Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * This file is part of UBIFS.
0004  *
0005  * Copyright (C) 2006-2008 Nokia Corporation.
0006  *
0007  * Authors: Adrian Hunter
0008  *          Artem Bityutskiy (Битюцкий Артём)
0009  */
0010 
0011 /*
0012  * This file implements the budgeting sub-system which is responsible for UBIFS
0013  * space management.
0014  *
0015  * Factors such as compression, wasted space at the ends of LEBs, space in other
0016  * journal heads, the effect of updates on the index, and so on, make it
0017  * impossible to accurately predict the amount of space needed. Consequently
0018  * approximations are used.
0019  */
0020 
0021 #include "ubifs.h"
0022 #include <linux/writeback.h>
0023 #include <linux/math64.h>
0024 
0025 /*
0026  * When pessimistic budget calculations say that there is no enough space,
0027  * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
0028  * or committing. The below constant defines maximum number of times UBIFS
0029  * repeats the operations.
0030  */
0031 #define MAX_MKSPC_RETRIES 3
0032 
0033 /*
0034  * The below constant defines amount of dirty pages which should be written
0035  * back at when trying to shrink the liability.
0036  */
0037 #define NR_TO_WRITE 16
0038 
0039 /**
0040  * shrink_liability - write-back some dirty pages/inodes.
0041  * @c: UBIFS file-system description object
0042  * @nr_to_write: how many dirty pages to write-back
0043  *
0044  * This function shrinks UBIFS liability by means of writing back some amount
0045  * of dirty inodes and their pages.
0046  *
0047  * Note, this function synchronizes even VFS inodes which are locked
0048  * (@i_mutex) by the caller of the budgeting function, because write-back does
0049  * not touch @i_mutex.
0050  */
0051 static void shrink_liability(struct ubifs_info *c, int nr_to_write)
0052 {
0053     down_read(&c->vfs_sb->s_umount);
0054     writeback_inodes_sb_nr(c->vfs_sb, nr_to_write, WB_REASON_FS_FREE_SPACE);
0055     up_read(&c->vfs_sb->s_umount);
0056 }
0057 
0058 /**
0059  * run_gc - run garbage collector.
0060  * @c: UBIFS file-system description object
0061  *
0062  * This function runs garbage collector to make some more free space. Returns
0063  * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
0064  * negative error code in case of failure.
0065  */
0066 static int run_gc(struct ubifs_info *c)
0067 {
0068     int lnum;
0069 
0070     /* Make some free space by garbage-collecting dirty space */
0071     down_read(&c->commit_sem);
0072     lnum = ubifs_garbage_collect(c, 1);
0073     up_read(&c->commit_sem);
0074     if (lnum < 0)
0075         return lnum;
0076 
0077     /* GC freed one LEB, return it to lprops */
0078     dbg_budg("GC freed LEB %d", lnum);
0079     return ubifs_return_leb(c, lnum);
0080 }
0081 
0082 /**
0083  * get_liability - calculate current liability.
0084  * @c: UBIFS file-system description object
0085  *
0086  * This function calculates and returns current UBIFS liability, i.e. the
0087  * amount of bytes UBIFS has "promised" to write to the media.
0088  */
0089 static long long get_liability(struct ubifs_info *c)
0090 {
0091     long long liab;
0092 
0093     spin_lock(&c->space_lock);
0094     liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
0095     spin_unlock(&c->space_lock);
0096     return liab;
0097 }
0098 
0099 /**
0100  * make_free_space - make more free space on the file-system.
0101  * @c: UBIFS file-system description object
0102  *
0103  * This function is called when an operation cannot be budgeted because there
0104  * is supposedly no free space. But in most cases there is some free space:
0105  *   o budgeting is pessimistic, so it always budgets more than it is actually
0106  *     needed, so shrinking the liability is one way to make free space - the
0107  *     cached data will take less space then it was budgeted for;
0108  *   o GC may turn some dark space into free space (budgeting treats dark space
0109  *     as not available);
0110  *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
0111  *
0112  * So this function tries to do the above. Returns %-EAGAIN if some free space
0113  * was presumably made and the caller has to re-try budgeting the operation.
0114  * Returns %-ENOSPC if it couldn't do more free space, and other negative error
0115  * codes on failures.
0116  */
0117 static int make_free_space(struct ubifs_info *c)
0118 {
0119     int err, retries = 0;
0120     long long liab1, liab2;
0121 
0122     do {
0123         liab1 = get_liability(c);
0124         /*
0125          * We probably have some dirty pages or inodes (liability), try
0126          * to write them back.
0127          */
0128         dbg_budg("liability %lld, run write-back", liab1);
0129         shrink_liability(c, NR_TO_WRITE);
0130 
0131         liab2 = get_liability(c);
0132         if (liab2 < liab1)
0133             return -EAGAIN;
0134 
0135         dbg_budg("new liability %lld (not shrunk)", liab2);
0136 
0137         /* Liability did not shrink again, try GC */
0138         dbg_budg("Run GC");
0139         err = run_gc(c);
0140         if (!err)
0141             return -EAGAIN;
0142 
0143         if (err != -EAGAIN && err != -ENOSPC)
0144             /* Some real error happened */
0145             return err;
0146 
0147         dbg_budg("Run commit (retries %d)", retries);
0148         err = ubifs_run_commit(c);
0149         if (err)
0150             return err;
0151     } while (retries++ < MAX_MKSPC_RETRIES);
0152 
0153     return -ENOSPC;
0154 }
0155 
0156 /**
0157  * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
0158  * @c: UBIFS file-system description object
0159  *
0160  * This function calculates and returns the number of LEBs which should be kept
0161  * for index usage.
0162  */
0163 int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
0164 {
0165     int idx_lebs;
0166     long long idx_size;
0167 
0168     idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
0169     /* And make sure we have thrice the index size of space reserved */
0170     idx_size += idx_size << 1;
0171     /*
0172      * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
0173      * pair, nor similarly the two variables for the new index size, so we
0174      * have to do this costly 64-bit division on fast-path.
0175      */
0176     idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
0177     /*
0178      * The index head is not available for the in-the-gaps method, so add an
0179      * extra LEB to compensate.
0180      */
0181     idx_lebs += 1;
0182     if (idx_lebs < MIN_INDEX_LEBS)
0183         idx_lebs = MIN_INDEX_LEBS;
0184     return idx_lebs;
0185 }
0186 
0187 /**
0188  * ubifs_calc_available - calculate available FS space.
0189  * @c: UBIFS file-system description object
0190  * @min_idx_lebs: minimum number of LEBs reserved for the index
0191  *
0192  * This function calculates and returns amount of FS space available for use.
0193  */
0194 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
0195 {
0196     int subtract_lebs;
0197     long long available;
0198 
0199     available = c->main_bytes - c->lst.total_used;
0200 
0201     /*
0202      * Now 'available' contains theoretically available flash space
0203      * assuming there is no index, so we have to subtract the space which
0204      * is reserved for the index.
0205      */
0206     subtract_lebs = min_idx_lebs;
0207 
0208     /* Take into account that GC reserves one LEB for its own needs */
0209     subtract_lebs += 1;
0210 
0211     /*
0212      * The GC journal head LEB is not really accessible. And since
0213      * different write types go to different heads, we may count only on
0214      * one head's space.
0215      */
0216     subtract_lebs += c->jhead_cnt - 1;
0217 
0218     /* We also reserve one LEB for deletions, which bypass budgeting */
0219     subtract_lebs += 1;
0220 
0221     available -= (long long)subtract_lebs * c->leb_size;
0222 
0223     /* Subtract the dead space which is not available for use */
0224     available -= c->lst.total_dead;
0225 
0226     /*
0227      * Subtract dark space, which might or might not be usable - it depends
0228      * on the data which we have on the media and which will be written. If
0229      * this is a lot of uncompressed or not-compressible data, the dark
0230      * space cannot be used.
0231      */
0232     available -= c->lst.total_dark;
0233 
0234     /*
0235      * However, there is more dark space. The index may be bigger than
0236      * @min_idx_lebs. Those extra LEBs are assumed to be available, but
0237      * their dark space is not included in total_dark, so it is subtracted
0238      * here.
0239      */
0240     if (c->lst.idx_lebs > min_idx_lebs) {
0241         subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
0242         available -= subtract_lebs * c->dark_wm;
0243     }
0244 
0245     /* The calculations are rough and may end up with a negative number */
0246     return available > 0 ? available : 0;
0247 }
0248 
0249 /**
0250  * can_use_rp - check whether the user is allowed to use reserved pool.
0251  * @c: UBIFS file-system description object
0252  *
0253  * UBIFS has so-called "reserved pool" which is flash space reserved
0254  * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
0255  * This function checks whether current user is allowed to use reserved pool.
0256  * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
0257  */
0258 static int can_use_rp(struct ubifs_info *c)
0259 {
0260     if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
0261         (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
0262         return 1;
0263     return 0;
0264 }
0265 
0266 /**
0267  * do_budget_space - reserve flash space for index and data growth.
0268  * @c: UBIFS file-system description object
0269  *
0270  * This function makes sure UBIFS has enough free LEBs for index growth and
0271  * data.
0272  *
0273  * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
0274  * would take if it was consolidated and written to the flash. This guarantees
0275  * that the "in-the-gaps" commit method always succeeds and UBIFS will always
0276  * be able to commit dirty index. So this function basically adds amount of
0277  * budgeted index space to the size of the current index, multiplies this by 3,
0278  * and makes sure this does not exceed the amount of free LEBs.
0279  *
0280  * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
0281  * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
0282  *    be large, because UBIFS does not do any index consolidation as long as
0283  *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
0284  *    will contain a lot of dirt.
0285  * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
0286  *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
0287  *
0288  * This function returns zero in case of success, and %-ENOSPC in case of
0289  * failure.
0290  */
0291 static int do_budget_space(struct ubifs_info *c)
0292 {
0293     long long outstanding, available;
0294     int lebs, rsvd_idx_lebs, min_idx_lebs;
0295 
0296     /* First budget index space */
0297     min_idx_lebs = ubifs_calc_min_idx_lebs(c);
0298 
0299     /* Now 'min_idx_lebs' contains number of LEBs to reserve */
0300     if (min_idx_lebs > c->lst.idx_lebs)
0301         rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
0302     else
0303         rsvd_idx_lebs = 0;
0304 
0305     /*
0306      * The number of LEBs that are available to be used by the index is:
0307      *
0308      *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
0309      *    @c->lst.taken_empty_lebs
0310      *
0311      * @c->lst.empty_lebs are available because they are empty.
0312      * @c->freeable_cnt are available because they contain only free and
0313      * dirty space, @c->idx_gc_cnt are available because they are index
0314      * LEBs that have been garbage collected and are awaiting the commit
0315      * before they can be used. And the in-the-gaps method will grab these
0316      * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
0317      * already been allocated for some purpose.
0318      *
0319      * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
0320      * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
0321      * are taken until after the commit).
0322      *
0323      * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
0324      * because of the way we serialize LEB allocations and budgeting. See a
0325      * comment in 'ubifs_find_free_space()'.
0326      */
0327     lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
0328            c->lst.taken_empty_lebs;
0329     if (unlikely(rsvd_idx_lebs > lebs)) {
0330         dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
0331              min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
0332         return -ENOSPC;
0333     }
0334 
0335     available = ubifs_calc_available(c, min_idx_lebs);
0336     outstanding = c->bi.data_growth + c->bi.dd_growth;
0337 
0338     if (unlikely(available < outstanding)) {
0339         dbg_budg("out of data space: available %lld, outstanding %lld",
0340              available, outstanding);
0341         return -ENOSPC;
0342     }
0343 
0344     if (available - outstanding <= c->rp_size && !can_use_rp(c))
0345         return -ENOSPC;
0346 
0347     c->bi.min_idx_lebs = min_idx_lebs;
0348     return 0;
0349 }
0350 
0351 /**
0352  * calc_idx_growth - calculate approximate index growth from budgeting request.
0353  * @c: UBIFS file-system description object
0354  * @req: budgeting request
0355  *
0356  * For now we assume each new node adds one znode. But this is rather poor
0357  * approximation, though.
0358  */
0359 static int calc_idx_growth(const struct ubifs_info *c,
0360                const struct ubifs_budget_req *req)
0361 {
0362     int znodes;
0363 
0364     znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
0365          req->new_dent;
0366     return znodes * c->max_idx_node_sz;
0367 }
0368 
0369 /**
0370  * calc_data_growth - calculate approximate amount of new data from budgeting
0371  * request.
0372  * @c: UBIFS file-system description object
0373  * @req: budgeting request
0374  */
0375 static int calc_data_growth(const struct ubifs_info *c,
0376                 const struct ubifs_budget_req *req)
0377 {
0378     int data_growth;
0379 
0380     data_growth = req->new_ino  ? c->bi.inode_budget : 0;
0381     if (req->new_page)
0382         data_growth += c->bi.page_budget;
0383     if (req->new_dent)
0384         data_growth += c->bi.dent_budget;
0385     data_growth += req->new_ino_d;
0386     return data_growth;
0387 }
0388 
0389 /**
0390  * calc_dd_growth - calculate approximate amount of data which makes other data
0391  * dirty from budgeting request.
0392  * @c: UBIFS file-system description object
0393  * @req: budgeting request
0394  */
0395 static int calc_dd_growth(const struct ubifs_info *c,
0396               const struct ubifs_budget_req *req)
0397 {
0398     int dd_growth;
0399 
0400     dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
0401 
0402     if (req->dirtied_ino)
0403         dd_growth += c->bi.inode_budget << (req->dirtied_ino - 1);
0404     if (req->mod_dent)
0405         dd_growth += c->bi.dent_budget;
0406     dd_growth += req->dirtied_ino_d;
0407     return dd_growth;
0408 }
0409 
0410 /**
0411  * ubifs_budget_space - ensure there is enough space to complete an operation.
0412  * @c: UBIFS file-system description object
0413  * @req: budget request
0414  *
0415  * This function allocates budget for an operation. It uses pessimistic
0416  * approximation of how much flash space the operation needs. The goal of this
0417  * function is to make sure UBIFS always has flash space to flush all dirty
0418  * pages, dirty inodes, and dirty znodes (liability). This function may force
0419  * commit, garbage-collection or write-back. Returns zero in case of success,
0420  * %-ENOSPC if there is no free space and other negative error codes in case of
0421  * failures.
0422  */
0423 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
0424 {
0425     int err, idx_growth, data_growth, dd_growth, retried = 0;
0426 
0427     ubifs_assert(c, req->new_page <= 1);
0428     ubifs_assert(c, req->dirtied_page <= 1);
0429     ubifs_assert(c, req->new_dent <= 1);
0430     ubifs_assert(c, req->mod_dent <= 1);
0431     ubifs_assert(c, req->new_ino <= 1);
0432     ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
0433     ubifs_assert(c, req->dirtied_ino <= 4);
0434     ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
0435     ubifs_assert(c, !(req->new_ino_d & 7));
0436     ubifs_assert(c, !(req->dirtied_ino_d & 7));
0437 
0438     data_growth = calc_data_growth(c, req);
0439     dd_growth = calc_dd_growth(c, req);
0440     if (!data_growth && !dd_growth)
0441         return 0;
0442     idx_growth = calc_idx_growth(c, req);
0443 
0444 again:
0445     spin_lock(&c->space_lock);
0446     ubifs_assert(c, c->bi.idx_growth >= 0);
0447     ubifs_assert(c, c->bi.data_growth >= 0);
0448     ubifs_assert(c, c->bi.dd_growth >= 0);
0449 
0450     if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
0451         dbg_budg("no space");
0452         spin_unlock(&c->space_lock);
0453         return -ENOSPC;
0454     }
0455 
0456     c->bi.idx_growth += idx_growth;
0457     c->bi.data_growth += data_growth;
0458     c->bi.dd_growth += dd_growth;
0459 
0460     err = do_budget_space(c);
0461     if (likely(!err)) {
0462         req->idx_growth = idx_growth;
0463         req->data_growth = data_growth;
0464         req->dd_growth = dd_growth;
0465         spin_unlock(&c->space_lock);
0466         return 0;
0467     }
0468 
0469     /* Restore the old values */
0470     c->bi.idx_growth -= idx_growth;
0471     c->bi.data_growth -= data_growth;
0472     c->bi.dd_growth -= dd_growth;
0473     spin_unlock(&c->space_lock);
0474 
0475     if (req->fast) {
0476         dbg_budg("no space for fast budgeting");
0477         return err;
0478     }
0479 
0480     err = make_free_space(c);
0481     cond_resched();
0482     if (err == -EAGAIN) {
0483         dbg_budg("try again");
0484         goto again;
0485     } else if (err == -ENOSPC) {
0486         if (!retried) {
0487             retried = 1;
0488             dbg_budg("-ENOSPC, but anyway try once again");
0489             goto again;
0490         }
0491         dbg_budg("FS is full, -ENOSPC");
0492         c->bi.nospace = 1;
0493         if (can_use_rp(c) || c->rp_size == 0)
0494             c->bi.nospace_rp = 1;
0495         smp_wmb();
0496     } else
0497         ubifs_err(c, "cannot budget space, error %d", err);
0498     return err;
0499 }
0500 
0501 /**
0502  * ubifs_release_budget - release budgeted free space.
0503  * @c: UBIFS file-system description object
0504  * @req: budget request
0505  *
0506  * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
0507  * since the index changes (which were budgeted for in @req->idx_growth) will
0508  * only be written to the media on commit, this function moves the index budget
0509  * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
0510  * by the commit operation.
0511  */
0512 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
0513 {
0514     ubifs_assert(c, req->new_page <= 1);
0515     ubifs_assert(c, req->dirtied_page <= 1);
0516     ubifs_assert(c, req->new_dent <= 1);
0517     ubifs_assert(c, req->mod_dent <= 1);
0518     ubifs_assert(c, req->new_ino <= 1);
0519     ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
0520     ubifs_assert(c, req->dirtied_ino <= 4);
0521     ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
0522     ubifs_assert(c, !(req->new_ino_d & 7));
0523     ubifs_assert(c, !(req->dirtied_ino_d & 7));
0524     if (!req->recalculate) {
0525         ubifs_assert(c, req->idx_growth >= 0);
0526         ubifs_assert(c, req->data_growth >= 0);
0527         ubifs_assert(c, req->dd_growth >= 0);
0528     }
0529 
0530     if (req->recalculate) {
0531         req->data_growth = calc_data_growth(c, req);
0532         req->dd_growth = calc_dd_growth(c, req);
0533         req->idx_growth = calc_idx_growth(c, req);
0534     }
0535 
0536     if (!req->data_growth && !req->dd_growth)
0537         return;
0538 
0539     c->bi.nospace = c->bi.nospace_rp = 0;
0540     smp_wmb();
0541 
0542     spin_lock(&c->space_lock);
0543     c->bi.idx_growth -= req->idx_growth;
0544     c->bi.uncommitted_idx += req->idx_growth;
0545     c->bi.data_growth -= req->data_growth;
0546     c->bi.dd_growth -= req->dd_growth;
0547     c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
0548 
0549     ubifs_assert(c, c->bi.idx_growth >= 0);
0550     ubifs_assert(c, c->bi.data_growth >= 0);
0551     ubifs_assert(c, c->bi.dd_growth >= 0);
0552     ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs);
0553     ubifs_assert(c, !(c->bi.idx_growth & 7));
0554     ubifs_assert(c, !(c->bi.data_growth & 7));
0555     ubifs_assert(c, !(c->bi.dd_growth & 7));
0556     spin_unlock(&c->space_lock);
0557 }
0558 
0559 /**
0560  * ubifs_convert_page_budget - convert budget of a new page.
0561  * @c: UBIFS file-system description object
0562  *
0563  * This function converts budget which was allocated for a new page of data to
0564  * the budget of changing an existing page of data. The latter is smaller than
0565  * the former, so this function only does simple re-calculation and does not
0566  * involve any write-back.
0567  */
0568 void ubifs_convert_page_budget(struct ubifs_info *c)
0569 {
0570     spin_lock(&c->space_lock);
0571     /* Release the index growth reservation */
0572     c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
0573     /* Release the data growth reservation */
0574     c->bi.data_growth -= c->bi.page_budget;
0575     /* Increase the dirty data growth reservation instead */
0576     c->bi.dd_growth += c->bi.page_budget;
0577     /* And re-calculate the indexing space reservation */
0578     c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
0579     spin_unlock(&c->space_lock);
0580 }
0581 
0582 /**
0583  * ubifs_release_dirty_inode_budget - release dirty inode budget.
0584  * @c: UBIFS file-system description object
0585  * @ui: UBIFS inode to release the budget for
0586  *
0587  * This function releases budget corresponding to a dirty inode. It is usually
0588  * called when after the inode has been written to the media and marked as
0589  * clean. It also causes the "no space" flags to be cleared.
0590  */
0591 void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
0592                       struct ubifs_inode *ui)
0593 {
0594     struct ubifs_budget_req req;
0595 
0596     memset(&req, 0, sizeof(struct ubifs_budget_req));
0597     /* The "no space" flags will be cleared because dd_growth is > 0 */
0598     req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
0599     ubifs_release_budget(c, &req);
0600 }
0601 
0602 /**
0603  * ubifs_reported_space - calculate reported free space.
0604  * @c: the UBIFS file-system description object
0605  * @free: amount of free space
0606  *
0607  * This function calculates amount of free space which will be reported to
0608  * user-space. User-space application tend to expect that if the file-system
0609  * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
0610  * are able to write a file of size N. UBIFS attaches node headers to each data
0611  * node and it has to write indexing nodes as well. This introduces additional
0612  * overhead, and UBIFS has to report slightly less free space to meet the above
0613  * expectations.
0614  *
0615  * This function assumes free space is made up of uncompressed data nodes and
0616  * full index nodes (one per data node, tripled because we always allow enough
0617  * space to write the index thrice).
0618  *
0619  * Note, the calculation is pessimistic, which means that most of the time
0620  * UBIFS reports less space than it actually has.
0621  */
0622 long long ubifs_reported_space(const struct ubifs_info *c, long long free)
0623 {
0624     int divisor, factor, f;
0625 
0626     /*
0627      * Reported space size is @free * X, where X is UBIFS block size
0628      * divided by UBIFS block size + all overhead one data block
0629      * introduces. The overhead is the node header + indexing overhead.
0630      *
0631      * Indexing overhead calculations are based on the following formula:
0632      * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
0633      * of data nodes, f - fanout. Because effective UBIFS fanout is twice
0634      * as less than maximum fanout, we assume that each data node
0635      * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
0636      * Note, the multiplier 3 is because UBIFS reserves thrice as more space
0637      * for the index.
0638      */
0639     f = c->fanout > 3 ? c->fanout >> 1 : 2;
0640     factor = UBIFS_BLOCK_SIZE;
0641     divisor = UBIFS_MAX_DATA_NODE_SZ;
0642     divisor += (c->max_idx_node_sz * 3) / (f - 1);
0643     free *= factor;
0644     return div_u64(free, divisor);
0645 }
0646 
0647 /**
0648  * ubifs_get_free_space_nolock - return amount of free space.
0649  * @c: UBIFS file-system description object
0650  *
0651  * This function calculates amount of free space to report to user-space.
0652  *
0653  * Because UBIFS may introduce substantial overhead (the index, node headers,
0654  * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
0655  * free flash space it has (well, because not all dirty space is reclaimable,
0656  * UBIFS does not actually know the real amount). If UBIFS did so, it would
0657  * bread user expectations about what free space is. Users seem to accustomed
0658  * to assume that if the file-system reports N bytes of free space, they would
0659  * be able to fit a file of N bytes to the FS. This almost works for
0660  * traditional file-systems, because they have way less overhead than UBIFS.
0661  * So, to keep users happy, UBIFS tries to take the overhead into account.
0662  */
0663 long long ubifs_get_free_space_nolock(struct ubifs_info *c)
0664 {
0665     int rsvd_idx_lebs, lebs;
0666     long long available, outstanding, free;
0667 
0668     ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
0669     outstanding = c->bi.data_growth + c->bi.dd_growth;
0670     available = ubifs_calc_available(c, c->bi.min_idx_lebs);
0671 
0672     /*
0673      * When reporting free space to user-space, UBIFS guarantees that it is
0674      * possible to write a file of free space size. This means that for
0675      * empty LEBs we may use more precise calculations than
0676      * 'ubifs_calc_available()' is using. Namely, we know that in empty
0677      * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
0678      * Thus, amend the available space.
0679      *
0680      * Note, the calculations below are similar to what we have in
0681      * 'do_budget_space()', so refer there for comments.
0682      */
0683     if (c->bi.min_idx_lebs > c->lst.idx_lebs)
0684         rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
0685     else
0686         rsvd_idx_lebs = 0;
0687     lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
0688            c->lst.taken_empty_lebs;
0689     lebs -= rsvd_idx_lebs;
0690     available += lebs * (c->dark_wm - c->leb_overhead);
0691 
0692     if (available > outstanding)
0693         free = ubifs_reported_space(c, available - outstanding);
0694     else
0695         free = 0;
0696     return free;
0697 }
0698 
0699 /**
0700  * ubifs_get_free_space - return amount of free space.
0701  * @c: UBIFS file-system description object
0702  *
0703  * This function calculates and returns amount of free space to report to
0704  * user-space.
0705  */
0706 long long ubifs_get_free_space(struct ubifs_info *c)
0707 {
0708     long long free;
0709 
0710     spin_lock(&c->space_lock);
0711     free = ubifs_get_free_space_nolock(c);
0712     spin_unlock(&c->space_lock);
0713 
0714     return free;
0715 }