Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  *  linux/fs/pipe.c
0004  *
0005  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
0006  */
0007 
0008 #include <linux/mm.h>
0009 #include <linux/file.h>
0010 #include <linux/poll.h>
0011 #include <linux/slab.h>
0012 #include <linux/module.h>
0013 #include <linux/init.h>
0014 #include <linux/fs.h>
0015 #include <linux/log2.h>
0016 #include <linux/mount.h>
0017 #include <linux/pseudo_fs.h>
0018 #include <linux/magic.h>
0019 #include <linux/pipe_fs_i.h>
0020 #include <linux/uio.h>
0021 #include <linux/highmem.h>
0022 #include <linux/pagemap.h>
0023 #include <linux/audit.h>
0024 #include <linux/syscalls.h>
0025 #include <linux/fcntl.h>
0026 #include <linux/memcontrol.h>
0027 #include <linux/watch_queue.h>
0028 #include <linux/sysctl.h>
0029 
0030 #include <linux/uaccess.h>
0031 #include <asm/ioctls.h>
0032 
0033 #include "internal.h"
0034 
0035 /*
0036  * New pipe buffers will be restricted to this size while the user is exceeding
0037  * their pipe buffer quota. The general pipe use case needs at least two
0038  * buffers: one for data yet to be read, and one for new data. If this is less
0039  * than two, then a write to a non-empty pipe may block even if the pipe is not
0040  * full. This can occur with GNU make jobserver or similar uses of pipes as
0041  * semaphores: multiple processes may be waiting to write tokens back to the
0042  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
0043  *
0044  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
0045  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
0046  * emptied.
0047  */
0048 #define PIPE_MIN_DEF_BUFFERS 2
0049 
0050 /*
0051  * The max size that a non-root user is allowed to grow the pipe. Can
0052  * be set by root in /proc/sys/fs/pipe-max-size
0053  */
0054 static unsigned int pipe_max_size = 1048576;
0055 
0056 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
0057  * matches default values.
0058  */
0059 static unsigned long pipe_user_pages_hard;
0060 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
0061 
0062 /*
0063  * We use head and tail indices that aren't masked off, except at the point of
0064  * dereference, but rather they're allowed to wrap naturally.  This means there
0065  * isn't a dead spot in the buffer, but the ring has to be a power of two and
0066  * <= 2^31.
0067  * -- David Howells 2019-09-23.
0068  *
0069  * Reads with count = 0 should always return 0.
0070  * -- Julian Bradfield 1999-06-07.
0071  *
0072  * FIFOs and Pipes now generate SIGIO for both readers and writers.
0073  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
0074  *
0075  * pipe_read & write cleanup
0076  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
0077  */
0078 
0079 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
0080 {
0081     if (pipe->files)
0082         mutex_lock_nested(&pipe->mutex, subclass);
0083 }
0084 
0085 void pipe_lock(struct pipe_inode_info *pipe)
0086 {
0087     /*
0088      * pipe_lock() nests non-pipe inode locks (for writing to a file)
0089      */
0090     pipe_lock_nested(pipe, I_MUTEX_PARENT);
0091 }
0092 EXPORT_SYMBOL(pipe_lock);
0093 
0094 void pipe_unlock(struct pipe_inode_info *pipe)
0095 {
0096     if (pipe->files)
0097         mutex_unlock(&pipe->mutex);
0098 }
0099 EXPORT_SYMBOL(pipe_unlock);
0100 
0101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
0102 {
0103     mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
0104 }
0105 
0106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
0107 {
0108     mutex_unlock(&pipe->mutex);
0109 }
0110 
0111 void pipe_double_lock(struct pipe_inode_info *pipe1,
0112               struct pipe_inode_info *pipe2)
0113 {
0114     BUG_ON(pipe1 == pipe2);
0115 
0116     if (pipe1 < pipe2) {
0117         pipe_lock_nested(pipe1, I_MUTEX_PARENT);
0118         pipe_lock_nested(pipe2, I_MUTEX_CHILD);
0119     } else {
0120         pipe_lock_nested(pipe2, I_MUTEX_PARENT);
0121         pipe_lock_nested(pipe1, I_MUTEX_CHILD);
0122     }
0123 }
0124 
0125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
0126                   struct pipe_buffer *buf)
0127 {
0128     struct page *page = buf->page;
0129 
0130     /*
0131      * If nobody else uses this page, and we don't already have a
0132      * temporary page, let's keep track of it as a one-deep
0133      * allocation cache. (Otherwise just release our reference to it)
0134      */
0135     if (page_count(page) == 1 && !pipe->tmp_page)
0136         pipe->tmp_page = page;
0137     else
0138         put_page(page);
0139 }
0140 
0141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
0142         struct pipe_buffer *buf)
0143 {
0144     struct page *page = buf->page;
0145 
0146     if (page_count(page) != 1)
0147         return false;
0148     memcg_kmem_uncharge_page(page, 0);
0149     __SetPageLocked(page);
0150     return true;
0151 }
0152 
0153 /**
0154  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
0155  * @pipe:   the pipe that the buffer belongs to
0156  * @buf:    the buffer to attempt to steal
0157  *
0158  * Description:
0159  *  This function attempts to steal the &struct page attached to
0160  *  @buf. If successful, this function returns 0 and returns with
0161  *  the page locked. The caller may then reuse the page for whatever
0162  *  he wishes; the typical use is insertion into a different file
0163  *  page cache.
0164  */
0165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
0166         struct pipe_buffer *buf)
0167 {
0168     struct page *page = buf->page;
0169 
0170     /*
0171      * A reference of one is golden, that means that the owner of this
0172      * page is the only one holding a reference to it. lock the page
0173      * and return OK.
0174      */
0175     if (page_count(page) == 1) {
0176         lock_page(page);
0177         return true;
0178     }
0179     return false;
0180 }
0181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
0182 
0183 /**
0184  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
0185  * @pipe:   the pipe that the buffer belongs to
0186  * @buf:    the buffer to get a reference to
0187  *
0188  * Description:
0189  *  This function grabs an extra reference to @buf. It's used in
0190  *  the tee() system call, when we duplicate the buffers in one
0191  *  pipe into another.
0192  */
0193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
0194 {
0195     return try_get_page(buf->page);
0196 }
0197 EXPORT_SYMBOL(generic_pipe_buf_get);
0198 
0199 /**
0200  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
0201  * @pipe:   the pipe that the buffer belongs to
0202  * @buf:    the buffer to put a reference to
0203  *
0204  * Description:
0205  *  This function releases a reference to @buf.
0206  */
0207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
0208                   struct pipe_buffer *buf)
0209 {
0210     put_page(buf->page);
0211 }
0212 EXPORT_SYMBOL(generic_pipe_buf_release);
0213 
0214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
0215     .release    = anon_pipe_buf_release,
0216     .try_steal  = anon_pipe_buf_try_steal,
0217     .get        = generic_pipe_buf_get,
0218 };
0219 
0220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
0221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
0222 {
0223     unsigned int head = READ_ONCE(pipe->head);
0224     unsigned int tail = READ_ONCE(pipe->tail);
0225     unsigned int writers = READ_ONCE(pipe->writers);
0226 
0227     return !pipe_empty(head, tail) || !writers;
0228 }
0229 
0230 static ssize_t
0231 pipe_read(struct kiocb *iocb, struct iov_iter *to)
0232 {
0233     size_t total_len = iov_iter_count(to);
0234     struct file *filp = iocb->ki_filp;
0235     struct pipe_inode_info *pipe = filp->private_data;
0236     bool was_full, wake_next_reader = false;
0237     ssize_t ret;
0238 
0239     /* Null read succeeds. */
0240     if (unlikely(total_len == 0))
0241         return 0;
0242 
0243     ret = 0;
0244     __pipe_lock(pipe);
0245 
0246     /*
0247      * We only wake up writers if the pipe was full when we started
0248      * reading in order to avoid unnecessary wakeups.
0249      *
0250      * But when we do wake up writers, we do so using a sync wakeup
0251      * (WF_SYNC), because we want them to get going and generate more
0252      * data for us.
0253      */
0254     was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
0255     for (;;) {
0256         /* Read ->head with a barrier vs post_one_notification() */
0257         unsigned int head = smp_load_acquire(&pipe->head);
0258         unsigned int tail = pipe->tail;
0259         unsigned int mask = pipe->ring_size - 1;
0260 
0261 #ifdef CONFIG_WATCH_QUEUE
0262         if (pipe->note_loss) {
0263             struct watch_notification n;
0264 
0265             if (total_len < 8) {
0266                 if (ret == 0)
0267                     ret = -ENOBUFS;
0268                 break;
0269             }
0270 
0271             n.type = WATCH_TYPE_META;
0272             n.subtype = WATCH_META_LOSS_NOTIFICATION;
0273             n.info = watch_sizeof(n);
0274             if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
0275                 if (ret == 0)
0276                     ret = -EFAULT;
0277                 break;
0278             }
0279             ret += sizeof(n);
0280             total_len -= sizeof(n);
0281             pipe->note_loss = false;
0282         }
0283 #endif
0284 
0285         if (!pipe_empty(head, tail)) {
0286             struct pipe_buffer *buf = &pipe->bufs[tail & mask];
0287             size_t chars = buf->len;
0288             size_t written;
0289             int error;
0290 
0291             if (chars > total_len) {
0292                 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
0293                     if (ret == 0)
0294                         ret = -ENOBUFS;
0295                     break;
0296                 }
0297                 chars = total_len;
0298             }
0299 
0300             error = pipe_buf_confirm(pipe, buf);
0301             if (error) {
0302                 if (!ret)
0303                     ret = error;
0304                 break;
0305             }
0306 
0307             written = copy_page_to_iter(buf->page, buf->offset, chars, to);
0308             if (unlikely(written < chars)) {
0309                 if (!ret)
0310                     ret = -EFAULT;
0311                 break;
0312             }
0313             ret += chars;
0314             buf->offset += chars;
0315             buf->len -= chars;
0316 
0317             /* Was it a packet buffer? Clean up and exit */
0318             if (buf->flags & PIPE_BUF_FLAG_PACKET) {
0319                 total_len = chars;
0320                 buf->len = 0;
0321             }
0322 
0323             if (!buf->len) {
0324                 pipe_buf_release(pipe, buf);
0325                 spin_lock_irq(&pipe->rd_wait.lock);
0326 #ifdef CONFIG_WATCH_QUEUE
0327                 if (buf->flags & PIPE_BUF_FLAG_LOSS)
0328                     pipe->note_loss = true;
0329 #endif
0330                 tail++;
0331                 pipe->tail = tail;
0332                 spin_unlock_irq(&pipe->rd_wait.lock);
0333             }
0334             total_len -= chars;
0335             if (!total_len)
0336                 break;  /* common path: read succeeded */
0337             if (!pipe_empty(head, tail))    /* More to do? */
0338                 continue;
0339         }
0340 
0341         if (!pipe->writers)
0342             break;
0343         if (ret)
0344             break;
0345         if (filp->f_flags & O_NONBLOCK) {
0346             ret = -EAGAIN;
0347             break;
0348         }
0349         __pipe_unlock(pipe);
0350 
0351         /*
0352          * We only get here if we didn't actually read anything.
0353          *
0354          * However, we could have seen (and removed) a zero-sized
0355          * pipe buffer, and might have made space in the buffers
0356          * that way.
0357          *
0358          * You can't make zero-sized pipe buffers by doing an empty
0359          * write (not even in packet mode), but they can happen if
0360          * the writer gets an EFAULT when trying to fill a buffer
0361          * that already got allocated and inserted in the buffer
0362          * array.
0363          *
0364          * So we still need to wake up any pending writers in the
0365          * _very_ unlikely case that the pipe was full, but we got
0366          * no data.
0367          */
0368         if (unlikely(was_full))
0369             wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
0370         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
0371 
0372         /*
0373          * But because we didn't read anything, at this point we can
0374          * just return directly with -ERESTARTSYS if we're interrupted,
0375          * since we've done any required wakeups and there's no need
0376          * to mark anything accessed. And we've dropped the lock.
0377          */
0378         if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
0379             return -ERESTARTSYS;
0380 
0381         __pipe_lock(pipe);
0382         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
0383         wake_next_reader = true;
0384     }
0385     if (pipe_empty(pipe->head, pipe->tail))
0386         wake_next_reader = false;
0387     __pipe_unlock(pipe);
0388 
0389     if (was_full)
0390         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
0391     if (wake_next_reader)
0392         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
0393     kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
0394     if (ret > 0)
0395         file_accessed(filp);
0396     return ret;
0397 }
0398 
0399 static inline int is_packetized(struct file *file)
0400 {
0401     return (file->f_flags & O_DIRECT) != 0;
0402 }
0403 
0404 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
0405 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
0406 {
0407     unsigned int head = READ_ONCE(pipe->head);
0408     unsigned int tail = READ_ONCE(pipe->tail);
0409     unsigned int max_usage = READ_ONCE(pipe->max_usage);
0410 
0411     return !pipe_full(head, tail, max_usage) ||
0412         !READ_ONCE(pipe->readers);
0413 }
0414 
0415 static ssize_t
0416 pipe_write(struct kiocb *iocb, struct iov_iter *from)
0417 {
0418     struct file *filp = iocb->ki_filp;
0419     struct pipe_inode_info *pipe = filp->private_data;
0420     unsigned int head;
0421     ssize_t ret = 0;
0422     size_t total_len = iov_iter_count(from);
0423     ssize_t chars;
0424     bool was_empty = false;
0425     bool wake_next_writer = false;
0426 
0427     /* Null write succeeds. */
0428     if (unlikely(total_len == 0))
0429         return 0;
0430 
0431     __pipe_lock(pipe);
0432 
0433     if (!pipe->readers) {
0434         send_sig(SIGPIPE, current, 0);
0435         ret = -EPIPE;
0436         goto out;
0437     }
0438 
0439 #ifdef CONFIG_WATCH_QUEUE
0440     if (pipe->watch_queue) {
0441         ret = -EXDEV;
0442         goto out;
0443     }
0444 #endif
0445 
0446     /*
0447      * If it wasn't empty we try to merge new data into
0448      * the last buffer.
0449      *
0450      * That naturally merges small writes, but it also
0451      * page-aligns the rest of the writes for large writes
0452      * spanning multiple pages.
0453      */
0454     head = pipe->head;
0455     was_empty = pipe_empty(head, pipe->tail);
0456     chars = total_len & (PAGE_SIZE-1);
0457     if (chars && !was_empty) {
0458         unsigned int mask = pipe->ring_size - 1;
0459         struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
0460         int offset = buf->offset + buf->len;
0461 
0462         if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
0463             offset + chars <= PAGE_SIZE) {
0464             ret = pipe_buf_confirm(pipe, buf);
0465             if (ret)
0466                 goto out;
0467 
0468             ret = copy_page_from_iter(buf->page, offset, chars, from);
0469             if (unlikely(ret < chars)) {
0470                 ret = -EFAULT;
0471                 goto out;
0472             }
0473 
0474             buf->len += ret;
0475             if (!iov_iter_count(from))
0476                 goto out;
0477         }
0478     }
0479 
0480     for (;;) {
0481         if (!pipe->readers) {
0482             send_sig(SIGPIPE, current, 0);
0483             if (!ret)
0484                 ret = -EPIPE;
0485             break;
0486         }
0487 
0488         head = pipe->head;
0489         if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
0490             unsigned int mask = pipe->ring_size - 1;
0491             struct pipe_buffer *buf = &pipe->bufs[head & mask];
0492             struct page *page = pipe->tmp_page;
0493             int copied;
0494 
0495             if (!page) {
0496                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
0497                 if (unlikely(!page)) {
0498                     ret = ret ? : -ENOMEM;
0499                     break;
0500                 }
0501                 pipe->tmp_page = page;
0502             }
0503 
0504             /* Allocate a slot in the ring in advance and attach an
0505              * empty buffer.  If we fault or otherwise fail to use
0506              * it, either the reader will consume it or it'll still
0507              * be there for the next write.
0508              */
0509             spin_lock_irq(&pipe->rd_wait.lock);
0510 
0511             head = pipe->head;
0512             if (pipe_full(head, pipe->tail, pipe->max_usage)) {
0513                 spin_unlock_irq(&pipe->rd_wait.lock);
0514                 continue;
0515             }
0516 
0517             pipe->head = head + 1;
0518             spin_unlock_irq(&pipe->rd_wait.lock);
0519 
0520             /* Insert it into the buffer array */
0521             buf = &pipe->bufs[head & mask];
0522             buf->page = page;
0523             buf->ops = &anon_pipe_buf_ops;
0524             buf->offset = 0;
0525             buf->len = 0;
0526             if (is_packetized(filp))
0527                 buf->flags = PIPE_BUF_FLAG_PACKET;
0528             else
0529                 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
0530             pipe->tmp_page = NULL;
0531 
0532             copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
0533             if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
0534                 if (!ret)
0535                     ret = -EFAULT;
0536                 break;
0537             }
0538             ret += copied;
0539             buf->offset = 0;
0540             buf->len = copied;
0541 
0542             if (!iov_iter_count(from))
0543                 break;
0544         }
0545 
0546         if (!pipe_full(head, pipe->tail, pipe->max_usage))
0547             continue;
0548 
0549         /* Wait for buffer space to become available. */
0550         if (filp->f_flags & O_NONBLOCK) {
0551             if (!ret)
0552                 ret = -EAGAIN;
0553             break;
0554         }
0555         if (signal_pending(current)) {
0556             if (!ret)
0557                 ret = -ERESTARTSYS;
0558             break;
0559         }
0560 
0561         /*
0562          * We're going to release the pipe lock and wait for more
0563          * space. We wake up any readers if necessary, and then
0564          * after waiting we need to re-check whether the pipe
0565          * become empty while we dropped the lock.
0566          */
0567         __pipe_unlock(pipe);
0568         if (was_empty)
0569             wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
0570         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
0571         wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
0572         __pipe_lock(pipe);
0573         was_empty = pipe_empty(pipe->head, pipe->tail);
0574         wake_next_writer = true;
0575     }
0576 out:
0577     if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
0578         wake_next_writer = false;
0579     __pipe_unlock(pipe);
0580 
0581     /*
0582      * If we do do a wakeup event, we do a 'sync' wakeup, because we
0583      * want the reader to start processing things asap, rather than
0584      * leave the data pending.
0585      *
0586      * This is particularly important for small writes, because of
0587      * how (for example) the GNU make jobserver uses small writes to
0588      * wake up pending jobs
0589      *
0590      * Epoll nonsensically wants a wakeup whether the pipe
0591      * was already empty or not.
0592      */
0593     if (was_empty || pipe->poll_usage)
0594         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
0595     kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
0596     if (wake_next_writer)
0597         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
0598     if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
0599         int err = file_update_time(filp);
0600         if (err)
0601             ret = err;
0602         sb_end_write(file_inode(filp)->i_sb);
0603     }
0604     return ret;
0605 }
0606 
0607 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
0608 {
0609     struct pipe_inode_info *pipe = filp->private_data;
0610     unsigned int count, head, tail, mask;
0611 
0612     switch (cmd) {
0613     case FIONREAD:
0614         __pipe_lock(pipe);
0615         count = 0;
0616         head = pipe->head;
0617         tail = pipe->tail;
0618         mask = pipe->ring_size - 1;
0619 
0620         while (tail != head) {
0621             count += pipe->bufs[tail & mask].len;
0622             tail++;
0623         }
0624         __pipe_unlock(pipe);
0625 
0626         return put_user(count, (int __user *)arg);
0627 
0628 #ifdef CONFIG_WATCH_QUEUE
0629     case IOC_WATCH_QUEUE_SET_SIZE: {
0630         int ret;
0631         __pipe_lock(pipe);
0632         ret = watch_queue_set_size(pipe, arg);
0633         __pipe_unlock(pipe);
0634         return ret;
0635     }
0636 
0637     case IOC_WATCH_QUEUE_SET_FILTER:
0638         return watch_queue_set_filter(
0639             pipe, (struct watch_notification_filter __user *)arg);
0640 #endif
0641 
0642     default:
0643         return -ENOIOCTLCMD;
0644     }
0645 }
0646 
0647 /* No kernel lock held - fine */
0648 static __poll_t
0649 pipe_poll(struct file *filp, poll_table *wait)
0650 {
0651     __poll_t mask;
0652     struct pipe_inode_info *pipe = filp->private_data;
0653     unsigned int head, tail;
0654 
0655     /* Epoll has some historical nasty semantics, this enables them */
0656     WRITE_ONCE(pipe->poll_usage, true);
0657 
0658     /*
0659      * Reading pipe state only -- no need for acquiring the semaphore.
0660      *
0661      * But because this is racy, the code has to add the
0662      * entry to the poll table _first_ ..
0663      */
0664     if (filp->f_mode & FMODE_READ)
0665         poll_wait(filp, &pipe->rd_wait, wait);
0666     if (filp->f_mode & FMODE_WRITE)
0667         poll_wait(filp, &pipe->wr_wait, wait);
0668 
0669     /*
0670      * .. and only then can you do the racy tests. That way,
0671      * if something changes and you got it wrong, the poll
0672      * table entry will wake you up and fix it.
0673      */
0674     head = READ_ONCE(pipe->head);
0675     tail = READ_ONCE(pipe->tail);
0676 
0677     mask = 0;
0678     if (filp->f_mode & FMODE_READ) {
0679         if (!pipe_empty(head, tail))
0680             mask |= EPOLLIN | EPOLLRDNORM;
0681         if (!pipe->writers && filp->f_version != pipe->w_counter)
0682             mask |= EPOLLHUP;
0683     }
0684 
0685     if (filp->f_mode & FMODE_WRITE) {
0686         if (!pipe_full(head, tail, pipe->max_usage))
0687             mask |= EPOLLOUT | EPOLLWRNORM;
0688         /*
0689          * Most Unices do not set EPOLLERR for FIFOs but on Linux they
0690          * behave exactly like pipes for poll().
0691          */
0692         if (!pipe->readers)
0693             mask |= EPOLLERR;
0694     }
0695 
0696     return mask;
0697 }
0698 
0699 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
0700 {
0701     int kill = 0;
0702 
0703     spin_lock(&inode->i_lock);
0704     if (!--pipe->files) {
0705         inode->i_pipe = NULL;
0706         kill = 1;
0707     }
0708     spin_unlock(&inode->i_lock);
0709 
0710     if (kill)
0711         free_pipe_info(pipe);
0712 }
0713 
0714 static int
0715 pipe_release(struct inode *inode, struct file *file)
0716 {
0717     struct pipe_inode_info *pipe = file->private_data;
0718 
0719     __pipe_lock(pipe);
0720     if (file->f_mode & FMODE_READ)
0721         pipe->readers--;
0722     if (file->f_mode & FMODE_WRITE)
0723         pipe->writers--;
0724 
0725     /* Was that the last reader or writer, but not the other side? */
0726     if (!pipe->readers != !pipe->writers) {
0727         wake_up_interruptible_all(&pipe->rd_wait);
0728         wake_up_interruptible_all(&pipe->wr_wait);
0729         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
0730         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
0731     }
0732     __pipe_unlock(pipe);
0733 
0734     put_pipe_info(inode, pipe);
0735     return 0;
0736 }
0737 
0738 static int
0739 pipe_fasync(int fd, struct file *filp, int on)
0740 {
0741     struct pipe_inode_info *pipe = filp->private_data;
0742     int retval = 0;
0743 
0744     __pipe_lock(pipe);
0745     if (filp->f_mode & FMODE_READ)
0746         retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
0747     if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
0748         retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
0749         if (retval < 0 && (filp->f_mode & FMODE_READ))
0750             /* this can happen only if on == T */
0751             fasync_helper(-1, filp, 0, &pipe->fasync_readers);
0752     }
0753     __pipe_unlock(pipe);
0754     return retval;
0755 }
0756 
0757 unsigned long account_pipe_buffers(struct user_struct *user,
0758                    unsigned long old, unsigned long new)
0759 {
0760     return atomic_long_add_return(new - old, &user->pipe_bufs);
0761 }
0762 
0763 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
0764 {
0765     unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
0766 
0767     return soft_limit && user_bufs > soft_limit;
0768 }
0769 
0770 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
0771 {
0772     unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
0773 
0774     return hard_limit && user_bufs > hard_limit;
0775 }
0776 
0777 bool pipe_is_unprivileged_user(void)
0778 {
0779     return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
0780 }
0781 
0782 struct pipe_inode_info *alloc_pipe_info(void)
0783 {
0784     struct pipe_inode_info *pipe;
0785     unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
0786     struct user_struct *user = get_current_user();
0787     unsigned long user_bufs;
0788     unsigned int max_size = READ_ONCE(pipe_max_size);
0789 
0790     pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
0791     if (pipe == NULL)
0792         goto out_free_uid;
0793 
0794     if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
0795         pipe_bufs = max_size >> PAGE_SHIFT;
0796 
0797     user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
0798 
0799     if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
0800         user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
0801         pipe_bufs = PIPE_MIN_DEF_BUFFERS;
0802     }
0803 
0804     if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
0805         goto out_revert_acct;
0806 
0807     pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
0808                  GFP_KERNEL_ACCOUNT);
0809 
0810     if (pipe->bufs) {
0811         init_waitqueue_head(&pipe->rd_wait);
0812         init_waitqueue_head(&pipe->wr_wait);
0813         pipe->r_counter = pipe->w_counter = 1;
0814         pipe->max_usage = pipe_bufs;
0815         pipe->ring_size = pipe_bufs;
0816         pipe->nr_accounted = pipe_bufs;
0817         pipe->user = user;
0818         mutex_init(&pipe->mutex);
0819         return pipe;
0820     }
0821 
0822 out_revert_acct:
0823     (void) account_pipe_buffers(user, pipe_bufs, 0);
0824     kfree(pipe);
0825 out_free_uid:
0826     free_uid(user);
0827     return NULL;
0828 }
0829 
0830 void free_pipe_info(struct pipe_inode_info *pipe)
0831 {
0832     unsigned int i;
0833 
0834 #ifdef CONFIG_WATCH_QUEUE
0835     if (pipe->watch_queue)
0836         watch_queue_clear(pipe->watch_queue);
0837 #endif
0838 
0839     (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
0840     free_uid(pipe->user);
0841     for (i = 0; i < pipe->ring_size; i++) {
0842         struct pipe_buffer *buf = pipe->bufs + i;
0843         if (buf->ops)
0844             pipe_buf_release(pipe, buf);
0845     }
0846 #ifdef CONFIG_WATCH_QUEUE
0847     if (pipe->watch_queue)
0848         put_watch_queue(pipe->watch_queue);
0849 #endif
0850     if (pipe->tmp_page)
0851         __free_page(pipe->tmp_page);
0852     kfree(pipe->bufs);
0853     kfree(pipe);
0854 }
0855 
0856 static struct vfsmount *pipe_mnt __read_mostly;
0857 
0858 /*
0859  * pipefs_dname() is called from d_path().
0860  */
0861 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
0862 {
0863     return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
0864                 d_inode(dentry)->i_ino);
0865 }
0866 
0867 static const struct dentry_operations pipefs_dentry_operations = {
0868     .d_dname    = pipefs_dname,
0869 };
0870 
0871 static struct inode * get_pipe_inode(void)
0872 {
0873     struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
0874     struct pipe_inode_info *pipe;
0875 
0876     if (!inode)
0877         goto fail_inode;
0878 
0879     inode->i_ino = get_next_ino();
0880 
0881     pipe = alloc_pipe_info();
0882     if (!pipe)
0883         goto fail_iput;
0884 
0885     inode->i_pipe = pipe;
0886     pipe->files = 2;
0887     pipe->readers = pipe->writers = 1;
0888     inode->i_fop = &pipefifo_fops;
0889 
0890     /*
0891      * Mark the inode dirty from the very beginning,
0892      * that way it will never be moved to the dirty
0893      * list because "mark_inode_dirty()" will think
0894      * that it already _is_ on the dirty list.
0895      */
0896     inode->i_state = I_DIRTY;
0897     inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
0898     inode->i_uid = current_fsuid();
0899     inode->i_gid = current_fsgid();
0900     inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
0901 
0902     return inode;
0903 
0904 fail_iput:
0905     iput(inode);
0906 
0907 fail_inode:
0908     return NULL;
0909 }
0910 
0911 int create_pipe_files(struct file **res, int flags)
0912 {
0913     struct inode *inode = get_pipe_inode();
0914     struct file *f;
0915     int error;
0916 
0917     if (!inode)
0918         return -ENFILE;
0919 
0920     if (flags & O_NOTIFICATION_PIPE) {
0921         error = watch_queue_init(inode->i_pipe);
0922         if (error) {
0923             free_pipe_info(inode->i_pipe);
0924             iput(inode);
0925             return error;
0926         }
0927     }
0928 
0929     f = alloc_file_pseudo(inode, pipe_mnt, "",
0930                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
0931                 &pipefifo_fops);
0932     if (IS_ERR(f)) {
0933         free_pipe_info(inode->i_pipe);
0934         iput(inode);
0935         return PTR_ERR(f);
0936     }
0937 
0938     f->private_data = inode->i_pipe;
0939 
0940     res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
0941                   &pipefifo_fops);
0942     if (IS_ERR(res[0])) {
0943         put_pipe_info(inode, inode->i_pipe);
0944         fput(f);
0945         return PTR_ERR(res[0]);
0946     }
0947     res[0]->private_data = inode->i_pipe;
0948     res[1] = f;
0949     stream_open(inode, res[0]);
0950     stream_open(inode, res[1]);
0951     return 0;
0952 }
0953 
0954 static int __do_pipe_flags(int *fd, struct file **files, int flags)
0955 {
0956     int error;
0957     int fdw, fdr;
0958 
0959     if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
0960         return -EINVAL;
0961 
0962     error = create_pipe_files(files, flags);
0963     if (error)
0964         return error;
0965 
0966     error = get_unused_fd_flags(flags);
0967     if (error < 0)
0968         goto err_read_pipe;
0969     fdr = error;
0970 
0971     error = get_unused_fd_flags(flags);
0972     if (error < 0)
0973         goto err_fdr;
0974     fdw = error;
0975 
0976     audit_fd_pair(fdr, fdw);
0977     fd[0] = fdr;
0978     fd[1] = fdw;
0979     return 0;
0980 
0981  err_fdr:
0982     put_unused_fd(fdr);
0983  err_read_pipe:
0984     fput(files[0]);
0985     fput(files[1]);
0986     return error;
0987 }
0988 
0989 int do_pipe_flags(int *fd, int flags)
0990 {
0991     struct file *files[2];
0992     int error = __do_pipe_flags(fd, files, flags);
0993     if (!error) {
0994         fd_install(fd[0], files[0]);
0995         fd_install(fd[1], files[1]);
0996     }
0997     return error;
0998 }
0999 
1000 /*
1001  * sys_pipe() is the normal C calling standard for creating
1002  * a pipe. It's not the way Unix traditionally does this, though.
1003  */
1004 static int do_pipe2(int __user *fildes, int flags)
1005 {
1006     struct file *files[2];
1007     int fd[2];
1008     int error;
1009 
1010     error = __do_pipe_flags(fd, files, flags);
1011     if (!error) {
1012         if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1013             fput(files[0]);
1014             fput(files[1]);
1015             put_unused_fd(fd[0]);
1016             put_unused_fd(fd[1]);
1017             error = -EFAULT;
1018         } else {
1019             fd_install(fd[0], files[0]);
1020             fd_install(fd[1], files[1]);
1021         }
1022     }
1023     return error;
1024 }
1025 
1026 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1027 {
1028     return do_pipe2(fildes, flags);
1029 }
1030 
1031 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1032 {
1033     return do_pipe2(fildes, 0);
1034 }
1035 
1036 /*
1037  * This is the stupid "wait for pipe to be readable or writable"
1038  * model.
1039  *
1040  * See pipe_read/write() for the proper kind of exclusive wait,
1041  * but that requires that we wake up any other readers/writers
1042  * if we then do not end up reading everything (ie the whole
1043  * "wake_next_reader/writer" logic in pipe_read/write()).
1044  */
1045 void pipe_wait_readable(struct pipe_inode_info *pipe)
1046 {
1047     pipe_unlock(pipe);
1048     wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1049     pipe_lock(pipe);
1050 }
1051 
1052 void pipe_wait_writable(struct pipe_inode_info *pipe)
1053 {
1054     pipe_unlock(pipe);
1055     wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1056     pipe_lock(pipe);
1057 }
1058 
1059 /*
1060  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1061  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1062  * race with the count check and waitqueue prep.
1063  *
1064  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1065  * then check the condition you're waiting for, and only then sleep. But
1066  * because of the pipe lock, we can check the condition before being on
1067  * the wait queue.
1068  *
1069  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1070  */
1071 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1072 {
1073     DEFINE_WAIT(rdwait);
1074     int cur = *cnt;
1075 
1076     while (cur == *cnt) {
1077         prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1078         pipe_unlock(pipe);
1079         schedule();
1080         finish_wait(&pipe->rd_wait, &rdwait);
1081         pipe_lock(pipe);
1082         if (signal_pending(current))
1083             break;
1084     }
1085     return cur == *cnt ? -ERESTARTSYS : 0;
1086 }
1087 
1088 static void wake_up_partner(struct pipe_inode_info *pipe)
1089 {
1090     wake_up_interruptible_all(&pipe->rd_wait);
1091 }
1092 
1093 static int fifo_open(struct inode *inode, struct file *filp)
1094 {
1095     struct pipe_inode_info *pipe;
1096     bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1097     int ret;
1098 
1099     filp->f_version = 0;
1100 
1101     spin_lock(&inode->i_lock);
1102     if (inode->i_pipe) {
1103         pipe = inode->i_pipe;
1104         pipe->files++;
1105         spin_unlock(&inode->i_lock);
1106     } else {
1107         spin_unlock(&inode->i_lock);
1108         pipe = alloc_pipe_info();
1109         if (!pipe)
1110             return -ENOMEM;
1111         pipe->files = 1;
1112         spin_lock(&inode->i_lock);
1113         if (unlikely(inode->i_pipe)) {
1114             inode->i_pipe->files++;
1115             spin_unlock(&inode->i_lock);
1116             free_pipe_info(pipe);
1117             pipe = inode->i_pipe;
1118         } else {
1119             inode->i_pipe = pipe;
1120             spin_unlock(&inode->i_lock);
1121         }
1122     }
1123     filp->private_data = pipe;
1124     /* OK, we have a pipe and it's pinned down */
1125 
1126     __pipe_lock(pipe);
1127 
1128     /* We can only do regular read/write on fifos */
1129     stream_open(inode, filp);
1130 
1131     switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1132     case FMODE_READ:
1133     /*
1134      *  O_RDONLY
1135      *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1136      *  opened, even when there is no process writing the FIFO.
1137      */
1138         pipe->r_counter++;
1139         if (pipe->readers++ == 0)
1140             wake_up_partner(pipe);
1141 
1142         if (!is_pipe && !pipe->writers) {
1143             if ((filp->f_flags & O_NONBLOCK)) {
1144                 /* suppress EPOLLHUP until we have
1145                  * seen a writer */
1146                 filp->f_version = pipe->w_counter;
1147             } else {
1148                 if (wait_for_partner(pipe, &pipe->w_counter))
1149                     goto err_rd;
1150             }
1151         }
1152         break;
1153 
1154     case FMODE_WRITE:
1155     /*
1156      *  O_WRONLY
1157      *  POSIX.1 says that O_NONBLOCK means return -1 with
1158      *  errno=ENXIO when there is no process reading the FIFO.
1159      */
1160         ret = -ENXIO;
1161         if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1162             goto err;
1163 
1164         pipe->w_counter++;
1165         if (!pipe->writers++)
1166             wake_up_partner(pipe);
1167 
1168         if (!is_pipe && !pipe->readers) {
1169             if (wait_for_partner(pipe, &pipe->r_counter))
1170                 goto err_wr;
1171         }
1172         break;
1173 
1174     case FMODE_READ | FMODE_WRITE:
1175     /*
1176      *  O_RDWR
1177      *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1178      *  This implementation will NEVER block on a O_RDWR open, since
1179      *  the process can at least talk to itself.
1180      */
1181 
1182         pipe->readers++;
1183         pipe->writers++;
1184         pipe->r_counter++;
1185         pipe->w_counter++;
1186         if (pipe->readers == 1 || pipe->writers == 1)
1187             wake_up_partner(pipe);
1188         break;
1189 
1190     default:
1191         ret = -EINVAL;
1192         goto err;
1193     }
1194 
1195     /* Ok! */
1196     __pipe_unlock(pipe);
1197     return 0;
1198 
1199 err_rd:
1200     if (!--pipe->readers)
1201         wake_up_interruptible(&pipe->wr_wait);
1202     ret = -ERESTARTSYS;
1203     goto err;
1204 
1205 err_wr:
1206     if (!--pipe->writers)
1207         wake_up_interruptible_all(&pipe->rd_wait);
1208     ret = -ERESTARTSYS;
1209     goto err;
1210 
1211 err:
1212     __pipe_unlock(pipe);
1213 
1214     put_pipe_info(inode, pipe);
1215     return ret;
1216 }
1217 
1218 const struct file_operations pipefifo_fops = {
1219     .open       = fifo_open,
1220     .llseek     = no_llseek,
1221     .read_iter  = pipe_read,
1222     .write_iter = pipe_write,
1223     .poll       = pipe_poll,
1224     .unlocked_ioctl = pipe_ioctl,
1225     .release    = pipe_release,
1226     .fasync     = pipe_fasync,
1227     .splice_write   = iter_file_splice_write,
1228 };
1229 
1230 /*
1231  * Currently we rely on the pipe array holding a power-of-2 number
1232  * of pages. Returns 0 on error.
1233  */
1234 unsigned int round_pipe_size(unsigned long size)
1235 {
1236     if (size > (1U << 31))
1237         return 0;
1238 
1239     /* Minimum pipe size, as required by POSIX */
1240     if (size < PAGE_SIZE)
1241         return PAGE_SIZE;
1242 
1243     return roundup_pow_of_two(size);
1244 }
1245 
1246 /*
1247  * Resize the pipe ring to a number of slots.
1248  *
1249  * Note the pipe can be reduced in capacity, but only if the current
1250  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1251  * returned instead.
1252  */
1253 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1254 {
1255     struct pipe_buffer *bufs;
1256     unsigned int head, tail, mask, n;
1257 
1258     bufs = kcalloc(nr_slots, sizeof(*bufs),
1259                GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1260     if (unlikely(!bufs))
1261         return -ENOMEM;
1262 
1263     spin_lock_irq(&pipe->rd_wait.lock);
1264     mask = pipe->ring_size - 1;
1265     head = pipe->head;
1266     tail = pipe->tail;
1267 
1268     n = pipe_occupancy(head, tail);
1269     if (nr_slots < n) {
1270         spin_unlock_irq(&pipe->rd_wait.lock);
1271         kfree(bufs);
1272         return -EBUSY;
1273     }
1274 
1275     /*
1276      * The pipe array wraps around, so just start the new one at zero
1277      * and adjust the indices.
1278      */
1279     if (n > 0) {
1280         unsigned int h = head & mask;
1281         unsigned int t = tail & mask;
1282         if (h > t) {
1283             memcpy(bufs, pipe->bufs + t,
1284                    n * sizeof(struct pipe_buffer));
1285         } else {
1286             unsigned int tsize = pipe->ring_size - t;
1287             if (h > 0)
1288                 memcpy(bufs + tsize, pipe->bufs,
1289                        h * sizeof(struct pipe_buffer));
1290             memcpy(bufs, pipe->bufs + t,
1291                    tsize * sizeof(struct pipe_buffer));
1292         }
1293     }
1294 
1295     head = n;
1296     tail = 0;
1297 
1298     kfree(pipe->bufs);
1299     pipe->bufs = bufs;
1300     pipe->ring_size = nr_slots;
1301     if (pipe->max_usage > nr_slots)
1302         pipe->max_usage = nr_slots;
1303     pipe->tail = tail;
1304     pipe->head = head;
1305 
1306     spin_unlock_irq(&pipe->rd_wait.lock);
1307 
1308     /* This might have made more room for writers */
1309     wake_up_interruptible(&pipe->wr_wait);
1310     return 0;
1311 }
1312 
1313 /*
1314  * Allocate a new array of pipe buffers and copy the info over. Returns the
1315  * pipe size if successful, or return -ERROR on error.
1316  */
1317 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1318 {
1319     unsigned long user_bufs;
1320     unsigned int nr_slots, size;
1321     long ret = 0;
1322 
1323 #ifdef CONFIG_WATCH_QUEUE
1324     if (pipe->watch_queue)
1325         return -EBUSY;
1326 #endif
1327 
1328     size = round_pipe_size(arg);
1329     nr_slots = size >> PAGE_SHIFT;
1330 
1331     if (!nr_slots)
1332         return -EINVAL;
1333 
1334     /*
1335      * If trying to increase the pipe capacity, check that an
1336      * unprivileged user is not trying to exceed various limits
1337      * (soft limit check here, hard limit check just below).
1338      * Decreasing the pipe capacity is always permitted, even
1339      * if the user is currently over a limit.
1340      */
1341     if (nr_slots > pipe->max_usage &&
1342             size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1343         return -EPERM;
1344 
1345     user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1346 
1347     if (nr_slots > pipe->max_usage &&
1348             (too_many_pipe_buffers_hard(user_bufs) ||
1349              too_many_pipe_buffers_soft(user_bufs)) &&
1350             pipe_is_unprivileged_user()) {
1351         ret = -EPERM;
1352         goto out_revert_acct;
1353     }
1354 
1355     ret = pipe_resize_ring(pipe, nr_slots);
1356     if (ret < 0)
1357         goto out_revert_acct;
1358 
1359     pipe->max_usage = nr_slots;
1360     pipe->nr_accounted = nr_slots;
1361     return pipe->max_usage * PAGE_SIZE;
1362 
1363 out_revert_acct:
1364     (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1365     return ret;
1366 }
1367 
1368 /*
1369  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1370  * not enough to verify that this is a pipe.
1371  */
1372 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1373 {
1374     struct pipe_inode_info *pipe = file->private_data;
1375 
1376     if (file->f_op != &pipefifo_fops || !pipe)
1377         return NULL;
1378 #ifdef CONFIG_WATCH_QUEUE
1379     if (for_splice && pipe->watch_queue)
1380         return NULL;
1381 #endif
1382     return pipe;
1383 }
1384 
1385 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1386 {
1387     struct pipe_inode_info *pipe;
1388     long ret;
1389 
1390     pipe = get_pipe_info(file, false);
1391     if (!pipe)
1392         return -EBADF;
1393 
1394     __pipe_lock(pipe);
1395 
1396     switch (cmd) {
1397     case F_SETPIPE_SZ:
1398         ret = pipe_set_size(pipe, arg);
1399         break;
1400     case F_GETPIPE_SZ:
1401         ret = pipe->max_usage * PAGE_SIZE;
1402         break;
1403     default:
1404         ret = -EINVAL;
1405         break;
1406     }
1407 
1408     __pipe_unlock(pipe);
1409     return ret;
1410 }
1411 
1412 static const struct super_operations pipefs_ops = {
1413     .destroy_inode = free_inode_nonrcu,
1414     .statfs = simple_statfs,
1415 };
1416 
1417 /*
1418  * pipefs should _never_ be mounted by userland - too much of security hassle,
1419  * no real gain from having the whole whorehouse mounted. So we don't need
1420  * any operations on the root directory. However, we need a non-trivial
1421  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1422  */
1423 
1424 static int pipefs_init_fs_context(struct fs_context *fc)
1425 {
1426     struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1427     if (!ctx)
1428         return -ENOMEM;
1429     ctx->ops = &pipefs_ops;
1430     ctx->dops = &pipefs_dentry_operations;
1431     return 0;
1432 }
1433 
1434 static struct file_system_type pipe_fs_type = {
1435     .name       = "pipefs",
1436     .init_fs_context = pipefs_init_fs_context,
1437     .kill_sb    = kill_anon_super,
1438 };
1439 
1440 #ifdef CONFIG_SYSCTL
1441 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1442                     unsigned int *valp,
1443                     int write, void *data)
1444 {
1445     if (write) {
1446         unsigned int val;
1447 
1448         val = round_pipe_size(*lvalp);
1449         if (val == 0)
1450             return -EINVAL;
1451 
1452         *valp = val;
1453     } else {
1454         unsigned int val = *valp;
1455         *lvalp = (unsigned long) val;
1456     }
1457 
1458     return 0;
1459 }
1460 
1461 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1462                 void *buffer, size_t *lenp, loff_t *ppos)
1463 {
1464     return do_proc_douintvec(table, write, buffer, lenp, ppos,
1465                  do_proc_dopipe_max_size_conv, NULL);
1466 }
1467 
1468 static struct ctl_table fs_pipe_sysctls[] = {
1469     {
1470         .procname   = "pipe-max-size",
1471         .data       = &pipe_max_size,
1472         .maxlen     = sizeof(pipe_max_size),
1473         .mode       = 0644,
1474         .proc_handler   = proc_dopipe_max_size,
1475     },
1476     {
1477         .procname   = "pipe-user-pages-hard",
1478         .data       = &pipe_user_pages_hard,
1479         .maxlen     = sizeof(pipe_user_pages_hard),
1480         .mode       = 0644,
1481         .proc_handler   = proc_doulongvec_minmax,
1482     },
1483     {
1484         .procname   = "pipe-user-pages-soft",
1485         .data       = &pipe_user_pages_soft,
1486         .maxlen     = sizeof(pipe_user_pages_soft),
1487         .mode       = 0644,
1488         .proc_handler   = proc_doulongvec_minmax,
1489     },
1490     { }
1491 };
1492 #endif
1493 
1494 static int __init init_pipe_fs(void)
1495 {
1496     int err = register_filesystem(&pipe_fs_type);
1497 
1498     if (!err) {
1499         pipe_mnt = kern_mount(&pipe_fs_type);
1500         if (IS_ERR(pipe_mnt)) {
1501             err = PTR_ERR(pipe_mnt);
1502             unregister_filesystem(&pipe_fs_type);
1503         }
1504     }
1505 #ifdef CONFIG_SYSCTL
1506     register_sysctl_init("fs", fs_pipe_sysctls);
1507 #endif
1508     return err;
1509 }
1510 
1511 fs_initcall(init_pipe_fs);