Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/fs/pnode.c
0004  *
0005  * (C) Copyright IBM Corporation 2005.
0006  *  Author : Ram Pai (linuxram@us.ibm.com)
0007  */
0008 #include <linux/mnt_namespace.h>
0009 #include <linux/mount.h>
0010 #include <linux/fs.h>
0011 #include <linux/nsproxy.h>
0012 #include <uapi/linux/mount.h>
0013 #include "internal.h"
0014 #include "pnode.h"
0015 
0016 /* return the next shared peer mount of @p */
0017 static inline struct mount *next_peer(struct mount *p)
0018 {
0019     return list_entry(p->mnt_share.next, struct mount, mnt_share);
0020 }
0021 
0022 static inline struct mount *first_slave(struct mount *p)
0023 {
0024     return list_entry(p->mnt_slave_list.next, struct mount, mnt_slave);
0025 }
0026 
0027 static inline struct mount *last_slave(struct mount *p)
0028 {
0029     return list_entry(p->mnt_slave_list.prev, struct mount, mnt_slave);
0030 }
0031 
0032 static inline struct mount *next_slave(struct mount *p)
0033 {
0034     return list_entry(p->mnt_slave.next, struct mount, mnt_slave);
0035 }
0036 
0037 static struct mount *get_peer_under_root(struct mount *mnt,
0038                      struct mnt_namespace *ns,
0039                      const struct path *root)
0040 {
0041     struct mount *m = mnt;
0042 
0043     do {
0044         /* Check the namespace first for optimization */
0045         if (m->mnt_ns == ns && is_path_reachable(m, m->mnt.mnt_root, root))
0046             return m;
0047 
0048         m = next_peer(m);
0049     } while (m != mnt);
0050 
0051     return NULL;
0052 }
0053 
0054 /*
0055  * Get ID of closest dominating peer group having a representative
0056  * under the given root.
0057  *
0058  * Caller must hold namespace_sem
0059  */
0060 int get_dominating_id(struct mount *mnt, const struct path *root)
0061 {
0062     struct mount *m;
0063 
0064     for (m = mnt->mnt_master; m != NULL; m = m->mnt_master) {
0065         struct mount *d = get_peer_under_root(m, mnt->mnt_ns, root);
0066         if (d)
0067             return d->mnt_group_id;
0068     }
0069 
0070     return 0;
0071 }
0072 
0073 static int do_make_slave(struct mount *mnt)
0074 {
0075     struct mount *master, *slave_mnt;
0076 
0077     if (list_empty(&mnt->mnt_share)) {
0078         if (IS_MNT_SHARED(mnt)) {
0079             mnt_release_group_id(mnt);
0080             CLEAR_MNT_SHARED(mnt);
0081         }
0082         master = mnt->mnt_master;
0083         if (!master) {
0084             struct list_head *p = &mnt->mnt_slave_list;
0085             while (!list_empty(p)) {
0086                 slave_mnt = list_first_entry(p,
0087                         struct mount, mnt_slave);
0088                 list_del_init(&slave_mnt->mnt_slave);
0089                 slave_mnt->mnt_master = NULL;
0090             }
0091             return 0;
0092         }
0093     } else {
0094         struct mount *m;
0095         /*
0096          * slave 'mnt' to a peer mount that has the
0097          * same root dentry. If none is available then
0098          * slave it to anything that is available.
0099          */
0100         for (m = master = next_peer(mnt); m != mnt; m = next_peer(m)) {
0101             if (m->mnt.mnt_root == mnt->mnt.mnt_root) {
0102                 master = m;
0103                 break;
0104             }
0105         }
0106         list_del_init(&mnt->mnt_share);
0107         mnt->mnt_group_id = 0;
0108         CLEAR_MNT_SHARED(mnt);
0109     }
0110     list_for_each_entry(slave_mnt, &mnt->mnt_slave_list, mnt_slave)
0111         slave_mnt->mnt_master = master;
0112     list_move(&mnt->mnt_slave, &master->mnt_slave_list);
0113     list_splice(&mnt->mnt_slave_list, master->mnt_slave_list.prev);
0114     INIT_LIST_HEAD(&mnt->mnt_slave_list);
0115     mnt->mnt_master = master;
0116     return 0;
0117 }
0118 
0119 /*
0120  * vfsmount lock must be held for write
0121  */
0122 void change_mnt_propagation(struct mount *mnt, int type)
0123 {
0124     if (type == MS_SHARED) {
0125         set_mnt_shared(mnt);
0126         return;
0127     }
0128     do_make_slave(mnt);
0129     if (type != MS_SLAVE) {
0130         list_del_init(&mnt->mnt_slave);
0131         mnt->mnt_master = NULL;
0132         if (type == MS_UNBINDABLE)
0133             mnt->mnt.mnt_flags |= MNT_UNBINDABLE;
0134         else
0135             mnt->mnt.mnt_flags &= ~MNT_UNBINDABLE;
0136     }
0137 }
0138 
0139 /*
0140  * get the next mount in the propagation tree.
0141  * @m: the mount seen last
0142  * @origin: the original mount from where the tree walk initiated
0143  *
0144  * Note that peer groups form contiguous segments of slave lists.
0145  * We rely on that in get_source() to be able to find out if
0146  * vfsmount found while iterating with propagation_next() is
0147  * a peer of one we'd found earlier.
0148  */
0149 static struct mount *propagation_next(struct mount *m,
0150                      struct mount *origin)
0151 {
0152     /* are there any slaves of this mount? */
0153     if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
0154         return first_slave(m);
0155 
0156     while (1) {
0157         struct mount *master = m->mnt_master;
0158 
0159         if (master == origin->mnt_master) {
0160             struct mount *next = next_peer(m);
0161             return (next == origin) ? NULL : next;
0162         } else if (m->mnt_slave.next != &master->mnt_slave_list)
0163             return next_slave(m);
0164 
0165         /* back at master */
0166         m = master;
0167     }
0168 }
0169 
0170 static struct mount *skip_propagation_subtree(struct mount *m,
0171                         struct mount *origin)
0172 {
0173     /*
0174      * Advance m such that propagation_next will not return
0175      * the slaves of m.
0176      */
0177     if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
0178         m = last_slave(m);
0179 
0180     return m;
0181 }
0182 
0183 static struct mount *next_group(struct mount *m, struct mount *origin)
0184 {
0185     while (1) {
0186         while (1) {
0187             struct mount *next;
0188             if (!IS_MNT_NEW(m) && !list_empty(&m->mnt_slave_list))
0189                 return first_slave(m);
0190             next = next_peer(m);
0191             if (m->mnt_group_id == origin->mnt_group_id) {
0192                 if (next == origin)
0193                     return NULL;
0194             } else if (m->mnt_slave.next != &next->mnt_slave)
0195                 break;
0196             m = next;
0197         }
0198         /* m is the last peer */
0199         while (1) {
0200             struct mount *master = m->mnt_master;
0201             if (m->mnt_slave.next != &master->mnt_slave_list)
0202                 return next_slave(m);
0203             m = next_peer(master);
0204             if (master->mnt_group_id == origin->mnt_group_id)
0205                 break;
0206             if (master->mnt_slave.next == &m->mnt_slave)
0207                 break;
0208             m = master;
0209         }
0210         if (m == origin)
0211             return NULL;
0212     }
0213 }
0214 
0215 /* all accesses are serialized by namespace_sem */
0216 static struct mount *last_dest, *first_source, *last_source, *dest_master;
0217 static struct mountpoint *mp;
0218 static struct hlist_head *list;
0219 
0220 static inline bool peers(struct mount *m1, struct mount *m2)
0221 {
0222     return m1->mnt_group_id == m2->mnt_group_id && m1->mnt_group_id;
0223 }
0224 
0225 static int propagate_one(struct mount *m)
0226 {
0227     struct mount *child;
0228     int type;
0229     /* skip ones added by this propagate_mnt() */
0230     if (IS_MNT_NEW(m))
0231         return 0;
0232     /* skip if mountpoint isn't covered by it */
0233     if (!is_subdir(mp->m_dentry, m->mnt.mnt_root))
0234         return 0;
0235     if (peers(m, last_dest)) {
0236         type = CL_MAKE_SHARED;
0237     } else {
0238         struct mount *n, *p;
0239         bool done;
0240         for (n = m; ; n = p) {
0241             p = n->mnt_master;
0242             if (p == dest_master || IS_MNT_MARKED(p))
0243                 break;
0244         }
0245         do {
0246             struct mount *parent = last_source->mnt_parent;
0247             if (last_source == first_source)
0248                 break;
0249             done = parent->mnt_master == p;
0250             if (done && peers(n, parent))
0251                 break;
0252             last_source = last_source->mnt_master;
0253         } while (!done);
0254 
0255         type = CL_SLAVE;
0256         /* beginning of peer group among the slaves? */
0257         if (IS_MNT_SHARED(m))
0258             type |= CL_MAKE_SHARED;
0259     }
0260         
0261     child = copy_tree(last_source, last_source->mnt.mnt_root, type);
0262     if (IS_ERR(child))
0263         return PTR_ERR(child);
0264     read_seqlock_excl(&mount_lock);
0265     mnt_set_mountpoint(m, mp, child);
0266     if (m->mnt_master != dest_master)
0267         SET_MNT_MARK(m->mnt_master);
0268     read_sequnlock_excl(&mount_lock);
0269     last_dest = m;
0270     last_source = child;
0271     hlist_add_head(&child->mnt_hash, list);
0272     return count_mounts(m->mnt_ns, child);
0273 }
0274 
0275 /*
0276  * mount 'source_mnt' under the destination 'dest_mnt' at
0277  * dentry 'dest_dentry'. And propagate that mount to
0278  * all the peer and slave mounts of 'dest_mnt'.
0279  * Link all the new mounts into a propagation tree headed at
0280  * source_mnt. Also link all the new mounts using ->mnt_list
0281  * headed at source_mnt's ->mnt_list
0282  *
0283  * @dest_mnt: destination mount.
0284  * @dest_dentry: destination dentry.
0285  * @source_mnt: source mount.
0286  * @tree_list : list of heads of trees to be attached.
0287  */
0288 int propagate_mnt(struct mount *dest_mnt, struct mountpoint *dest_mp,
0289             struct mount *source_mnt, struct hlist_head *tree_list)
0290 {
0291     struct mount *m, *n;
0292     int ret = 0;
0293 
0294     /*
0295      * we don't want to bother passing tons of arguments to
0296      * propagate_one(); everything is serialized by namespace_sem,
0297      * so globals will do just fine.
0298      */
0299     last_dest = dest_mnt;
0300     first_source = source_mnt;
0301     last_source = source_mnt;
0302     mp = dest_mp;
0303     list = tree_list;
0304     dest_master = dest_mnt->mnt_master;
0305 
0306     /* all peers of dest_mnt, except dest_mnt itself */
0307     for (n = next_peer(dest_mnt); n != dest_mnt; n = next_peer(n)) {
0308         ret = propagate_one(n);
0309         if (ret)
0310             goto out;
0311     }
0312 
0313     /* all slave groups */
0314     for (m = next_group(dest_mnt, dest_mnt); m;
0315             m = next_group(m, dest_mnt)) {
0316         /* everything in that slave group */
0317         n = m;
0318         do {
0319             ret = propagate_one(n);
0320             if (ret)
0321                 goto out;
0322             n = next_peer(n);
0323         } while (n != m);
0324     }
0325 out:
0326     read_seqlock_excl(&mount_lock);
0327     hlist_for_each_entry(n, tree_list, mnt_hash) {
0328         m = n->mnt_parent;
0329         if (m->mnt_master != dest_mnt->mnt_master)
0330             CLEAR_MNT_MARK(m->mnt_master);
0331     }
0332     read_sequnlock_excl(&mount_lock);
0333     return ret;
0334 }
0335 
0336 static struct mount *find_topper(struct mount *mnt)
0337 {
0338     /* If there is exactly one mount covering mnt completely return it. */
0339     struct mount *child;
0340 
0341     if (!list_is_singular(&mnt->mnt_mounts))
0342         return NULL;
0343 
0344     child = list_first_entry(&mnt->mnt_mounts, struct mount, mnt_child);
0345     if (child->mnt_mountpoint != mnt->mnt.mnt_root)
0346         return NULL;
0347 
0348     return child;
0349 }
0350 
0351 /*
0352  * return true if the refcount is greater than count
0353  */
0354 static inline int do_refcount_check(struct mount *mnt, int count)
0355 {
0356     return mnt_get_count(mnt) > count;
0357 }
0358 
0359 /*
0360  * check if the mount 'mnt' can be unmounted successfully.
0361  * @mnt: the mount to be checked for unmount
0362  * NOTE: unmounting 'mnt' would naturally propagate to all
0363  * other mounts its parent propagates to.
0364  * Check if any of these mounts that **do not have submounts**
0365  * have more references than 'refcnt'. If so return busy.
0366  *
0367  * vfsmount lock must be held for write
0368  */
0369 int propagate_mount_busy(struct mount *mnt, int refcnt)
0370 {
0371     struct mount *m, *child, *topper;
0372     struct mount *parent = mnt->mnt_parent;
0373 
0374     if (mnt == parent)
0375         return do_refcount_check(mnt, refcnt);
0376 
0377     /*
0378      * quickly check if the current mount can be unmounted.
0379      * If not, we don't have to go checking for all other
0380      * mounts
0381      */
0382     if (!list_empty(&mnt->mnt_mounts) || do_refcount_check(mnt, refcnt))
0383         return 1;
0384 
0385     for (m = propagation_next(parent, parent); m;
0386                 m = propagation_next(m, parent)) {
0387         int count = 1;
0388         child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
0389         if (!child)
0390             continue;
0391 
0392         /* Is there exactly one mount on the child that covers
0393          * it completely whose reference should be ignored?
0394          */
0395         topper = find_topper(child);
0396         if (topper)
0397             count += 1;
0398         else if (!list_empty(&child->mnt_mounts))
0399             continue;
0400 
0401         if (do_refcount_check(child, count))
0402             return 1;
0403     }
0404     return 0;
0405 }
0406 
0407 /*
0408  * Clear MNT_LOCKED when it can be shown to be safe.
0409  *
0410  * mount_lock lock must be held for write
0411  */
0412 void propagate_mount_unlock(struct mount *mnt)
0413 {
0414     struct mount *parent = mnt->mnt_parent;
0415     struct mount *m, *child;
0416 
0417     BUG_ON(parent == mnt);
0418 
0419     for (m = propagation_next(parent, parent); m;
0420             m = propagation_next(m, parent)) {
0421         child = __lookup_mnt(&m->mnt, mnt->mnt_mountpoint);
0422         if (child)
0423             child->mnt.mnt_flags &= ~MNT_LOCKED;
0424     }
0425 }
0426 
0427 static void umount_one(struct mount *mnt, struct list_head *to_umount)
0428 {
0429     CLEAR_MNT_MARK(mnt);
0430     mnt->mnt.mnt_flags |= MNT_UMOUNT;
0431     list_del_init(&mnt->mnt_child);
0432     list_del_init(&mnt->mnt_umounting);
0433     list_move_tail(&mnt->mnt_list, to_umount);
0434 }
0435 
0436 /*
0437  * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
0438  * parent propagates to.
0439  */
0440 static bool __propagate_umount(struct mount *mnt,
0441                    struct list_head *to_umount,
0442                    struct list_head *to_restore)
0443 {
0444     bool progress = false;
0445     struct mount *child;
0446 
0447     /*
0448      * The state of the parent won't change if this mount is
0449      * already unmounted or marked as without children.
0450      */
0451     if (mnt->mnt.mnt_flags & (MNT_UMOUNT | MNT_MARKED))
0452         goto out;
0453 
0454     /* Verify topper is the only grandchild that has not been
0455      * speculatively unmounted.
0456      */
0457     list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
0458         if (child->mnt_mountpoint == mnt->mnt.mnt_root)
0459             continue;
0460         if (!list_empty(&child->mnt_umounting) && IS_MNT_MARKED(child))
0461             continue;
0462         /* Found a mounted child */
0463         goto children;
0464     }
0465 
0466     /* Mark mounts that can be unmounted if not locked */
0467     SET_MNT_MARK(mnt);
0468     progress = true;
0469 
0470     /* If a mount is without children and not locked umount it. */
0471     if (!IS_MNT_LOCKED(mnt)) {
0472         umount_one(mnt, to_umount);
0473     } else {
0474 children:
0475         list_move_tail(&mnt->mnt_umounting, to_restore);
0476     }
0477 out:
0478     return progress;
0479 }
0480 
0481 static void umount_list(struct list_head *to_umount,
0482             struct list_head *to_restore)
0483 {
0484     struct mount *mnt, *child, *tmp;
0485     list_for_each_entry(mnt, to_umount, mnt_list) {
0486         list_for_each_entry_safe(child, tmp, &mnt->mnt_mounts, mnt_child) {
0487             /* topper? */
0488             if (child->mnt_mountpoint == mnt->mnt.mnt_root)
0489                 list_move_tail(&child->mnt_umounting, to_restore);
0490             else
0491                 umount_one(child, to_umount);
0492         }
0493     }
0494 }
0495 
0496 static void restore_mounts(struct list_head *to_restore)
0497 {
0498     /* Restore mounts to a clean working state */
0499     while (!list_empty(to_restore)) {
0500         struct mount *mnt, *parent;
0501         struct mountpoint *mp;
0502 
0503         mnt = list_first_entry(to_restore, struct mount, mnt_umounting);
0504         CLEAR_MNT_MARK(mnt);
0505         list_del_init(&mnt->mnt_umounting);
0506 
0507         /* Should this mount be reparented? */
0508         mp = mnt->mnt_mp;
0509         parent = mnt->mnt_parent;
0510         while (parent->mnt.mnt_flags & MNT_UMOUNT) {
0511             mp = parent->mnt_mp;
0512             parent = parent->mnt_parent;
0513         }
0514         if (parent != mnt->mnt_parent)
0515             mnt_change_mountpoint(parent, mp, mnt);
0516     }
0517 }
0518 
0519 static void cleanup_umount_visitations(struct list_head *visited)
0520 {
0521     while (!list_empty(visited)) {
0522         struct mount *mnt =
0523             list_first_entry(visited, struct mount, mnt_umounting);
0524         list_del_init(&mnt->mnt_umounting);
0525     }
0526 }
0527 
0528 /*
0529  * collect all mounts that receive propagation from the mount in @list,
0530  * and return these additional mounts in the same list.
0531  * @list: the list of mounts to be unmounted.
0532  *
0533  * vfsmount lock must be held for write
0534  */
0535 int propagate_umount(struct list_head *list)
0536 {
0537     struct mount *mnt;
0538     LIST_HEAD(to_restore);
0539     LIST_HEAD(to_umount);
0540     LIST_HEAD(visited);
0541 
0542     /* Find candidates for unmounting */
0543     list_for_each_entry_reverse(mnt, list, mnt_list) {
0544         struct mount *parent = mnt->mnt_parent;
0545         struct mount *m;
0546 
0547         /*
0548          * If this mount has already been visited it is known that it's
0549          * entire peer group and all of their slaves in the propagation
0550          * tree for the mountpoint has already been visited and there is
0551          * no need to visit them again.
0552          */
0553         if (!list_empty(&mnt->mnt_umounting))
0554             continue;
0555 
0556         list_add_tail(&mnt->mnt_umounting, &visited);
0557         for (m = propagation_next(parent, parent); m;
0558              m = propagation_next(m, parent)) {
0559             struct mount *child = __lookup_mnt(&m->mnt,
0560                                mnt->mnt_mountpoint);
0561             if (!child)
0562                 continue;
0563 
0564             if (!list_empty(&child->mnt_umounting)) {
0565                 /*
0566                  * If the child has already been visited it is
0567                  * know that it's entire peer group and all of
0568                  * their slaves in the propgation tree for the
0569                  * mountpoint has already been visited and there
0570                  * is no need to visit this subtree again.
0571                  */
0572                 m = skip_propagation_subtree(m, parent);
0573                 continue;
0574             } else if (child->mnt.mnt_flags & MNT_UMOUNT) {
0575                 /*
0576                  * We have come accross an partially unmounted
0577                  * mount in list that has not been visited yet.
0578                  * Remember it has been visited and continue
0579                  * about our merry way.
0580                  */
0581                 list_add_tail(&child->mnt_umounting, &visited);
0582                 continue;
0583             }
0584 
0585             /* Check the child and parents while progress is made */
0586             while (__propagate_umount(child,
0587                           &to_umount, &to_restore)) {
0588                 /* Is the parent a umount candidate? */
0589                 child = child->mnt_parent;
0590                 if (list_empty(&child->mnt_umounting))
0591                     break;
0592             }
0593         }
0594     }
0595 
0596     umount_list(&to_umount, &to_restore);
0597     restore_mounts(&to_restore);
0598     cleanup_umount_visitations(&visited);
0599     list_splice_tail(&to_umount, list);
0600 
0601     return 0;
0602 }