Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * This file is part of UBIFS.
0004  *
0005  * Copyright (C) 2006-2008 Nokia Corporation
0006  *
0007  * Authors: Artem Bityutskiy (Битюцкий Артём)
0008  *          Adrian Hunter
0009  */
0010 
0011 /*
0012  * This file implements most of the debugging stuff which is compiled in only
0013  * when it is enabled. But some debugging check functions are implemented in
0014  * corresponding subsystem, just because they are closely related and utilize
0015  * various local functions of those subsystems.
0016  */
0017 
0018 #include <linux/module.h>
0019 #include <linux/debugfs.h>
0020 #include <linux/math64.h>
0021 #include <linux/uaccess.h>
0022 #include <linux/random.h>
0023 #include <linux/ctype.h>
0024 #include "ubifs.h"
0025 
0026 static DEFINE_SPINLOCK(dbg_lock);
0027 
0028 static const char *get_key_fmt(int fmt)
0029 {
0030     switch (fmt) {
0031     case UBIFS_SIMPLE_KEY_FMT:
0032         return "simple";
0033     default:
0034         return "unknown/invalid format";
0035     }
0036 }
0037 
0038 static const char *get_key_hash(int hash)
0039 {
0040     switch (hash) {
0041     case UBIFS_KEY_HASH_R5:
0042         return "R5";
0043     case UBIFS_KEY_HASH_TEST:
0044         return "test";
0045     default:
0046         return "unknown/invalid name hash";
0047     }
0048 }
0049 
0050 static const char *get_key_type(int type)
0051 {
0052     switch (type) {
0053     case UBIFS_INO_KEY:
0054         return "inode";
0055     case UBIFS_DENT_KEY:
0056         return "direntry";
0057     case UBIFS_XENT_KEY:
0058         return "xentry";
0059     case UBIFS_DATA_KEY:
0060         return "data";
0061     case UBIFS_TRUN_KEY:
0062         return "truncate";
0063     default:
0064         return "unknown/invalid key";
0065     }
0066 }
0067 
0068 static const char *get_dent_type(int type)
0069 {
0070     switch (type) {
0071     case UBIFS_ITYPE_REG:
0072         return "file";
0073     case UBIFS_ITYPE_DIR:
0074         return "dir";
0075     case UBIFS_ITYPE_LNK:
0076         return "symlink";
0077     case UBIFS_ITYPE_BLK:
0078         return "blkdev";
0079     case UBIFS_ITYPE_CHR:
0080         return "char dev";
0081     case UBIFS_ITYPE_FIFO:
0082         return "fifo";
0083     case UBIFS_ITYPE_SOCK:
0084         return "socket";
0085     default:
0086         return "unknown/invalid type";
0087     }
0088 }
0089 
0090 const char *dbg_snprintf_key(const struct ubifs_info *c,
0091                  const union ubifs_key *key, char *buffer, int len)
0092 {
0093     char *p = buffer;
0094     int type = key_type(c, key);
0095 
0096     if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
0097         switch (type) {
0098         case UBIFS_INO_KEY:
0099             len -= snprintf(p, len, "(%lu, %s)",
0100                     (unsigned long)key_inum(c, key),
0101                     get_key_type(type));
0102             break;
0103         case UBIFS_DENT_KEY:
0104         case UBIFS_XENT_KEY:
0105             len -= snprintf(p, len, "(%lu, %s, %#08x)",
0106                     (unsigned long)key_inum(c, key),
0107                     get_key_type(type), key_hash(c, key));
0108             break;
0109         case UBIFS_DATA_KEY:
0110             len -= snprintf(p, len, "(%lu, %s, %u)",
0111                     (unsigned long)key_inum(c, key),
0112                     get_key_type(type), key_block(c, key));
0113             break;
0114         case UBIFS_TRUN_KEY:
0115             len -= snprintf(p, len, "(%lu, %s)",
0116                     (unsigned long)key_inum(c, key),
0117                     get_key_type(type));
0118             break;
0119         default:
0120             len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
0121                     key->u32[0], key->u32[1]);
0122         }
0123     } else
0124         len -= snprintf(p, len, "bad key format %d", c->key_fmt);
0125     ubifs_assert(c, len > 0);
0126     return p;
0127 }
0128 
0129 const char *dbg_ntype(int type)
0130 {
0131     switch (type) {
0132     case UBIFS_PAD_NODE:
0133         return "padding node";
0134     case UBIFS_SB_NODE:
0135         return "superblock node";
0136     case UBIFS_MST_NODE:
0137         return "master node";
0138     case UBIFS_REF_NODE:
0139         return "reference node";
0140     case UBIFS_INO_NODE:
0141         return "inode node";
0142     case UBIFS_DENT_NODE:
0143         return "direntry node";
0144     case UBIFS_XENT_NODE:
0145         return "xentry node";
0146     case UBIFS_DATA_NODE:
0147         return "data node";
0148     case UBIFS_TRUN_NODE:
0149         return "truncate node";
0150     case UBIFS_IDX_NODE:
0151         return "indexing node";
0152     case UBIFS_CS_NODE:
0153         return "commit start node";
0154     case UBIFS_ORPH_NODE:
0155         return "orphan node";
0156     case UBIFS_AUTH_NODE:
0157         return "auth node";
0158     default:
0159         return "unknown node";
0160     }
0161 }
0162 
0163 static const char *dbg_gtype(int type)
0164 {
0165     switch (type) {
0166     case UBIFS_NO_NODE_GROUP:
0167         return "no node group";
0168     case UBIFS_IN_NODE_GROUP:
0169         return "in node group";
0170     case UBIFS_LAST_OF_NODE_GROUP:
0171         return "last of node group";
0172     default:
0173         return "unknown";
0174     }
0175 }
0176 
0177 const char *dbg_cstate(int cmt_state)
0178 {
0179     switch (cmt_state) {
0180     case COMMIT_RESTING:
0181         return "commit resting";
0182     case COMMIT_BACKGROUND:
0183         return "background commit requested";
0184     case COMMIT_REQUIRED:
0185         return "commit required";
0186     case COMMIT_RUNNING_BACKGROUND:
0187         return "BACKGROUND commit running";
0188     case COMMIT_RUNNING_REQUIRED:
0189         return "commit running and required";
0190     case COMMIT_BROKEN:
0191         return "broken commit";
0192     default:
0193         return "unknown commit state";
0194     }
0195 }
0196 
0197 const char *dbg_jhead(int jhead)
0198 {
0199     switch (jhead) {
0200     case GCHD:
0201         return "0 (GC)";
0202     case BASEHD:
0203         return "1 (base)";
0204     case DATAHD:
0205         return "2 (data)";
0206     default:
0207         return "unknown journal head";
0208     }
0209 }
0210 
0211 static void dump_ch(const struct ubifs_ch *ch)
0212 {
0213     pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
0214     pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
0215     pr_err("\tnode_type      %d (%s)\n", ch->node_type,
0216            dbg_ntype(ch->node_type));
0217     pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
0218            dbg_gtype(ch->group_type));
0219     pr_err("\tsqnum          %llu\n",
0220            (unsigned long long)le64_to_cpu(ch->sqnum));
0221     pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
0222 }
0223 
0224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
0225 {
0226     const struct ubifs_inode *ui = ubifs_inode(inode);
0227     struct fscrypt_name nm = {0};
0228     union ubifs_key key;
0229     struct ubifs_dent_node *dent, *pdent = NULL;
0230     int count = 2;
0231 
0232     pr_err("Dump in-memory inode:");
0233     pr_err("\tinode          %lu\n", inode->i_ino);
0234     pr_err("\tsize           %llu\n",
0235            (unsigned long long)i_size_read(inode));
0236     pr_err("\tnlink          %u\n", inode->i_nlink);
0237     pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
0238     pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
0239     pr_err("\tatime          %u.%u\n",
0240            (unsigned int)inode->i_atime.tv_sec,
0241            (unsigned int)inode->i_atime.tv_nsec);
0242     pr_err("\tmtime          %u.%u\n",
0243            (unsigned int)inode->i_mtime.tv_sec,
0244            (unsigned int)inode->i_mtime.tv_nsec);
0245     pr_err("\tctime          %u.%u\n",
0246            (unsigned int)inode->i_ctime.tv_sec,
0247            (unsigned int)inode->i_ctime.tv_nsec);
0248     pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
0249     pr_err("\txattr_size     %u\n", ui->xattr_size);
0250     pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
0251     pr_err("\txattr_names    %u\n", ui->xattr_names);
0252     pr_err("\tdirty          %u\n", ui->dirty);
0253     pr_err("\txattr          %u\n", ui->xattr);
0254     pr_err("\tbulk_read      %u\n", ui->bulk_read);
0255     pr_err("\tsynced_i_size  %llu\n",
0256            (unsigned long long)ui->synced_i_size);
0257     pr_err("\tui_size        %llu\n",
0258            (unsigned long long)ui->ui_size);
0259     pr_err("\tflags          %d\n", ui->flags);
0260     pr_err("\tcompr_type     %d\n", ui->compr_type);
0261     pr_err("\tlast_page_read %lu\n", ui->last_page_read);
0262     pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
0263     pr_err("\tdata_len       %d\n", ui->data_len);
0264 
0265     if (!S_ISDIR(inode->i_mode))
0266         return;
0267 
0268     pr_err("List of directory entries:\n");
0269     ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
0270 
0271     lowest_dent_key(c, &key, inode->i_ino);
0272     while (1) {
0273         dent = ubifs_tnc_next_ent(c, &key, &nm);
0274         if (IS_ERR(dent)) {
0275             if (PTR_ERR(dent) != -ENOENT)
0276                 pr_err("error %ld\n", PTR_ERR(dent));
0277             break;
0278         }
0279 
0280         pr_err("\t%d: inode %llu, type %s, len %d\n",
0281                count++, (unsigned long long) le64_to_cpu(dent->inum),
0282                get_dent_type(dent->type),
0283                le16_to_cpu(dent->nlen));
0284 
0285         fname_name(&nm) = dent->name;
0286         fname_len(&nm) = le16_to_cpu(dent->nlen);
0287         kfree(pdent);
0288         pdent = dent;
0289         key_read(c, &dent->key, &key);
0290     }
0291     kfree(pdent);
0292 }
0293 
0294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len)
0295 {
0296     int i, n, type, safe_len, max_node_len, min_node_len;
0297     union ubifs_key key;
0298     const struct ubifs_ch *ch = node;
0299     char key_buf[DBG_KEY_BUF_LEN];
0300 
0301     /* If the magic is incorrect, just hexdump the first bytes */
0302     if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
0303         pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
0304         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
0305                    (void *)node, UBIFS_CH_SZ, 1);
0306         return;
0307     }
0308 
0309     /* Skip dumping unknown type node */
0310     type = ch->node_type;
0311     if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
0312         pr_err("node type %d was not recognized\n", type);
0313         return;
0314     }
0315 
0316     spin_lock(&dbg_lock);
0317     dump_ch(node);
0318 
0319     if (c->ranges[type].max_len == 0) {
0320         max_node_len = min_node_len = c->ranges[type].len;
0321     } else {
0322         max_node_len = c->ranges[type].max_len;
0323         min_node_len = c->ranges[type].min_len;
0324     }
0325     safe_len = le32_to_cpu(ch->len);
0326     safe_len = safe_len > 0 ? safe_len : 0;
0327     safe_len = min3(safe_len, max_node_len, node_len);
0328     if (safe_len < min_node_len) {
0329         pr_err("node len(%d) is too short for %s, left %d bytes:\n",
0330                safe_len, dbg_ntype(type),
0331                safe_len > UBIFS_CH_SZ ?
0332                safe_len - (int)UBIFS_CH_SZ : 0);
0333         if (safe_len > UBIFS_CH_SZ)
0334             print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
0335                        (void *)node + UBIFS_CH_SZ,
0336                        safe_len - UBIFS_CH_SZ, 0);
0337         goto out_unlock;
0338     }
0339     if (safe_len != le32_to_cpu(ch->len))
0340         pr_err("\ttruncated node length      %d\n", safe_len);
0341 
0342     switch (type) {
0343     case UBIFS_PAD_NODE:
0344     {
0345         const struct ubifs_pad_node *pad = node;
0346 
0347         pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
0348         break;
0349     }
0350     case UBIFS_SB_NODE:
0351     {
0352         const struct ubifs_sb_node *sup = node;
0353         unsigned int sup_flags = le32_to_cpu(sup->flags);
0354 
0355         pr_err("\tkey_hash       %d (%s)\n",
0356                (int)sup->key_hash, get_key_hash(sup->key_hash));
0357         pr_err("\tkey_fmt        %d (%s)\n",
0358                (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
0359         pr_err("\tflags          %#x\n", sup_flags);
0360         pr_err("\tbig_lpt        %u\n",
0361                !!(sup_flags & UBIFS_FLG_BIGLPT));
0362         pr_err("\tspace_fixup    %u\n",
0363                !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
0364         pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
0365         pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
0366         pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
0367         pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
0368         pr_err("\tmax_bud_bytes  %llu\n",
0369                (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
0370         pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
0371         pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
0372         pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
0373         pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
0374         pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
0375         pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
0376         pr_err("\tdefault_compr  %u\n",
0377                (int)le16_to_cpu(sup->default_compr));
0378         pr_err("\trp_size        %llu\n",
0379                (unsigned long long)le64_to_cpu(sup->rp_size));
0380         pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
0381         pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
0382         pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
0383         pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
0384         pr_err("\tUUID           %pUB\n", sup->uuid);
0385         break;
0386     }
0387     case UBIFS_MST_NODE:
0388     {
0389         const struct ubifs_mst_node *mst = node;
0390 
0391         pr_err("\thighest_inum   %llu\n",
0392                (unsigned long long)le64_to_cpu(mst->highest_inum));
0393         pr_err("\tcommit number  %llu\n",
0394                (unsigned long long)le64_to_cpu(mst->cmt_no));
0395         pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
0396         pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
0397         pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
0398         pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
0399         pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
0400         pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
0401         pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
0402         pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
0403         pr_err("\tindex_size     %llu\n",
0404                (unsigned long long)le64_to_cpu(mst->index_size));
0405         pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
0406         pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
0407         pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
0408         pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
0409         pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
0410         pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
0411         pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
0412         pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
0413         pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
0414         pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
0415         pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
0416         pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
0417         pr_err("\ttotal_free     %llu\n",
0418                (unsigned long long)le64_to_cpu(mst->total_free));
0419         pr_err("\ttotal_dirty    %llu\n",
0420                (unsigned long long)le64_to_cpu(mst->total_dirty));
0421         pr_err("\ttotal_used     %llu\n",
0422                (unsigned long long)le64_to_cpu(mst->total_used));
0423         pr_err("\ttotal_dead     %llu\n",
0424                (unsigned long long)le64_to_cpu(mst->total_dead));
0425         pr_err("\ttotal_dark     %llu\n",
0426                (unsigned long long)le64_to_cpu(mst->total_dark));
0427         break;
0428     }
0429     case UBIFS_REF_NODE:
0430     {
0431         const struct ubifs_ref_node *ref = node;
0432 
0433         pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
0434         pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
0435         pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
0436         break;
0437     }
0438     case UBIFS_INO_NODE:
0439     {
0440         const struct ubifs_ino_node *ino = node;
0441 
0442         key_read(c, &ino->key, &key);
0443         pr_err("\tkey            %s\n",
0444                dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
0445         pr_err("\tcreat_sqnum    %llu\n",
0446                (unsigned long long)le64_to_cpu(ino->creat_sqnum));
0447         pr_err("\tsize           %llu\n",
0448                (unsigned long long)le64_to_cpu(ino->size));
0449         pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
0450         pr_err("\tatime          %lld.%u\n",
0451                (long long)le64_to_cpu(ino->atime_sec),
0452                le32_to_cpu(ino->atime_nsec));
0453         pr_err("\tmtime          %lld.%u\n",
0454                (long long)le64_to_cpu(ino->mtime_sec),
0455                le32_to_cpu(ino->mtime_nsec));
0456         pr_err("\tctime          %lld.%u\n",
0457                (long long)le64_to_cpu(ino->ctime_sec),
0458                le32_to_cpu(ino->ctime_nsec));
0459         pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
0460         pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
0461         pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
0462         pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
0463         pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
0464         pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
0465         pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
0466         pr_err("\tcompr_type     %#x\n",
0467                (int)le16_to_cpu(ino->compr_type));
0468         pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
0469         break;
0470     }
0471     case UBIFS_DENT_NODE:
0472     case UBIFS_XENT_NODE:
0473     {
0474         const struct ubifs_dent_node *dent = node;
0475         int nlen = le16_to_cpu(dent->nlen);
0476 
0477         key_read(c, &dent->key, &key);
0478         pr_err("\tkey            %s\n",
0479                dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
0480         pr_err("\tinum           %llu\n",
0481                (unsigned long long)le64_to_cpu(dent->inum));
0482         pr_err("\ttype           %d\n", (int)dent->type);
0483         pr_err("\tnlen           %d\n", nlen);
0484         pr_err("\tname           ");
0485 
0486         if (nlen > UBIFS_MAX_NLEN ||
0487             nlen > safe_len - UBIFS_DENT_NODE_SZ)
0488             pr_err("(bad name length, not printing, bad or corrupted node)");
0489         else {
0490             for (i = 0; i < nlen && dent->name[i]; i++)
0491                 pr_cont("%c", isprint(dent->name[i]) ?
0492                     dent->name[i] : '?');
0493         }
0494         pr_cont("\n");
0495 
0496         break;
0497     }
0498     case UBIFS_DATA_NODE:
0499     {
0500         const struct ubifs_data_node *dn = node;
0501 
0502         key_read(c, &dn->key, &key);
0503         pr_err("\tkey            %s\n",
0504                dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
0505         pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
0506         pr_err("\tcompr_typ      %d\n",
0507                (int)le16_to_cpu(dn->compr_type));
0508         pr_err("\tdata size      %u\n",
0509                le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ);
0510         pr_err("\tdata (length = %d):\n",
0511                safe_len - (int)UBIFS_DATA_NODE_SZ);
0512         print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
0513                    (void *)&dn->data,
0514                    safe_len - (int)UBIFS_DATA_NODE_SZ, 0);
0515         break;
0516     }
0517     case UBIFS_TRUN_NODE:
0518     {
0519         const struct ubifs_trun_node *trun = node;
0520 
0521         pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
0522         pr_err("\told_size       %llu\n",
0523                (unsigned long long)le64_to_cpu(trun->old_size));
0524         pr_err("\tnew_size       %llu\n",
0525                (unsigned long long)le64_to_cpu(trun->new_size));
0526         break;
0527     }
0528     case UBIFS_IDX_NODE:
0529     {
0530         const struct ubifs_idx_node *idx = node;
0531         int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) /
0532                     (ubifs_idx_node_sz(c, 1) -
0533                     UBIFS_IDX_NODE_SZ);
0534 
0535         n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt);
0536         pr_err("\tchild_cnt      %d\n", (int)le16_to_cpu(idx->child_cnt));
0537         pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
0538         pr_err("\tBranches:\n");
0539 
0540         for (i = 0; i < n && i < c->fanout; i++) {
0541             const struct ubifs_branch *br;
0542 
0543             br = ubifs_idx_branch(c, idx, i);
0544             key_read(c, &br->key, &key);
0545             pr_err("\t%d: LEB %d:%d len %d key %s\n",
0546                    i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
0547                    le32_to_cpu(br->len),
0548                    dbg_snprintf_key(c, &key, key_buf,
0549                         DBG_KEY_BUF_LEN));
0550         }
0551         break;
0552     }
0553     case UBIFS_CS_NODE:
0554         break;
0555     case UBIFS_ORPH_NODE:
0556     {
0557         const struct ubifs_orph_node *orph = node;
0558 
0559         pr_err("\tcommit number  %llu\n",
0560                (unsigned long long)
0561                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
0562         pr_err("\tlast node flag %llu\n",
0563                (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
0564         n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3;
0565         pr_err("\t%d orphan inode numbers:\n", n);
0566         for (i = 0; i < n; i++)
0567             pr_err("\t  ino %llu\n",
0568                    (unsigned long long)le64_to_cpu(orph->inos[i]));
0569         break;
0570     }
0571     case UBIFS_AUTH_NODE:
0572     {
0573         break;
0574     }
0575     default:
0576         pr_err("node type %d was not recognized\n", type);
0577     }
0578 
0579 out_unlock:
0580     spin_unlock(&dbg_lock);
0581 }
0582 
0583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
0584 {
0585     spin_lock(&dbg_lock);
0586     pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
0587            req->new_ino, req->dirtied_ino);
0588     pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
0589            req->new_ino_d, req->dirtied_ino_d);
0590     pr_err("\tnew_page    %d, dirtied_page %d\n",
0591            req->new_page, req->dirtied_page);
0592     pr_err("\tnew_dent    %d, mod_dent     %d\n",
0593            req->new_dent, req->mod_dent);
0594     pr_err("\tidx_growth  %d\n", req->idx_growth);
0595     pr_err("\tdata_growth %d dd_growth     %d\n",
0596            req->data_growth, req->dd_growth);
0597     spin_unlock(&dbg_lock);
0598 }
0599 
0600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
0601 {
0602     spin_lock(&dbg_lock);
0603     pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
0604            current->pid, lst->empty_lebs, lst->idx_lebs);
0605     pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
0606            lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
0607     pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
0608            lst->total_used, lst->total_dark, lst->total_dead);
0609     spin_unlock(&dbg_lock);
0610 }
0611 
0612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
0613 {
0614     int i;
0615     struct rb_node *rb;
0616     struct ubifs_bud *bud;
0617     struct ubifs_gced_idx_leb *idx_gc;
0618     long long available, outstanding, free;
0619 
0620     spin_lock(&c->space_lock);
0621     spin_lock(&dbg_lock);
0622     pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
0623            current->pid, bi->data_growth + bi->dd_growth,
0624            bi->data_growth + bi->dd_growth + bi->idx_growth);
0625     pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
0626            bi->data_growth, bi->dd_growth, bi->idx_growth);
0627     pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
0628            bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
0629     pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
0630            bi->page_budget, bi->inode_budget, bi->dent_budget);
0631     pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
0632     pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
0633            c->dark_wm, c->dead_wm, c->max_idx_node_sz);
0634 
0635     if (bi != &c->bi)
0636         /*
0637          * If we are dumping saved budgeting data, do not print
0638          * additional information which is about the current state, not
0639          * the old one which corresponded to the saved budgeting data.
0640          */
0641         goto out_unlock;
0642 
0643     pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
0644            c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
0645     pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
0646            atomic_long_read(&c->dirty_pg_cnt),
0647            atomic_long_read(&c->dirty_zn_cnt),
0648            atomic_long_read(&c->clean_zn_cnt));
0649     pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
0650 
0651     /* If we are in R/O mode, journal heads do not exist */
0652     if (c->jheads)
0653         for (i = 0; i < c->jhead_cnt; i++)
0654             pr_err("\tjhead %s\t LEB %d\n",
0655                    dbg_jhead(c->jheads[i].wbuf.jhead),
0656                    c->jheads[i].wbuf.lnum);
0657     for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
0658         bud = rb_entry(rb, struct ubifs_bud, rb);
0659         pr_err("\tbud LEB %d\n", bud->lnum);
0660     }
0661     list_for_each_entry(bud, &c->old_buds, list)
0662         pr_err("\told bud LEB %d\n", bud->lnum);
0663     list_for_each_entry(idx_gc, &c->idx_gc, list)
0664         pr_err("\tGC'ed idx LEB %d unmap %d\n",
0665                idx_gc->lnum, idx_gc->unmap);
0666     pr_err("\tcommit state %d\n", c->cmt_state);
0667 
0668     /* Print budgeting predictions */
0669     available = ubifs_calc_available(c, c->bi.min_idx_lebs);
0670     outstanding = c->bi.data_growth + c->bi.dd_growth;
0671     free = ubifs_get_free_space_nolock(c);
0672     pr_err("Budgeting predictions:\n");
0673     pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
0674            available, outstanding, free);
0675 out_unlock:
0676     spin_unlock(&dbg_lock);
0677     spin_unlock(&c->space_lock);
0678 }
0679 
0680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
0681 {
0682     int i, spc, dark = 0, dead = 0;
0683     struct rb_node *rb;
0684     struct ubifs_bud *bud;
0685 
0686     spc = lp->free + lp->dirty;
0687     if (spc < c->dead_wm)
0688         dead = spc;
0689     else
0690         dark = ubifs_calc_dark(c, spc);
0691 
0692     if (lp->flags & LPROPS_INDEX)
0693         pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
0694                lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
0695                lp->flags);
0696     else
0697         pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
0698                lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
0699                dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
0700 
0701     if (lp->flags & LPROPS_TAKEN) {
0702         if (lp->flags & LPROPS_INDEX)
0703             pr_cont("index, taken");
0704         else
0705             pr_cont("taken");
0706     } else {
0707         const char *s;
0708 
0709         if (lp->flags & LPROPS_INDEX) {
0710             switch (lp->flags & LPROPS_CAT_MASK) {
0711             case LPROPS_DIRTY_IDX:
0712                 s = "dirty index";
0713                 break;
0714             case LPROPS_FRDI_IDX:
0715                 s = "freeable index";
0716                 break;
0717             default:
0718                 s = "index";
0719             }
0720         } else {
0721             switch (lp->flags & LPROPS_CAT_MASK) {
0722             case LPROPS_UNCAT:
0723                 s = "not categorized";
0724                 break;
0725             case LPROPS_DIRTY:
0726                 s = "dirty";
0727                 break;
0728             case LPROPS_FREE:
0729                 s = "free";
0730                 break;
0731             case LPROPS_EMPTY:
0732                 s = "empty";
0733                 break;
0734             case LPROPS_FREEABLE:
0735                 s = "freeable";
0736                 break;
0737             default:
0738                 s = NULL;
0739                 break;
0740             }
0741         }
0742         pr_cont("%s", s);
0743     }
0744 
0745     for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
0746         bud = rb_entry(rb, struct ubifs_bud, rb);
0747         if (bud->lnum == lp->lnum) {
0748             int head = 0;
0749             for (i = 0; i < c->jhead_cnt; i++) {
0750                 /*
0751                  * Note, if we are in R/O mode or in the middle
0752                  * of mounting/re-mounting, the write-buffers do
0753                  * not exist.
0754                  */
0755                 if (c->jheads &&
0756                     lp->lnum == c->jheads[i].wbuf.lnum) {
0757                     pr_cont(", jhead %s", dbg_jhead(i));
0758                     head = 1;
0759                 }
0760             }
0761             if (!head)
0762                 pr_cont(", bud of jhead %s",
0763                        dbg_jhead(bud->jhead));
0764         }
0765     }
0766     if (lp->lnum == c->gc_lnum)
0767         pr_cont(", GC LEB");
0768     pr_cont(")\n");
0769 }
0770 
0771 void ubifs_dump_lprops(struct ubifs_info *c)
0772 {
0773     int lnum, err;
0774     struct ubifs_lprops lp;
0775     struct ubifs_lp_stats lst;
0776 
0777     pr_err("(pid %d) start dumping LEB properties\n", current->pid);
0778     ubifs_get_lp_stats(c, &lst);
0779     ubifs_dump_lstats(&lst);
0780 
0781     for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
0782         err = ubifs_read_one_lp(c, lnum, &lp);
0783         if (err) {
0784             ubifs_err(c, "cannot read lprops for LEB %d", lnum);
0785             continue;
0786         }
0787 
0788         ubifs_dump_lprop(c, &lp);
0789     }
0790     pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
0791 }
0792 
0793 void ubifs_dump_lpt_info(struct ubifs_info *c)
0794 {
0795     int i;
0796 
0797     spin_lock(&dbg_lock);
0798     pr_err("(pid %d) dumping LPT information\n", current->pid);
0799     pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
0800     pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
0801     pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
0802     pr_err("\tltab_sz:       %d\n", c->ltab_sz);
0803     pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
0804     pr_err("\tbig_lpt:       %u\n", c->big_lpt);
0805     pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
0806     pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
0807     pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
0808     pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
0809     pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
0810     pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
0811     pr_err("\tspace_bits:    %d\n", c->space_bits);
0812     pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
0813     pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
0814     pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
0815     pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
0816     pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
0817     pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
0818     pr_err("\tLPT head is at %d:%d\n",
0819            c->nhead_lnum, c->nhead_offs);
0820     pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
0821     if (c->big_lpt)
0822         pr_err("\tLPT lsave is at %d:%d\n",
0823                c->lsave_lnum, c->lsave_offs);
0824     for (i = 0; i < c->lpt_lebs; i++)
0825         pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
0826                i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
0827                c->ltab[i].tgc, c->ltab[i].cmt);
0828     spin_unlock(&dbg_lock);
0829 }
0830 
0831 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
0832 {
0833     struct ubifs_scan_leb *sleb;
0834     struct ubifs_scan_node *snod;
0835     void *buf;
0836 
0837     pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
0838 
0839     buf = __vmalloc(c->leb_size, GFP_NOFS);
0840     if (!buf) {
0841         ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
0842         return;
0843     }
0844 
0845     sleb = ubifs_scan(c, lnum, 0, buf, 0);
0846     if (IS_ERR(sleb)) {
0847         ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
0848         goto out;
0849     }
0850 
0851     pr_err("LEB %d has %d nodes ending at %d\n", lnum,
0852            sleb->nodes_cnt, sleb->endpt);
0853 
0854     list_for_each_entry(snod, &sleb->nodes, list) {
0855         cond_resched();
0856         pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
0857                snod->offs, snod->len);
0858         ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
0859     }
0860 
0861     pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
0862     ubifs_scan_destroy(sleb);
0863 
0864 out:
0865     vfree(buf);
0866     return;
0867 }
0868 
0869 void ubifs_dump_znode(const struct ubifs_info *c,
0870               const struct ubifs_znode *znode)
0871 {
0872     int n;
0873     const struct ubifs_zbranch *zbr;
0874     char key_buf[DBG_KEY_BUF_LEN];
0875 
0876     spin_lock(&dbg_lock);
0877     if (znode->parent)
0878         zbr = &znode->parent->zbranch[znode->iip];
0879     else
0880         zbr = &c->zroot;
0881 
0882     pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
0883            znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
0884            znode->level, znode->child_cnt, znode->flags);
0885 
0886     if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
0887         spin_unlock(&dbg_lock);
0888         return;
0889     }
0890 
0891     pr_err("zbranches:\n");
0892     for (n = 0; n < znode->child_cnt; n++) {
0893         zbr = &znode->zbranch[n];
0894         if (znode->level > 0)
0895             pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
0896                    n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
0897                    dbg_snprintf_key(c, &zbr->key, key_buf,
0898                         DBG_KEY_BUF_LEN));
0899         else
0900             pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
0901                    n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
0902                    dbg_snprintf_key(c, &zbr->key, key_buf,
0903                         DBG_KEY_BUF_LEN));
0904     }
0905     spin_unlock(&dbg_lock);
0906 }
0907 
0908 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
0909 {
0910     int i;
0911 
0912     pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
0913            current->pid, cat, heap->cnt);
0914     for (i = 0; i < heap->cnt; i++) {
0915         struct ubifs_lprops *lprops = heap->arr[i];
0916 
0917         pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
0918                i, lprops->lnum, lprops->hpos, lprops->free,
0919                lprops->dirty, lprops->flags);
0920     }
0921     pr_err("(pid %d) finish dumping heap\n", current->pid);
0922 }
0923 
0924 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
0925               struct ubifs_nnode *parent, int iip)
0926 {
0927     int i;
0928 
0929     pr_err("(pid %d) dumping pnode:\n", current->pid);
0930     pr_err("\taddress %zx parent %zx cnext %zx\n",
0931            (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
0932     pr_err("\tflags %lu iip %d level %d num %d\n",
0933            pnode->flags, iip, pnode->level, pnode->num);
0934     for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
0935         struct ubifs_lprops *lp = &pnode->lprops[i];
0936 
0937         pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
0938                i, lp->free, lp->dirty, lp->flags, lp->lnum);
0939     }
0940 }
0941 
0942 void ubifs_dump_tnc(struct ubifs_info *c)
0943 {
0944     struct ubifs_znode *znode;
0945     int level;
0946 
0947     pr_err("\n");
0948     pr_err("(pid %d) start dumping TNC tree\n", current->pid);
0949     znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
0950     level = znode->level;
0951     pr_err("== Level %d ==\n", level);
0952     while (znode) {
0953         if (level != znode->level) {
0954             level = znode->level;
0955             pr_err("== Level %d ==\n", level);
0956         }
0957         ubifs_dump_znode(c, znode);
0958         znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
0959     }
0960     pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
0961 }
0962 
0963 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
0964               void *priv)
0965 {
0966     ubifs_dump_znode(c, znode);
0967     return 0;
0968 }
0969 
0970 /**
0971  * ubifs_dump_index - dump the on-flash index.
0972  * @c: UBIFS file-system description object
0973  *
0974  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
0975  * which dumps only in-memory znodes and does not read znodes which from flash.
0976  */
0977 void ubifs_dump_index(struct ubifs_info *c)
0978 {
0979     dbg_walk_index(c, NULL, dump_znode, NULL);
0980 }
0981 
0982 /**
0983  * dbg_save_space_info - save information about flash space.
0984  * @c: UBIFS file-system description object
0985  *
0986  * This function saves information about UBIFS free space, dirty space, etc, in
0987  * order to check it later.
0988  */
0989 void dbg_save_space_info(struct ubifs_info *c)
0990 {
0991     struct ubifs_debug_info *d = c->dbg;
0992     int freeable_cnt;
0993 
0994     spin_lock(&c->space_lock);
0995     memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
0996     memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
0997     d->saved_idx_gc_cnt = c->idx_gc_cnt;
0998 
0999     /*
1000      * We use a dirty hack here and zero out @c->freeable_cnt, because it
1001      * affects the free space calculations, and UBIFS might not know about
1002      * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1003      * only when we read their lprops, and we do this only lazily, upon the
1004      * need. So at any given point of time @c->freeable_cnt might be not
1005      * exactly accurate.
1006      *
1007      * Just one example about the issue we hit when we did not zero
1008      * @c->freeable_cnt.
1009      * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1010      *    amount of free space in @d->saved_free
1011      * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1012      *    information from flash, where we cache LEBs from various
1013      *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1014      *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1015      *    -> 'ubifs_get_pnode()' -> 'update_cats()'
1016      *    -> 'ubifs_add_to_cat()').
1017      * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1018      *    becomes %1.
1019      * 4. We calculate the amount of free space when the re-mount is
1020      *    finished in 'dbg_check_space_info()' and it does not match
1021      *    @d->saved_free.
1022      */
1023     freeable_cnt = c->freeable_cnt;
1024     c->freeable_cnt = 0;
1025     d->saved_free = ubifs_get_free_space_nolock(c);
1026     c->freeable_cnt = freeable_cnt;
1027     spin_unlock(&c->space_lock);
1028 }
1029 
1030 /**
1031  * dbg_check_space_info - check flash space information.
1032  * @c: UBIFS file-system description object
1033  *
1034  * This function compares current flash space information with the information
1035  * which was saved when the 'dbg_save_space_info()' function was called.
1036  * Returns zero if the information has not changed, and %-EINVAL if it has
1037  * changed.
1038  */
1039 int dbg_check_space_info(struct ubifs_info *c)
1040 {
1041     struct ubifs_debug_info *d = c->dbg;
1042     struct ubifs_lp_stats lst;
1043     long long free;
1044     int freeable_cnt;
1045 
1046     spin_lock(&c->space_lock);
1047     freeable_cnt = c->freeable_cnt;
1048     c->freeable_cnt = 0;
1049     free = ubifs_get_free_space_nolock(c);
1050     c->freeable_cnt = freeable_cnt;
1051     spin_unlock(&c->space_lock);
1052 
1053     if (free != d->saved_free) {
1054         ubifs_err(c, "free space changed from %lld to %lld",
1055               d->saved_free, free);
1056         goto out;
1057     }
1058 
1059     return 0;
1060 
1061 out:
1062     ubifs_msg(c, "saved lprops statistics dump");
1063     ubifs_dump_lstats(&d->saved_lst);
1064     ubifs_msg(c, "saved budgeting info dump");
1065     ubifs_dump_budg(c, &d->saved_bi);
1066     ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1067     ubifs_msg(c, "current lprops statistics dump");
1068     ubifs_get_lp_stats(c, &lst);
1069     ubifs_dump_lstats(&lst);
1070     ubifs_msg(c, "current budgeting info dump");
1071     ubifs_dump_budg(c, &c->bi);
1072     dump_stack();
1073     return -EINVAL;
1074 }
1075 
1076 /**
1077  * dbg_check_synced_i_size - check synchronized inode size.
1078  * @c: UBIFS file-system description object
1079  * @inode: inode to check
1080  *
1081  * If inode is clean, synchronized inode size has to be equivalent to current
1082  * inode size. This function has to be called only for locked inodes (@i_mutex
1083  * has to be locked). Returns %0 if synchronized inode size if correct, and
1084  * %-EINVAL if not.
1085  */
1086 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1087 {
1088     int err = 0;
1089     struct ubifs_inode *ui = ubifs_inode(inode);
1090 
1091     if (!dbg_is_chk_gen(c))
1092         return 0;
1093     if (!S_ISREG(inode->i_mode))
1094         return 0;
1095 
1096     mutex_lock(&ui->ui_mutex);
1097     spin_lock(&ui->ui_lock);
1098     if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1099         ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1100               ui->ui_size, ui->synced_i_size);
1101         ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1102               inode->i_mode, i_size_read(inode));
1103         dump_stack();
1104         err = -EINVAL;
1105     }
1106     spin_unlock(&ui->ui_lock);
1107     mutex_unlock(&ui->ui_mutex);
1108     return err;
1109 }
1110 
1111 /*
1112  * dbg_check_dir - check directory inode size and link count.
1113  * @c: UBIFS file-system description object
1114  * @dir: the directory to calculate size for
1115  * @size: the result is returned here
1116  *
1117  * This function makes sure that directory size and link count are correct.
1118  * Returns zero in case of success and a negative error code in case of
1119  * failure.
1120  *
1121  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1122  * calling this function.
1123  */
1124 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1125 {
1126     unsigned int nlink = 2;
1127     union ubifs_key key;
1128     struct ubifs_dent_node *dent, *pdent = NULL;
1129     struct fscrypt_name nm = {0};
1130     loff_t size = UBIFS_INO_NODE_SZ;
1131 
1132     if (!dbg_is_chk_gen(c))
1133         return 0;
1134 
1135     if (!S_ISDIR(dir->i_mode))
1136         return 0;
1137 
1138     lowest_dent_key(c, &key, dir->i_ino);
1139     while (1) {
1140         int err;
1141 
1142         dent = ubifs_tnc_next_ent(c, &key, &nm);
1143         if (IS_ERR(dent)) {
1144             err = PTR_ERR(dent);
1145             if (err == -ENOENT)
1146                 break;
1147             kfree(pdent);
1148             return err;
1149         }
1150 
1151         fname_name(&nm) = dent->name;
1152         fname_len(&nm) = le16_to_cpu(dent->nlen);
1153         size += CALC_DENT_SIZE(fname_len(&nm));
1154         if (dent->type == UBIFS_ITYPE_DIR)
1155             nlink += 1;
1156         kfree(pdent);
1157         pdent = dent;
1158         key_read(c, &dent->key, &key);
1159     }
1160     kfree(pdent);
1161 
1162     if (i_size_read(dir) != size) {
1163         ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1164               dir->i_ino, (unsigned long long)i_size_read(dir),
1165               (unsigned long long)size);
1166         ubifs_dump_inode(c, dir);
1167         dump_stack();
1168         return -EINVAL;
1169     }
1170     if (dir->i_nlink != nlink) {
1171         ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1172               dir->i_ino, dir->i_nlink, nlink);
1173         ubifs_dump_inode(c, dir);
1174         dump_stack();
1175         return -EINVAL;
1176     }
1177 
1178     return 0;
1179 }
1180 
1181 /**
1182  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1183  * @c: UBIFS file-system description object
1184  * @zbr1: first zbranch
1185  * @zbr2: following zbranch
1186  *
1187  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1188  * names of the direntries/xentries which are referred by the keys. This
1189  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1190  * sure the name of direntry/xentry referred by @zbr1 is less than
1191  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1192  * and a negative error code in case of failure.
1193  */
1194 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1195                    struct ubifs_zbranch *zbr2)
1196 {
1197     int err, nlen1, nlen2, cmp;
1198     struct ubifs_dent_node *dent1, *dent2;
1199     union ubifs_key key;
1200     char key_buf[DBG_KEY_BUF_LEN];
1201 
1202     ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1203     dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1204     if (!dent1)
1205         return -ENOMEM;
1206     dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1207     if (!dent2) {
1208         err = -ENOMEM;
1209         goto out_free;
1210     }
1211 
1212     err = ubifs_tnc_read_node(c, zbr1, dent1);
1213     if (err)
1214         goto out_free;
1215     err = ubifs_validate_entry(c, dent1);
1216     if (err)
1217         goto out_free;
1218 
1219     err = ubifs_tnc_read_node(c, zbr2, dent2);
1220     if (err)
1221         goto out_free;
1222     err = ubifs_validate_entry(c, dent2);
1223     if (err)
1224         goto out_free;
1225 
1226     /* Make sure node keys are the same as in zbranch */
1227     err = 1;
1228     key_read(c, &dent1->key, &key);
1229     if (keys_cmp(c, &zbr1->key, &key)) {
1230         ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1231               zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1232                                DBG_KEY_BUF_LEN));
1233         ubifs_err(c, "but it should have key %s according to tnc",
1234               dbg_snprintf_key(c, &zbr1->key, key_buf,
1235                        DBG_KEY_BUF_LEN));
1236         ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1237         goto out_free;
1238     }
1239 
1240     key_read(c, &dent2->key, &key);
1241     if (keys_cmp(c, &zbr2->key, &key)) {
1242         ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1243               zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1244                                DBG_KEY_BUF_LEN));
1245         ubifs_err(c, "but it should have key %s according to tnc",
1246               dbg_snprintf_key(c, &zbr2->key, key_buf,
1247                        DBG_KEY_BUF_LEN));
1248         ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1249         goto out_free;
1250     }
1251 
1252     nlen1 = le16_to_cpu(dent1->nlen);
1253     nlen2 = le16_to_cpu(dent2->nlen);
1254 
1255     cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1256     if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1257         err = 0;
1258         goto out_free;
1259     }
1260     if (cmp == 0 && nlen1 == nlen2)
1261         ubifs_err(c, "2 xent/dent nodes with the same name");
1262     else
1263         ubifs_err(c, "bad order of colliding key %s",
1264               dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1265 
1266     ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1267     ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ);
1268     ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1269     ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ);
1270 
1271 out_free:
1272     kfree(dent2);
1273     kfree(dent1);
1274     return err;
1275 }
1276 
1277 /**
1278  * dbg_check_znode - check if znode is all right.
1279  * @c: UBIFS file-system description object
1280  * @zbr: zbranch which points to this znode
1281  *
1282  * This function makes sure that znode referred to by @zbr is all right.
1283  * Returns zero if it is, and %-EINVAL if it is not.
1284  */
1285 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1286 {
1287     struct ubifs_znode *znode = zbr->znode;
1288     struct ubifs_znode *zp = znode->parent;
1289     int n, err, cmp;
1290 
1291     if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1292         err = 1;
1293         goto out;
1294     }
1295     if (znode->level < 0) {
1296         err = 2;
1297         goto out;
1298     }
1299     if (znode->iip < 0 || znode->iip >= c->fanout) {
1300         err = 3;
1301         goto out;
1302     }
1303 
1304     if (zbr->len == 0)
1305         /* Only dirty zbranch may have no on-flash nodes */
1306         if (!ubifs_zn_dirty(znode)) {
1307             err = 4;
1308             goto out;
1309         }
1310 
1311     if (ubifs_zn_dirty(znode)) {
1312         /*
1313          * If znode is dirty, its parent has to be dirty as well. The
1314          * order of the operation is important, so we have to have
1315          * memory barriers.
1316          */
1317         smp_mb();
1318         if (zp && !ubifs_zn_dirty(zp)) {
1319             /*
1320              * The dirty flag is atomic and is cleared outside the
1321              * TNC mutex, so znode's dirty flag may now have
1322              * been cleared. The child is always cleared before the
1323              * parent, so we just need to check again.
1324              */
1325             smp_mb();
1326             if (ubifs_zn_dirty(znode)) {
1327                 err = 5;
1328                 goto out;
1329             }
1330         }
1331     }
1332 
1333     if (zp) {
1334         const union ubifs_key *min, *max;
1335 
1336         if (znode->level != zp->level - 1) {
1337             err = 6;
1338             goto out;
1339         }
1340 
1341         /* Make sure the 'parent' pointer in our znode is correct */
1342         err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1343         if (!err) {
1344             /* This zbranch does not exist in the parent */
1345             err = 7;
1346             goto out;
1347         }
1348 
1349         if (znode->iip >= zp->child_cnt) {
1350             err = 8;
1351             goto out;
1352         }
1353 
1354         if (znode->iip != n) {
1355             /* This may happen only in case of collisions */
1356             if (keys_cmp(c, &zp->zbranch[n].key,
1357                      &zp->zbranch[znode->iip].key)) {
1358                 err = 9;
1359                 goto out;
1360             }
1361             n = znode->iip;
1362         }
1363 
1364         /*
1365          * Make sure that the first key in our znode is greater than or
1366          * equal to the key in the pointing zbranch.
1367          */
1368         min = &zbr->key;
1369         cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1370         if (cmp == 1) {
1371             err = 10;
1372             goto out;
1373         }
1374 
1375         if (n + 1 < zp->child_cnt) {
1376             max = &zp->zbranch[n + 1].key;
1377 
1378             /*
1379              * Make sure the last key in our znode is less or
1380              * equivalent than the key in the zbranch which goes
1381              * after our pointing zbranch.
1382              */
1383             cmp = keys_cmp(c, max,
1384                 &znode->zbranch[znode->child_cnt - 1].key);
1385             if (cmp == -1) {
1386                 err = 11;
1387                 goto out;
1388             }
1389         }
1390     } else {
1391         /* This may only be root znode */
1392         if (zbr != &c->zroot) {
1393             err = 12;
1394             goto out;
1395         }
1396     }
1397 
1398     /*
1399      * Make sure that next key is greater or equivalent then the previous
1400      * one.
1401      */
1402     for (n = 1; n < znode->child_cnt; n++) {
1403         cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1404                    &znode->zbranch[n].key);
1405         if (cmp > 0) {
1406             err = 13;
1407             goto out;
1408         }
1409         if (cmp == 0) {
1410             /* This can only be keys with colliding hash */
1411             if (!is_hash_key(c, &znode->zbranch[n].key)) {
1412                 err = 14;
1413                 goto out;
1414             }
1415 
1416             if (znode->level != 0 || c->replaying)
1417                 continue;
1418 
1419             /*
1420              * Colliding keys should follow binary order of
1421              * corresponding xentry/dentry names.
1422              */
1423             err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1424                           &znode->zbranch[n]);
1425             if (err < 0)
1426                 return err;
1427             if (err) {
1428                 err = 15;
1429                 goto out;
1430             }
1431         }
1432     }
1433 
1434     for (n = 0; n < znode->child_cnt; n++) {
1435         if (!znode->zbranch[n].znode &&
1436             (znode->zbranch[n].lnum == 0 ||
1437              znode->zbranch[n].len == 0)) {
1438             err = 16;
1439             goto out;
1440         }
1441 
1442         if (znode->zbranch[n].lnum != 0 &&
1443             znode->zbranch[n].len == 0) {
1444             err = 17;
1445             goto out;
1446         }
1447 
1448         if (znode->zbranch[n].lnum == 0 &&
1449             znode->zbranch[n].len != 0) {
1450             err = 18;
1451             goto out;
1452         }
1453 
1454         if (znode->zbranch[n].lnum == 0 &&
1455             znode->zbranch[n].offs != 0) {
1456             err = 19;
1457             goto out;
1458         }
1459 
1460         if (znode->level != 0 && znode->zbranch[n].znode)
1461             if (znode->zbranch[n].znode->parent != znode) {
1462                 err = 20;
1463                 goto out;
1464             }
1465     }
1466 
1467     return 0;
1468 
1469 out:
1470     ubifs_err(c, "failed, error %d", err);
1471     ubifs_msg(c, "dump of the znode");
1472     ubifs_dump_znode(c, znode);
1473     if (zp) {
1474         ubifs_msg(c, "dump of the parent znode");
1475         ubifs_dump_znode(c, zp);
1476     }
1477     dump_stack();
1478     return -EINVAL;
1479 }
1480 
1481 /**
1482  * dbg_check_tnc - check TNC tree.
1483  * @c: UBIFS file-system description object
1484  * @extra: do extra checks that are possible at start commit
1485  *
1486  * This function traverses whole TNC tree and checks every znode. Returns zero
1487  * if everything is all right and %-EINVAL if something is wrong with TNC.
1488  */
1489 int dbg_check_tnc(struct ubifs_info *c, int extra)
1490 {
1491     struct ubifs_znode *znode;
1492     long clean_cnt = 0, dirty_cnt = 0;
1493     int err, last;
1494 
1495     if (!dbg_is_chk_index(c))
1496         return 0;
1497 
1498     ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1499     if (!c->zroot.znode)
1500         return 0;
1501 
1502     znode = ubifs_tnc_postorder_first(c->zroot.znode);
1503     while (1) {
1504         struct ubifs_znode *prev;
1505         struct ubifs_zbranch *zbr;
1506 
1507         if (!znode->parent)
1508             zbr = &c->zroot;
1509         else
1510             zbr = &znode->parent->zbranch[znode->iip];
1511 
1512         err = dbg_check_znode(c, zbr);
1513         if (err)
1514             return err;
1515 
1516         if (extra) {
1517             if (ubifs_zn_dirty(znode))
1518                 dirty_cnt += 1;
1519             else
1520                 clean_cnt += 1;
1521         }
1522 
1523         prev = znode;
1524         znode = ubifs_tnc_postorder_next(c, znode);
1525         if (!znode)
1526             break;
1527 
1528         /*
1529          * If the last key of this znode is equivalent to the first key
1530          * of the next znode (collision), then check order of the keys.
1531          */
1532         last = prev->child_cnt - 1;
1533         if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1534             !keys_cmp(c, &prev->zbranch[last].key,
1535                   &znode->zbranch[0].key)) {
1536             err = dbg_check_key_order(c, &prev->zbranch[last],
1537                           &znode->zbranch[0]);
1538             if (err < 0)
1539                 return err;
1540             if (err) {
1541                 ubifs_msg(c, "first znode");
1542                 ubifs_dump_znode(c, prev);
1543                 ubifs_msg(c, "second znode");
1544                 ubifs_dump_znode(c, znode);
1545                 return -EINVAL;
1546             }
1547         }
1548     }
1549 
1550     if (extra) {
1551         if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1552             ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1553                   atomic_long_read(&c->clean_zn_cnt),
1554                   clean_cnt);
1555             return -EINVAL;
1556         }
1557         if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1558             ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1559                   atomic_long_read(&c->dirty_zn_cnt),
1560                   dirty_cnt);
1561             return -EINVAL;
1562         }
1563     }
1564 
1565     return 0;
1566 }
1567 
1568 /**
1569  * dbg_walk_index - walk the on-flash index.
1570  * @c: UBIFS file-system description object
1571  * @leaf_cb: called for each leaf node
1572  * @znode_cb: called for each indexing node
1573  * @priv: private data which is passed to callbacks
1574  *
1575  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1576  * node and @znode_cb for each indexing node. Returns zero in case of success
1577  * and a negative error code in case of failure.
1578  *
1579  * It would be better if this function removed every znode it pulled to into
1580  * the TNC, so that the behavior more closely matched the non-debugging
1581  * behavior.
1582  */
1583 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1584            dbg_znode_callback znode_cb, void *priv)
1585 {
1586     int err;
1587     struct ubifs_zbranch *zbr;
1588     struct ubifs_znode *znode, *child;
1589 
1590     mutex_lock(&c->tnc_mutex);
1591     /* If the root indexing node is not in TNC - pull it */
1592     if (!c->zroot.znode) {
1593         c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1594         if (IS_ERR(c->zroot.znode)) {
1595             err = PTR_ERR(c->zroot.znode);
1596             c->zroot.znode = NULL;
1597             goto out_unlock;
1598         }
1599     }
1600 
1601     /*
1602      * We are going to traverse the indexing tree in the postorder manner.
1603      * Go down and find the leftmost indexing node where we are going to
1604      * start from.
1605      */
1606     znode = c->zroot.znode;
1607     while (znode->level > 0) {
1608         zbr = &znode->zbranch[0];
1609         child = zbr->znode;
1610         if (!child) {
1611             child = ubifs_load_znode(c, zbr, znode, 0);
1612             if (IS_ERR(child)) {
1613                 err = PTR_ERR(child);
1614                 goto out_unlock;
1615             }
1616         }
1617 
1618         znode = child;
1619     }
1620 
1621     /* Iterate over all indexing nodes */
1622     while (1) {
1623         int idx;
1624 
1625         cond_resched();
1626 
1627         if (znode_cb) {
1628             err = znode_cb(c, znode, priv);
1629             if (err) {
1630                 ubifs_err(c, "znode checking function returned error %d",
1631                       err);
1632                 ubifs_dump_znode(c, znode);
1633                 goto out_dump;
1634             }
1635         }
1636         if (leaf_cb && znode->level == 0) {
1637             for (idx = 0; idx < znode->child_cnt; idx++) {
1638                 zbr = &znode->zbranch[idx];
1639                 err = leaf_cb(c, zbr, priv);
1640                 if (err) {
1641                     ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1642                           err, zbr->lnum, zbr->offs);
1643                     goto out_dump;
1644                 }
1645             }
1646         }
1647 
1648         if (!znode->parent)
1649             break;
1650 
1651         idx = znode->iip + 1;
1652         znode = znode->parent;
1653         if (idx < znode->child_cnt) {
1654             /* Switch to the next index in the parent */
1655             zbr = &znode->zbranch[idx];
1656             child = zbr->znode;
1657             if (!child) {
1658                 child = ubifs_load_znode(c, zbr, znode, idx);
1659                 if (IS_ERR(child)) {
1660                     err = PTR_ERR(child);
1661                     goto out_unlock;
1662                 }
1663                 zbr->znode = child;
1664             }
1665             znode = child;
1666         } else
1667             /*
1668              * This is the last child, switch to the parent and
1669              * continue.
1670              */
1671             continue;
1672 
1673         /* Go to the lowest leftmost znode in the new sub-tree */
1674         while (znode->level > 0) {
1675             zbr = &znode->zbranch[0];
1676             child = zbr->znode;
1677             if (!child) {
1678                 child = ubifs_load_znode(c, zbr, znode, 0);
1679                 if (IS_ERR(child)) {
1680                     err = PTR_ERR(child);
1681                     goto out_unlock;
1682                 }
1683                 zbr->znode = child;
1684             }
1685             znode = child;
1686         }
1687     }
1688 
1689     mutex_unlock(&c->tnc_mutex);
1690     return 0;
1691 
1692 out_dump:
1693     if (znode->parent)
1694         zbr = &znode->parent->zbranch[znode->iip];
1695     else
1696         zbr = &c->zroot;
1697     ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1698     ubifs_dump_znode(c, znode);
1699 out_unlock:
1700     mutex_unlock(&c->tnc_mutex);
1701     return err;
1702 }
1703 
1704 /**
1705  * add_size - add znode size to partially calculated index size.
1706  * @c: UBIFS file-system description object
1707  * @znode: znode to add size for
1708  * @priv: partially calculated index size
1709  *
1710  * This is a helper function for 'dbg_check_idx_size()' which is called for
1711  * every indexing node and adds its size to the 'long long' variable pointed to
1712  * by @priv.
1713  */
1714 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1715 {
1716     long long *idx_size = priv;
1717     int add;
1718 
1719     add = ubifs_idx_node_sz(c, znode->child_cnt);
1720     add = ALIGN(add, 8);
1721     *idx_size += add;
1722     return 0;
1723 }
1724 
1725 /**
1726  * dbg_check_idx_size - check index size.
1727  * @c: UBIFS file-system description object
1728  * @idx_size: size to check
1729  *
1730  * This function walks the UBIFS index, calculates its size and checks that the
1731  * size is equivalent to @idx_size. Returns zero in case of success and a
1732  * negative error code in case of failure.
1733  */
1734 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1735 {
1736     int err;
1737     long long calc = 0;
1738 
1739     if (!dbg_is_chk_index(c))
1740         return 0;
1741 
1742     err = dbg_walk_index(c, NULL, add_size, &calc);
1743     if (err) {
1744         ubifs_err(c, "error %d while walking the index", err);
1745         return err;
1746     }
1747 
1748     if (calc != idx_size) {
1749         ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1750               calc, idx_size);
1751         dump_stack();
1752         return -EINVAL;
1753     }
1754 
1755     return 0;
1756 }
1757 
1758 /**
1759  * struct fsck_inode - information about an inode used when checking the file-system.
1760  * @rb: link in the RB-tree of inodes
1761  * @inum: inode number
1762  * @mode: inode type, permissions, etc
1763  * @nlink: inode link count
1764  * @xattr_cnt: count of extended attributes
1765  * @references: how many directory/xattr entries refer this inode (calculated
1766  *              while walking the index)
1767  * @calc_cnt: for directory inode count of child directories
1768  * @size: inode size (read from on-flash inode)
1769  * @xattr_sz: summary size of all extended attributes (read from on-flash
1770  *            inode)
1771  * @calc_sz: for directories calculated directory size
1772  * @calc_xcnt: count of extended attributes
1773  * @calc_xsz: calculated summary size of all extended attributes
1774  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1775  *             inode (read from on-flash inode)
1776  * @calc_xnms: calculated sum of lengths of all extended attribute names
1777  */
1778 struct fsck_inode {
1779     struct rb_node rb;
1780     ino_t inum;
1781     umode_t mode;
1782     unsigned int nlink;
1783     unsigned int xattr_cnt;
1784     int references;
1785     int calc_cnt;
1786     long long size;
1787     unsigned int xattr_sz;
1788     long long calc_sz;
1789     long long calc_xcnt;
1790     long long calc_xsz;
1791     unsigned int xattr_nms;
1792     long long calc_xnms;
1793 };
1794 
1795 /**
1796  * struct fsck_data - private FS checking information.
1797  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1798  */
1799 struct fsck_data {
1800     struct rb_root inodes;
1801 };
1802 
1803 /**
1804  * add_inode - add inode information to RB-tree of inodes.
1805  * @c: UBIFS file-system description object
1806  * @fsckd: FS checking information
1807  * @ino: raw UBIFS inode to add
1808  *
1809  * This is a helper function for 'check_leaf()' which adds information about
1810  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1811  * case of success and a negative error code in case of failure.
1812  */
1813 static struct fsck_inode *add_inode(struct ubifs_info *c,
1814                     struct fsck_data *fsckd,
1815                     struct ubifs_ino_node *ino)
1816 {
1817     struct rb_node **p, *parent = NULL;
1818     struct fsck_inode *fscki;
1819     ino_t inum = key_inum_flash(c, &ino->key);
1820     struct inode *inode;
1821     struct ubifs_inode *ui;
1822 
1823     p = &fsckd->inodes.rb_node;
1824     while (*p) {
1825         parent = *p;
1826         fscki = rb_entry(parent, struct fsck_inode, rb);
1827         if (inum < fscki->inum)
1828             p = &(*p)->rb_left;
1829         else if (inum > fscki->inum)
1830             p = &(*p)->rb_right;
1831         else
1832             return fscki;
1833     }
1834 
1835     if (inum > c->highest_inum) {
1836         ubifs_err(c, "too high inode number, max. is %lu",
1837               (unsigned long)c->highest_inum);
1838         return ERR_PTR(-EINVAL);
1839     }
1840 
1841     fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1842     if (!fscki)
1843         return ERR_PTR(-ENOMEM);
1844 
1845     inode = ilookup(c->vfs_sb, inum);
1846 
1847     fscki->inum = inum;
1848     /*
1849      * If the inode is present in the VFS inode cache, use it instead of
1850      * the on-flash inode which might be out-of-date. E.g., the size might
1851      * be out-of-date. If we do not do this, the following may happen, for
1852      * example:
1853      *   1. A power cut happens
1854      *   2. We mount the file-system R/O, the replay process fixes up the
1855      *      inode size in the VFS cache, but on on-flash.
1856      *   3. 'check_leaf()' fails because it hits a data node beyond inode
1857      *      size.
1858      */
1859     if (!inode) {
1860         fscki->nlink = le32_to_cpu(ino->nlink);
1861         fscki->size = le64_to_cpu(ino->size);
1862         fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1863         fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1864         fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1865         fscki->mode = le32_to_cpu(ino->mode);
1866     } else {
1867         ui = ubifs_inode(inode);
1868         fscki->nlink = inode->i_nlink;
1869         fscki->size = inode->i_size;
1870         fscki->xattr_cnt = ui->xattr_cnt;
1871         fscki->xattr_sz = ui->xattr_size;
1872         fscki->xattr_nms = ui->xattr_names;
1873         fscki->mode = inode->i_mode;
1874         iput(inode);
1875     }
1876 
1877     if (S_ISDIR(fscki->mode)) {
1878         fscki->calc_sz = UBIFS_INO_NODE_SZ;
1879         fscki->calc_cnt = 2;
1880     }
1881 
1882     rb_link_node(&fscki->rb, parent, p);
1883     rb_insert_color(&fscki->rb, &fsckd->inodes);
1884 
1885     return fscki;
1886 }
1887 
1888 /**
1889  * search_inode - search inode in the RB-tree of inodes.
1890  * @fsckd: FS checking information
1891  * @inum: inode number to search
1892  *
1893  * This is a helper function for 'check_leaf()' which searches inode @inum in
1894  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1895  * the inode was not found.
1896  */
1897 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1898 {
1899     struct rb_node *p;
1900     struct fsck_inode *fscki;
1901 
1902     p = fsckd->inodes.rb_node;
1903     while (p) {
1904         fscki = rb_entry(p, struct fsck_inode, rb);
1905         if (inum < fscki->inum)
1906             p = p->rb_left;
1907         else if (inum > fscki->inum)
1908             p = p->rb_right;
1909         else
1910             return fscki;
1911     }
1912     return NULL;
1913 }
1914 
1915 /**
1916  * read_add_inode - read inode node and add it to RB-tree of inodes.
1917  * @c: UBIFS file-system description object
1918  * @fsckd: FS checking information
1919  * @inum: inode number to read
1920  *
1921  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1922  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1923  * information pointer in case of success and a negative error code in case of
1924  * failure.
1925  */
1926 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1927                      struct fsck_data *fsckd, ino_t inum)
1928 {
1929     int n, err;
1930     union ubifs_key key;
1931     struct ubifs_znode *znode;
1932     struct ubifs_zbranch *zbr;
1933     struct ubifs_ino_node *ino;
1934     struct fsck_inode *fscki;
1935 
1936     fscki = search_inode(fsckd, inum);
1937     if (fscki)
1938         return fscki;
1939 
1940     ino_key_init(c, &key, inum);
1941     err = ubifs_lookup_level0(c, &key, &znode, &n);
1942     if (!err) {
1943         ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1944         return ERR_PTR(-ENOENT);
1945     } else if (err < 0) {
1946         ubifs_err(c, "error %d while looking up inode %lu",
1947               err, (unsigned long)inum);
1948         return ERR_PTR(err);
1949     }
1950 
1951     zbr = &znode->zbranch[n];
1952     if (zbr->len < UBIFS_INO_NODE_SZ) {
1953         ubifs_err(c, "bad node %lu node length %d",
1954               (unsigned long)inum, zbr->len);
1955         return ERR_PTR(-EINVAL);
1956     }
1957 
1958     ino = kmalloc(zbr->len, GFP_NOFS);
1959     if (!ino)
1960         return ERR_PTR(-ENOMEM);
1961 
1962     err = ubifs_tnc_read_node(c, zbr, ino);
1963     if (err) {
1964         ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1965               zbr->lnum, zbr->offs, err);
1966         kfree(ino);
1967         return ERR_PTR(err);
1968     }
1969 
1970     fscki = add_inode(c, fsckd, ino);
1971     kfree(ino);
1972     if (IS_ERR(fscki)) {
1973         ubifs_err(c, "error %ld while adding inode %lu node",
1974               PTR_ERR(fscki), (unsigned long)inum);
1975         return fscki;
1976     }
1977 
1978     return fscki;
1979 }
1980 
1981 /**
1982  * check_leaf - check leaf node.
1983  * @c: UBIFS file-system description object
1984  * @zbr: zbranch of the leaf node to check
1985  * @priv: FS checking information
1986  *
1987  * This is a helper function for 'dbg_check_filesystem()' which is called for
1988  * every single leaf node while walking the indexing tree. It checks that the
1989  * leaf node referred from the indexing tree exists, has correct CRC, and does
1990  * some other basic validation. This function is also responsible for building
1991  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1992  * calculates reference count, size, etc for each inode in order to later
1993  * compare them to the information stored inside the inodes and detect possible
1994  * inconsistencies. Returns zero in case of success and a negative error code
1995  * in case of failure.
1996  */
1997 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1998               void *priv)
1999 {
2000     ino_t inum;
2001     void *node;
2002     struct ubifs_ch *ch;
2003     int err, type = key_type(c, &zbr->key);
2004     struct fsck_inode *fscki;
2005 
2006     if (zbr->len < UBIFS_CH_SZ) {
2007         ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
2008               zbr->len, zbr->lnum, zbr->offs);
2009         return -EINVAL;
2010     }
2011 
2012     node = kmalloc(zbr->len, GFP_NOFS);
2013     if (!node)
2014         return -ENOMEM;
2015 
2016     err = ubifs_tnc_read_node(c, zbr, node);
2017     if (err) {
2018         ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2019               zbr->lnum, zbr->offs, err);
2020         goto out_free;
2021     }
2022 
2023     /* If this is an inode node, add it to RB-tree of inodes */
2024     if (type == UBIFS_INO_KEY) {
2025         fscki = add_inode(c, priv, node);
2026         if (IS_ERR(fscki)) {
2027             err = PTR_ERR(fscki);
2028             ubifs_err(c, "error %d while adding inode node", err);
2029             goto out_dump;
2030         }
2031         goto out;
2032     }
2033 
2034     if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2035         type != UBIFS_DATA_KEY) {
2036         ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2037               type, zbr->lnum, zbr->offs);
2038         err = -EINVAL;
2039         goto out_free;
2040     }
2041 
2042     ch = node;
2043     if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2044         ubifs_err(c, "too high sequence number, max. is %llu",
2045               c->max_sqnum);
2046         err = -EINVAL;
2047         goto out_dump;
2048     }
2049 
2050     if (type == UBIFS_DATA_KEY) {
2051         long long blk_offs;
2052         struct ubifs_data_node *dn = node;
2053 
2054         ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2055 
2056         /*
2057          * Search the inode node this data node belongs to and insert
2058          * it to the RB-tree of inodes.
2059          */
2060         inum = key_inum_flash(c, &dn->key);
2061         fscki = read_add_inode(c, priv, inum);
2062         if (IS_ERR(fscki)) {
2063             err = PTR_ERR(fscki);
2064             ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2065                   err, (unsigned long)inum);
2066             goto out_dump;
2067         }
2068 
2069         /* Make sure the data node is within inode size */
2070         blk_offs = key_block_flash(c, &dn->key);
2071         blk_offs <<= UBIFS_BLOCK_SHIFT;
2072         blk_offs += le32_to_cpu(dn->size);
2073         if (blk_offs > fscki->size) {
2074             ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2075                   zbr->lnum, zbr->offs, fscki->size);
2076             err = -EINVAL;
2077             goto out_dump;
2078         }
2079     } else {
2080         int nlen;
2081         struct ubifs_dent_node *dent = node;
2082         struct fsck_inode *fscki1;
2083 
2084         ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2085 
2086         err = ubifs_validate_entry(c, dent);
2087         if (err)
2088             goto out_dump;
2089 
2090         /*
2091          * Search the inode node this entry refers to and the parent
2092          * inode node and insert them to the RB-tree of inodes.
2093          */
2094         inum = le64_to_cpu(dent->inum);
2095         fscki = read_add_inode(c, priv, inum);
2096         if (IS_ERR(fscki)) {
2097             err = PTR_ERR(fscki);
2098             ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2099                   err, (unsigned long)inum);
2100             goto out_dump;
2101         }
2102 
2103         /* Count how many direntries or xentries refers this inode */
2104         fscki->references += 1;
2105 
2106         inum = key_inum_flash(c, &dent->key);
2107         fscki1 = read_add_inode(c, priv, inum);
2108         if (IS_ERR(fscki1)) {
2109             err = PTR_ERR(fscki1);
2110             ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2111                   err, (unsigned long)inum);
2112             goto out_dump;
2113         }
2114 
2115         nlen = le16_to_cpu(dent->nlen);
2116         if (type == UBIFS_XENT_KEY) {
2117             fscki1->calc_xcnt += 1;
2118             fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2119             fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2120             fscki1->calc_xnms += nlen;
2121         } else {
2122             fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2123             if (dent->type == UBIFS_ITYPE_DIR)
2124                 fscki1->calc_cnt += 1;
2125         }
2126     }
2127 
2128 out:
2129     kfree(node);
2130     return 0;
2131 
2132 out_dump:
2133     ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2134     ubifs_dump_node(c, node, zbr->len);
2135 out_free:
2136     kfree(node);
2137     return err;
2138 }
2139 
2140 /**
2141  * free_inodes - free RB-tree of inodes.
2142  * @fsckd: FS checking information
2143  */
2144 static void free_inodes(struct fsck_data *fsckd)
2145 {
2146     struct fsck_inode *fscki, *n;
2147 
2148     rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2149         kfree(fscki);
2150 }
2151 
2152 /**
2153  * check_inodes - checks all inodes.
2154  * @c: UBIFS file-system description object
2155  * @fsckd: FS checking information
2156  *
2157  * This is a helper function for 'dbg_check_filesystem()' which walks the
2158  * RB-tree of inodes after the index scan has been finished, and checks that
2159  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2160  * %-EINVAL if not, and a negative error code in case of failure.
2161  */
2162 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2163 {
2164     int n, err;
2165     union ubifs_key key;
2166     struct ubifs_znode *znode;
2167     struct ubifs_zbranch *zbr;
2168     struct ubifs_ino_node *ino;
2169     struct fsck_inode *fscki;
2170     struct rb_node *this = rb_first(&fsckd->inodes);
2171 
2172     while (this) {
2173         fscki = rb_entry(this, struct fsck_inode, rb);
2174         this = rb_next(this);
2175 
2176         if (S_ISDIR(fscki->mode)) {
2177             /*
2178              * Directories have to have exactly one reference (they
2179              * cannot have hardlinks), although root inode is an
2180              * exception.
2181              */
2182             if (fscki->inum != UBIFS_ROOT_INO &&
2183                 fscki->references != 1) {
2184                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2185                       (unsigned long)fscki->inum,
2186                       fscki->references);
2187                 goto out_dump;
2188             }
2189             if (fscki->inum == UBIFS_ROOT_INO &&
2190                 fscki->references != 0) {
2191                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2192                       (unsigned long)fscki->inum,
2193                       fscki->references);
2194                 goto out_dump;
2195             }
2196             if (fscki->calc_sz != fscki->size) {
2197                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2198                       (unsigned long)fscki->inum,
2199                       fscki->size, fscki->calc_sz);
2200                 goto out_dump;
2201             }
2202             if (fscki->calc_cnt != fscki->nlink) {
2203                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2204                       (unsigned long)fscki->inum,
2205                       fscki->nlink, fscki->calc_cnt);
2206                 goto out_dump;
2207             }
2208         } else {
2209             if (fscki->references != fscki->nlink) {
2210                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2211                       (unsigned long)fscki->inum,
2212                       fscki->nlink, fscki->references);
2213                 goto out_dump;
2214             }
2215         }
2216         if (fscki->xattr_sz != fscki->calc_xsz) {
2217             ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2218                   (unsigned long)fscki->inum, fscki->xattr_sz,
2219                   fscki->calc_xsz);
2220             goto out_dump;
2221         }
2222         if (fscki->xattr_cnt != fscki->calc_xcnt) {
2223             ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2224                   (unsigned long)fscki->inum,
2225                   fscki->xattr_cnt, fscki->calc_xcnt);
2226             goto out_dump;
2227         }
2228         if (fscki->xattr_nms != fscki->calc_xnms) {
2229             ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2230                   (unsigned long)fscki->inum, fscki->xattr_nms,
2231                   fscki->calc_xnms);
2232             goto out_dump;
2233         }
2234     }
2235 
2236     return 0;
2237 
2238 out_dump:
2239     /* Read the bad inode and dump it */
2240     ino_key_init(c, &key, fscki->inum);
2241     err = ubifs_lookup_level0(c, &key, &znode, &n);
2242     if (!err) {
2243         ubifs_err(c, "inode %lu not found in index",
2244               (unsigned long)fscki->inum);
2245         return -ENOENT;
2246     } else if (err < 0) {
2247         ubifs_err(c, "error %d while looking up inode %lu",
2248               err, (unsigned long)fscki->inum);
2249         return err;
2250     }
2251 
2252     zbr = &znode->zbranch[n];
2253     ino = kmalloc(zbr->len, GFP_NOFS);
2254     if (!ino)
2255         return -ENOMEM;
2256 
2257     err = ubifs_tnc_read_node(c, zbr, ino);
2258     if (err) {
2259         ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2260               zbr->lnum, zbr->offs, err);
2261         kfree(ino);
2262         return err;
2263     }
2264 
2265     ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2266           (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2267     ubifs_dump_node(c, ino, zbr->len);
2268     kfree(ino);
2269     return -EINVAL;
2270 }
2271 
2272 /**
2273  * dbg_check_filesystem - check the file-system.
2274  * @c: UBIFS file-system description object
2275  *
2276  * This function checks the file system, namely:
2277  * o makes sure that all leaf nodes exist and their CRCs are correct;
2278  * o makes sure inode nlink, size, xattr size/count are correct (for all
2279  *   inodes).
2280  *
2281  * The function reads whole indexing tree and all nodes, so it is pretty
2282  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2283  * not, and a negative error code in case of failure.
2284  */
2285 int dbg_check_filesystem(struct ubifs_info *c)
2286 {
2287     int err;
2288     struct fsck_data fsckd;
2289 
2290     if (!dbg_is_chk_fs(c))
2291         return 0;
2292 
2293     fsckd.inodes = RB_ROOT;
2294     err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2295     if (err)
2296         goto out_free;
2297 
2298     err = check_inodes(c, &fsckd);
2299     if (err)
2300         goto out_free;
2301 
2302     free_inodes(&fsckd);
2303     return 0;
2304 
2305 out_free:
2306     ubifs_err(c, "file-system check failed with error %d", err);
2307     dump_stack();
2308     free_inodes(&fsckd);
2309     return err;
2310 }
2311 
2312 /**
2313  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2314  * @c: UBIFS file-system description object
2315  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2316  *
2317  * This function returns zero if the list of data nodes is sorted correctly,
2318  * and %-EINVAL if not.
2319  */
2320 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2321 {
2322     struct list_head *cur;
2323     struct ubifs_scan_node *sa, *sb;
2324 
2325     if (!dbg_is_chk_gen(c))
2326         return 0;
2327 
2328     for (cur = head->next; cur->next != head; cur = cur->next) {
2329         ino_t inuma, inumb;
2330         uint32_t blka, blkb;
2331 
2332         cond_resched();
2333         sa = container_of(cur, struct ubifs_scan_node, list);
2334         sb = container_of(cur->next, struct ubifs_scan_node, list);
2335 
2336         if (sa->type != UBIFS_DATA_NODE) {
2337             ubifs_err(c, "bad node type %d", sa->type);
2338             ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2339             return -EINVAL;
2340         }
2341         if (sb->type != UBIFS_DATA_NODE) {
2342             ubifs_err(c, "bad node type %d", sb->type);
2343             ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2344             return -EINVAL;
2345         }
2346 
2347         inuma = key_inum(c, &sa->key);
2348         inumb = key_inum(c, &sb->key);
2349 
2350         if (inuma < inumb)
2351             continue;
2352         if (inuma > inumb) {
2353             ubifs_err(c, "larger inum %lu goes before inum %lu",
2354                   (unsigned long)inuma, (unsigned long)inumb);
2355             goto error_dump;
2356         }
2357 
2358         blka = key_block(c, &sa->key);
2359         blkb = key_block(c, &sb->key);
2360 
2361         if (blka > blkb) {
2362             ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2363             goto error_dump;
2364         }
2365         if (blka == blkb) {
2366             ubifs_err(c, "two data nodes for the same block");
2367             goto error_dump;
2368         }
2369     }
2370 
2371     return 0;
2372 
2373 error_dump:
2374     ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2375     ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2376     return -EINVAL;
2377 }
2378 
2379 /**
2380  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2381  * @c: UBIFS file-system description object
2382  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2383  *
2384  * This function returns zero if the list of non-data nodes is sorted correctly,
2385  * and %-EINVAL if not.
2386  */
2387 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2388 {
2389     struct list_head *cur;
2390     struct ubifs_scan_node *sa, *sb;
2391 
2392     if (!dbg_is_chk_gen(c))
2393         return 0;
2394 
2395     for (cur = head->next; cur->next != head; cur = cur->next) {
2396         ino_t inuma, inumb;
2397         uint32_t hasha, hashb;
2398 
2399         cond_resched();
2400         sa = container_of(cur, struct ubifs_scan_node, list);
2401         sb = container_of(cur->next, struct ubifs_scan_node, list);
2402 
2403         if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2404             sa->type != UBIFS_XENT_NODE) {
2405             ubifs_err(c, "bad node type %d", sa->type);
2406             ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2407             return -EINVAL;
2408         }
2409         if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2410             sb->type != UBIFS_XENT_NODE) {
2411             ubifs_err(c, "bad node type %d", sb->type);
2412             ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2413             return -EINVAL;
2414         }
2415 
2416         if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2417             ubifs_err(c, "non-inode node goes before inode node");
2418             goto error_dump;
2419         }
2420 
2421         if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2422             continue;
2423 
2424         if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2425             /* Inode nodes are sorted in descending size order */
2426             if (sa->len < sb->len) {
2427                 ubifs_err(c, "smaller inode node goes first");
2428                 goto error_dump;
2429             }
2430             continue;
2431         }
2432 
2433         /*
2434          * This is either a dentry or xentry, which should be sorted in
2435          * ascending (parent ino, hash) order.
2436          */
2437         inuma = key_inum(c, &sa->key);
2438         inumb = key_inum(c, &sb->key);
2439 
2440         if (inuma < inumb)
2441             continue;
2442         if (inuma > inumb) {
2443             ubifs_err(c, "larger inum %lu goes before inum %lu",
2444                   (unsigned long)inuma, (unsigned long)inumb);
2445             goto error_dump;
2446         }
2447 
2448         hasha = key_block(c, &sa->key);
2449         hashb = key_block(c, &sb->key);
2450 
2451         if (hasha > hashb) {
2452             ubifs_err(c, "larger hash %u goes before %u",
2453                   hasha, hashb);
2454             goto error_dump;
2455         }
2456     }
2457 
2458     return 0;
2459 
2460 error_dump:
2461     ubifs_msg(c, "dumping first node");
2462     ubifs_dump_node(c, sa->node, c->leb_size - sa->offs);
2463     ubifs_msg(c, "dumping second node");
2464     ubifs_dump_node(c, sb->node, c->leb_size - sb->offs);
2465     return -EINVAL;
2466 }
2467 
2468 static inline int chance(unsigned int n, unsigned int out_of)
2469 {
2470     return !!((prandom_u32() % out_of) + 1 <= n);
2471 
2472 }
2473 
2474 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2475 {
2476     struct ubifs_debug_info *d = c->dbg;
2477 
2478     ubifs_assert(c, dbg_is_tst_rcvry(c));
2479 
2480     if (!d->pc_cnt) {
2481         /* First call - decide delay to the power cut */
2482         if (chance(1, 2)) {
2483             unsigned long delay;
2484 
2485             if (chance(1, 2)) {
2486                 d->pc_delay = 1;
2487                 /* Fail within 1 minute */
2488                 delay = prandom_u32() % 60000;
2489                 d->pc_timeout = jiffies;
2490                 d->pc_timeout += msecs_to_jiffies(delay);
2491                 ubifs_warn(c, "failing after %lums", delay);
2492             } else {
2493                 d->pc_delay = 2;
2494                 delay = prandom_u32() % 10000;
2495                 /* Fail within 10000 operations */
2496                 d->pc_cnt_max = delay;
2497                 ubifs_warn(c, "failing after %lu calls", delay);
2498             }
2499         }
2500 
2501         d->pc_cnt += 1;
2502     }
2503 
2504     /* Determine if failure delay has expired */
2505     if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2506             return 0;
2507     if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2508             return 0;
2509 
2510     if (lnum == UBIFS_SB_LNUM) {
2511         if (write && chance(1, 2))
2512             return 0;
2513         if (chance(19, 20))
2514             return 0;
2515         ubifs_warn(c, "failing in super block LEB %d", lnum);
2516     } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2517         if (chance(19, 20))
2518             return 0;
2519         ubifs_warn(c, "failing in master LEB %d", lnum);
2520     } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2521         if (write && chance(99, 100))
2522             return 0;
2523         if (chance(399, 400))
2524             return 0;
2525         ubifs_warn(c, "failing in log LEB %d", lnum);
2526     } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2527         if (write && chance(7, 8))
2528             return 0;
2529         if (chance(19, 20))
2530             return 0;
2531         ubifs_warn(c, "failing in LPT LEB %d", lnum);
2532     } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2533         if (write && chance(1, 2))
2534             return 0;
2535         if (chance(9, 10))
2536             return 0;
2537         ubifs_warn(c, "failing in orphan LEB %d", lnum);
2538     } else if (lnum == c->ihead_lnum) {
2539         if (chance(99, 100))
2540             return 0;
2541         ubifs_warn(c, "failing in index head LEB %d", lnum);
2542     } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2543         if (chance(9, 10))
2544             return 0;
2545         ubifs_warn(c, "failing in GC head LEB %d", lnum);
2546     } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2547            !ubifs_search_bud(c, lnum)) {
2548         if (chance(19, 20))
2549             return 0;
2550         ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2551     } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2552            c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2553         if (chance(999, 1000))
2554             return 0;
2555         ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2556     } else {
2557         if (chance(9999, 10000))
2558             return 0;
2559         ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2560     }
2561 
2562     d->pc_happened = 1;
2563     ubifs_warn(c, "========== Power cut emulated ==========");
2564     dump_stack();
2565     return 1;
2566 }
2567 
2568 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2569             unsigned int len)
2570 {
2571     unsigned int from, to, ffs = chance(1, 2);
2572     unsigned char *p = (void *)buf;
2573 
2574     from = prandom_u32() % len;
2575     /* Corruption span max to end of write unit */
2576     to = min(len, ALIGN(from + 1, c->max_write_size));
2577 
2578     ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2579            ffs ? "0xFFs" : "random data");
2580 
2581     if (ffs)
2582         memset(p + from, 0xFF, to - from);
2583     else
2584         prandom_bytes(p + from, to - from);
2585 
2586     return to;
2587 }
2588 
2589 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2590           int offs, int len)
2591 {
2592     int err, failing;
2593 
2594     if (dbg_is_power_cut(c))
2595         return -EROFS;
2596 
2597     failing = power_cut_emulated(c, lnum, 1);
2598     if (failing) {
2599         len = corrupt_data(c, buf, len);
2600         ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2601                len, lnum, offs);
2602     }
2603     err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2604     if (err)
2605         return err;
2606     if (failing)
2607         return -EROFS;
2608     return 0;
2609 }
2610 
2611 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2612            int len)
2613 {
2614     int err;
2615 
2616     if (dbg_is_power_cut(c))
2617         return -EROFS;
2618     if (power_cut_emulated(c, lnum, 1))
2619         return -EROFS;
2620     err = ubi_leb_change(c->ubi, lnum, buf, len);
2621     if (err)
2622         return err;
2623     if (power_cut_emulated(c, lnum, 1))
2624         return -EROFS;
2625     return 0;
2626 }
2627 
2628 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2629 {
2630     int err;
2631 
2632     if (dbg_is_power_cut(c))
2633         return -EROFS;
2634     if (power_cut_emulated(c, lnum, 0))
2635         return -EROFS;
2636     err = ubi_leb_unmap(c->ubi, lnum);
2637     if (err)
2638         return err;
2639     if (power_cut_emulated(c, lnum, 0))
2640         return -EROFS;
2641     return 0;
2642 }
2643 
2644 int dbg_leb_map(struct ubifs_info *c, int lnum)
2645 {
2646     int err;
2647 
2648     if (dbg_is_power_cut(c))
2649         return -EROFS;
2650     if (power_cut_emulated(c, lnum, 0))
2651         return -EROFS;
2652     err = ubi_leb_map(c->ubi, lnum);
2653     if (err)
2654         return err;
2655     if (power_cut_emulated(c, lnum, 0))
2656         return -EROFS;
2657     return 0;
2658 }
2659 
2660 /*
2661  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2662  * contain the stuff specific to particular file-system mounts.
2663  */
2664 static struct dentry *dfs_rootdir;
2665 
2666 static int dfs_file_open(struct inode *inode, struct file *file)
2667 {
2668     file->private_data = inode->i_private;
2669     return nonseekable_open(inode, file);
2670 }
2671 
2672 /**
2673  * provide_user_output - provide output to the user reading a debugfs file.
2674  * @val: boolean value for the answer
2675  * @u: the buffer to store the answer at
2676  * @count: size of the buffer
2677  * @ppos: position in the @u output buffer
2678  *
2679  * This is a simple helper function which stores @val boolean value in the user
2680  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2681  * bytes written to @u in case of success and a negative error code in case of
2682  * failure.
2683  */
2684 static int provide_user_output(int val, char __user *u, size_t count,
2685                    loff_t *ppos)
2686 {
2687     char buf[3];
2688 
2689     if (val)
2690         buf[0] = '1';
2691     else
2692         buf[0] = '0';
2693     buf[1] = '\n';
2694     buf[2] = 0x00;
2695 
2696     return simple_read_from_buffer(u, count, ppos, buf, 2);
2697 }
2698 
2699 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2700                  loff_t *ppos)
2701 {
2702     struct dentry *dent = file->f_path.dentry;
2703     struct ubifs_info *c = file->private_data;
2704     struct ubifs_debug_info *d = c->dbg;
2705     int val;
2706 
2707     if (dent == d->dfs_chk_gen)
2708         val = d->chk_gen;
2709     else if (dent == d->dfs_chk_index)
2710         val = d->chk_index;
2711     else if (dent == d->dfs_chk_orph)
2712         val = d->chk_orph;
2713     else if (dent == d->dfs_chk_lprops)
2714         val = d->chk_lprops;
2715     else if (dent == d->dfs_chk_fs)
2716         val = d->chk_fs;
2717     else if (dent == d->dfs_tst_rcvry)
2718         val = d->tst_rcvry;
2719     else if (dent == d->dfs_ro_error)
2720         val = c->ro_error;
2721     else
2722         return -EINVAL;
2723 
2724     return provide_user_output(val, u, count, ppos);
2725 }
2726 
2727 /**
2728  * interpret_user_input - interpret user debugfs file input.
2729  * @u: user-provided buffer with the input
2730  * @count: buffer size
2731  *
2732  * This is a helper function which interpret user input to a boolean UBIFS
2733  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2734  * in case of failure.
2735  */
2736 static int interpret_user_input(const char __user *u, size_t count)
2737 {
2738     size_t buf_size;
2739     char buf[8];
2740 
2741     buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2742     if (copy_from_user(buf, u, buf_size))
2743         return -EFAULT;
2744 
2745     if (buf[0] == '1')
2746         return 1;
2747     else if (buf[0] == '0')
2748         return 0;
2749 
2750     return -EINVAL;
2751 }
2752 
2753 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2754                   size_t count, loff_t *ppos)
2755 {
2756     struct ubifs_info *c = file->private_data;
2757     struct ubifs_debug_info *d = c->dbg;
2758     struct dentry *dent = file->f_path.dentry;
2759     int val;
2760 
2761     if (file->f_path.dentry == d->dfs_dump_lprops) {
2762         ubifs_dump_lprops(c);
2763         return count;
2764     }
2765     if (file->f_path.dentry == d->dfs_dump_budg) {
2766         ubifs_dump_budg(c, &c->bi);
2767         return count;
2768     }
2769     if (file->f_path.dentry == d->dfs_dump_tnc) {
2770         mutex_lock(&c->tnc_mutex);
2771         ubifs_dump_tnc(c);
2772         mutex_unlock(&c->tnc_mutex);
2773         return count;
2774     }
2775 
2776     val = interpret_user_input(u, count);
2777     if (val < 0)
2778         return val;
2779 
2780     if (dent == d->dfs_chk_gen)
2781         d->chk_gen = val;
2782     else if (dent == d->dfs_chk_index)
2783         d->chk_index = val;
2784     else if (dent == d->dfs_chk_orph)
2785         d->chk_orph = val;
2786     else if (dent == d->dfs_chk_lprops)
2787         d->chk_lprops = val;
2788     else if (dent == d->dfs_chk_fs)
2789         d->chk_fs = val;
2790     else if (dent == d->dfs_tst_rcvry)
2791         d->tst_rcvry = val;
2792     else if (dent == d->dfs_ro_error)
2793         c->ro_error = !!val;
2794     else
2795         return -EINVAL;
2796 
2797     return count;
2798 }
2799 
2800 static const struct file_operations dfs_fops = {
2801     .open = dfs_file_open,
2802     .read = dfs_file_read,
2803     .write = dfs_file_write,
2804     .owner = THIS_MODULE,
2805     .llseek = no_llseek,
2806 };
2807 
2808 /**
2809  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2810  * @c: UBIFS file-system description object
2811  *
2812  * This function creates all debugfs files for this instance of UBIFS.
2813  *
2814  * Note, the only reason we have not merged this function with the
2815  * 'ubifs_debugging_init()' function is because it is better to initialize
2816  * debugfs interfaces at the very end of the mount process, and remove them at
2817  * the very beginning of the mount process.
2818  */
2819 void dbg_debugfs_init_fs(struct ubifs_info *c)
2820 {
2821     int n;
2822     const char *fname;
2823     struct ubifs_debug_info *d = c->dbg;
2824 
2825     n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2826              c->vi.ubi_num, c->vi.vol_id);
2827     if (n > UBIFS_DFS_DIR_LEN) {
2828         /* The array size is too small */
2829         return;
2830     }
2831 
2832     fname = d->dfs_dir_name;
2833     d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2834 
2835     fname = "dump_lprops";
2836     d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2837                          &dfs_fops);
2838 
2839     fname = "dump_budg";
2840     d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2841                            &dfs_fops);
2842 
2843     fname = "dump_tnc";
2844     d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2845                           &dfs_fops);
2846 
2847     fname = "chk_general";
2848     d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2849                          d->dfs_dir, c, &dfs_fops);
2850 
2851     fname = "chk_index";
2852     d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2853                            d->dfs_dir, c, &dfs_fops);
2854 
2855     fname = "chk_orphans";
2856     d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2857                           d->dfs_dir, c, &dfs_fops);
2858 
2859     fname = "chk_lprops";
2860     d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2861                         d->dfs_dir, c, &dfs_fops);
2862 
2863     fname = "chk_fs";
2864     d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2865                         d->dfs_dir, c, &dfs_fops);
2866 
2867     fname = "tst_recovery";
2868     d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2869                            d->dfs_dir, c, &dfs_fops);
2870 
2871     fname = "ro_error";
2872     d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2873                           d->dfs_dir, c, &dfs_fops);
2874 }
2875 
2876 /**
2877  * dbg_debugfs_exit_fs - remove all debugfs files.
2878  * @c: UBIFS file-system description object
2879  */
2880 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2881 {
2882     debugfs_remove_recursive(c->dbg->dfs_dir);
2883 }
2884 
2885 struct ubifs_global_debug_info ubifs_dbg;
2886 
2887 static struct dentry *dfs_chk_gen;
2888 static struct dentry *dfs_chk_index;
2889 static struct dentry *dfs_chk_orph;
2890 static struct dentry *dfs_chk_lprops;
2891 static struct dentry *dfs_chk_fs;
2892 static struct dentry *dfs_tst_rcvry;
2893 
2894 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2895                     size_t count, loff_t *ppos)
2896 {
2897     struct dentry *dent = file->f_path.dentry;
2898     int val;
2899 
2900     if (dent == dfs_chk_gen)
2901         val = ubifs_dbg.chk_gen;
2902     else if (dent == dfs_chk_index)
2903         val = ubifs_dbg.chk_index;
2904     else if (dent == dfs_chk_orph)
2905         val = ubifs_dbg.chk_orph;
2906     else if (dent == dfs_chk_lprops)
2907         val = ubifs_dbg.chk_lprops;
2908     else if (dent == dfs_chk_fs)
2909         val = ubifs_dbg.chk_fs;
2910     else if (dent == dfs_tst_rcvry)
2911         val = ubifs_dbg.tst_rcvry;
2912     else
2913         return -EINVAL;
2914 
2915     return provide_user_output(val, u, count, ppos);
2916 }
2917 
2918 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2919                      size_t count, loff_t *ppos)
2920 {
2921     struct dentry *dent = file->f_path.dentry;
2922     int val;
2923 
2924     val = interpret_user_input(u, count);
2925     if (val < 0)
2926         return val;
2927 
2928     if (dent == dfs_chk_gen)
2929         ubifs_dbg.chk_gen = val;
2930     else if (dent == dfs_chk_index)
2931         ubifs_dbg.chk_index = val;
2932     else if (dent == dfs_chk_orph)
2933         ubifs_dbg.chk_orph = val;
2934     else if (dent == dfs_chk_lprops)
2935         ubifs_dbg.chk_lprops = val;
2936     else if (dent == dfs_chk_fs)
2937         ubifs_dbg.chk_fs = val;
2938     else if (dent == dfs_tst_rcvry)
2939         ubifs_dbg.tst_rcvry = val;
2940     else
2941         return -EINVAL;
2942 
2943     return count;
2944 }
2945 
2946 static const struct file_operations dfs_global_fops = {
2947     .read = dfs_global_file_read,
2948     .write = dfs_global_file_write,
2949     .owner = THIS_MODULE,
2950     .llseek = no_llseek,
2951 };
2952 
2953 /**
2954  * dbg_debugfs_init - initialize debugfs file-system.
2955  *
2956  * UBIFS uses debugfs file-system to expose various debugging knobs to
2957  * user-space. This function creates "ubifs" directory in the debugfs
2958  * file-system.
2959  */
2960 void dbg_debugfs_init(void)
2961 {
2962     const char *fname;
2963 
2964     fname = "ubifs";
2965     dfs_rootdir = debugfs_create_dir(fname, NULL);
2966 
2967     fname = "chk_general";
2968     dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2969                       NULL, &dfs_global_fops);
2970 
2971     fname = "chk_index";
2972     dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2973                         dfs_rootdir, NULL, &dfs_global_fops);
2974 
2975     fname = "chk_orphans";
2976     dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2977                        dfs_rootdir, NULL, &dfs_global_fops);
2978 
2979     fname = "chk_lprops";
2980     dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2981                          dfs_rootdir, NULL, &dfs_global_fops);
2982 
2983     fname = "chk_fs";
2984     dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2985                      NULL, &dfs_global_fops);
2986 
2987     fname = "tst_recovery";
2988     dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2989                         dfs_rootdir, NULL, &dfs_global_fops);
2990 }
2991 
2992 /**
2993  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2994  */
2995 void dbg_debugfs_exit(void)
2996 {
2997     debugfs_remove_recursive(dfs_rootdir);
2998 }
2999 
3000 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
3001              const char *file, int line)
3002 {
3003     ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
3004 
3005     switch (c->assert_action) {
3006         case ASSACT_PANIC:
3007         BUG();
3008         break;
3009 
3010         case ASSACT_RO:
3011         ubifs_ro_mode(c, -EINVAL);
3012         break;
3013 
3014         case ASSACT_REPORT:
3015         default:
3016         dump_stack();
3017         break;
3018 
3019     }
3020 }
3021 
3022 /**
3023  * ubifs_debugging_init - initialize UBIFS debugging.
3024  * @c: UBIFS file-system description object
3025  *
3026  * This function initializes debugging-related data for the file system.
3027  * Returns zero in case of success and a negative error code in case of
3028  * failure.
3029  */
3030 int ubifs_debugging_init(struct ubifs_info *c)
3031 {
3032     c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3033     if (!c->dbg)
3034         return -ENOMEM;
3035 
3036     return 0;
3037 }
3038 
3039 /**
3040  * ubifs_debugging_exit - free debugging data.
3041  * @c: UBIFS file-system description object
3042  */
3043 void ubifs_debugging_exit(struct ubifs_info *c)
3044 {
3045     kfree(c->dbg);
3046 }