number of new allocated fragment
0328  *  (block will hold this fragment and also uspi->s_fpb-1)
0329  * @err: see ufs_inode_getfrag()
0330  * @new: see ufs_inode_getfrag()
0331  * @locked_page: see ufs_inode_getfrag()
0332  */
0333 static u64
0334 ufs_inode_getblock(struct inode *inode, u64 ind_block,
0335           unsigned index, sector_t new_fragment, int *err,
0336           int *new, struct page *locked_page)
0337 {
0338     struct super_block *sb = inode->i_sb;
0339     struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
0340     int shift = uspi->s_apbshift - uspi->s_fpbshift;
0341     u64 tmp = 0, goal;
0342     struct buffer_head *bh;
0343     void *p;
0344 
0345     if (!ind_block)
0346         return 0;
0347 
0348     bh = sb_bread(sb, ind_block + (index >> shift));
0349     if (unlikely(!bh)) {
0350         *err = -EIO;
0351         return 0;
0352     }
0353 
0354     index &= uspi->s_apbmask >> uspi->s_fpbshift;
0355     if (uspi->fs_magic == UFS2_MAGIC)
0356         p = (__fs64 *)bh->b_data + index;
0357     else
0358         p = (__fs32 *)bh->b_data + index;
0359 
0360     tmp = ufs_data_ptr_to_cpu(sb, p);
0361     if (tmp)
0362         goto out;
0363 
0364     if (index && (uspi->fs_magic == UFS2_MAGIC ?
0365               (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) :
0366               (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1]))))
0367         goal = tmp + uspi->s_fpb;
0368     else
0369         goal = bh->b_blocknr + uspi->s_fpb;
0370     tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
0371                 uspi->s_fpb, err, locked_page);
0372     if (!tmp)
0373         goto out;
0374 
0375     if (new)
0376         *new = 1;
0377 
0378     mark_buffer_dirty(bh);
0379     if (IS_SYNC(inode))
0380         sync_dirty_buffer(bh);
0381     inode->i_ctime = current_time(inode);
0382     mark_inode_dirty(inode);
0383 out:
0384     brelse (bh);
0385     UFSD("EXIT\n");
0386     if (tmp)
0387         tmp += uspi->s_sbbase;
0388     return tmp;
0389 }
0390 
0391 /**
0392  * ufs_getfrag_block() - `get_block_t' function, interface between UFS and
0393  * read_folio, writepage and so on
0394  */
0395 
0396 static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
0397 {
0398     struct super_block *sb = inode->i_sb;
0399     struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
0400     int err = 0, new = 0;
0401     unsigned offsets[4];
0402     int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets);
0403     u64 phys64 = 0;
0404     unsigned frag = fragment & uspi->s_fpbmask;
0405 
0406     phys64 = ufs_frag_map(inode, offsets, depth);
0407     if (!create)
0408         goto done;
0409 
0410     if (phys64) {
0411         if (fragment >= UFS_NDIR_FRAGMENT)
0412             goto done;
0413         read_seqlock_excl(&UFS_I(inode)->meta_lock);
0414         if (fragment < UFS_I(inode)->i_lastfrag) {
0415             read_sequnlock_excl(&UFS_I(inode)->meta_lock);
0416             goto done;
0417         }
0418         read_sequnlock_excl(&UFS_I(inode)->meta_lock);
0419     }
0420         /* This code entered only while writing ....? */
0421 
0422     mutex_lock(&UFS_I(inode)->truncate_mutex);
0423 
0424     UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
0425     if (unlikely(!depth)) {
0426         ufs_warning(sb, "ufs_get_block", "block > big");
0427         err = -EIO;
0428         goto out;
0429     }
0430 
0431     if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) {
0432         unsigned lastfrag = UFS_I(inode)->i_lastfrag;
0433         unsigned tailfrags = lastfrag & uspi->s_fpbmask;
0434         if (tailfrags && fragment >= lastfrag) {
0435             if (!ufs_extend_tail(inode, fragment,
0436                          &err, bh_result->b_page))
0437                 goto out;
0438         }
0439     }
0440 
0441     if (depth == 1) {
0442         phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
0443                        &err, &new, bh_result->b_page);
0444     } else {
0445         int i;
0446         phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
0447                        &err, NULL, NULL);
0448         for (i = 1; i < depth - 1; i++)
0449             phys64 = ufs_inode_getblock(inode, phys64, offsets[i],
0450                         fragment, &err, NULL, NULL);
0451         phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1],
0452                     fragment, &err, &new, bh_result->b_page);
0453     }
0454 out:
0455     if (phys64) {
0456         phys64 += frag;
0457         map_bh(bh_result, sb, phys64);
0458         if (new)
0459             set_buffer_new(bh_result);
0460     }
0461     mutex_unlock(&UFS_I(inode)->truncate_mutex);
0462     return err;
0463 
0464 done:
0465     if (phys64)
0466         map_bh(bh_result, sb, phys64 + frag);
0467     return 0;
0468 }
0469 
0470 static int ufs_writepage(struct page *page, struct writeback_control *wbc)
0471 {
0472     return block_write_full_page(page,ufs_getfrag_block,wbc);
0473 }
0474 
0475 static int ufs_read_folio(struct file *file, struct folio *folio)
0476 {
0477     return block_read_full_folio(folio, ufs_getfrag_block);
0478 }
0479 
0480 int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len)
0481 {
0482     return __block_write_begin(page, pos, len, ufs_getfrag_block);
0483 }
0484 
0485 static void ufs_truncate_blocks(struct inode *);
0486 
0487 static void ufs_write_failed(struct address_space *mapping, loff_t to)
0488 {
0489     struct inode *inode = mapping->host;
0490 
0491     if (to > inode->i_size) {
0492         truncate_pagecache(inode, inode->i_size);
0493         ufs_truncate_blocks(inode);
0494     }
0495 }
0496 
0497 static int ufs_write_begin(struct file *file, struct address_space *mapping,
0498             loff_t pos, unsigned len,
0499             struct page **pagep, void **fsdata)
0500 {
0501     int ret;
0502 
0503     ret = block_write_begin(mapping, pos, len, pagep, ufs_getfrag_block);
0504     if (unlikely(ret))
0505         ufs_write_failed(mapping, pos + len);
0506 
0507     return ret;
0508 }
0509 
0510 static int ufs_write_end(struct file *file, struct address_space *mapping,
0511             loff_t pos, unsigned len, unsigned copied,
0512             struct page *page, void *fsdata)
0513 {
0514     int ret;
0515 
0516     ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
0517     if (ret < len)
0518         ufs_write_failed(mapping, pos + len);
0519     return ret;
0520 }
0521 
0522 static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
0523 {
0524     return generic_block_bmap(mapping,block,ufs_getfrag_block);
0525 }
0526 
0527 const struct address_space_operations ufs_aops = {
0528     .dirty_folio = block_dirty_folio,
0529     .invalidate_folio = block_invalidate_folio,
0530     .read_folio = ufs_read_folio,
0531     .writepage = ufs_writepage,
0532     .write_begin = ufs_write_begin,
0533     .write_end = ufs_write_end,
0534     .bmap = ufs_bmap
0535 };
0536 
0537 static void ufs_set_inode_ops(struct inode *inode)
0538 {
0539     if (S_ISREG(inode->i_mode)) {
0540         inode->i_op = &ufs_file_inode_operations;
0541         inode->i_fop = &ufs_file_operations;
0542         inode->i_mapping->a_ops = &ufs_aops;
0543     } else if (S_ISDIR(inode->i_mode)) {
0544         inode->i_op = &ufs_dir_inode_operations;
0545         inode->i_fop = &ufs_dir_operations;
0546         inode->i_mapping->a_ops = &ufs_aops;
0547     } else if (S_ISLNK(inode->i_mode)) {
0548         if (!inode->i_blocks) {
0549             inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink;
0550             inode->i_op = &simple_symlink_inode_operations;
0551         } else {
0552             inode->i_mapping->a_ops = &ufs_aops;
0553             inode->i_op = &page_symlink_inode_operations;
0554             inode_nohighmem(inode);
0555         }
0556     } else
0557         init_special_inode(inode, inode->i_mode,
0558                    ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
0559 }
0560 
0561 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
0562 {
0563     struct ufs_inode_info *ufsi = UFS_I(inode);
0564     struct super_block *sb = inode->i_sb;
0565     umode_t mode;
0566 
0567     /*
0568      * Copy data to the in-core inode.
0569      */
0570     inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
0571     set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink));
0572     if (inode->i_nlink == 0)
0573         return -ESTALE;
0574 
0575     /*
0576      * Linux now has 32-bit uid and gid, so we can support EFT.
0577      */
0578     i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode));
0579     i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode));
0580 
0581     inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
0582     inode->i_atime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
0583     inode->i_ctime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
0584     inode->i_mtime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
0585     inode->i_mtime.tv_nsec = 0;
0586     inode->i_atime.tv_nsec = 0;
0587     inode->i_ctime.tv_nsec = 0;
0588     inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
0589     inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
0590     ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
0591     ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
0592     ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
0593 
0594 
0595     if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
0596         memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
0597                sizeof(ufs_inode->ui_u2.ui_addr));
0598     } else {
0599         memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
0600                sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
0601         ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
0602     }
0603     return 0;
0604 }
0605 
0606 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
0607 {
0608     struct ufs_inode_info *ufsi = UFS_I(inode);
0609     struct super_block *sb = inode->i_sb;
0610     umode_t mode;
0611 
0612     UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
0613     /*
0614      * Copy data to the in-core inode.
0615      */
0616     inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
0617     set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink));
0618     if (inode->i_nlink == 0)
0619         return -ESTALE;
0620 
0621         /*
0622          * Linux now has 32-bit uid and gid, so we can support EFT.
0623          */
0624     i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid));
0625     i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid));
0626 
0627     inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
0628     inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
0629     inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime);
0630     inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
0631     inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
0632     inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec);
0633     inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
0634     inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
0635     inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
0636     ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
0637     /*
0638     ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
0639     ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
0640     */
0641 
0642     if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
0643         memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
0644                sizeof(ufs2_inode->ui_u2.ui_addr));
0645     } else {
0646         memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
0647                sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
0648         ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
0649     }
0650     return 0;
0651 }
0652 
0653 struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
0654 {
0655     struct ufs_inode_info *ufsi;
0656     struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
0657     struct buffer_head * bh;
0658     struct inode *inode;
0659     int err = -EIO;
0660 
0661     UFSD("ENTER, ino %lu\n", ino);
0662 
0663     if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
0664         ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
0665                 ino);
0666         return ERR_PTR(-EIO);
0667     }
0668 
0669     inode = iget_locked(sb, ino);
0670     if (!inode)
0671         return ERR_PTR(-ENOMEM);
0672     if (!(inode->i_state & I_NEW))
0673         return inode;
0674 
0675     ufsi = UFS_I(inode);
0676 
0677     bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
0678     if (!bh) {
0679         ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
0680                 inode->i_ino);
0681         goto bad_inode;
0682     }
0683     if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
0684         struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
0685 
0686         err = ufs2_read_inode(inode,
0687                       ufs2_inode + ufs_inotofsbo(inode->i_ino));
0688     } else {
0689         struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
0690 
0691         err = ufs1_read_inode(inode,
0692                       ufs_inode + ufs_inotofsbo(inode->i_ino));
0693     }
0694     brelse(bh);
0695     if (err)
0696         goto bad_inode;
0697 
0698     inode_inc_iversion(inode);
0699     ufsi->i_lastfrag =
0700         (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
0701     ufsi->i_dir_start_lookup = 0;
0702     ufsi->i_osync = 0;
0703 
0704     ufs_set_inode_ops(inode);
0705 
0706     UFSD("EXIT\n");
0707     unlock_new_inode(inode);
0708     return inode;
0709 
0710 bad_inode:
0711     iget_failed(inode);
0712     return ERR_PTR(err);
0713 }
0714 
0715 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
0716 {
0717     struct super_block *sb = inode->i_sb;
0718     struct ufs_inode_info *ufsi = UFS_I(inode);
0719 
0720     ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
0721     ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
0722 
0723     ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode));
0724     ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode));
0725 
0726     ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
0727     ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
0728     ufs_inode->ui_atime.tv_usec = 0;
0729     ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
0730     ufs_inode->ui_ctime.tv_usec = 0;
0731     ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
0732     ufs_inode->ui_mtime.tv_usec = 0;
0733     ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
0734     ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
0735     ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
0736 
0737     if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
0738         ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
0739         ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
0740     }
0741 
0742     if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
0743         /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
0744         ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
0745     } else if (inode->i_blocks) {
0746         memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
0747                sizeof(ufs_inode->ui_u2.ui_addr));
0748     }
0749     else {
0750         memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
0751                sizeof(ufs_inode->ui_u2.ui_symlink));
0752     }
0753 
0754     if (!inode->i_nlink)
0755         memset (ufs_inode, 0, sizeof(struct ufs_inode));
0756 }
0757 
0758 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
0759 {
0760     struct super_block *sb = inode->i_sb;
0761     struct ufs_inode_info *ufsi = UFS_I(inode);
0762 
0763     UFSD("ENTER\n");
0764     ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
0765     ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
0766 
0767     ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode));
0768     ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode));
0769 
0770     ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
0771     ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
0772     ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
0773     ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec);
0774     ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec);
0775     ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
0776     ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);
0777 
0778     ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
0779     ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
0780     ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
0781 
0782     if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
0783         /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
0784         ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
0785     } else if (inode->i_blocks) {
0786         memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
0787                sizeof(ufs_inode->ui_u2.ui_addr));
0788     } else {
0789         memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
0790                sizeof(ufs_inode->ui_u2.ui_symlink));
0791     }
0792 
0793     if (!inode->i_nlink)
0794         memset (ufs_inode, 0, sizeof(struct ufs2_inode));
0795     UFSD("EXIT\n");
0796 }
0797 
0798 static int ufs_update_inode(struct inode * inode, int do_sync)
0799 {
0800     struct super_block *sb = inode->i_sb;
0801     struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
0802     struct buffer_head * bh;
0803 
0804     UFSD("ENTER, ino %lu\n", inode->i_ino);
0805 
0806     if (inode->i_ino < UFS_ROOTINO ||
0807         inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
0808         ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
0809         return -1;
0810     }
0811 
0812     bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
0813     if (!bh) {
0814         ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
0815         return -1;
0816     }
0817     if (uspi->fs_magic == UFS2_MAGIC) {
0818         struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
0819 
0820         ufs2_update_inode(inode,
0821                   ufs2_inode + ufs_inotofsbo(inode->i_ino));
0822     } else {
0823         struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
0824 
0825         ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
0826     }
0827 
0828     mark_buffer_dirty(bh);
0829     if (do_sync)
0830         sync_dirty_buffer(bh);
0831     brelse (bh);
0832 
0833     UFSD("EXIT\n");
0834     return 0;
0835 }
0836 
0837 int ufs_write_inode(struct inode *inode, struct writeback_control *wbc)
0838 {
0839     return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
0840 }
0841 
0842 int ufs_sync_inode (struct inode *inode)
0843 {
0844     return ufs_update_inode (inode, 1);
0845 }
0846 
0847 void ufs_evict_inode(struct inode * inode)
0848 {
0849     int want_delete = 0;
0850 
0851     if (!inode->i_nlink && !is_bad_inode(inode))
0852         want_delete = 1;
0853 
0854     truncate_inode_pages_final(&inode->i_data);
0855     if (want_delete) {
0856         inode->i_size = 0;
0857         if (inode->i_blocks &&
0858             (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
0859              S_ISLNK(inode->i_mode)))
0860             ufs_truncate_blocks(inode);
0861         ufs_update_inode(inode, inode_needs_sync(inode));
0862     }
0863 
0864     invalidate_inode_buffers(inode);
0865     clear_inode(inode);
0866 
0867     if (want_delete)
0868         ufs_free_inode(inode);
0869 }
0870 
0871 struct to_free {
0872     struct inode *inode;
0873     u64 to;
0874     unsigned count;
0875 };
0876 
0877 static inline void free_data(struct to_free *ctx, u64 from, unsigned count)
0878 {
0879     if (ctx->count && ctx->to != from) {
0880         ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count);
0881         ctx->count = 0;
0882     }
0883     ctx->count += count;
0884     ctx->to = from + count;
0885 }
0886 
0887 #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift)
0888 
0889 static void ufs_trunc_direct(struct inode *inode)
0890 {
0891     struct ufs_inode_info *ufsi = UFS_I(inode);
0892     struct super_block * sb;
0893     struct ufs_sb_private_info * uspi;
0894     void *p;
0895     u64 frag1, frag2, frag3, frag4, block1, block2;
0896     struct to_free ctx = {.inode = inode};
0897     unsigned i, tmp;
0898 
0899     UFSD("ENTER: ino %lu\n", inode->i_ino);
0900 
0901     sb = inode->i_sb;
0902     uspi = UFS_SB(sb)->s_uspi;
0903 
0904     frag1 = DIRECT_FRAGMENT;
0905     frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag);
0906     frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1);
0907     frag3 = frag4 & ~uspi->s_fpbmask;
0908     block1 = block2 = 0;
0909     if (frag2 > frag3) {
0910         frag2 = frag4;
0911         frag3 = frag4 = 0;
0912     } else if (frag2 < frag3) {
0913         block1 = ufs_fragstoblks (frag2);
0914         block2 = ufs_fragstoblks (frag3);
0915     }
0916 
0917     UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu,"
0918          " frag3 %llu, frag4 %llu\n", inode->i_ino,
0919          (unsigned long long)frag1, (unsigned long long)frag2,
0920          (unsigned long long)block1, (unsigned long long)block2,
0921          (unsigned long long)frag3, (unsigned long long)frag4);
0922 
0923     if (frag1 >= frag2)
0924         goto next1;
0925 
0926     /*
0927      * Free first free fragments
0928      */
0929     p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1));
0930     tmp = ufs_data_ptr_to_cpu(sb, p);
0931     if (!tmp )
0932         ufs_panic (sb, "ufs_trunc_direct", "internal error");
0933     frag2 -= frag1;
0934     frag1 = ufs_fragnum (frag1);
0935 
0936     ufs_free_fragments(inode, tmp + frag1, frag2);
0937 
0938 next1:
0939     /*
0940      * Free whole blocks
0941      */
0942     for (i = block1 ; i < block2; i++) {
0943         p = ufs_get_direct_data_ptr(uspi, ufsi, i);
0944         tmp = ufs_data_ptr_to_cpu(sb, p);
0945         if (!tmp)
0946             continue;
0947         write_seqlock(&ufsi->meta_lock);
0948         ufs_data_ptr_clear(uspi, p);
0949         write_sequnlock(&ufsi->meta_lock);
0950 
0951         free_data(&ctx, tmp, uspi->s_fpb);
0952     }
0953 
0954     free_data(&ctx, 0, 0);
0955 
0956     if (frag3 >= frag4)
0957         goto next3;
0958 
0959     /*
0960      * Free last free fragments
0961      */
0962     p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3));
0963     tmp = ufs_data_ptr_to_cpu(sb, p);
0964     if (!tmp )
0965         ufs_panic(sb, "ufs_truncate_direct", "internal error");
0966     frag4 = ufs_fragnum (frag4);
0967     write_seqlock(&ufsi->meta_lock);
0968     ufs_data_ptr_clear(uspi, p);
0969     write_sequnlock(&ufsi->meta_lock);
0970 
0971     ufs_free_fragments (inode, tmp, frag4);
0972  next3:
0973 
0974     UFSD("EXIT: ino %lu\n", inode->i_ino);
0975 }
0976 
0977 static void free_full_branch(struct inode *inode, u64 ind_block, int depth)
0978 {
0979     struct super_block *sb = inode->i_sb;
0980     struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
0981     struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize);
0982     unsigned i;
0983 
0984     if (!ubh)
0985         return;
0986 
0987     if (--depth) {
0988         for (i = 0; i < uspi->s_apb; i++) {
0989             void *p = ubh_get_data_ptr(uspi, ubh, i);
0990             u64 block = ufs_data_ptr_to_cpu(sb, p);
0991             if (block)
0992                 free_full_branch(inode, block, depth);
0993         }
0994     } else {
0995         struct to_free ctx = {.inode = inode};
0996 
0997         for (i = 0; i < uspi->s_apb; i++) {
0998             void *p = ubh_get_data_ptr(uspi, ubh, i);
0999             u64 block = ufs_data_ptr_to_cpu(sb, p);
1000             if (block)
1001                 free_data(&ctx, block, uspi->s_fpb);
1002         }
1003         free_data(&ctx, 0, 0);
1004     }
1005 
1006     ubh_bforget(ubh);
1007     ufs_free_blocks(inode, ind_block, uspi->s_fpb);
1008 }
1009 
1010 static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth)
1011 {
1012     struct super_block *sb = inode->i_sb;
1013     struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1014     unsigned i;
1015 
1016     if (--depth) {
1017         for (i = from; i < uspi->s_apb ; i++) {
1018             void *p = ubh_get_data_ptr(uspi, ubh, i);
1019             u64 block = ufs_data_ptr_to_cpu(sb, p);
1020             if (block) {
1021                 write_seqlock(&UFS_I(inode)->meta_lock);
1022                 ufs_data_ptr_clear(uspi, p);
1023                 write_sequnlock(&UFS_I(inode)->meta_lock);
1024                 ubh_mark_buffer_dirty(ubh);
1025                 free_full_branch(inode, block, depth);
1026             }
1027         }
1028     } else {
1029         struct to_free ctx = {.inode = inode};
1030 
1031         for (i = from; i < uspi->s_apb; i++) {
1032             void *p = ubh_get_data_ptr(uspi, ubh, i);
1033             u64 block = ufs_data_ptr_to_cpu(sb, p);
1034             if (block) {
1035                 write_seqlock(&UFS_I(inode)->meta_lock);
1036                 ufs_data_ptr_clear(uspi, p);
1037                 write_sequnlock(&UFS_I(inode)->meta_lock);
1038                 ubh_mark_buffer_dirty(ubh);
1039                 free_data(&ctx, block, uspi->s_fpb);
1040             }
1041         }
1042         free_data(&ctx, 0, 0);
1043     }
1044     if (IS_SYNC(inode) && ubh_buffer_dirty(ubh))
1045         ubh_sync_block(ubh);
1046     ubh_brelse(ubh);
1047 }
1048 
1049 static int ufs_alloc_lastblock(struct inode *inode, loff_t size)
1050 {
1051     int err = 0;
1052     struct super_block *sb = inode->i_sb;
1053     struct address_space *mapping = inode->i_mapping;
1054     struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1055     unsigned i, end;
1056     sector_t lastfrag;
1057     struct page *lastpage;
1058     struct buffer_head *bh;
1059     u64 phys64;
1060 
1061     lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
1062 
1063     if (!lastfrag)
1064         goto out;
1065 
1066     lastfrag--;
1067 
1068     lastpage = ufs_get_locked_page(mapping, lastfrag >>
1069                        (PAGE_SHIFT - inode->i_blkbits));
1070        if (IS_ERR(lastpage)) {
1071                err = -EIO;
1072                goto out;
1073        }
1074 
1075        end = lastfrag & ((1 << (PAGE_SHIFT - inode->i_blkbits)) - 1);
1076        bh = page_buffers(lastpage);
1077        for (i = 0; i < end; ++i)
1078                bh = bh->b_this_page;
1079 
1080 
1081        err = ufs_getfrag_block(inode, lastfrag, bh, 1);
1082 
1083        if (unlikely(err))
1084            goto out_unlock;
1085 
1086        if (buffer_new(bh)) {
1087            clear_buffer_new(bh);
1088            clean_bdev_bh_alias(bh);
1089            /*
1090         * we do not zeroize fragment, because of
1091         * if it maped to hole, it already contains zeroes
1092         */
1093            set_buffer_uptodate(bh);
1094            mark_buffer_dirty(bh);
1095            set_page_dirty(lastpage);
1096        }
1097 
1098        if (lastfrag >= UFS_IND_FRAGMENT) {
1099            end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1;
1100            phys64 = bh->b_blocknr + 1;
1101            for (i = 0; i < end; ++i) {
1102                bh = sb_getblk(sb, i + phys64);
1103                lock_buffer(bh);
1104                memset(bh->b_data, 0, sb->s_blocksize);
1105                set_buffer_uptodate(bh);
1106                mark_buffer_dirty(bh);
1107                unlock_buffer(bh);
1108                sync_dirty_buffer(bh);
1109                brelse(bh);
1110            }
1111        }
1112 out_unlock:
1113        ufs_put_locked_page(lastpage);
1114 out:
1115        return err;
1116 }
1117 
1118 static void ufs_truncate_blocks(struct inode *inode)
1119 {
1120     struct ufs_inode_info *ufsi = UFS_I(inode);
1121     struct super_block *sb = inode->i_sb;
1122     struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1123     unsigned offsets[4];
1124     int depth;
1125     int depth2;
1126     unsigned i;
1127     struct ufs_buffer_head *ubh[3];
1128     void *p;
1129     u64 block;
1130 
1131     if (inode->i_size) {
1132         sector_t last = (inode->i_size - 1) >> uspi->s_bshift;
1133         depth = ufs_block_to_path(inode, last, offsets);
1134         if (!depth)
1135             return;
1136     } else {
1137         depth = 1;
1138     }
1139 
1140     for (depth2 = depth - 1; depth2; depth2--)
1141         if (offsets[depth2] != uspi->s_apb - 1)
1142             break;
1143 
1144     mutex_lock(&ufsi->truncate_mutex);
1145     if (depth == 1) {
1146         ufs_trunc_direct(inode);
1147         offsets[0] = UFS_IND_BLOCK;
1148     } else {
1149         /* get the blocks that should be partially emptied */
1150         p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]++);
1151         for (i = 0; i < depth2; i++) {
1152             block = ufs_data_ptr_to_cpu(sb, p);
1153             if (!block)
1154                 break;
1155             ubh[i] = ubh_bread(sb, block, uspi->s_bsize);
1156             if (!ubh[i]) {
1157                 write_seqlock(&ufsi->meta_lock);
1158                 ufs_data_ptr_clear(uspi, p);
1159                 write_sequnlock(&ufsi->meta_lock);
1160                 break;
1161             }
1162             p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]++);
1163         }
1164         while (i--)
1165             free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1);
1166     }
1167     for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) {
1168         p = ufs_get_direct_data_ptr(uspi, ufsi, i);
1169         block = ufs_data_ptr_to_cpu(sb, p);
1170         if (block) {
1171             write_seqlock(&ufsi->meta_lock);
1172             ufs_data_ptr_clear(uspi, p);
1173             write_sequnlock(&ufsi->meta_lock);
1174             free_full_branch(inode, block, i - UFS_IND_BLOCK + 1);
1175         }
1176     }
1177     read_seqlock_excl(&ufsi->meta_lock);
1178     ufsi->i_lastfrag = DIRECT_FRAGMENT;
1179     read_sequnlock_excl(&ufsi->meta_lock);
1180     mark_inode_dirty(inode);
1181     mutex_unlock(&ufsi->truncate_mutex);
1182 }
1183 
1184 static int ufs_truncate(struct inode *inode, loff_t size)
1185 {
1186     int err = 0;
1187 
1188     UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n",
1189          inode->i_ino, (unsigned long long)size,
1190          (unsigned long long)i_size_read(inode));
1191 
1192     if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1193           S_ISLNK(inode->i_mode)))
1194         return -EINVAL;
1195     if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1196         return -EPERM;
1197 
1198     err = ufs_alloc_lastblock(inode, size);
1199 
1200     if (err)
1201         goto out;
1202 
1203     block_truncate_page(inode->i_mapping, size, ufs_getfrag_block);
1204 
1205     truncate_setsize(inode, size);
1206 
1207     ufs_truncate_blocks(inode);
1208     inode->i_mtime = inode->i_ctime = current_time(inode);
1209     mark_inode_dirty(inode);
1210 out:
1211     UFSD("EXIT: err %d\n", err);
1212     return err;
1213 }
1214 
1215 int ufs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1216         struct iattr *attr)
1217 {
1218     struct inode *inode = d_inode(dentry);
1219     unsigned int ia_valid = attr->ia_valid;
1220     int error;
1221 
1222     error = setattr_prepare(&init_user_ns, dentry, attr);
1223     if (error)
1224         return error;
1225 
1226     if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
1227         error = ufs_truncate(inode, attr->ia_size);
1228         if (error)
1229             return error;
1230     }
1231 
1232     setattr_copy(&init_user_ns, inode, attr);
1233     mark_inode_dirty(inode);
1234     return 0;
1235 }
1236 
1237 const struct inode_operations ufs_file_inode_operations = {
1238     .setattr = ufs_setattr,
1239 };