Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  *  linux/fs/super.c
0004  *
0005  *  Copyright (C) 1991, 1992  Linus Torvalds
0006  *
0007  *  super.c contains code to handle: - mount structures
0008  *                                   - super-block tables
0009  *                                   - filesystem drivers list
0010  *                                   - mount system call
0011  *                                   - umount system call
0012  *                                   - ustat system call
0013  *
0014  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
0015  *
0016  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
0017  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
0018  *  Added options to /proc/mounts:
0019  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
0020  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
0021  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
0022  */
0023 
0024 #include <linux/export.h>
0025 #include <linux/slab.h>
0026 #include <linux/blkdev.h>
0027 #include <linux/mount.h>
0028 #include <linux/security.h>
0029 #include <linux/writeback.h>        /* for the emergency remount stuff */
0030 #include <linux/idr.h>
0031 #include <linux/mutex.h>
0032 #include <linux/backing-dev.h>
0033 #include <linux/rculist_bl.h>
0034 #include <linux/fscrypt.h>
0035 #include <linux/fsnotify.h>
0036 #include <linux/lockdep.h>
0037 #include <linux/user_namespace.h>
0038 #include <linux/fs_context.h>
0039 #include <uapi/linux/mount.h>
0040 #include "internal.h"
0041 
0042 static int thaw_super_locked(struct super_block *sb);
0043 
0044 static LIST_HEAD(super_blocks);
0045 static DEFINE_SPINLOCK(sb_lock);
0046 
0047 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
0048     "sb_writers",
0049     "sb_pagefaults",
0050     "sb_internal",
0051 };
0052 
0053 /*
0054  * One thing we have to be careful of with a per-sb shrinker is that we don't
0055  * drop the last active reference to the superblock from within the shrinker.
0056  * If that happens we could trigger unregistering the shrinker from within the
0057  * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
0058  * take a passive reference to the superblock to avoid this from occurring.
0059  */
0060 static unsigned long super_cache_scan(struct shrinker *shrink,
0061                       struct shrink_control *sc)
0062 {
0063     struct super_block *sb;
0064     long    fs_objects = 0;
0065     long    total_objects;
0066     long    freed = 0;
0067     long    dentries;
0068     long    inodes;
0069 
0070     sb = container_of(shrink, struct super_block, s_shrink);
0071 
0072     /*
0073      * Deadlock avoidance.  We may hold various FS locks, and we don't want
0074      * to recurse into the FS that called us in clear_inode() and friends..
0075      */
0076     if (!(sc->gfp_mask & __GFP_FS))
0077         return SHRINK_STOP;
0078 
0079     if (!trylock_super(sb))
0080         return SHRINK_STOP;
0081 
0082     if (sb->s_op->nr_cached_objects)
0083         fs_objects = sb->s_op->nr_cached_objects(sb, sc);
0084 
0085     inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
0086     dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
0087     total_objects = dentries + inodes + fs_objects + 1;
0088     if (!total_objects)
0089         total_objects = 1;
0090 
0091     /* proportion the scan between the caches */
0092     dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
0093     inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
0094     fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
0095 
0096     /*
0097      * prune the dcache first as the icache is pinned by it, then
0098      * prune the icache, followed by the filesystem specific caches
0099      *
0100      * Ensure that we always scan at least one object - memcg kmem
0101      * accounting uses this to fully empty the caches.
0102      */
0103     sc->nr_to_scan = dentries + 1;
0104     freed = prune_dcache_sb(sb, sc);
0105     sc->nr_to_scan = inodes + 1;
0106     freed += prune_icache_sb(sb, sc);
0107 
0108     if (fs_objects) {
0109         sc->nr_to_scan = fs_objects + 1;
0110         freed += sb->s_op->free_cached_objects(sb, sc);
0111     }
0112 
0113     up_read(&sb->s_umount);
0114     return freed;
0115 }
0116 
0117 static unsigned long super_cache_count(struct shrinker *shrink,
0118                        struct shrink_control *sc)
0119 {
0120     struct super_block *sb;
0121     long    total_objects = 0;
0122 
0123     sb = container_of(shrink, struct super_block, s_shrink);
0124 
0125     /*
0126      * We don't call trylock_super() here as it is a scalability bottleneck,
0127      * so we're exposed to partial setup state. The shrinker rwsem does not
0128      * protect filesystem operations backing list_lru_shrink_count() or
0129      * s_op->nr_cached_objects(). Counts can change between
0130      * super_cache_count and super_cache_scan, so we really don't need locks
0131      * here.
0132      *
0133      * However, if we are currently mounting the superblock, the underlying
0134      * filesystem might be in a state of partial construction and hence it
0135      * is dangerous to access it.  trylock_super() uses a SB_BORN check to
0136      * avoid this situation, so do the same here. The memory barrier is
0137      * matched with the one in mount_fs() as we don't hold locks here.
0138      */
0139     if (!(sb->s_flags & SB_BORN))
0140         return 0;
0141     smp_rmb();
0142 
0143     if (sb->s_op && sb->s_op->nr_cached_objects)
0144         total_objects = sb->s_op->nr_cached_objects(sb, sc);
0145 
0146     total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
0147     total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
0148 
0149     if (!total_objects)
0150         return SHRINK_EMPTY;
0151 
0152     total_objects = vfs_pressure_ratio(total_objects);
0153     return total_objects;
0154 }
0155 
0156 static void destroy_super_work(struct work_struct *work)
0157 {
0158     struct super_block *s = container_of(work, struct super_block,
0159                             destroy_work);
0160     int i;
0161 
0162     for (i = 0; i < SB_FREEZE_LEVELS; i++)
0163         percpu_free_rwsem(&s->s_writers.rw_sem[i]);
0164     kfree(s);
0165 }
0166 
0167 static void destroy_super_rcu(struct rcu_head *head)
0168 {
0169     struct super_block *s = container_of(head, struct super_block, rcu);
0170     INIT_WORK(&s->destroy_work, destroy_super_work);
0171     schedule_work(&s->destroy_work);
0172 }
0173 
0174 /* Free a superblock that has never been seen by anyone */
0175 static void destroy_unused_super(struct super_block *s)
0176 {
0177     if (!s)
0178         return;
0179     up_write(&s->s_umount);
0180     list_lru_destroy(&s->s_dentry_lru);
0181     list_lru_destroy(&s->s_inode_lru);
0182     security_sb_free(s);
0183     put_user_ns(s->s_user_ns);
0184     kfree(s->s_subtype);
0185     free_prealloced_shrinker(&s->s_shrink);
0186     /* no delays needed */
0187     destroy_super_work(&s->destroy_work);
0188 }
0189 
0190 /**
0191  *  alloc_super -   create new superblock
0192  *  @type:  filesystem type superblock should belong to
0193  *  @flags: the mount flags
0194  *  @user_ns: User namespace for the super_block
0195  *
0196  *  Allocates and initializes a new &struct super_block.  alloc_super()
0197  *  returns a pointer new superblock or %NULL if allocation had failed.
0198  */
0199 static struct super_block *alloc_super(struct file_system_type *type, int flags,
0200                        struct user_namespace *user_ns)
0201 {
0202     struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
0203     static const struct super_operations default_op;
0204     int i;
0205 
0206     if (!s)
0207         return NULL;
0208 
0209     INIT_LIST_HEAD(&s->s_mounts);
0210     s->s_user_ns = get_user_ns(user_ns);
0211     init_rwsem(&s->s_umount);
0212     lockdep_set_class(&s->s_umount, &type->s_umount_key);
0213     /*
0214      * sget() can have s_umount recursion.
0215      *
0216      * When it cannot find a suitable sb, it allocates a new
0217      * one (this one), and tries again to find a suitable old
0218      * one.
0219      *
0220      * In case that succeeds, it will acquire the s_umount
0221      * lock of the old one. Since these are clearly distrinct
0222      * locks, and this object isn't exposed yet, there's no
0223      * risk of deadlocks.
0224      *
0225      * Annotate this by putting this lock in a different
0226      * subclass.
0227      */
0228     down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
0229 
0230     if (security_sb_alloc(s))
0231         goto fail;
0232 
0233     for (i = 0; i < SB_FREEZE_LEVELS; i++) {
0234         if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
0235                     sb_writers_name[i],
0236                     &type->s_writers_key[i]))
0237             goto fail;
0238     }
0239     init_waitqueue_head(&s->s_writers.wait_unfrozen);
0240     s->s_bdi = &noop_backing_dev_info;
0241     s->s_flags = flags;
0242     if (s->s_user_ns != &init_user_ns)
0243         s->s_iflags |= SB_I_NODEV;
0244     INIT_HLIST_NODE(&s->s_instances);
0245     INIT_HLIST_BL_HEAD(&s->s_roots);
0246     mutex_init(&s->s_sync_lock);
0247     INIT_LIST_HEAD(&s->s_inodes);
0248     spin_lock_init(&s->s_inode_list_lock);
0249     INIT_LIST_HEAD(&s->s_inodes_wb);
0250     spin_lock_init(&s->s_inode_wblist_lock);
0251 
0252     s->s_count = 1;
0253     atomic_set(&s->s_active, 1);
0254     mutex_init(&s->s_vfs_rename_mutex);
0255     lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
0256     init_rwsem(&s->s_dquot.dqio_sem);
0257     s->s_maxbytes = MAX_NON_LFS;
0258     s->s_op = &default_op;
0259     s->s_time_gran = 1000000000;
0260     s->s_time_min = TIME64_MIN;
0261     s->s_time_max = TIME64_MAX;
0262 
0263     s->s_shrink.seeks = DEFAULT_SEEKS;
0264     s->s_shrink.scan_objects = super_cache_scan;
0265     s->s_shrink.count_objects = super_cache_count;
0266     s->s_shrink.batch = 1024;
0267     s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
0268     if (prealloc_shrinker(&s->s_shrink, "sb-%s", type->name))
0269         goto fail;
0270     if (list_lru_init_memcg(&s->s_dentry_lru, &s->s_shrink))
0271         goto fail;
0272     if (list_lru_init_memcg(&s->s_inode_lru, &s->s_shrink))
0273         goto fail;
0274     return s;
0275 
0276 fail:
0277     destroy_unused_super(s);
0278     return NULL;
0279 }
0280 
0281 /* Superblock refcounting  */
0282 
0283 /*
0284  * Drop a superblock's refcount.  The caller must hold sb_lock.
0285  */
0286 static void __put_super(struct super_block *s)
0287 {
0288     if (!--s->s_count) {
0289         list_del_init(&s->s_list);
0290         WARN_ON(s->s_dentry_lru.node);
0291         WARN_ON(s->s_inode_lru.node);
0292         WARN_ON(!list_empty(&s->s_mounts));
0293         security_sb_free(s);
0294         fscrypt_sb_free(s);
0295         put_user_ns(s->s_user_ns);
0296         kfree(s->s_subtype);
0297         call_rcu(&s->rcu, destroy_super_rcu);
0298     }
0299 }
0300 
0301 /**
0302  *  put_super   -   drop a temporary reference to superblock
0303  *  @sb: superblock in question
0304  *
0305  *  Drops a temporary reference, frees superblock if there's no
0306  *  references left.
0307  */
0308 void put_super(struct super_block *sb)
0309 {
0310     spin_lock(&sb_lock);
0311     __put_super(sb);
0312     spin_unlock(&sb_lock);
0313 }
0314 
0315 
0316 /**
0317  *  deactivate_locked_super -   drop an active reference to superblock
0318  *  @s: superblock to deactivate
0319  *
0320  *  Drops an active reference to superblock, converting it into a temporary
0321  *  one if there is no other active references left.  In that case we
0322  *  tell fs driver to shut it down and drop the temporary reference we
0323  *  had just acquired.
0324  *
0325  *  Caller holds exclusive lock on superblock; that lock is released.
0326  */
0327 void deactivate_locked_super(struct super_block *s)
0328 {
0329     struct file_system_type *fs = s->s_type;
0330     if (atomic_dec_and_test(&s->s_active)) {
0331         unregister_shrinker(&s->s_shrink);
0332         fs->kill_sb(s);
0333 
0334         /*
0335          * Since list_lru_destroy() may sleep, we cannot call it from
0336          * put_super(), where we hold the sb_lock. Therefore we destroy
0337          * the lru lists right now.
0338          */
0339         list_lru_destroy(&s->s_dentry_lru);
0340         list_lru_destroy(&s->s_inode_lru);
0341 
0342         put_filesystem(fs);
0343         put_super(s);
0344     } else {
0345         up_write(&s->s_umount);
0346     }
0347 }
0348 
0349 EXPORT_SYMBOL(deactivate_locked_super);
0350 
0351 /**
0352  *  deactivate_super    -   drop an active reference to superblock
0353  *  @s: superblock to deactivate
0354  *
0355  *  Variant of deactivate_locked_super(), except that superblock is *not*
0356  *  locked by caller.  If we are going to drop the final active reference,
0357  *  lock will be acquired prior to that.
0358  */
0359 void deactivate_super(struct super_block *s)
0360 {
0361     if (!atomic_add_unless(&s->s_active, -1, 1)) {
0362         down_write(&s->s_umount);
0363         deactivate_locked_super(s);
0364     }
0365 }
0366 
0367 EXPORT_SYMBOL(deactivate_super);
0368 
0369 /**
0370  *  grab_super - acquire an active reference
0371  *  @s: reference we are trying to make active
0372  *
0373  *  Tries to acquire an active reference.  grab_super() is used when we
0374  *  had just found a superblock in super_blocks or fs_type->fs_supers
0375  *  and want to turn it into a full-blown active reference.  grab_super()
0376  *  is called with sb_lock held and drops it.  Returns 1 in case of
0377  *  success, 0 if we had failed (superblock contents was already dead or
0378  *  dying when grab_super() had been called).  Note that this is only
0379  *  called for superblocks not in rundown mode (== ones still on ->fs_supers
0380  *  of their type), so increment of ->s_count is OK here.
0381  */
0382 static int grab_super(struct super_block *s) __releases(sb_lock)
0383 {
0384     s->s_count++;
0385     spin_unlock(&sb_lock);
0386     down_write(&s->s_umount);
0387     if ((s->s_flags & SB_BORN) && atomic_inc_not_zero(&s->s_active)) {
0388         put_super(s);
0389         return 1;
0390     }
0391     up_write(&s->s_umount);
0392     put_super(s);
0393     return 0;
0394 }
0395 
0396 /*
0397  *  trylock_super - try to grab ->s_umount shared
0398  *  @sb: reference we are trying to grab
0399  *
0400  *  Try to prevent fs shutdown.  This is used in places where we
0401  *  cannot take an active reference but we need to ensure that the
0402  *  filesystem is not shut down while we are working on it. It returns
0403  *  false if we cannot acquire s_umount or if we lose the race and
0404  *  filesystem already got into shutdown, and returns true with the s_umount
0405  *  lock held in read mode in case of success. On successful return,
0406  *  the caller must drop the s_umount lock when done.
0407  *
0408  *  Note that unlike get_super() et.al. this one does *not* bump ->s_count.
0409  *  The reason why it's safe is that we are OK with doing trylock instead
0410  *  of down_read().  There's a couple of places that are OK with that, but
0411  *  it's very much not a general-purpose interface.
0412  */
0413 bool trylock_super(struct super_block *sb)
0414 {
0415     if (down_read_trylock(&sb->s_umount)) {
0416         if (!hlist_unhashed(&sb->s_instances) &&
0417             sb->s_root && (sb->s_flags & SB_BORN))
0418             return true;
0419         up_read(&sb->s_umount);
0420     }
0421 
0422     return false;
0423 }
0424 
0425 /**
0426  *  retire_super    -   prevents superblock from being reused
0427  *  @sb: superblock to retire
0428  *
0429  *  The function marks superblock to be ignored in superblock test, which
0430  *  prevents it from being reused for any new mounts.  If the superblock has
0431  *  a private bdi, it also unregisters it, but doesn't reduce the refcount
0432  *  of the superblock to prevent potential races.  The refcount is reduced
0433  *  by generic_shutdown_super().  The function can not be called
0434  *  concurrently with generic_shutdown_super().  It is safe to call the
0435  *  function multiple times, subsequent calls have no effect.
0436  *
0437  *  The marker will affect the re-use only for block-device-based
0438  *  superblocks.  Other superblocks will still get marked if this function
0439  *  is used, but that will not affect their reusability.
0440  */
0441 void retire_super(struct super_block *sb)
0442 {
0443     WARN_ON(!sb->s_bdev);
0444     down_write(&sb->s_umount);
0445     if (sb->s_iflags & SB_I_PERSB_BDI) {
0446         bdi_unregister(sb->s_bdi);
0447         sb->s_iflags &= ~SB_I_PERSB_BDI;
0448     }
0449     sb->s_iflags |= SB_I_RETIRED;
0450     up_write(&sb->s_umount);
0451 }
0452 EXPORT_SYMBOL(retire_super);
0453 
0454 /**
0455  *  generic_shutdown_super  -   common helper for ->kill_sb()
0456  *  @sb: superblock to kill
0457  *
0458  *  generic_shutdown_super() does all fs-independent work on superblock
0459  *  shutdown.  Typical ->kill_sb() should pick all fs-specific objects
0460  *  that need destruction out of superblock, call generic_shutdown_super()
0461  *  and release aforementioned objects.  Note: dentries and inodes _are_
0462  *  taken care of and do not need specific handling.
0463  *
0464  *  Upon calling this function, the filesystem may no longer alter or
0465  *  rearrange the set of dentries belonging to this super_block, nor may it
0466  *  change the attachments of dentries to inodes.
0467  */
0468 void generic_shutdown_super(struct super_block *sb)
0469 {
0470     const struct super_operations *sop = sb->s_op;
0471 
0472     if (sb->s_root) {
0473         shrink_dcache_for_umount(sb);
0474         sync_filesystem(sb);
0475         sb->s_flags &= ~SB_ACTIVE;
0476 
0477         cgroup_writeback_umount();
0478 
0479         /* evict all inodes with zero refcount */
0480         evict_inodes(sb);
0481         /* only nonzero refcount inodes can have marks */
0482         fsnotify_sb_delete(sb);
0483         security_sb_delete(sb);
0484 
0485         if (sb->s_dio_done_wq) {
0486             destroy_workqueue(sb->s_dio_done_wq);
0487             sb->s_dio_done_wq = NULL;
0488         }
0489 
0490         if (sop->put_super)
0491             sop->put_super(sb);
0492 
0493         if (!list_empty(&sb->s_inodes)) {
0494             printk("VFS: Busy inodes after unmount of %s. "
0495                "Self-destruct in 5 seconds.  Have a nice day...\n",
0496                sb->s_id);
0497         }
0498     }
0499     spin_lock(&sb_lock);
0500     /* should be initialized for __put_super_and_need_restart() */
0501     hlist_del_init(&sb->s_instances);
0502     spin_unlock(&sb_lock);
0503     up_write(&sb->s_umount);
0504     if (sb->s_bdi != &noop_backing_dev_info) {
0505         if (sb->s_iflags & SB_I_PERSB_BDI)
0506             bdi_unregister(sb->s_bdi);
0507         bdi_put(sb->s_bdi);
0508         sb->s_bdi = &noop_backing_dev_info;
0509     }
0510 }
0511 
0512 EXPORT_SYMBOL(generic_shutdown_super);
0513 
0514 bool mount_capable(struct fs_context *fc)
0515 {
0516     if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
0517         return capable(CAP_SYS_ADMIN);
0518     else
0519         return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
0520 }
0521 
0522 /**
0523  * sget_fc - Find or create a superblock
0524  * @fc: Filesystem context.
0525  * @test: Comparison callback
0526  * @set: Setup callback
0527  *
0528  * Find or create a superblock using the parameters stored in the filesystem
0529  * context and the two callback functions.
0530  *
0531  * If an extant superblock is matched, then that will be returned with an
0532  * elevated reference count that the caller must transfer or discard.
0533  *
0534  * If no match is made, a new superblock will be allocated and basic
0535  * initialisation will be performed (s_type, s_fs_info and s_id will be set and
0536  * the set() callback will be invoked), the superblock will be published and it
0537  * will be returned in a partially constructed state with SB_BORN and SB_ACTIVE
0538  * as yet unset.
0539  */
0540 struct super_block *sget_fc(struct fs_context *fc,
0541                 int (*test)(struct super_block *, struct fs_context *),
0542                 int (*set)(struct super_block *, struct fs_context *))
0543 {
0544     struct super_block *s = NULL;
0545     struct super_block *old;
0546     struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
0547     int err;
0548 
0549 retry:
0550     spin_lock(&sb_lock);
0551     if (test) {
0552         hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
0553             if (test(old, fc))
0554                 goto share_extant_sb;
0555         }
0556     }
0557     if (!s) {
0558         spin_unlock(&sb_lock);
0559         s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
0560         if (!s)
0561             return ERR_PTR(-ENOMEM);
0562         goto retry;
0563     }
0564 
0565     s->s_fs_info = fc->s_fs_info;
0566     err = set(s, fc);
0567     if (err) {
0568         s->s_fs_info = NULL;
0569         spin_unlock(&sb_lock);
0570         destroy_unused_super(s);
0571         return ERR_PTR(err);
0572     }
0573     fc->s_fs_info = NULL;
0574     s->s_type = fc->fs_type;
0575     s->s_iflags |= fc->s_iflags;
0576     strlcpy(s->s_id, s->s_type->name, sizeof(s->s_id));
0577     list_add_tail(&s->s_list, &super_blocks);
0578     hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
0579     spin_unlock(&sb_lock);
0580     get_filesystem(s->s_type);
0581     register_shrinker_prepared(&s->s_shrink);
0582     return s;
0583 
0584 share_extant_sb:
0585     if (user_ns != old->s_user_ns) {
0586         spin_unlock(&sb_lock);
0587         destroy_unused_super(s);
0588         return ERR_PTR(-EBUSY);
0589     }
0590     if (!grab_super(old))
0591         goto retry;
0592     destroy_unused_super(s);
0593     return old;
0594 }
0595 EXPORT_SYMBOL(sget_fc);
0596 
0597 /**
0598  *  sget    -   find or create a superblock
0599  *  @type:    filesystem type superblock should belong to
0600  *  @test:    comparison callback
0601  *  @set:     setup callback
0602  *  @flags:   mount flags
0603  *  @data:    argument to each of them
0604  */
0605 struct super_block *sget(struct file_system_type *type,
0606             int (*test)(struct super_block *,void *),
0607             int (*set)(struct super_block *,void *),
0608             int flags,
0609             void *data)
0610 {
0611     struct user_namespace *user_ns = current_user_ns();
0612     struct super_block *s = NULL;
0613     struct super_block *old;
0614     int err;
0615 
0616     /* We don't yet pass the user namespace of the parent
0617      * mount through to here so always use &init_user_ns
0618      * until that changes.
0619      */
0620     if (flags & SB_SUBMOUNT)
0621         user_ns = &init_user_ns;
0622 
0623 retry:
0624     spin_lock(&sb_lock);
0625     if (test) {
0626         hlist_for_each_entry(old, &type->fs_supers, s_instances) {
0627             if (!test(old, data))
0628                 continue;
0629             if (user_ns != old->s_user_ns) {
0630                 spin_unlock(&sb_lock);
0631                 destroy_unused_super(s);
0632                 return ERR_PTR(-EBUSY);
0633             }
0634             if (!grab_super(old))
0635                 goto retry;
0636             destroy_unused_super(s);
0637             return old;
0638         }
0639     }
0640     if (!s) {
0641         spin_unlock(&sb_lock);
0642         s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
0643         if (!s)
0644             return ERR_PTR(-ENOMEM);
0645         goto retry;
0646     }
0647 
0648     err = set(s, data);
0649     if (err) {
0650         spin_unlock(&sb_lock);
0651         destroy_unused_super(s);
0652         return ERR_PTR(err);
0653     }
0654     s->s_type = type;
0655     strlcpy(s->s_id, type->name, sizeof(s->s_id));
0656     list_add_tail(&s->s_list, &super_blocks);
0657     hlist_add_head(&s->s_instances, &type->fs_supers);
0658     spin_unlock(&sb_lock);
0659     get_filesystem(type);
0660     register_shrinker_prepared(&s->s_shrink);
0661     return s;
0662 }
0663 EXPORT_SYMBOL(sget);
0664 
0665 void drop_super(struct super_block *sb)
0666 {
0667     up_read(&sb->s_umount);
0668     put_super(sb);
0669 }
0670 
0671 EXPORT_SYMBOL(drop_super);
0672 
0673 void drop_super_exclusive(struct super_block *sb)
0674 {
0675     up_write(&sb->s_umount);
0676     put_super(sb);
0677 }
0678 EXPORT_SYMBOL(drop_super_exclusive);
0679 
0680 static void __iterate_supers(void (*f)(struct super_block *))
0681 {
0682     struct super_block *sb, *p = NULL;
0683 
0684     spin_lock(&sb_lock);
0685     list_for_each_entry(sb, &super_blocks, s_list) {
0686         if (hlist_unhashed(&sb->s_instances))
0687             continue;
0688         sb->s_count++;
0689         spin_unlock(&sb_lock);
0690 
0691         f(sb);
0692 
0693         spin_lock(&sb_lock);
0694         if (p)
0695             __put_super(p);
0696         p = sb;
0697     }
0698     if (p)
0699         __put_super(p);
0700     spin_unlock(&sb_lock);
0701 }
0702 /**
0703  *  iterate_supers - call function for all active superblocks
0704  *  @f: function to call
0705  *  @arg: argument to pass to it
0706  *
0707  *  Scans the superblock list and calls given function, passing it
0708  *  locked superblock and given argument.
0709  */
0710 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
0711 {
0712     struct super_block *sb, *p = NULL;
0713 
0714     spin_lock(&sb_lock);
0715     list_for_each_entry(sb, &super_blocks, s_list) {
0716         if (hlist_unhashed(&sb->s_instances))
0717             continue;
0718         sb->s_count++;
0719         spin_unlock(&sb_lock);
0720 
0721         down_read(&sb->s_umount);
0722         if (sb->s_root && (sb->s_flags & SB_BORN))
0723             f(sb, arg);
0724         up_read(&sb->s_umount);
0725 
0726         spin_lock(&sb_lock);
0727         if (p)
0728             __put_super(p);
0729         p = sb;
0730     }
0731     if (p)
0732         __put_super(p);
0733     spin_unlock(&sb_lock);
0734 }
0735 
0736 /**
0737  *  iterate_supers_type - call function for superblocks of given type
0738  *  @type: fs type
0739  *  @f: function to call
0740  *  @arg: argument to pass to it
0741  *
0742  *  Scans the superblock list and calls given function, passing it
0743  *  locked superblock and given argument.
0744  */
0745 void iterate_supers_type(struct file_system_type *type,
0746     void (*f)(struct super_block *, void *), void *arg)
0747 {
0748     struct super_block *sb, *p = NULL;
0749 
0750     spin_lock(&sb_lock);
0751     hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
0752         sb->s_count++;
0753         spin_unlock(&sb_lock);
0754 
0755         down_read(&sb->s_umount);
0756         if (sb->s_root && (sb->s_flags & SB_BORN))
0757             f(sb, arg);
0758         up_read(&sb->s_umount);
0759 
0760         spin_lock(&sb_lock);
0761         if (p)
0762             __put_super(p);
0763         p = sb;
0764     }
0765     if (p)
0766         __put_super(p);
0767     spin_unlock(&sb_lock);
0768 }
0769 
0770 EXPORT_SYMBOL(iterate_supers_type);
0771 
0772 /**
0773  * get_super - get the superblock of a device
0774  * @bdev: device to get the superblock for
0775  *
0776  * Scans the superblock list and finds the superblock of the file system
0777  * mounted on the device given. %NULL is returned if no match is found.
0778  */
0779 struct super_block *get_super(struct block_device *bdev)
0780 {
0781     struct super_block *sb;
0782 
0783     if (!bdev)
0784         return NULL;
0785 
0786     spin_lock(&sb_lock);
0787 rescan:
0788     list_for_each_entry(sb, &super_blocks, s_list) {
0789         if (hlist_unhashed(&sb->s_instances))
0790             continue;
0791         if (sb->s_bdev == bdev) {
0792             sb->s_count++;
0793             spin_unlock(&sb_lock);
0794             down_read(&sb->s_umount);
0795             /* still alive? */
0796             if (sb->s_root && (sb->s_flags & SB_BORN))
0797                 return sb;
0798             up_read(&sb->s_umount);
0799             /* nope, got unmounted */
0800             spin_lock(&sb_lock);
0801             __put_super(sb);
0802             goto rescan;
0803         }
0804     }
0805     spin_unlock(&sb_lock);
0806     return NULL;
0807 }
0808 
0809 /**
0810  * get_active_super - get an active reference to the superblock of a device
0811  * @bdev: device to get the superblock for
0812  *
0813  * Scans the superblock list and finds the superblock of the file system
0814  * mounted on the device given.  Returns the superblock with an active
0815  * reference or %NULL if none was found.
0816  */
0817 struct super_block *get_active_super(struct block_device *bdev)
0818 {
0819     struct super_block *sb;
0820 
0821     if (!bdev)
0822         return NULL;
0823 
0824 restart:
0825     spin_lock(&sb_lock);
0826     list_for_each_entry(sb, &super_blocks, s_list) {
0827         if (hlist_unhashed(&sb->s_instances))
0828             continue;
0829         if (sb->s_bdev == bdev) {
0830             if (!grab_super(sb))
0831                 goto restart;
0832             up_write(&sb->s_umount);
0833             return sb;
0834         }
0835     }
0836     spin_unlock(&sb_lock);
0837     return NULL;
0838 }
0839 
0840 struct super_block *user_get_super(dev_t dev, bool excl)
0841 {
0842     struct super_block *sb;
0843 
0844     spin_lock(&sb_lock);
0845 rescan:
0846     list_for_each_entry(sb, &super_blocks, s_list) {
0847         if (hlist_unhashed(&sb->s_instances))
0848             continue;
0849         if (sb->s_dev ==  dev) {
0850             sb->s_count++;
0851             spin_unlock(&sb_lock);
0852             if (excl)
0853                 down_write(&sb->s_umount);
0854             else
0855                 down_read(&sb->s_umount);
0856             /* still alive? */
0857             if (sb->s_root && (sb->s_flags & SB_BORN))
0858                 return sb;
0859             if (excl)
0860                 up_write(&sb->s_umount);
0861             else
0862                 up_read(&sb->s_umount);
0863             /* nope, got unmounted */
0864             spin_lock(&sb_lock);
0865             __put_super(sb);
0866             goto rescan;
0867         }
0868     }
0869     spin_unlock(&sb_lock);
0870     return NULL;
0871 }
0872 
0873 /**
0874  * reconfigure_super - asks filesystem to change superblock parameters
0875  * @fc: The superblock and configuration
0876  *
0877  * Alters the configuration parameters of a live superblock.
0878  */
0879 int reconfigure_super(struct fs_context *fc)
0880 {
0881     struct super_block *sb = fc->root->d_sb;
0882     int retval;
0883     bool remount_ro = false;
0884     bool force = fc->sb_flags & SB_FORCE;
0885 
0886     if (fc->sb_flags_mask & ~MS_RMT_MASK)
0887         return -EINVAL;
0888     if (sb->s_writers.frozen != SB_UNFROZEN)
0889         return -EBUSY;
0890 
0891     retval = security_sb_remount(sb, fc->security);
0892     if (retval)
0893         return retval;
0894 
0895     if (fc->sb_flags_mask & SB_RDONLY) {
0896 #ifdef CONFIG_BLOCK
0897         if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
0898             bdev_read_only(sb->s_bdev))
0899             return -EACCES;
0900 #endif
0901 
0902         remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
0903     }
0904 
0905     if (remount_ro) {
0906         if (!hlist_empty(&sb->s_pins)) {
0907             up_write(&sb->s_umount);
0908             group_pin_kill(&sb->s_pins);
0909             down_write(&sb->s_umount);
0910             if (!sb->s_root)
0911                 return 0;
0912             if (sb->s_writers.frozen != SB_UNFROZEN)
0913                 return -EBUSY;
0914             remount_ro = !sb_rdonly(sb);
0915         }
0916     }
0917     shrink_dcache_sb(sb);
0918 
0919     /* If we are reconfiguring to RDONLY and current sb is read/write,
0920      * make sure there are no files open for writing.
0921      */
0922     if (remount_ro) {
0923         if (force) {
0924             sb->s_readonly_remount = 1;
0925             smp_wmb();
0926         } else {
0927             retval = sb_prepare_remount_readonly(sb);
0928             if (retval)
0929                 return retval;
0930         }
0931     }
0932 
0933     if (fc->ops->reconfigure) {
0934         retval = fc->ops->reconfigure(fc);
0935         if (retval) {
0936             if (!force)
0937                 goto cancel_readonly;
0938             /* If forced remount, go ahead despite any errors */
0939             WARN(1, "forced remount of a %s fs returned %i\n",
0940                  sb->s_type->name, retval);
0941         }
0942     }
0943 
0944     WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
0945                  (fc->sb_flags & fc->sb_flags_mask)));
0946     /* Needs to be ordered wrt mnt_is_readonly() */
0947     smp_wmb();
0948     sb->s_readonly_remount = 0;
0949 
0950     /*
0951      * Some filesystems modify their metadata via some other path than the
0952      * bdev buffer cache (eg. use a private mapping, or directories in
0953      * pagecache, etc). Also file data modifications go via their own
0954      * mappings. So If we try to mount readonly then copy the filesystem
0955      * from bdev, we could get stale data, so invalidate it to give a best
0956      * effort at coherency.
0957      */
0958     if (remount_ro && sb->s_bdev)
0959         invalidate_bdev(sb->s_bdev);
0960     return 0;
0961 
0962 cancel_readonly:
0963     sb->s_readonly_remount = 0;
0964     return retval;
0965 }
0966 
0967 static void do_emergency_remount_callback(struct super_block *sb)
0968 {
0969     down_write(&sb->s_umount);
0970     if (sb->s_root && sb->s_bdev && (sb->s_flags & SB_BORN) &&
0971         !sb_rdonly(sb)) {
0972         struct fs_context *fc;
0973 
0974         fc = fs_context_for_reconfigure(sb->s_root,
0975                     SB_RDONLY | SB_FORCE, SB_RDONLY);
0976         if (!IS_ERR(fc)) {
0977             if (parse_monolithic_mount_data(fc, NULL) == 0)
0978                 (void)reconfigure_super(fc);
0979             put_fs_context(fc);
0980         }
0981     }
0982     up_write(&sb->s_umount);
0983 }
0984 
0985 static void do_emergency_remount(struct work_struct *work)
0986 {
0987     __iterate_supers(do_emergency_remount_callback);
0988     kfree(work);
0989     printk("Emergency Remount complete\n");
0990 }
0991 
0992 void emergency_remount(void)
0993 {
0994     struct work_struct *work;
0995 
0996     work = kmalloc(sizeof(*work), GFP_ATOMIC);
0997     if (work) {
0998         INIT_WORK(work, do_emergency_remount);
0999         schedule_work(work);
1000     }
1001 }
1002 
1003 static void do_thaw_all_callback(struct super_block *sb)
1004 {
1005     down_write(&sb->s_umount);
1006     if (sb->s_root && sb->s_flags & SB_BORN) {
1007         emergency_thaw_bdev(sb);
1008         thaw_super_locked(sb);
1009     } else {
1010         up_write(&sb->s_umount);
1011     }
1012 }
1013 
1014 static void do_thaw_all(struct work_struct *work)
1015 {
1016     __iterate_supers(do_thaw_all_callback);
1017     kfree(work);
1018     printk(KERN_WARNING "Emergency Thaw complete\n");
1019 }
1020 
1021 /**
1022  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1023  *
1024  * Used for emergency unfreeze of all filesystems via SysRq
1025  */
1026 void emergency_thaw_all(void)
1027 {
1028     struct work_struct *work;
1029 
1030     work = kmalloc(sizeof(*work), GFP_ATOMIC);
1031     if (work) {
1032         INIT_WORK(work, do_thaw_all);
1033         schedule_work(work);
1034     }
1035 }
1036 
1037 static DEFINE_IDA(unnamed_dev_ida);
1038 
1039 /**
1040  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1041  * @p: Pointer to a dev_t.
1042  *
1043  * Filesystems which don't use real block devices can call this function
1044  * to allocate a virtual block device.
1045  *
1046  * Context: Any context.  Frequently called while holding sb_lock.
1047  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1048  * or -ENOMEM if memory allocation failed.
1049  */
1050 int get_anon_bdev(dev_t *p)
1051 {
1052     int dev;
1053 
1054     /*
1055      * Many userspace utilities consider an FSID of 0 invalid.
1056      * Always return at least 1 from get_anon_bdev.
1057      */
1058     dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1059             GFP_ATOMIC);
1060     if (dev == -ENOSPC)
1061         dev = -EMFILE;
1062     if (dev < 0)
1063         return dev;
1064 
1065     *p = MKDEV(0, dev);
1066     return 0;
1067 }
1068 EXPORT_SYMBOL(get_anon_bdev);
1069 
1070 void free_anon_bdev(dev_t dev)
1071 {
1072     ida_free(&unnamed_dev_ida, MINOR(dev));
1073 }
1074 EXPORT_SYMBOL(free_anon_bdev);
1075 
1076 int set_anon_super(struct super_block *s, void *data)
1077 {
1078     return get_anon_bdev(&s->s_dev);
1079 }
1080 EXPORT_SYMBOL(set_anon_super);
1081 
1082 void kill_anon_super(struct super_block *sb)
1083 {
1084     dev_t dev = sb->s_dev;
1085     generic_shutdown_super(sb);
1086     free_anon_bdev(dev);
1087 }
1088 EXPORT_SYMBOL(kill_anon_super);
1089 
1090 void kill_litter_super(struct super_block *sb)
1091 {
1092     if (sb->s_root)
1093         d_genocide(sb->s_root);
1094     kill_anon_super(sb);
1095 }
1096 EXPORT_SYMBOL(kill_litter_super);
1097 
1098 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1099 {
1100     return set_anon_super(sb, NULL);
1101 }
1102 EXPORT_SYMBOL(set_anon_super_fc);
1103 
1104 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1105 {
1106     return sb->s_fs_info == fc->s_fs_info;
1107 }
1108 
1109 static int test_single_super(struct super_block *s, struct fs_context *fc)
1110 {
1111     return 1;
1112 }
1113 
1114 /**
1115  * vfs_get_super - Get a superblock with a search key set in s_fs_info.
1116  * @fc: The filesystem context holding the parameters
1117  * @keying: How to distinguish superblocks
1118  * @fill_super: Helper to initialise a new superblock
1119  *
1120  * Search for a superblock and create a new one if not found.  The search
1121  * criterion is controlled by @keying.  If the search fails, a new superblock
1122  * is created and @fill_super() is called to initialise it.
1123  *
1124  * @keying can take one of a number of values:
1125  *
1126  * (1) vfs_get_single_super - Only one superblock of this type may exist on the
1127  *     system.  This is typically used for special system filesystems.
1128  *
1129  * (2) vfs_get_keyed_super - Multiple superblocks may exist, but they must have
1130  *     distinct keys (where the key is in s_fs_info).  Searching for the same
1131  *     key again will turn up the superblock for that key.
1132  *
1133  * (3) vfs_get_independent_super - Multiple superblocks may exist and are
1134  *     unkeyed.  Each call will get a new superblock.
1135  *
1136  * A permissions check is made by sget_fc() unless we're getting a superblock
1137  * for a kernel-internal mount or a submount.
1138  */
1139 int vfs_get_super(struct fs_context *fc,
1140           enum vfs_get_super_keying keying,
1141           int (*fill_super)(struct super_block *sb,
1142                     struct fs_context *fc))
1143 {
1144     int (*test)(struct super_block *, struct fs_context *);
1145     struct super_block *sb;
1146     int err;
1147 
1148     switch (keying) {
1149     case vfs_get_single_super:
1150     case vfs_get_single_reconf_super:
1151         test = test_single_super;
1152         break;
1153     case vfs_get_keyed_super:
1154         test = test_keyed_super;
1155         break;
1156     case vfs_get_independent_super:
1157         test = NULL;
1158         break;
1159     default:
1160         BUG();
1161     }
1162 
1163     sb = sget_fc(fc, test, set_anon_super_fc);
1164     if (IS_ERR(sb))
1165         return PTR_ERR(sb);
1166 
1167     if (!sb->s_root) {
1168         err = fill_super(sb, fc);
1169         if (err)
1170             goto error;
1171 
1172         sb->s_flags |= SB_ACTIVE;
1173         fc->root = dget(sb->s_root);
1174     } else {
1175         fc->root = dget(sb->s_root);
1176         if (keying == vfs_get_single_reconf_super) {
1177             err = reconfigure_super(fc);
1178             if (err < 0) {
1179                 dput(fc->root);
1180                 fc->root = NULL;
1181                 goto error;
1182             }
1183         }
1184     }
1185 
1186     return 0;
1187 
1188 error:
1189     deactivate_locked_super(sb);
1190     return err;
1191 }
1192 EXPORT_SYMBOL(vfs_get_super);
1193 
1194 int get_tree_nodev(struct fs_context *fc,
1195           int (*fill_super)(struct super_block *sb,
1196                     struct fs_context *fc))
1197 {
1198     return vfs_get_super(fc, vfs_get_independent_super, fill_super);
1199 }
1200 EXPORT_SYMBOL(get_tree_nodev);
1201 
1202 int get_tree_single(struct fs_context *fc,
1203           int (*fill_super)(struct super_block *sb,
1204                     struct fs_context *fc))
1205 {
1206     return vfs_get_super(fc, vfs_get_single_super, fill_super);
1207 }
1208 EXPORT_SYMBOL(get_tree_single);
1209 
1210 int get_tree_single_reconf(struct fs_context *fc,
1211           int (*fill_super)(struct super_block *sb,
1212                     struct fs_context *fc))
1213 {
1214     return vfs_get_super(fc, vfs_get_single_reconf_super, fill_super);
1215 }
1216 EXPORT_SYMBOL(get_tree_single_reconf);
1217 
1218 int get_tree_keyed(struct fs_context *fc,
1219           int (*fill_super)(struct super_block *sb,
1220                     struct fs_context *fc),
1221         void *key)
1222 {
1223     fc->s_fs_info = key;
1224     return vfs_get_super(fc, vfs_get_keyed_super, fill_super);
1225 }
1226 EXPORT_SYMBOL(get_tree_keyed);
1227 
1228 #ifdef CONFIG_BLOCK
1229 
1230 static int set_bdev_super(struct super_block *s, void *data)
1231 {
1232     s->s_bdev = data;
1233     s->s_dev = s->s_bdev->bd_dev;
1234     s->s_bdi = bdi_get(s->s_bdev->bd_disk->bdi);
1235 
1236     if (bdev_stable_writes(s->s_bdev))
1237         s->s_iflags |= SB_I_STABLE_WRITES;
1238     return 0;
1239 }
1240 
1241 static int set_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1242 {
1243     return set_bdev_super(s, fc->sget_key);
1244 }
1245 
1246 static int test_bdev_super_fc(struct super_block *s, struct fs_context *fc)
1247 {
1248     return !(s->s_iflags & SB_I_RETIRED) && s->s_bdev == fc->sget_key;
1249 }
1250 
1251 /**
1252  * get_tree_bdev - Get a superblock based on a single block device
1253  * @fc: The filesystem context holding the parameters
1254  * @fill_super: Helper to initialise a new superblock
1255  */
1256 int get_tree_bdev(struct fs_context *fc,
1257         int (*fill_super)(struct super_block *,
1258                   struct fs_context *))
1259 {
1260     struct block_device *bdev;
1261     struct super_block *s;
1262     fmode_t mode = FMODE_READ | FMODE_EXCL;
1263     int error = 0;
1264 
1265     if (!(fc->sb_flags & SB_RDONLY))
1266         mode |= FMODE_WRITE;
1267 
1268     if (!fc->source)
1269         return invalf(fc, "No source specified");
1270 
1271     bdev = blkdev_get_by_path(fc->source, mode, fc->fs_type);
1272     if (IS_ERR(bdev)) {
1273         errorf(fc, "%s: Can't open blockdev", fc->source);
1274         return PTR_ERR(bdev);
1275     }
1276 
1277     /* Once the superblock is inserted into the list by sget_fc(), s_umount
1278      * will protect the lockfs code from trying to start a snapshot while
1279      * we are mounting
1280      */
1281     mutex_lock(&bdev->bd_fsfreeze_mutex);
1282     if (bdev->bd_fsfreeze_count > 0) {
1283         mutex_unlock(&bdev->bd_fsfreeze_mutex);
1284         warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1285         blkdev_put(bdev, mode);
1286         return -EBUSY;
1287     }
1288 
1289     fc->sb_flags |= SB_NOSEC;
1290     fc->sget_key = bdev;
1291     s = sget_fc(fc, test_bdev_super_fc, set_bdev_super_fc);
1292     mutex_unlock(&bdev->bd_fsfreeze_mutex);
1293     if (IS_ERR(s)) {
1294         blkdev_put(bdev, mode);
1295         return PTR_ERR(s);
1296     }
1297 
1298     if (s->s_root) {
1299         /* Don't summarily change the RO/RW state. */
1300         if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1301             warnf(fc, "%pg: Can't mount, would change RO state", bdev);
1302             deactivate_locked_super(s);
1303             blkdev_put(bdev, mode);
1304             return -EBUSY;
1305         }
1306 
1307         /*
1308          * s_umount nests inside open_mutex during
1309          * __invalidate_device().  blkdev_put() acquires
1310          * open_mutex and can't be called under s_umount.  Drop
1311          * s_umount temporarily.  This is safe as we're
1312          * holding an active reference.
1313          */
1314         up_write(&s->s_umount);
1315         blkdev_put(bdev, mode);
1316         down_write(&s->s_umount);
1317     } else {
1318         s->s_mode = mode;
1319         snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1320         shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1321                     fc->fs_type->name, s->s_id);
1322         sb_set_blocksize(s, block_size(bdev));
1323         error = fill_super(s, fc);
1324         if (error) {
1325             deactivate_locked_super(s);
1326             return error;
1327         }
1328 
1329         s->s_flags |= SB_ACTIVE;
1330         bdev->bd_super = s;
1331     }
1332 
1333     BUG_ON(fc->root);
1334     fc->root = dget(s->s_root);
1335     return 0;
1336 }
1337 EXPORT_SYMBOL(get_tree_bdev);
1338 
1339 static int test_bdev_super(struct super_block *s, void *data)
1340 {
1341     return !(s->s_iflags & SB_I_RETIRED) && (void *)s->s_bdev == data;
1342 }
1343 
1344 struct dentry *mount_bdev(struct file_system_type *fs_type,
1345     int flags, const char *dev_name, void *data,
1346     int (*fill_super)(struct super_block *, void *, int))
1347 {
1348     struct block_device *bdev;
1349     struct super_block *s;
1350     fmode_t mode = FMODE_READ | FMODE_EXCL;
1351     int error = 0;
1352 
1353     if (!(flags & SB_RDONLY))
1354         mode |= FMODE_WRITE;
1355 
1356     bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1357     if (IS_ERR(bdev))
1358         return ERR_CAST(bdev);
1359 
1360     /*
1361      * once the super is inserted into the list by sget, s_umount
1362      * will protect the lockfs code from trying to start a snapshot
1363      * while we are mounting
1364      */
1365     mutex_lock(&bdev->bd_fsfreeze_mutex);
1366     if (bdev->bd_fsfreeze_count > 0) {
1367         mutex_unlock(&bdev->bd_fsfreeze_mutex);
1368         error = -EBUSY;
1369         goto error_bdev;
1370     }
1371     s = sget(fs_type, test_bdev_super, set_bdev_super, flags | SB_NOSEC,
1372          bdev);
1373     mutex_unlock(&bdev->bd_fsfreeze_mutex);
1374     if (IS_ERR(s))
1375         goto error_s;
1376 
1377     if (s->s_root) {
1378         if ((flags ^ s->s_flags) & SB_RDONLY) {
1379             deactivate_locked_super(s);
1380             error = -EBUSY;
1381             goto error_bdev;
1382         }
1383 
1384         /*
1385          * s_umount nests inside open_mutex during
1386          * __invalidate_device().  blkdev_put() acquires
1387          * open_mutex and can't be called under s_umount.  Drop
1388          * s_umount temporarily.  This is safe as we're
1389          * holding an active reference.
1390          */
1391         up_write(&s->s_umount);
1392         blkdev_put(bdev, mode);
1393         down_write(&s->s_umount);
1394     } else {
1395         s->s_mode = mode;
1396         snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1397         shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s",
1398                     fs_type->name, s->s_id);
1399         sb_set_blocksize(s, block_size(bdev));
1400         error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1401         if (error) {
1402             deactivate_locked_super(s);
1403             goto error;
1404         }
1405 
1406         s->s_flags |= SB_ACTIVE;
1407         bdev->bd_super = s;
1408     }
1409 
1410     return dget(s->s_root);
1411 
1412 error_s:
1413     error = PTR_ERR(s);
1414 error_bdev:
1415     blkdev_put(bdev, mode);
1416 error:
1417     return ERR_PTR(error);
1418 }
1419 EXPORT_SYMBOL(mount_bdev);
1420 
1421 void kill_block_super(struct super_block *sb)
1422 {
1423     struct block_device *bdev = sb->s_bdev;
1424     fmode_t mode = sb->s_mode;
1425 
1426     bdev->bd_super = NULL;
1427     generic_shutdown_super(sb);
1428     sync_blockdev(bdev);
1429     WARN_ON_ONCE(!(mode & FMODE_EXCL));
1430     blkdev_put(bdev, mode | FMODE_EXCL);
1431 }
1432 
1433 EXPORT_SYMBOL(kill_block_super);
1434 #endif
1435 
1436 struct dentry *mount_nodev(struct file_system_type *fs_type,
1437     int flags, void *data,
1438     int (*fill_super)(struct super_block *, void *, int))
1439 {
1440     int error;
1441     struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1442 
1443     if (IS_ERR(s))
1444         return ERR_CAST(s);
1445 
1446     error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1447     if (error) {
1448         deactivate_locked_super(s);
1449         return ERR_PTR(error);
1450     }
1451     s->s_flags |= SB_ACTIVE;
1452     return dget(s->s_root);
1453 }
1454 EXPORT_SYMBOL(mount_nodev);
1455 
1456 int reconfigure_single(struct super_block *s,
1457                int flags, void *data)
1458 {
1459     struct fs_context *fc;
1460     int ret;
1461 
1462     /* The caller really need to be passing fc down into mount_single(),
1463      * then a chunk of this can be removed.  [Bollocks -- AV]
1464      * Better yet, reconfiguration shouldn't happen, but rather the second
1465      * mount should be rejected if the parameters are not compatible.
1466      */
1467     fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1468     if (IS_ERR(fc))
1469         return PTR_ERR(fc);
1470 
1471     ret = parse_monolithic_mount_data(fc, data);
1472     if (ret < 0)
1473         goto out;
1474 
1475     ret = reconfigure_super(fc);
1476 out:
1477     put_fs_context(fc);
1478     return ret;
1479 }
1480 
1481 static int compare_single(struct super_block *s, void *p)
1482 {
1483     return 1;
1484 }
1485 
1486 struct dentry *mount_single(struct file_system_type *fs_type,
1487     int flags, void *data,
1488     int (*fill_super)(struct super_block *, void *, int))
1489 {
1490     struct super_block *s;
1491     int error;
1492 
1493     s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1494     if (IS_ERR(s))
1495         return ERR_CAST(s);
1496     if (!s->s_root) {
1497         error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1498         if (!error)
1499             s->s_flags |= SB_ACTIVE;
1500     } else {
1501         error = reconfigure_single(s, flags, data);
1502     }
1503     if (unlikely(error)) {
1504         deactivate_locked_super(s);
1505         return ERR_PTR(error);
1506     }
1507     return dget(s->s_root);
1508 }
1509 EXPORT_SYMBOL(mount_single);
1510 
1511 /**
1512  * vfs_get_tree - Get the mountable root
1513  * @fc: The superblock configuration context.
1514  *
1515  * The filesystem is invoked to get or create a superblock which can then later
1516  * be used for mounting.  The filesystem places a pointer to the root to be
1517  * used for mounting in @fc->root.
1518  */
1519 int vfs_get_tree(struct fs_context *fc)
1520 {
1521     struct super_block *sb;
1522     int error;
1523 
1524     if (fc->root)
1525         return -EBUSY;
1526 
1527     /* Get the mountable root in fc->root, with a ref on the root and a ref
1528      * on the superblock.
1529      */
1530     error = fc->ops->get_tree(fc);
1531     if (error < 0)
1532         return error;
1533 
1534     if (!fc->root) {
1535         pr_err("Filesystem %s get_tree() didn't set fc->root\n",
1536                fc->fs_type->name);
1537         /* We don't know what the locking state of the superblock is -
1538          * if there is a superblock.
1539          */
1540         BUG();
1541     }
1542 
1543     sb = fc->root->d_sb;
1544     WARN_ON(!sb->s_bdi);
1545 
1546     /*
1547      * Write barrier is for super_cache_count(). We place it before setting
1548      * SB_BORN as the data dependency between the two functions is the
1549      * superblock structure contents that we just set up, not the SB_BORN
1550      * flag.
1551      */
1552     smp_wmb();
1553     sb->s_flags |= SB_BORN;
1554 
1555     error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1556     if (unlikely(error)) {
1557         fc_drop_locked(fc);
1558         return error;
1559     }
1560 
1561     /*
1562      * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1563      * but s_maxbytes was an unsigned long long for many releases. Throw
1564      * this warning for a little while to try and catch filesystems that
1565      * violate this rule.
1566      */
1567     WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1568         "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1569 
1570     return 0;
1571 }
1572 EXPORT_SYMBOL(vfs_get_tree);
1573 
1574 /*
1575  * Setup private BDI for given superblock. It gets automatically cleaned up
1576  * in generic_shutdown_super().
1577  */
1578 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1579 {
1580     struct backing_dev_info *bdi;
1581     int err;
1582     va_list args;
1583 
1584     bdi = bdi_alloc(NUMA_NO_NODE);
1585     if (!bdi)
1586         return -ENOMEM;
1587 
1588     va_start(args, fmt);
1589     err = bdi_register_va(bdi, fmt, args);
1590     va_end(args);
1591     if (err) {
1592         bdi_put(bdi);
1593         return err;
1594     }
1595     WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1596     sb->s_bdi = bdi;
1597     sb->s_iflags |= SB_I_PERSB_BDI;
1598 
1599     return 0;
1600 }
1601 EXPORT_SYMBOL(super_setup_bdi_name);
1602 
1603 /*
1604  * Setup private BDI for given superblock. I gets automatically cleaned up
1605  * in generic_shutdown_super().
1606  */
1607 int super_setup_bdi(struct super_block *sb)
1608 {
1609     static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1610 
1611     return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1612                     atomic_long_inc_return(&bdi_seq));
1613 }
1614 EXPORT_SYMBOL(super_setup_bdi);
1615 
1616 /**
1617  * sb_wait_write - wait until all writers to given file system finish
1618  * @sb: the super for which we wait
1619  * @level: type of writers we wait for (normal vs page fault)
1620  *
1621  * This function waits until there are no writers of given type to given file
1622  * system.
1623  */
1624 static void sb_wait_write(struct super_block *sb, int level)
1625 {
1626     percpu_down_write(sb->s_writers.rw_sem + level-1);
1627 }
1628 
1629 /*
1630  * We are going to return to userspace and forget about these locks, the
1631  * ownership goes to the caller of thaw_super() which does unlock().
1632  */
1633 static void lockdep_sb_freeze_release(struct super_block *sb)
1634 {
1635     int level;
1636 
1637     for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1638         percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1639 }
1640 
1641 /*
1642  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1643  */
1644 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1645 {
1646     int level;
1647 
1648     for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1649         percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1650 }
1651 
1652 static void sb_freeze_unlock(struct super_block *sb, int level)
1653 {
1654     for (level--; level >= 0; level--)
1655         percpu_up_write(sb->s_writers.rw_sem + level);
1656 }
1657 
1658 /**
1659  * freeze_super - lock the filesystem and force it into a consistent state
1660  * @sb: the super to lock
1661  *
1662  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1663  * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1664  * -EBUSY.
1665  *
1666  * During this function, sb->s_writers.frozen goes through these values:
1667  *
1668  * SB_UNFROZEN: File system is normal, all writes progress as usual.
1669  *
1670  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1671  * writes should be blocked, though page faults are still allowed. We wait for
1672  * all writes to complete and then proceed to the next stage.
1673  *
1674  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1675  * but internal fs threads can still modify the filesystem (although they
1676  * should not dirty new pages or inodes), writeback can run etc. After waiting
1677  * for all running page faults we sync the filesystem which will clean all
1678  * dirty pages and inodes (no new dirty pages or inodes can be created when
1679  * sync is running).
1680  *
1681  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1682  * modification are blocked (e.g. XFS preallocation truncation on inode
1683  * reclaim). This is usually implemented by blocking new transactions for
1684  * filesystems that have them and need this additional guard. After all
1685  * internal writers are finished we call ->freeze_fs() to finish filesystem
1686  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1687  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1688  *
1689  * sb->s_writers.frozen is protected by sb->s_umount.
1690  */
1691 int freeze_super(struct super_block *sb)
1692 {
1693     int ret;
1694 
1695     atomic_inc(&sb->s_active);
1696     down_write(&sb->s_umount);
1697     if (sb->s_writers.frozen != SB_UNFROZEN) {
1698         deactivate_locked_super(sb);
1699         return -EBUSY;
1700     }
1701 
1702     if (!(sb->s_flags & SB_BORN)) {
1703         up_write(&sb->s_umount);
1704         return 0;   /* sic - it's "nothing to do" */
1705     }
1706 
1707     if (sb_rdonly(sb)) {
1708         /* Nothing to do really... */
1709         sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1710         up_write(&sb->s_umount);
1711         return 0;
1712     }
1713 
1714     sb->s_writers.frozen = SB_FREEZE_WRITE;
1715     /* Release s_umount to preserve sb_start_write -> s_umount ordering */
1716     up_write(&sb->s_umount);
1717     sb_wait_write(sb, SB_FREEZE_WRITE);
1718     down_write(&sb->s_umount);
1719 
1720     /* Now we go and block page faults... */
1721     sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1722     sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1723 
1724     /* All writers are done so after syncing there won't be dirty data */
1725     ret = sync_filesystem(sb);
1726     if (ret) {
1727         sb->s_writers.frozen = SB_UNFROZEN;
1728         sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
1729         wake_up(&sb->s_writers.wait_unfrozen);
1730         deactivate_locked_super(sb);
1731         return ret;
1732     }
1733 
1734     /* Now wait for internal filesystem counter */
1735     sb->s_writers.frozen = SB_FREEZE_FS;
1736     sb_wait_write(sb, SB_FREEZE_FS);
1737 
1738     if (sb->s_op->freeze_fs) {
1739         ret = sb->s_op->freeze_fs(sb);
1740         if (ret) {
1741             printk(KERN_ERR
1742                 "VFS:Filesystem freeze failed\n");
1743             sb->s_writers.frozen = SB_UNFROZEN;
1744             sb_freeze_unlock(sb, SB_FREEZE_FS);
1745             wake_up(&sb->s_writers.wait_unfrozen);
1746             deactivate_locked_super(sb);
1747             return ret;
1748         }
1749     }
1750     /*
1751      * For debugging purposes so that fs can warn if it sees write activity
1752      * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
1753      */
1754     sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1755     lockdep_sb_freeze_release(sb);
1756     up_write(&sb->s_umount);
1757     return 0;
1758 }
1759 EXPORT_SYMBOL(freeze_super);
1760 
1761 static int thaw_super_locked(struct super_block *sb)
1762 {
1763     int error;
1764 
1765     if (sb->s_writers.frozen != SB_FREEZE_COMPLETE) {
1766         up_write(&sb->s_umount);
1767         return -EINVAL;
1768     }
1769 
1770     if (sb_rdonly(sb)) {
1771         sb->s_writers.frozen = SB_UNFROZEN;
1772         goto out;
1773     }
1774 
1775     lockdep_sb_freeze_acquire(sb);
1776 
1777     if (sb->s_op->unfreeze_fs) {
1778         error = sb->s_op->unfreeze_fs(sb);
1779         if (error) {
1780             printk(KERN_ERR
1781                 "VFS:Filesystem thaw failed\n");
1782             lockdep_sb_freeze_release(sb);
1783             up_write(&sb->s_umount);
1784             return error;
1785         }
1786     }
1787 
1788     sb->s_writers.frozen = SB_UNFROZEN;
1789     sb_freeze_unlock(sb, SB_FREEZE_FS);
1790 out:
1791     wake_up(&sb->s_writers.wait_unfrozen);
1792     deactivate_locked_super(sb);
1793     return 0;
1794 }
1795 
1796 /**
1797  * thaw_super -- unlock filesystem
1798  * @sb: the super to thaw
1799  *
1800  * Unlocks the filesystem and marks it writeable again after freeze_super().
1801  */
1802 int thaw_super(struct super_block *sb)
1803 {
1804     down_write(&sb->s_umount);
1805     return thaw_super_locked(sb);
1806 }
1807 EXPORT_SYMBOL(thaw_super);