Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * file.c
0004  *
0005  * File open, close, extend, truncate
0006  *
0007  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
0008  */
0009 
0010 #include <linux/capability.h>
0011 #include <linux/fs.h>
0012 #include <linux/types.h>
0013 #include <linux/slab.h>
0014 #include <linux/highmem.h>
0015 #include <linux/pagemap.h>
0016 #include <linux/uio.h>
0017 #include <linux/sched.h>
0018 #include <linux/splice.h>
0019 #include <linux/mount.h>
0020 #include <linux/writeback.h>
0021 #include <linux/falloc.h>
0022 #include <linux/quotaops.h>
0023 #include <linux/blkdev.h>
0024 #include <linux/backing-dev.h>
0025 
0026 #include <cluster/masklog.h>
0027 
0028 #include "ocfs2.h"
0029 
0030 #include "alloc.h"
0031 #include "aops.h"
0032 #include "dir.h"
0033 #include "dlmglue.h"
0034 #include "extent_map.h"
0035 #include "file.h"
0036 #include "sysfile.h"
0037 #include "inode.h"
0038 #include "ioctl.h"
0039 #include "journal.h"
0040 #include "locks.h"
0041 #include "mmap.h"
0042 #include "suballoc.h"
0043 #include "super.h"
0044 #include "xattr.h"
0045 #include "acl.h"
0046 #include "quota.h"
0047 #include "refcounttree.h"
0048 #include "ocfs2_trace.h"
0049 
0050 #include "buffer_head_io.h"
0051 
0052 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
0053 {
0054     struct ocfs2_file_private *fp;
0055 
0056     fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
0057     if (!fp)
0058         return -ENOMEM;
0059 
0060     fp->fp_file = file;
0061     mutex_init(&fp->fp_mutex);
0062     ocfs2_file_lock_res_init(&fp->fp_flock, fp);
0063     file->private_data = fp;
0064 
0065     return 0;
0066 }
0067 
0068 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
0069 {
0070     struct ocfs2_file_private *fp = file->private_data;
0071     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
0072 
0073     if (fp) {
0074         ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
0075         ocfs2_lock_res_free(&fp->fp_flock);
0076         kfree(fp);
0077         file->private_data = NULL;
0078     }
0079 }
0080 
0081 static int ocfs2_file_open(struct inode *inode, struct file *file)
0082 {
0083     int status;
0084     int mode = file->f_flags;
0085     struct ocfs2_inode_info *oi = OCFS2_I(inode);
0086 
0087     trace_ocfs2_file_open(inode, file, file->f_path.dentry,
0088                   (unsigned long long)oi->ip_blkno,
0089                   file->f_path.dentry->d_name.len,
0090                   file->f_path.dentry->d_name.name, mode);
0091 
0092     if (file->f_mode & FMODE_WRITE) {
0093         status = dquot_initialize(inode);
0094         if (status)
0095             goto leave;
0096     }
0097 
0098     spin_lock(&oi->ip_lock);
0099 
0100     /* Check that the inode hasn't been wiped from disk by another
0101      * node. If it hasn't then we're safe as long as we hold the
0102      * spin lock until our increment of open count. */
0103     if (oi->ip_flags & OCFS2_INODE_DELETED) {
0104         spin_unlock(&oi->ip_lock);
0105 
0106         status = -ENOENT;
0107         goto leave;
0108     }
0109 
0110     if (mode & O_DIRECT)
0111         oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
0112 
0113     oi->ip_open_count++;
0114     spin_unlock(&oi->ip_lock);
0115 
0116     status = ocfs2_init_file_private(inode, file);
0117     if (status) {
0118         /*
0119          * We want to set open count back if we're failing the
0120          * open.
0121          */
0122         spin_lock(&oi->ip_lock);
0123         oi->ip_open_count--;
0124         spin_unlock(&oi->ip_lock);
0125     }
0126 
0127     file->f_mode |= FMODE_NOWAIT;
0128 
0129 leave:
0130     return status;
0131 }
0132 
0133 static int ocfs2_file_release(struct inode *inode, struct file *file)
0134 {
0135     struct ocfs2_inode_info *oi = OCFS2_I(inode);
0136 
0137     spin_lock(&oi->ip_lock);
0138     if (!--oi->ip_open_count)
0139         oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
0140 
0141     trace_ocfs2_file_release(inode, file, file->f_path.dentry,
0142                  oi->ip_blkno,
0143                  file->f_path.dentry->d_name.len,
0144                  file->f_path.dentry->d_name.name,
0145                  oi->ip_open_count);
0146     spin_unlock(&oi->ip_lock);
0147 
0148     ocfs2_free_file_private(inode, file);
0149 
0150     return 0;
0151 }
0152 
0153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
0154 {
0155     return ocfs2_init_file_private(inode, file);
0156 }
0157 
0158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
0159 {
0160     ocfs2_free_file_private(inode, file);
0161     return 0;
0162 }
0163 
0164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
0165                int datasync)
0166 {
0167     int err = 0;
0168     struct inode *inode = file->f_mapping->host;
0169     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
0170     struct ocfs2_inode_info *oi = OCFS2_I(inode);
0171     journal_t *journal = osb->journal->j_journal;
0172     int ret;
0173     tid_t commit_tid;
0174     bool needs_barrier = false;
0175 
0176     trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
0177                   oi->ip_blkno,
0178                   file->f_path.dentry->d_name.len,
0179                   file->f_path.dentry->d_name.name,
0180                   (unsigned long long)datasync);
0181 
0182     if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
0183         return -EROFS;
0184 
0185     err = file_write_and_wait_range(file, start, end);
0186     if (err)
0187         return err;
0188 
0189     commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
0190     if (journal->j_flags & JBD2_BARRIER &&
0191         !jbd2_trans_will_send_data_barrier(journal, commit_tid))
0192         needs_barrier = true;
0193     err = jbd2_complete_transaction(journal, commit_tid);
0194     if (needs_barrier) {
0195         ret = blkdev_issue_flush(inode->i_sb->s_bdev);
0196         if (!err)
0197             err = ret;
0198     }
0199 
0200     if (err)
0201         mlog_errno(err);
0202 
0203     return (err < 0) ? -EIO : 0;
0204 }
0205 
0206 int ocfs2_should_update_atime(struct inode *inode,
0207                   struct vfsmount *vfsmnt)
0208 {
0209     struct timespec64 now;
0210     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
0211 
0212     if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
0213         return 0;
0214 
0215     if ((inode->i_flags & S_NOATIME) ||
0216         ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
0217         return 0;
0218 
0219     /*
0220      * We can be called with no vfsmnt structure - NFSD will
0221      * sometimes do this.
0222      *
0223      * Note that our action here is different than touch_atime() -
0224      * if we can't tell whether this is a noatime mount, then we
0225      * don't know whether to trust the value of s_atime_quantum.
0226      */
0227     if (vfsmnt == NULL)
0228         return 0;
0229 
0230     if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
0231         ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
0232         return 0;
0233 
0234     if (vfsmnt->mnt_flags & MNT_RELATIME) {
0235         if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
0236             (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0))
0237             return 1;
0238 
0239         return 0;
0240     }
0241 
0242     now = current_time(inode);
0243     if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
0244         return 0;
0245     else
0246         return 1;
0247 }
0248 
0249 int ocfs2_update_inode_atime(struct inode *inode,
0250                  struct buffer_head *bh)
0251 {
0252     int ret;
0253     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
0254     handle_t *handle;
0255     struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
0256 
0257     handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
0258     if (IS_ERR(handle)) {
0259         ret = PTR_ERR(handle);
0260         mlog_errno(ret);
0261         goto out;
0262     }
0263 
0264     ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
0265                       OCFS2_JOURNAL_ACCESS_WRITE);
0266     if (ret) {
0267         mlog_errno(ret);
0268         goto out_commit;
0269     }
0270 
0271     /*
0272      * Don't use ocfs2_mark_inode_dirty() here as we don't always
0273      * have i_rwsem to guard against concurrent changes to other
0274      * inode fields.
0275      */
0276     inode->i_atime = current_time(inode);
0277     di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
0278     di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
0279     ocfs2_update_inode_fsync_trans(handle, inode, 0);
0280     ocfs2_journal_dirty(handle, bh);
0281 
0282 out_commit:
0283     ocfs2_commit_trans(osb, handle);
0284 out:
0285     return ret;
0286 }
0287 
0288 int ocfs2_set_inode_size(handle_t *handle,
0289                 struct inode *inode,
0290                 struct buffer_head *fe_bh,
0291                 u64 new_i_size)
0292 {
0293     int status;
0294 
0295     i_size_write(inode, new_i_size);
0296     inode->i_blocks = ocfs2_inode_sector_count(inode);
0297     inode->i_ctime = inode->i_mtime = current_time(inode);
0298 
0299     status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
0300     if (status < 0) {
0301         mlog_errno(status);
0302         goto bail;
0303     }
0304 
0305 bail:
0306     return status;
0307 }
0308 
0309 int ocfs2_simple_size_update(struct inode *inode,
0310                  struct buffer_head *di_bh,
0311                  u64 new_i_size)
0312 {
0313     int ret;
0314     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
0315     handle_t *handle = NULL;
0316 
0317     handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
0318     if (IS_ERR(handle)) {
0319         ret = PTR_ERR(handle);
0320         mlog_errno(ret);
0321         goto out;
0322     }
0323 
0324     ret = ocfs2_set_inode_size(handle, inode, di_bh,
0325                    new_i_size);
0326     if (ret < 0)
0327         mlog_errno(ret);
0328 
0329     ocfs2_update_inode_fsync_trans(handle, inode, 0);
0330     ocfs2_commit_trans(osb, handle);
0331 out:
0332     return ret;
0333 }
0334 
0335 static int ocfs2_cow_file_pos(struct inode *inode,
0336                   struct buffer_head *fe_bh,
0337                   u64 offset)
0338 {
0339     int status;
0340     u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
0341     unsigned int num_clusters = 0;
0342     unsigned int ext_flags = 0;
0343 
0344     /*
0345      * If the new offset is aligned to the range of the cluster, there is
0346      * no space for ocfs2_zero_range_for_truncate to fill, so no need to
0347      * CoW either.
0348      */
0349     if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
0350         return 0;
0351 
0352     status = ocfs2_get_clusters(inode, cpos, &phys,
0353                     &num_clusters, &ext_flags);
0354     if (status) {
0355         mlog_errno(status);
0356         goto out;
0357     }
0358 
0359     if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
0360         goto out;
0361 
0362     return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
0363 
0364 out:
0365     return status;
0366 }
0367 
0368 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
0369                      struct inode *inode,
0370                      struct buffer_head *fe_bh,
0371                      u64 new_i_size)
0372 {
0373     int status;
0374     handle_t *handle;
0375     struct ocfs2_dinode *di;
0376     u64 cluster_bytes;
0377 
0378     /*
0379      * We need to CoW the cluster contains the offset if it is reflinked
0380      * since we will call ocfs2_zero_range_for_truncate later which will
0381      * write "0" from offset to the end of the cluster.
0382      */
0383     status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
0384     if (status) {
0385         mlog_errno(status);
0386         return status;
0387     }
0388 
0389     /* TODO: This needs to actually orphan the inode in this
0390      * transaction. */
0391 
0392     handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
0393     if (IS_ERR(handle)) {
0394         status = PTR_ERR(handle);
0395         mlog_errno(status);
0396         goto out;
0397     }
0398 
0399     status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
0400                      OCFS2_JOURNAL_ACCESS_WRITE);
0401     if (status < 0) {
0402         mlog_errno(status);
0403         goto out_commit;
0404     }
0405 
0406     /*
0407      * Do this before setting i_size.
0408      */
0409     cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
0410     status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
0411                            cluster_bytes);
0412     if (status) {
0413         mlog_errno(status);
0414         goto out_commit;
0415     }
0416 
0417     i_size_write(inode, new_i_size);
0418     inode->i_ctime = inode->i_mtime = current_time(inode);
0419 
0420     di = (struct ocfs2_dinode *) fe_bh->b_data;
0421     di->i_size = cpu_to_le64(new_i_size);
0422     di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
0423     di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
0424     ocfs2_update_inode_fsync_trans(handle, inode, 0);
0425 
0426     ocfs2_journal_dirty(handle, fe_bh);
0427 
0428 out_commit:
0429     ocfs2_commit_trans(osb, handle);
0430 out:
0431     return status;
0432 }
0433 
0434 int ocfs2_truncate_file(struct inode *inode,
0435                    struct buffer_head *di_bh,
0436                    u64 new_i_size)
0437 {
0438     int status = 0;
0439     struct ocfs2_dinode *fe = NULL;
0440     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
0441 
0442     /* We trust di_bh because it comes from ocfs2_inode_lock(), which
0443      * already validated it */
0444     fe = (struct ocfs2_dinode *) di_bh->b_data;
0445 
0446     trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
0447                   (unsigned long long)le64_to_cpu(fe->i_size),
0448                   (unsigned long long)new_i_size);
0449 
0450     mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
0451             "Inode %llu, inode i_size = %lld != di "
0452             "i_size = %llu, i_flags = 0x%x\n",
0453             (unsigned long long)OCFS2_I(inode)->ip_blkno,
0454             i_size_read(inode),
0455             (unsigned long long)le64_to_cpu(fe->i_size),
0456             le32_to_cpu(fe->i_flags));
0457 
0458     if (new_i_size > le64_to_cpu(fe->i_size)) {
0459         trace_ocfs2_truncate_file_error(
0460             (unsigned long long)le64_to_cpu(fe->i_size),
0461             (unsigned long long)new_i_size);
0462         status = -EINVAL;
0463         mlog_errno(status);
0464         goto bail;
0465     }
0466 
0467     down_write(&OCFS2_I(inode)->ip_alloc_sem);
0468 
0469     ocfs2_resv_discard(&osb->osb_la_resmap,
0470                &OCFS2_I(inode)->ip_la_data_resv);
0471 
0472     /*
0473      * The inode lock forced other nodes to sync and drop their
0474      * pages, which (correctly) happens even if we have a truncate
0475      * without allocation change - ocfs2 cluster sizes can be much
0476      * greater than page size, so we have to truncate them
0477      * anyway.
0478      */
0479 
0480     if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
0481         unmap_mapping_range(inode->i_mapping,
0482                     new_i_size + PAGE_SIZE - 1, 0, 1);
0483         truncate_inode_pages(inode->i_mapping, new_i_size);
0484         status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
0485                            i_size_read(inode), 1);
0486         if (status)
0487             mlog_errno(status);
0488 
0489         goto bail_unlock_sem;
0490     }
0491 
0492     /* alright, we're going to need to do a full blown alloc size
0493      * change. Orphan the inode so that recovery can complete the
0494      * truncate if necessary. This does the task of marking
0495      * i_size. */
0496     status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
0497     if (status < 0) {
0498         mlog_errno(status);
0499         goto bail_unlock_sem;
0500     }
0501 
0502     unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
0503     truncate_inode_pages(inode->i_mapping, new_i_size);
0504 
0505     status = ocfs2_commit_truncate(osb, inode, di_bh);
0506     if (status < 0) {
0507         mlog_errno(status);
0508         goto bail_unlock_sem;
0509     }
0510 
0511     /* TODO: orphan dir cleanup here. */
0512 bail_unlock_sem:
0513     up_write(&OCFS2_I(inode)->ip_alloc_sem);
0514 
0515 bail:
0516     if (!status && OCFS2_I(inode)->ip_clusters == 0)
0517         status = ocfs2_try_remove_refcount_tree(inode, di_bh);
0518 
0519     return status;
0520 }
0521 
0522 /*
0523  * extend file allocation only here.
0524  * we'll update all the disk stuff, and oip->alloc_size
0525  *
0526  * expect stuff to be locked, a transaction started and enough data /
0527  * metadata reservations in the contexts.
0528  *
0529  * Will return -EAGAIN, and a reason if a restart is needed.
0530  * If passed in, *reason will always be set, even in error.
0531  */
0532 int ocfs2_add_inode_data(struct ocfs2_super *osb,
0533              struct inode *inode,
0534              u32 *logical_offset,
0535              u32 clusters_to_add,
0536              int mark_unwritten,
0537              struct buffer_head *fe_bh,
0538              handle_t *handle,
0539              struct ocfs2_alloc_context *data_ac,
0540              struct ocfs2_alloc_context *meta_ac,
0541              enum ocfs2_alloc_restarted *reason_ret)
0542 {
0543     struct ocfs2_extent_tree et;
0544 
0545     ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
0546     return ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
0547                        clusters_to_add, mark_unwritten,
0548                        data_ac, meta_ac, reason_ret);
0549 }
0550 
0551 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
0552                    u32 clusters_to_add, int mark_unwritten)
0553 {
0554     int status = 0;
0555     int restart_func = 0;
0556     int credits;
0557     u32 prev_clusters;
0558     struct buffer_head *bh = NULL;
0559     struct ocfs2_dinode *fe = NULL;
0560     handle_t *handle = NULL;
0561     struct ocfs2_alloc_context *data_ac = NULL;
0562     struct ocfs2_alloc_context *meta_ac = NULL;
0563     enum ocfs2_alloc_restarted why = RESTART_NONE;
0564     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
0565     struct ocfs2_extent_tree et;
0566     int did_quota = 0;
0567 
0568     /*
0569      * Unwritten extent only exists for file systems which
0570      * support holes.
0571      */
0572     BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
0573 
0574     status = ocfs2_read_inode_block(inode, &bh);
0575     if (status < 0) {
0576         mlog_errno(status);
0577         goto leave;
0578     }
0579     fe = (struct ocfs2_dinode *) bh->b_data;
0580 
0581 restart_all:
0582     BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
0583 
0584     ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
0585     status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
0586                        &data_ac, &meta_ac);
0587     if (status) {
0588         mlog_errno(status);
0589         goto leave;
0590     }
0591 
0592     credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
0593     handle = ocfs2_start_trans(osb, credits);
0594     if (IS_ERR(handle)) {
0595         status = PTR_ERR(handle);
0596         handle = NULL;
0597         mlog_errno(status);
0598         goto leave;
0599     }
0600 
0601 restarted_transaction:
0602     trace_ocfs2_extend_allocation(
0603         (unsigned long long)OCFS2_I(inode)->ip_blkno,
0604         (unsigned long long)i_size_read(inode),
0605         le32_to_cpu(fe->i_clusters), clusters_to_add,
0606         why, restart_func);
0607 
0608     status = dquot_alloc_space_nodirty(inode,
0609             ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
0610     if (status)
0611         goto leave;
0612     did_quota = 1;
0613 
0614     /* reserve a write to the file entry early on - that we if we
0615      * run out of credits in the allocation path, we can still
0616      * update i_size. */
0617     status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
0618                      OCFS2_JOURNAL_ACCESS_WRITE);
0619     if (status < 0) {
0620         mlog_errno(status);
0621         goto leave;
0622     }
0623 
0624     prev_clusters = OCFS2_I(inode)->ip_clusters;
0625 
0626     status = ocfs2_add_inode_data(osb,
0627                       inode,
0628                       &logical_start,
0629                       clusters_to_add,
0630                       mark_unwritten,
0631                       bh,
0632                       handle,
0633                       data_ac,
0634                       meta_ac,
0635                       &why);
0636     if ((status < 0) && (status != -EAGAIN)) {
0637         if (status != -ENOSPC)
0638             mlog_errno(status);
0639         goto leave;
0640     }
0641     ocfs2_update_inode_fsync_trans(handle, inode, 1);
0642     ocfs2_journal_dirty(handle, bh);
0643 
0644     spin_lock(&OCFS2_I(inode)->ip_lock);
0645     clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
0646     spin_unlock(&OCFS2_I(inode)->ip_lock);
0647     /* Release unused quota reservation */
0648     dquot_free_space(inode,
0649             ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
0650     did_quota = 0;
0651 
0652     if (why != RESTART_NONE && clusters_to_add) {
0653         if (why == RESTART_META) {
0654             restart_func = 1;
0655             status = 0;
0656         } else {
0657             BUG_ON(why != RESTART_TRANS);
0658 
0659             status = ocfs2_allocate_extend_trans(handle, 1);
0660             if (status < 0) {
0661                 /* handle still has to be committed at
0662                  * this point. */
0663                 status = -ENOMEM;
0664                 mlog_errno(status);
0665                 goto leave;
0666             }
0667             goto restarted_transaction;
0668         }
0669     }
0670 
0671     trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
0672          le32_to_cpu(fe->i_clusters),
0673          (unsigned long long)le64_to_cpu(fe->i_size),
0674          OCFS2_I(inode)->ip_clusters,
0675          (unsigned long long)i_size_read(inode));
0676 
0677 leave:
0678     if (status < 0 && did_quota)
0679         dquot_free_space(inode,
0680             ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
0681     if (handle) {
0682         ocfs2_commit_trans(osb, handle);
0683         handle = NULL;
0684     }
0685     if (data_ac) {
0686         ocfs2_free_alloc_context(data_ac);
0687         data_ac = NULL;
0688     }
0689     if (meta_ac) {
0690         ocfs2_free_alloc_context(meta_ac);
0691         meta_ac = NULL;
0692     }
0693     if ((!status) && restart_func) {
0694         restart_func = 0;
0695         goto restart_all;
0696     }
0697     brelse(bh);
0698     bh = NULL;
0699 
0700     return status;
0701 }
0702 
0703 /*
0704  * While a write will already be ordering the data, a truncate will not.
0705  * Thus, we need to explicitly order the zeroed pages.
0706  */
0707 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
0708                               struct buffer_head *di_bh,
0709                               loff_t start_byte,
0710                               loff_t length)
0711 {
0712     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
0713     handle_t *handle = NULL;
0714     int ret = 0;
0715 
0716     if (!ocfs2_should_order_data(inode))
0717         goto out;
0718 
0719     handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
0720     if (IS_ERR(handle)) {
0721         ret = -ENOMEM;
0722         mlog_errno(ret);
0723         goto out;
0724     }
0725 
0726     ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
0727     if (ret < 0) {
0728         mlog_errno(ret);
0729         goto out;
0730     }
0731 
0732     ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
0733                       OCFS2_JOURNAL_ACCESS_WRITE);
0734     if (ret)
0735         mlog_errno(ret);
0736     ocfs2_update_inode_fsync_trans(handle, inode, 1);
0737 
0738 out:
0739     if (ret) {
0740         if (!IS_ERR(handle))
0741             ocfs2_commit_trans(osb, handle);
0742         handle = ERR_PTR(ret);
0743     }
0744     return handle;
0745 }
0746 
0747 /* Some parts of this taken from generic_cont_expand, which turned out
0748  * to be too fragile to do exactly what we need without us having to
0749  * worry about recursive locking in ->write_begin() and ->write_end(). */
0750 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
0751                  u64 abs_to, struct buffer_head *di_bh)
0752 {
0753     struct address_space *mapping = inode->i_mapping;
0754     struct page *page;
0755     unsigned long index = abs_from >> PAGE_SHIFT;
0756     handle_t *handle;
0757     int ret = 0;
0758     unsigned zero_from, zero_to, block_start, block_end;
0759     struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
0760 
0761     BUG_ON(abs_from >= abs_to);
0762     BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
0763     BUG_ON(abs_from & (inode->i_blkbits - 1));
0764 
0765     handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
0766                               abs_from,
0767                               abs_to - abs_from);
0768     if (IS_ERR(handle)) {
0769         ret = PTR_ERR(handle);
0770         goto out;
0771     }
0772 
0773     page = find_or_create_page(mapping, index, GFP_NOFS);
0774     if (!page) {
0775         ret = -ENOMEM;
0776         mlog_errno(ret);
0777         goto out_commit_trans;
0778     }
0779 
0780     /* Get the offsets within the page that we want to zero */
0781     zero_from = abs_from & (PAGE_SIZE - 1);
0782     zero_to = abs_to & (PAGE_SIZE - 1);
0783     if (!zero_to)
0784         zero_to = PAGE_SIZE;
0785 
0786     trace_ocfs2_write_zero_page(
0787             (unsigned long long)OCFS2_I(inode)->ip_blkno,
0788             (unsigned long long)abs_from,
0789             (unsigned long long)abs_to,
0790             index, zero_from, zero_to);
0791 
0792     /* We know that zero_from is block aligned */
0793     for (block_start = zero_from; block_start < zero_to;
0794          block_start = block_end) {
0795         block_end = block_start + i_blocksize(inode);
0796 
0797         /*
0798          * block_start is block-aligned.  Bump it by one to force
0799          * __block_write_begin and block_commit_write to zero the
0800          * whole block.
0801          */
0802         ret = __block_write_begin(page, block_start + 1, 0,
0803                       ocfs2_get_block);
0804         if (ret < 0) {
0805             mlog_errno(ret);
0806             goto out_unlock;
0807         }
0808 
0809 
0810         /* must not update i_size! */
0811         ret = block_commit_write(page, block_start + 1,
0812                      block_start + 1);
0813         if (ret < 0)
0814             mlog_errno(ret);
0815         else
0816             ret = 0;
0817     }
0818 
0819     /*
0820      * fs-writeback will release the dirty pages without page lock
0821      * whose offset are over inode size, the release happens at
0822      * block_write_full_page().
0823      */
0824     i_size_write(inode, abs_to);
0825     inode->i_blocks = ocfs2_inode_sector_count(inode);
0826     di->i_size = cpu_to_le64((u64)i_size_read(inode));
0827     inode->i_mtime = inode->i_ctime = current_time(inode);
0828     di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
0829     di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
0830     di->i_mtime_nsec = di->i_ctime_nsec;
0831     if (handle) {
0832         ocfs2_journal_dirty(handle, di_bh);
0833         ocfs2_update_inode_fsync_trans(handle, inode, 1);
0834     }
0835 
0836 out_unlock:
0837     unlock_page(page);
0838     put_page(page);
0839 out_commit_trans:
0840     if (handle)
0841         ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
0842 out:
0843     return ret;
0844 }
0845 
0846 /*
0847  * Find the next range to zero.  We do this in terms of bytes because
0848  * that's what ocfs2_zero_extend() wants, and it is dealing with the
0849  * pagecache.  We may return multiple extents.
0850  *
0851  * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
0852  * needs to be zeroed.  range_start and range_end return the next zeroing
0853  * range.  A subsequent call should pass the previous range_end as its
0854  * zero_start.  If range_end is 0, there's nothing to do.
0855  *
0856  * Unwritten extents are skipped over.  Refcounted extents are CoWd.
0857  */
0858 static int ocfs2_zero_extend_get_range(struct inode *inode,
0859                        struct buffer_head *di_bh,
0860                        u64 zero_start, u64 zero_end,
0861                        u64 *range_start, u64 *range_end)
0862 {
0863     int rc = 0, needs_cow = 0;
0864     u32 p_cpos, zero_clusters = 0;
0865     u32 zero_cpos =
0866         zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
0867     u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
0868     unsigned int num_clusters = 0;
0869     unsigned int ext_flags = 0;
0870 
0871     while (zero_cpos < last_cpos) {
0872         rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
0873                     &num_clusters, &ext_flags);
0874         if (rc) {
0875             mlog_errno(rc);
0876             goto out;
0877         }
0878 
0879         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
0880             zero_clusters = num_clusters;
0881             if (ext_flags & OCFS2_EXT_REFCOUNTED)
0882                 needs_cow = 1;
0883             break;
0884         }
0885 
0886         zero_cpos += num_clusters;
0887     }
0888     if (!zero_clusters) {
0889         *range_end = 0;
0890         goto out;
0891     }
0892 
0893     while ((zero_cpos + zero_clusters) < last_cpos) {
0894         rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
0895                     &p_cpos, &num_clusters,
0896                     &ext_flags);
0897         if (rc) {
0898             mlog_errno(rc);
0899             goto out;
0900         }
0901 
0902         if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
0903             break;
0904         if (ext_flags & OCFS2_EXT_REFCOUNTED)
0905             needs_cow = 1;
0906         zero_clusters += num_clusters;
0907     }
0908     if ((zero_cpos + zero_clusters) > last_cpos)
0909         zero_clusters = last_cpos - zero_cpos;
0910 
0911     if (needs_cow) {
0912         rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
0913                     zero_clusters, UINT_MAX);
0914         if (rc) {
0915             mlog_errno(rc);
0916             goto out;
0917         }
0918     }
0919 
0920     *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
0921     *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
0922                          zero_cpos + zero_clusters);
0923 
0924 out:
0925     return rc;
0926 }
0927 
0928 /*
0929  * Zero one range returned from ocfs2_zero_extend_get_range().  The caller
0930  * has made sure that the entire range needs zeroing.
0931  */
0932 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
0933                    u64 range_end, struct buffer_head *di_bh)
0934 {
0935     int rc = 0;
0936     u64 next_pos;
0937     u64 zero_pos = range_start;
0938 
0939     trace_ocfs2_zero_extend_range(
0940             (unsigned long long)OCFS2_I(inode)->ip_blkno,
0941             (unsigned long long)range_start,
0942             (unsigned long long)range_end);
0943     BUG_ON(range_start >= range_end);
0944 
0945     while (zero_pos < range_end) {
0946         next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
0947         if (next_pos > range_end)
0948             next_pos = range_end;
0949         rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
0950         if (rc < 0) {
0951             mlog_errno(rc);
0952             break;
0953         }
0954         zero_pos = next_pos;
0955 
0956         /*
0957          * Very large extends have the potential to lock up
0958          * the cpu for extended periods of time.
0959          */
0960         cond_resched();
0961     }
0962 
0963     return rc;
0964 }
0965 
0966 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
0967               loff_t zero_to_size)
0968 {
0969     int ret = 0;
0970     u64 zero_start, range_start = 0, range_end = 0;
0971     struct super_block *sb = inode->i_sb;
0972 
0973     zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
0974     trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
0975                 (unsigned long long)zero_start,
0976                 (unsigned long long)i_size_read(inode));
0977     while (zero_start < zero_to_size) {
0978         ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
0979                           zero_to_size,
0980                           &range_start,
0981                           &range_end);
0982         if (ret) {
0983             mlog_errno(ret);
0984             break;
0985         }
0986         if (!range_end)
0987             break;
0988         /* Trim the ends */
0989         if (range_start < zero_start)
0990             range_start = zero_start;
0991         if (range_end > zero_to_size)
0992             range_end = zero_to_size;
0993 
0994         ret = ocfs2_zero_extend_range(inode, range_start,
0995                           range_end, di_bh);
0996         if (ret) {
0997             mlog_errno(ret);
0998             break;
0999         }
1000         zero_start = range_end;
1001     }
1002 
1003     return ret;
1004 }
1005 
1006 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1007               u64 new_i_size, u64 zero_to)
1008 {
1009     int ret;
1010     u32 clusters_to_add;
1011     struct ocfs2_inode_info *oi = OCFS2_I(inode);
1012 
1013     /*
1014      * Only quota files call this without a bh, and they can't be
1015      * refcounted.
1016      */
1017     BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1018     BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1019 
1020     clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1021     if (clusters_to_add < oi->ip_clusters)
1022         clusters_to_add = 0;
1023     else
1024         clusters_to_add -= oi->ip_clusters;
1025 
1026     if (clusters_to_add) {
1027         ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1028                           clusters_to_add, 0);
1029         if (ret) {
1030             mlog_errno(ret);
1031             goto out;
1032         }
1033     }
1034 
1035     /*
1036      * Call this even if we don't add any clusters to the tree. We
1037      * still need to zero the area between the old i_size and the
1038      * new i_size.
1039      */
1040     ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1041     if (ret < 0)
1042         mlog_errno(ret);
1043 
1044 out:
1045     return ret;
1046 }
1047 
1048 static int ocfs2_extend_file(struct inode *inode,
1049                  struct buffer_head *di_bh,
1050                  u64 new_i_size)
1051 {
1052     int ret = 0;
1053     struct ocfs2_inode_info *oi = OCFS2_I(inode);
1054 
1055     BUG_ON(!di_bh);
1056 
1057     /* setattr sometimes calls us like this. */
1058     if (new_i_size == 0)
1059         goto out;
1060 
1061     if (i_size_read(inode) == new_i_size)
1062         goto out;
1063     BUG_ON(new_i_size < i_size_read(inode));
1064 
1065     /*
1066      * The alloc sem blocks people in read/write from reading our
1067      * allocation until we're done changing it. We depend on
1068      * i_rwsem to block other extend/truncate calls while we're
1069      * here.  We even have to hold it for sparse files because there
1070      * might be some tail zeroing.
1071      */
1072     down_write(&oi->ip_alloc_sem);
1073 
1074     if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1075         /*
1076          * We can optimize small extends by keeping the inodes
1077          * inline data.
1078          */
1079         if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1080             up_write(&oi->ip_alloc_sem);
1081             goto out_update_size;
1082         }
1083 
1084         ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1085         if (ret) {
1086             up_write(&oi->ip_alloc_sem);
1087             mlog_errno(ret);
1088             goto out;
1089         }
1090     }
1091 
1092     if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1093         ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1094     else
1095         ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1096                         new_i_size);
1097 
1098     up_write(&oi->ip_alloc_sem);
1099 
1100     if (ret < 0) {
1101         mlog_errno(ret);
1102         goto out;
1103     }
1104 
1105 out_update_size:
1106     ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1107     if (ret < 0)
1108         mlog_errno(ret);
1109 
1110 out:
1111     return ret;
1112 }
1113 
1114 int ocfs2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1115           struct iattr *attr)
1116 {
1117     int status = 0, size_change;
1118     int inode_locked = 0;
1119     struct inode *inode = d_inode(dentry);
1120     struct super_block *sb = inode->i_sb;
1121     struct ocfs2_super *osb = OCFS2_SB(sb);
1122     struct buffer_head *bh = NULL;
1123     handle_t *handle = NULL;
1124     struct dquot *transfer_to[MAXQUOTAS] = { };
1125     int qtype;
1126     int had_lock;
1127     struct ocfs2_lock_holder oh;
1128 
1129     trace_ocfs2_setattr(inode, dentry,
1130                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1131                 dentry->d_name.len, dentry->d_name.name,
1132                 attr->ia_valid, attr->ia_mode,
1133                 from_kuid(&init_user_ns, attr->ia_uid),
1134                 from_kgid(&init_user_ns, attr->ia_gid));
1135 
1136     /* ensuring we don't even attempt to truncate a symlink */
1137     if (S_ISLNK(inode->i_mode))
1138         attr->ia_valid &= ~ATTR_SIZE;
1139 
1140 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1141                | ATTR_GID | ATTR_UID | ATTR_MODE)
1142     if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1143         return 0;
1144 
1145     status = setattr_prepare(&init_user_ns, dentry, attr);
1146     if (status)
1147         return status;
1148 
1149     if (is_quota_modification(mnt_userns, inode, attr)) {
1150         status = dquot_initialize(inode);
1151         if (status)
1152             return status;
1153     }
1154     size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1155     if (size_change) {
1156         /*
1157          * Here we should wait dio to finish before inode lock
1158          * to avoid a deadlock between ocfs2_setattr() and
1159          * ocfs2_dio_end_io_write()
1160          */
1161         inode_dio_wait(inode);
1162 
1163         status = ocfs2_rw_lock(inode, 1);
1164         if (status < 0) {
1165             mlog_errno(status);
1166             goto bail;
1167         }
1168     }
1169 
1170     had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1171     if (had_lock < 0) {
1172         status = had_lock;
1173         goto bail_unlock_rw;
1174     } else if (had_lock) {
1175         /*
1176          * As far as we know, ocfs2_setattr() could only be the first
1177          * VFS entry point in the call chain of recursive cluster
1178          * locking issue.
1179          *
1180          * For instance:
1181          * chmod_common()
1182          *  notify_change()
1183          *   ocfs2_setattr()
1184          *    posix_acl_chmod()
1185          *     ocfs2_iop_get_acl()
1186          *
1187          * But, we're not 100% sure if it's always true, because the
1188          * ordering of the VFS entry points in the call chain is out
1189          * of our control. So, we'd better dump the stack here to
1190          * catch the other cases of recursive locking.
1191          */
1192         mlog(ML_ERROR, "Another case of recursive locking:\n");
1193         dump_stack();
1194     }
1195     inode_locked = 1;
1196 
1197     if (size_change) {
1198         status = inode_newsize_ok(inode, attr->ia_size);
1199         if (status)
1200             goto bail_unlock;
1201 
1202         if (i_size_read(inode) >= attr->ia_size) {
1203             if (ocfs2_should_order_data(inode)) {
1204                 status = ocfs2_begin_ordered_truncate(inode,
1205                                       attr->ia_size);
1206                 if (status)
1207                     goto bail_unlock;
1208             }
1209             status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1210         } else
1211             status = ocfs2_extend_file(inode, bh, attr->ia_size);
1212         if (status < 0) {
1213             if (status != -ENOSPC)
1214                 mlog_errno(status);
1215             status = -ENOSPC;
1216             goto bail_unlock;
1217         }
1218     }
1219 
1220     if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1221         (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1222         /*
1223          * Gather pointers to quota structures so that allocation /
1224          * freeing of quota structures happens here and not inside
1225          * dquot_transfer() where we have problems with lock ordering
1226          */
1227         if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1228             && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1229             OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1230             transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1231             if (IS_ERR(transfer_to[USRQUOTA])) {
1232                 status = PTR_ERR(transfer_to[USRQUOTA]);
1233                 transfer_to[USRQUOTA] = NULL;
1234                 goto bail_unlock;
1235             }
1236         }
1237         if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1238             && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1239             OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1240             transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1241             if (IS_ERR(transfer_to[GRPQUOTA])) {
1242                 status = PTR_ERR(transfer_to[GRPQUOTA]);
1243                 transfer_to[GRPQUOTA] = NULL;
1244                 goto bail_unlock;
1245             }
1246         }
1247         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1248         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1249                        2 * ocfs2_quota_trans_credits(sb));
1250         if (IS_ERR(handle)) {
1251             status = PTR_ERR(handle);
1252             mlog_errno(status);
1253             goto bail_unlock_alloc;
1254         }
1255         status = __dquot_transfer(inode, transfer_to);
1256         if (status < 0)
1257             goto bail_commit;
1258     } else {
1259         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1260         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1261         if (IS_ERR(handle)) {
1262             status = PTR_ERR(handle);
1263             mlog_errno(status);
1264             goto bail_unlock_alloc;
1265         }
1266     }
1267 
1268     setattr_copy(&init_user_ns, inode, attr);
1269     mark_inode_dirty(inode);
1270 
1271     status = ocfs2_mark_inode_dirty(handle, inode, bh);
1272     if (status < 0)
1273         mlog_errno(status);
1274 
1275 bail_commit:
1276     ocfs2_commit_trans(osb, handle);
1277 bail_unlock_alloc:
1278     up_write(&OCFS2_I(inode)->ip_alloc_sem);
1279 bail_unlock:
1280     if (status && inode_locked) {
1281         ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1282         inode_locked = 0;
1283     }
1284 bail_unlock_rw:
1285     if (size_change)
1286         ocfs2_rw_unlock(inode, 1);
1287 bail:
1288 
1289     /* Release quota pointers in case we acquired them */
1290     for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1291         dqput(transfer_to[qtype]);
1292 
1293     if (!status && attr->ia_valid & ATTR_MODE) {
1294         status = ocfs2_acl_chmod(inode, bh);
1295         if (status < 0)
1296             mlog_errno(status);
1297     }
1298     if (inode_locked)
1299         ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1300 
1301     brelse(bh);
1302     return status;
1303 }
1304 
1305 int ocfs2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1306           struct kstat *stat, u32 request_mask, unsigned int flags)
1307 {
1308     struct inode *inode = d_inode(path->dentry);
1309     struct super_block *sb = path->dentry->d_sb;
1310     struct ocfs2_super *osb = sb->s_fs_info;
1311     int err;
1312 
1313     err = ocfs2_inode_revalidate(path->dentry);
1314     if (err) {
1315         if (err != -ENOENT)
1316             mlog_errno(err);
1317         goto bail;
1318     }
1319 
1320     generic_fillattr(&init_user_ns, inode, stat);
1321     /*
1322      * If there is inline data in the inode, the inode will normally not
1323      * have data blocks allocated (it may have an external xattr block).
1324      * Report at least one sector for such files, so tools like tar, rsync,
1325      * others don't incorrectly think the file is completely sparse.
1326      */
1327     if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1328         stat->blocks += (stat->size + 511)>>9;
1329 
1330     /* We set the blksize from the cluster size for performance */
1331     stat->blksize = osb->s_clustersize;
1332 
1333 bail:
1334     return err;
1335 }
1336 
1337 int ocfs2_permission(struct user_namespace *mnt_userns, struct inode *inode,
1338              int mask)
1339 {
1340     int ret, had_lock;
1341     struct ocfs2_lock_holder oh;
1342 
1343     if (mask & MAY_NOT_BLOCK)
1344         return -ECHILD;
1345 
1346     had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1347     if (had_lock < 0) {
1348         ret = had_lock;
1349         goto out;
1350     } else if (had_lock) {
1351         /* See comments in ocfs2_setattr() for details.
1352          * The call chain of this case could be:
1353          * do_sys_open()
1354          *  may_open()
1355          *   inode_permission()
1356          *    ocfs2_permission()
1357          *     ocfs2_iop_get_acl()
1358          */
1359         mlog(ML_ERROR, "Another case of recursive locking:\n");
1360         dump_stack();
1361     }
1362 
1363     ret = generic_permission(&init_user_ns, inode, mask);
1364 
1365     ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1366 out:
1367     return ret;
1368 }
1369 
1370 static int __ocfs2_write_remove_suid(struct inode *inode,
1371                      struct buffer_head *bh)
1372 {
1373     int ret;
1374     handle_t *handle;
1375     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1376     struct ocfs2_dinode *di;
1377 
1378     trace_ocfs2_write_remove_suid(
1379             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1380             inode->i_mode);
1381 
1382     handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1383     if (IS_ERR(handle)) {
1384         ret = PTR_ERR(handle);
1385         mlog_errno(ret);
1386         goto out;
1387     }
1388 
1389     ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1390                       OCFS2_JOURNAL_ACCESS_WRITE);
1391     if (ret < 0) {
1392         mlog_errno(ret);
1393         goto out_trans;
1394     }
1395 
1396     inode->i_mode &= ~S_ISUID;
1397     if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1398         inode->i_mode &= ~S_ISGID;
1399 
1400     di = (struct ocfs2_dinode *) bh->b_data;
1401     di->i_mode = cpu_to_le16(inode->i_mode);
1402     ocfs2_update_inode_fsync_trans(handle, inode, 0);
1403 
1404     ocfs2_journal_dirty(handle, bh);
1405 
1406 out_trans:
1407     ocfs2_commit_trans(osb, handle);
1408 out:
1409     return ret;
1410 }
1411 
1412 static int ocfs2_write_remove_suid(struct inode *inode)
1413 {
1414     int ret;
1415     struct buffer_head *bh = NULL;
1416 
1417     ret = ocfs2_read_inode_block(inode, &bh);
1418     if (ret < 0) {
1419         mlog_errno(ret);
1420         goto out;
1421     }
1422 
1423     ret =  __ocfs2_write_remove_suid(inode, bh);
1424 out:
1425     brelse(bh);
1426     return ret;
1427 }
1428 
1429 /*
1430  * Allocate enough extents to cover the region starting at byte offset
1431  * start for len bytes. Existing extents are skipped, any extents
1432  * added are marked as "unwritten".
1433  */
1434 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1435                         u64 start, u64 len)
1436 {
1437     int ret;
1438     u32 cpos, phys_cpos, clusters, alloc_size;
1439     u64 end = start + len;
1440     struct buffer_head *di_bh = NULL;
1441 
1442     if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1443         ret = ocfs2_read_inode_block(inode, &di_bh);
1444         if (ret) {
1445             mlog_errno(ret);
1446             goto out;
1447         }
1448 
1449         /*
1450          * Nothing to do if the requested reservation range
1451          * fits within the inode.
1452          */
1453         if (ocfs2_size_fits_inline_data(di_bh, end))
1454             goto out;
1455 
1456         ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1457         if (ret) {
1458             mlog_errno(ret);
1459             goto out;
1460         }
1461     }
1462 
1463     /*
1464      * We consider both start and len to be inclusive.
1465      */
1466     cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1467     clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1468     clusters -= cpos;
1469 
1470     while (clusters) {
1471         ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1472                      &alloc_size, NULL);
1473         if (ret) {
1474             mlog_errno(ret);
1475             goto out;
1476         }
1477 
1478         /*
1479          * Hole or existing extent len can be arbitrary, so
1480          * cap it to our own allocation request.
1481          */
1482         if (alloc_size > clusters)
1483             alloc_size = clusters;
1484 
1485         if (phys_cpos) {
1486             /*
1487              * We already have an allocation at this
1488              * region so we can safely skip it.
1489              */
1490             goto next;
1491         }
1492 
1493         ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1494         if (ret) {
1495             if (ret != -ENOSPC)
1496                 mlog_errno(ret);
1497             goto out;
1498         }
1499 
1500 next:
1501         cpos += alloc_size;
1502         clusters -= alloc_size;
1503     }
1504 
1505     ret = 0;
1506 out:
1507 
1508     brelse(di_bh);
1509     return ret;
1510 }
1511 
1512 /*
1513  * Truncate a byte range, avoiding pages within partial clusters. This
1514  * preserves those pages for the zeroing code to write to.
1515  */
1516 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1517                      u64 byte_len)
1518 {
1519     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1520     loff_t start, end;
1521     struct address_space *mapping = inode->i_mapping;
1522 
1523     start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1524     end = byte_start + byte_len;
1525     end = end & ~(osb->s_clustersize - 1);
1526 
1527     if (start < end) {
1528         unmap_mapping_range(mapping, start, end - start, 0);
1529         truncate_inode_pages_range(mapping, start, end - 1);
1530     }
1531 }
1532 
1533 /*
1534  * zero out partial blocks of one cluster.
1535  *
1536  * start: file offset where zero starts, will be made upper block aligned.
1537  * len: it will be trimmed to the end of current cluster if "start + len"
1538  *      is bigger than it.
1539  */
1540 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1541                     u64 start, u64 len)
1542 {
1543     int ret;
1544     u64 start_block, end_block, nr_blocks;
1545     u64 p_block, offset;
1546     u32 cluster, p_cluster, nr_clusters;
1547     struct super_block *sb = inode->i_sb;
1548     u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1549 
1550     if (start + len < end)
1551         end = start + len;
1552 
1553     start_block = ocfs2_blocks_for_bytes(sb, start);
1554     end_block = ocfs2_blocks_for_bytes(sb, end);
1555     nr_blocks = end_block - start_block;
1556     if (!nr_blocks)
1557         return 0;
1558 
1559     cluster = ocfs2_bytes_to_clusters(sb, start);
1560     ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1561                 &nr_clusters, NULL);
1562     if (ret)
1563         return ret;
1564     if (!p_cluster)
1565         return 0;
1566 
1567     offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1568     p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1569     return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1570 }
1571 
1572 static int ocfs2_zero_partial_clusters(struct inode *inode,
1573                        u64 start, u64 len)
1574 {
1575     int ret = 0;
1576     u64 tmpend = 0;
1577     u64 end = start + len;
1578     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1579     unsigned int csize = osb->s_clustersize;
1580     handle_t *handle;
1581     loff_t isize = i_size_read(inode);
1582 
1583     /*
1584      * The "start" and "end" values are NOT necessarily part of
1585      * the range whose allocation is being deleted. Rather, this
1586      * is what the user passed in with the request. We must zero
1587      * partial clusters here. There's no need to worry about
1588      * physical allocation - the zeroing code knows to skip holes.
1589      */
1590     trace_ocfs2_zero_partial_clusters(
1591         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1592         (unsigned long long)start, (unsigned long long)end);
1593 
1594     /*
1595      * If both edges are on a cluster boundary then there's no
1596      * zeroing required as the region is part of the allocation to
1597      * be truncated.
1598      */
1599     if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1600         goto out;
1601 
1602     /* No page cache for EOF blocks, issue zero out to disk. */
1603     if (end > isize) {
1604         /*
1605          * zeroout eof blocks in last cluster starting from
1606          * "isize" even "start" > "isize" because it is
1607          * complicated to zeroout just at "start" as "start"
1608          * may be not aligned with block size, buffer write
1609          * would be required to do that, but out of eof buffer
1610          * write is not supported.
1611          */
1612         ret = ocfs2_zeroout_partial_cluster(inode, isize,
1613                     end - isize);
1614         if (ret) {
1615             mlog_errno(ret);
1616             goto out;
1617         }
1618         if (start >= isize)
1619             goto out;
1620         end = isize;
1621     }
1622     handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1623     if (IS_ERR(handle)) {
1624         ret = PTR_ERR(handle);
1625         mlog_errno(ret);
1626         goto out;
1627     }
1628 
1629     /*
1630      * If start is on a cluster boundary and end is somewhere in another
1631      * cluster, we have not COWed the cluster starting at start, unless
1632      * end is also within the same cluster. So, in this case, we skip this
1633      * first call to ocfs2_zero_range_for_truncate() truncate and move on
1634      * to the next one.
1635      */
1636     if ((start & (csize - 1)) != 0) {
1637         /*
1638          * We want to get the byte offset of the end of the 1st
1639          * cluster.
1640          */
1641         tmpend = (u64)osb->s_clustersize +
1642             (start & ~(osb->s_clustersize - 1));
1643         if (tmpend > end)
1644             tmpend = end;
1645 
1646         trace_ocfs2_zero_partial_clusters_range1(
1647             (unsigned long long)start,
1648             (unsigned long long)tmpend);
1649 
1650         ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1651                             tmpend);
1652         if (ret)
1653             mlog_errno(ret);
1654     }
1655 
1656     if (tmpend < end) {
1657         /*
1658          * This may make start and end equal, but the zeroing
1659          * code will skip any work in that case so there's no
1660          * need to catch it up here.
1661          */
1662         start = end & ~(osb->s_clustersize - 1);
1663 
1664         trace_ocfs2_zero_partial_clusters_range2(
1665             (unsigned long long)start, (unsigned long long)end);
1666 
1667         ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1668         if (ret)
1669             mlog_errno(ret);
1670     }
1671     ocfs2_update_inode_fsync_trans(handle, inode, 1);
1672 
1673     ocfs2_commit_trans(osb, handle);
1674 out:
1675     return ret;
1676 }
1677 
1678 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1679 {
1680     int i;
1681     struct ocfs2_extent_rec *rec = NULL;
1682 
1683     for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1684 
1685         rec = &el->l_recs[i];
1686 
1687         if (le32_to_cpu(rec->e_cpos) < pos)
1688             break;
1689     }
1690 
1691     return i;
1692 }
1693 
1694 /*
1695  * Helper to calculate the punching pos and length in one run, we handle the
1696  * following three cases in order:
1697  *
1698  * - remove the entire record
1699  * - remove a partial record
1700  * - no record needs to be removed (hole-punching completed)
1701 */
1702 static void ocfs2_calc_trunc_pos(struct inode *inode,
1703                  struct ocfs2_extent_list *el,
1704                  struct ocfs2_extent_rec *rec,
1705                  u32 trunc_start, u32 *trunc_cpos,
1706                  u32 *trunc_len, u32 *trunc_end,
1707                  u64 *blkno, int *done)
1708 {
1709     int ret = 0;
1710     u32 coff, range;
1711 
1712     range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1713 
1714     if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1715         /*
1716          * remove an entire extent record.
1717          */
1718         *trunc_cpos = le32_to_cpu(rec->e_cpos);
1719         /*
1720          * Skip holes if any.
1721          */
1722         if (range < *trunc_end)
1723             *trunc_end = range;
1724         *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1725         *blkno = le64_to_cpu(rec->e_blkno);
1726         *trunc_end = le32_to_cpu(rec->e_cpos);
1727     } else if (range > trunc_start) {
1728         /*
1729          * remove a partial extent record, which means we're
1730          * removing the last extent record.
1731          */
1732         *trunc_cpos = trunc_start;
1733         /*
1734          * skip hole if any.
1735          */
1736         if (range < *trunc_end)
1737             *trunc_end = range;
1738         *trunc_len = *trunc_end - trunc_start;
1739         coff = trunc_start - le32_to_cpu(rec->e_cpos);
1740         *blkno = le64_to_cpu(rec->e_blkno) +
1741                 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1742         *trunc_end = trunc_start;
1743     } else {
1744         /*
1745          * It may have two following possibilities:
1746          *
1747          * - last record has been removed
1748          * - trunc_start was within a hole
1749          *
1750          * both two cases mean the completion of hole punching.
1751          */
1752         ret = 1;
1753     }
1754 
1755     *done = ret;
1756 }
1757 
1758 int ocfs2_remove_inode_range(struct inode *inode,
1759                  struct buffer_head *di_bh, u64 byte_start,
1760                  u64 byte_len)
1761 {
1762     int ret = 0, flags = 0, done = 0, i;
1763     u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1764     u32 cluster_in_el;
1765     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1766     struct ocfs2_cached_dealloc_ctxt dealloc;
1767     struct address_space *mapping = inode->i_mapping;
1768     struct ocfs2_extent_tree et;
1769     struct ocfs2_path *path = NULL;
1770     struct ocfs2_extent_list *el = NULL;
1771     struct ocfs2_extent_rec *rec = NULL;
1772     struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1773     u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1774 
1775     ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1776     ocfs2_init_dealloc_ctxt(&dealloc);
1777 
1778     trace_ocfs2_remove_inode_range(
1779             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1780             (unsigned long long)byte_start,
1781             (unsigned long long)byte_len);
1782 
1783     if (byte_len == 0)
1784         return 0;
1785 
1786     if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1787         ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1788                         byte_start + byte_len, 0);
1789         if (ret) {
1790             mlog_errno(ret);
1791             goto out;
1792         }
1793         /*
1794          * There's no need to get fancy with the page cache
1795          * truncate of an inline-data inode. We're talking
1796          * about less than a page here, which will be cached
1797          * in the dinode buffer anyway.
1798          */
1799         unmap_mapping_range(mapping, 0, 0, 0);
1800         truncate_inode_pages(mapping, 0);
1801         goto out;
1802     }
1803 
1804     /*
1805      * For reflinks, we may need to CoW 2 clusters which might be
1806      * partially zero'd later, if hole's start and end offset were
1807      * within one cluster(means is not exactly aligned to clustersize).
1808      */
1809 
1810     if (ocfs2_is_refcount_inode(inode)) {
1811         ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1812         if (ret) {
1813             mlog_errno(ret);
1814             goto out;
1815         }
1816 
1817         ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1818         if (ret) {
1819             mlog_errno(ret);
1820             goto out;
1821         }
1822     }
1823 
1824     trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1825     trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1826     cluster_in_el = trunc_end;
1827 
1828     ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1829     if (ret) {
1830         mlog_errno(ret);
1831         goto out;
1832     }
1833 
1834     path = ocfs2_new_path_from_et(&et);
1835     if (!path) {
1836         ret = -ENOMEM;
1837         mlog_errno(ret);
1838         goto out;
1839     }
1840 
1841     while (trunc_end > trunc_start) {
1842 
1843         ret = ocfs2_find_path(INODE_CACHE(inode), path,
1844                       cluster_in_el);
1845         if (ret) {
1846             mlog_errno(ret);
1847             goto out;
1848         }
1849 
1850         el = path_leaf_el(path);
1851 
1852         i = ocfs2_find_rec(el, trunc_end);
1853         /*
1854          * Need to go to previous extent block.
1855          */
1856         if (i < 0) {
1857             if (path->p_tree_depth == 0)
1858                 break;
1859 
1860             ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1861                                 path,
1862                                 &cluster_in_el);
1863             if (ret) {
1864                 mlog_errno(ret);
1865                 goto out;
1866             }
1867 
1868             /*
1869              * We've reached the leftmost extent block,
1870              * it's safe to leave.
1871              */
1872             if (cluster_in_el == 0)
1873                 break;
1874 
1875             /*
1876              * The 'pos' searched for previous extent block is
1877              * always one cluster less than actual trunc_end.
1878              */
1879             trunc_end = cluster_in_el + 1;
1880 
1881             ocfs2_reinit_path(path, 1);
1882 
1883             continue;
1884 
1885         } else
1886             rec = &el->l_recs[i];
1887 
1888         ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1889                      &trunc_len, &trunc_end, &blkno, &done);
1890         if (done)
1891             break;
1892 
1893         flags = rec->e_flags;
1894         phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1895 
1896         ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1897                            phys_cpos, trunc_len, flags,
1898                            &dealloc, refcount_loc, false);
1899         if (ret < 0) {
1900             mlog_errno(ret);
1901             goto out;
1902         }
1903 
1904         cluster_in_el = trunc_end;
1905 
1906         ocfs2_reinit_path(path, 1);
1907     }
1908 
1909     ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1910 
1911 out:
1912     ocfs2_free_path(path);
1913     ocfs2_schedule_truncate_log_flush(osb, 1);
1914     ocfs2_run_deallocs(osb, &dealloc);
1915 
1916     return ret;
1917 }
1918 
1919 /*
1920  * Parts of this function taken from xfs_change_file_space()
1921  */
1922 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1923                      loff_t f_pos, unsigned int cmd,
1924                      struct ocfs2_space_resv *sr,
1925                      int change_size)
1926 {
1927     int ret;
1928     s64 llen;
1929     loff_t size, orig_isize;
1930     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1931     struct buffer_head *di_bh = NULL;
1932     handle_t *handle;
1933     unsigned long long max_off = inode->i_sb->s_maxbytes;
1934 
1935     if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1936         return -EROFS;
1937 
1938     inode_lock(inode);
1939 
1940     /*
1941      * This prevents concurrent writes on other nodes
1942      */
1943     ret = ocfs2_rw_lock(inode, 1);
1944     if (ret) {
1945         mlog_errno(ret);
1946         goto out;
1947     }
1948 
1949     ret = ocfs2_inode_lock(inode, &di_bh, 1);
1950     if (ret) {
1951         mlog_errno(ret);
1952         goto out_rw_unlock;
1953     }
1954 
1955     if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1956         ret = -EPERM;
1957         goto out_inode_unlock;
1958     }
1959 
1960     switch (sr->l_whence) {
1961     case 0: /*SEEK_SET*/
1962         break;
1963     case 1: /*SEEK_CUR*/
1964         sr->l_start += f_pos;
1965         break;
1966     case 2: /*SEEK_END*/
1967         sr->l_start += i_size_read(inode);
1968         break;
1969     default:
1970         ret = -EINVAL;
1971         goto out_inode_unlock;
1972     }
1973     sr->l_whence = 0;
1974 
1975     llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1976 
1977     if (sr->l_start < 0
1978         || sr->l_start > max_off
1979         || (sr->l_start + llen) < 0
1980         || (sr->l_start + llen) > max_off) {
1981         ret = -EINVAL;
1982         goto out_inode_unlock;
1983     }
1984     size = sr->l_start + sr->l_len;
1985 
1986     if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1987         cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1988         if (sr->l_len <= 0) {
1989             ret = -EINVAL;
1990             goto out_inode_unlock;
1991         }
1992     }
1993 
1994     if (file && should_remove_suid(file->f_path.dentry)) {
1995         ret = __ocfs2_write_remove_suid(inode, di_bh);
1996         if (ret) {
1997             mlog_errno(ret);
1998             goto out_inode_unlock;
1999         }
2000     }
2001 
2002     down_write(&OCFS2_I(inode)->ip_alloc_sem);
2003     switch (cmd) {
2004     case OCFS2_IOC_RESVSP:
2005     case OCFS2_IOC_RESVSP64:
2006         /*
2007          * This takes unsigned offsets, but the signed ones we
2008          * pass have been checked against overflow above.
2009          */
2010         ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2011                                sr->l_len);
2012         break;
2013     case OCFS2_IOC_UNRESVSP:
2014     case OCFS2_IOC_UNRESVSP64:
2015         ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2016                            sr->l_len);
2017         break;
2018     default:
2019         ret = -EINVAL;
2020     }
2021 
2022     orig_isize = i_size_read(inode);
2023     /* zeroout eof blocks in the cluster. */
2024     if (!ret && change_size && orig_isize < size) {
2025         ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2026                     size - orig_isize);
2027         if (!ret)
2028             i_size_write(inode, size);
2029     }
2030     up_write(&OCFS2_I(inode)->ip_alloc_sem);
2031     if (ret) {
2032         mlog_errno(ret);
2033         goto out_inode_unlock;
2034     }
2035 
2036     /*
2037      * We update c/mtime for these changes
2038      */
2039     handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2040     if (IS_ERR(handle)) {
2041         ret = PTR_ERR(handle);
2042         mlog_errno(ret);
2043         goto out_inode_unlock;
2044     }
2045 
2046     inode->i_ctime = inode->i_mtime = current_time(inode);
2047     ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2048     if (ret < 0)
2049         mlog_errno(ret);
2050 
2051     if (file && (file->f_flags & O_SYNC))
2052         handle->h_sync = 1;
2053 
2054     ocfs2_commit_trans(osb, handle);
2055 
2056 out_inode_unlock:
2057     brelse(di_bh);
2058     ocfs2_inode_unlock(inode, 1);
2059 out_rw_unlock:
2060     ocfs2_rw_unlock(inode, 1);
2061 
2062 out:
2063     inode_unlock(inode);
2064     return ret;
2065 }
2066 
2067 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2068                 struct ocfs2_space_resv *sr)
2069 {
2070     struct inode *inode = file_inode(file);
2071     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2072     int ret;
2073 
2074     if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2075         !ocfs2_writes_unwritten_extents(osb))
2076         return -ENOTTY;
2077     else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2078          !ocfs2_sparse_alloc(osb))
2079         return -ENOTTY;
2080 
2081     if (!S_ISREG(inode->i_mode))
2082         return -EINVAL;
2083 
2084     if (!(file->f_mode & FMODE_WRITE))
2085         return -EBADF;
2086 
2087     ret = mnt_want_write_file(file);
2088     if (ret)
2089         return ret;
2090     ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2091     mnt_drop_write_file(file);
2092     return ret;
2093 }
2094 
2095 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2096                 loff_t len)
2097 {
2098     struct inode *inode = file_inode(file);
2099     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2100     struct ocfs2_space_resv sr;
2101     int change_size = 1;
2102     int cmd = OCFS2_IOC_RESVSP64;
2103 
2104     if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2105         return -EOPNOTSUPP;
2106     if (!ocfs2_writes_unwritten_extents(osb))
2107         return -EOPNOTSUPP;
2108 
2109     if (mode & FALLOC_FL_KEEP_SIZE)
2110         change_size = 0;
2111 
2112     if (mode & FALLOC_FL_PUNCH_HOLE)
2113         cmd = OCFS2_IOC_UNRESVSP64;
2114 
2115     sr.l_whence = 0;
2116     sr.l_start = (s64)offset;
2117     sr.l_len = (s64)len;
2118 
2119     return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2120                      change_size);
2121 }
2122 
2123 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2124                    size_t count)
2125 {
2126     int ret = 0;
2127     unsigned int extent_flags;
2128     u32 cpos, clusters, extent_len, phys_cpos;
2129     struct super_block *sb = inode->i_sb;
2130 
2131     if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2132         !ocfs2_is_refcount_inode(inode) ||
2133         OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2134         return 0;
2135 
2136     cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2137     clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2138 
2139     while (clusters) {
2140         ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2141                      &extent_flags);
2142         if (ret < 0) {
2143             mlog_errno(ret);
2144             goto out;
2145         }
2146 
2147         if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2148             ret = 1;
2149             break;
2150         }
2151 
2152         if (extent_len > clusters)
2153             extent_len = clusters;
2154 
2155         clusters -= extent_len;
2156         cpos += extent_len;
2157     }
2158 out:
2159     return ret;
2160 }
2161 
2162 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2163 {
2164     int blockmask = inode->i_sb->s_blocksize - 1;
2165     loff_t final_size = pos + count;
2166 
2167     if ((pos & blockmask) || (final_size & blockmask))
2168         return 1;
2169     return 0;
2170 }
2171 
2172 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2173                         struct buffer_head **di_bh,
2174                         int meta_level,
2175                         int write_sem,
2176                         int wait)
2177 {
2178     int ret = 0;
2179 
2180     if (wait)
2181         ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2182     else
2183         ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2184     if (ret < 0)
2185         goto out;
2186 
2187     if (wait) {
2188         if (write_sem)
2189             down_write(&OCFS2_I(inode)->ip_alloc_sem);
2190         else
2191             down_read(&OCFS2_I(inode)->ip_alloc_sem);
2192     } else {
2193         if (write_sem)
2194             ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2195         else
2196             ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2197 
2198         if (!ret) {
2199             ret = -EAGAIN;
2200             goto out_unlock;
2201         }
2202     }
2203 
2204     return ret;
2205 
2206 out_unlock:
2207     brelse(*di_bh);
2208     *di_bh = NULL;
2209     ocfs2_inode_unlock(inode, meta_level);
2210 out:
2211     return ret;
2212 }
2213 
2214 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2215                            struct buffer_head **di_bh,
2216                            int meta_level,
2217                            int write_sem)
2218 {
2219     if (write_sem)
2220         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2221     else
2222         up_read(&OCFS2_I(inode)->ip_alloc_sem);
2223 
2224     brelse(*di_bh);
2225     *di_bh = NULL;
2226 
2227     if (meta_level >= 0)
2228         ocfs2_inode_unlock(inode, meta_level);
2229 }
2230 
2231 static int ocfs2_prepare_inode_for_write(struct file *file,
2232                      loff_t pos, size_t count, int wait)
2233 {
2234     int ret = 0, meta_level = 0, overwrite_io = 0;
2235     int write_sem = 0;
2236     struct dentry *dentry = file->f_path.dentry;
2237     struct inode *inode = d_inode(dentry);
2238     struct buffer_head *di_bh = NULL;
2239     u32 cpos;
2240     u32 clusters;
2241 
2242     /*
2243      * We start with a read level meta lock and only jump to an ex
2244      * if we need to make modifications here.
2245      */
2246     for(;;) {
2247         ret = ocfs2_inode_lock_for_extent_tree(inode,
2248                                &di_bh,
2249                                meta_level,
2250                                write_sem,
2251                                wait);
2252         if (ret < 0) {
2253             if (ret != -EAGAIN)
2254                 mlog_errno(ret);
2255             goto out;
2256         }
2257 
2258         /*
2259          * Check if IO will overwrite allocated blocks in case
2260          * IOCB_NOWAIT flag is set.
2261          */
2262         if (!wait && !overwrite_io) {
2263             overwrite_io = 1;
2264 
2265             ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2266             if (ret < 0) {
2267                 if (ret != -EAGAIN)
2268                     mlog_errno(ret);
2269                 goto out_unlock;
2270             }
2271         }
2272 
2273         /* Clear suid / sgid if necessary. We do this here
2274          * instead of later in the write path because
2275          * remove_suid() calls ->setattr without any hint that
2276          * we may have already done our cluster locking. Since
2277          * ocfs2_setattr() *must* take cluster locks to
2278          * proceed, this will lead us to recursively lock the
2279          * inode. There's also the dinode i_size state which
2280          * can be lost via setattr during extending writes (we
2281          * set inode->i_size at the end of a write. */
2282         if (should_remove_suid(dentry)) {
2283             if (meta_level == 0) {
2284                 ocfs2_inode_unlock_for_extent_tree(inode,
2285                                    &di_bh,
2286                                    meta_level,
2287                                    write_sem);
2288                 meta_level = 1;
2289                 continue;
2290             }
2291 
2292             ret = ocfs2_write_remove_suid(inode);
2293             if (ret < 0) {
2294                 mlog_errno(ret);
2295                 goto out_unlock;
2296             }
2297         }
2298 
2299         ret = ocfs2_check_range_for_refcount(inode, pos, count);
2300         if (ret == 1) {
2301             ocfs2_inode_unlock_for_extent_tree(inode,
2302                                &di_bh,
2303                                meta_level,
2304                                write_sem);
2305             meta_level = 1;
2306             write_sem = 1;
2307             ret = ocfs2_inode_lock_for_extent_tree(inode,
2308                                    &di_bh,
2309                                    meta_level,
2310                                    write_sem,
2311                                    wait);
2312             if (ret < 0) {
2313                 if (ret != -EAGAIN)
2314                     mlog_errno(ret);
2315                 goto out;
2316             }
2317 
2318             cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2319             clusters =
2320                 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2321             ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2322         }
2323 
2324         if (ret < 0) {
2325             if (ret != -EAGAIN)
2326                 mlog_errno(ret);
2327             goto out_unlock;
2328         }
2329 
2330         break;
2331     }
2332 
2333 out_unlock:
2334     trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2335                         pos, count, wait);
2336 
2337     ocfs2_inode_unlock_for_extent_tree(inode,
2338                        &di_bh,
2339                        meta_level,
2340                        write_sem);
2341 
2342 out:
2343     return ret;
2344 }
2345 
2346 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2347                     struct iov_iter *from)
2348 {
2349     int rw_level;
2350     ssize_t written = 0;
2351     ssize_t ret;
2352     size_t count = iov_iter_count(from);
2353     struct file *file = iocb->ki_filp;
2354     struct inode *inode = file_inode(file);
2355     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2356     int full_coherency = !(osb->s_mount_opt &
2357                    OCFS2_MOUNT_COHERENCY_BUFFERED);
2358     void *saved_ki_complete = NULL;
2359     int append_write = ((iocb->ki_pos + count) >=
2360             i_size_read(inode) ? 1 : 0);
2361     int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2362     int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2363 
2364     trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2365         (unsigned long long)OCFS2_I(inode)->ip_blkno,
2366         file->f_path.dentry->d_name.len,
2367         file->f_path.dentry->d_name.name,
2368         (unsigned int)from->nr_segs);   /* GRRRRR */
2369 
2370     if (!direct_io && nowait)
2371         return -EOPNOTSUPP;
2372 
2373     if (count == 0)
2374         return 0;
2375 
2376     if (nowait) {
2377         if (!inode_trylock(inode))
2378             return -EAGAIN;
2379     } else
2380         inode_lock(inode);
2381 
2382     /*
2383      * Concurrent O_DIRECT writes are allowed with
2384      * mount_option "coherency=buffered".
2385      * For append write, we must take rw EX.
2386      */
2387     rw_level = (!direct_io || full_coherency || append_write);
2388 
2389     if (nowait)
2390         ret = ocfs2_try_rw_lock(inode, rw_level);
2391     else
2392         ret = ocfs2_rw_lock(inode, rw_level);
2393     if (ret < 0) {
2394         if (ret != -EAGAIN)
2395             mlog_errno(ret);
2396         goto out_mutex;
2397     }
2398 
2399     /*
2400      * O_DIRECT writes with "coherency=full" need to take EX cluster
2401      * inode_lock to guarantee coherency.
2402      */
2403     if (direct_io && full_coherency) {
2404         /*
2405          * We need to take and drop the inode lock to force
2406          * other nodes to drop their caches.  Buffered I/O
2407          * already does this in write_begin().
2408          */
2409         if (nowait)
2410             ret = ocfs2_try_inode_lock(inode, NULL, 1);
2411         else
2412             ret = ocfs2_inode_lock(inode, NULL, 1);
2413         if (ret < 0) {
2414             if (ret != -EAGAIN)
2415                 mlog_errno(ret);
2416             goto out;
2417         }
2418 
2419         ocfs2_inode_unlock(inode, 1);
2420     }
2421 
2422     ret = generic_write_checks(iocb, from);
2423     if (ret <= 0) {
2424         if (ret)
2425             mlog_errno(ret);
2426         goto out;
2427     }
2428     count = ret;
2429 
2430     ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2431     if (ret < 0) {
2432         if (ret != -EAGAIN)
2433             mlog_errno(ret);
2434         goto out;
2435     }
2436 
2437     if (direct_io && !is_sync_kiocb(iocb) &&
2438         ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2439         /*
2440          * Make it a sync io if it's an unaligned aio.
2441          */
2442         saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2443     }
2444 
2445     /* communicate with ocfs2_dio_end_io */
2446     ocfs2_iocb_set_rw_locked(iocb, rw_level);
2447 
2448     written = __generic_file_write_iter(iocb, from);
2449     /* buffered aio wouldn't have proper lock coverage today */
2450     BUG_ON(written == -EIOCBQUEUED && !direct_io);
2451 
2452     /*
2453      * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2454      * function pointer which is called when o_direct io completes so that
2455      * it can unlock our rw lock.
2456      * Unfortunately there are error cases which call end_io and others
2457      * that don't.  so we don't have to unlock the rw_lock if either an
2458      * async dio is going to do it in the future or an end_io after an
2459      * error has already done it.
2460      */
2461     if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2462         rw_level = -1;
2463     }
2464 
2465     if (unlikely(written <= 0))
2466         goto out;
2467 
2468     if (((file->f_flags & O_DSYNC) && !direct_io) ||
2469         IS_SYNC(inode)) {
2470         ret = filemap_fdatawrite_range(file->f_mapping,
2471                            iocb->ki_pos - written,
2472                            iocb->ki_pos - 1);
2473         if (ret < 0)
2474             written = ret;
2475 
2476         if (!ret) {
2477             ret = jbd2_journal_force_commit(osb->journal->j_journal);
2478             if (ret < 0)
2479                 written = ret;
2480         }
2481 
2482         if (!ret)
2483             ret = filemap_fdatawait_range(file->f_mapping,
2484                               iocb->ki_pos - written,
2485                               iocb->ki_pos - 1);
2486     }
2487 
2488 out:
2489     if (saved_ki_complete)
2490         xchg(&iocb->ki_complete, saved_ki_complete);
2491 
2492     if (rw_level != -1)
2493         ocfs2_rw_unlock(inode, rw_level);
2494 
2495 out_mutex:
2496     inode_unlock(inode);
2497 
2498     if (written)
2499         ret = written;
2500     return ret;
2501 }
2502 
2503 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2504                    struct iov_iter *to)
2505 {
2506     int ret = 0, rw_level = -1, lock_level = 0;
2507     struct file *filp = iocb->ki_filp;
2508     struct inode *inode = file_inode(filp);
2509     int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2510     int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2511 
2512     trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2513             (unsigned long long)OCFS2_I(inode)->ip_blkno,
2514             filp->f_path.dentry->d_name.len,
2515             filp->f_path.dentry->d_name.name,
2516             to->nr_segs);   /* GRRRRR */
2517 
2518 
2519     if (!inode) {
2520         ret = -EINVAL;
2521         mlog_errno(ret);
2522         goto bail;
2523     }
2524 
2525     if (!direct_io && nowait)
2526         return -EOPNOTSUPP;
2527 
2528     /*
2529      * buffered reads protect themselves in ->read_folio().  O_DIRECT reads
2530      * need locks to protect pending reads from racing with truncate.
2531      */
2532     if (direct_io) {
2533         if (nowait)
2534             ret = ocfs2_try_rw_lock(inode, 0);
2535         else
2536             ret = ocfs2_rw_lock(inode, 0);
2537 
2538         if (ret < 0) {
2539             if (ret != -EAGAIN)
2540                 mlog_errno(ret);
2541             goto bail;
2542         }
2543         rw_level = 0;
2544         /* communicate with ocfs2_dio_end_io */
2545         ocfs2_iocb_set_rw_locked(iocb, rw_level);
2546     }
2547 
2548     /*
2549      * We're fine letting folks race truncates and extending
2550      * writes with read across the cluster, just like they can
2551      * locally. Hence no rw_lock during read.
2552      *
2553      * Take and drop the meta data lock to update inode fields
2554      * like i_size. This allows the checks down below
2555      * generic_file_read_iter() a chance of actually working.
2556      */
2557     ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2558                      !nowait);
2559     if (ret < 0) {
2560         if (ret != -EAGAIN)
2561             mlog_errno(ret);
2562         goto bail;
2563     }
2564     ocfs2_inode_unlock(inode, lock_level);
2565 
2566     ret = generic_file_read_iter(iocb, to);
2567     trace_generic_file_read_iter_ret(ret);
2568 
2569     /* buffered aio wouldn't have proper lock coverage today */
2570     BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2571 
2572     /* see ocfs2_file_write_iter */
2573     if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2574         rw_level = -1;
2575     }
2576 
2577 bail:
2578     if (rw_level != -1)
2579         ocfs2_rw_unlock(inode, rw_level);
2580 
2581     return ret;
2582 }
2583 
2584 /* Refer generic_file_llseek_unlocked() */
2585 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2586 {
2587     struct inode *inode = file->f_mapping->host;
2588     int ret = 0;
2589 
2590     inode_lock(inode);
2591 
2592     switch (whence) {
2593     case SEEK_SET:
2594         break;
2595     case SEEK_END:
2596         /* SEEK_END requires the OCFS2 inode lock for the file
2597          * because it references the file's size.
2598          */
2599         ret = ocfs2_inode_lock(inode, NULL, 0);
2600         if (ret < 0) {
2601             mlog_errno(ret);
2602             goto out;
2603         }
2604         offset += i_size_read(inode);
2605         ocfs2_inode_unlock(inode, 0);
2606         break;
2607     case SEEK_CUR:
2608         if (offset == 0) {
2609             offset = file->f_pos;
2610             goto out;
2611         }
2612         offset += file->f_pos;
2613         break;
2614     case SEEK_DATA:
2615     case SEEK_HOLE:
2616         ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2617         if (ret)
2618             goto out;
2619         break;
2620     default:
2621         ret = -EINVAL;
2622         goto out;
2623     }
2624 
2625     offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2626 
2627 out:
2628     inode_unlock(inode);
2629     if (ret)
2630         return ret;
2631     return offset;
2632 }
2633 
2634 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2635                      struct file *file_out, loff_t pos_out,
2636                      loff_t len, unsigned int remap_flags)
2637 {
2638     struct inode *inode_in = file_inode(file_in);
2639     struct inode *inode_out = file_inode(file_out);
2640     struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2641     struct buffer_head *in_bh = NULL, *out_bh = NULL;
2642     bool same_inode = (inode_in == inode_out);
2643     loff_t remapped = 0;
2644     ssize_t ret;
2645 
2646     if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2647         return -EINVAL;
2648     if (!ocfs2_refcount_tree(osb))
2649         return -EOPNOTSUPP;
2650     if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2651         return -EROFS;
2652 
2653     /* Lock both files against IO */
2654     ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2655     if (ret)
2656         return ret;
2657 
2658     /* Check file eligibility and prepare for block sharing. */
2659     ret = -EINVAL;
2660     if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2661         (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2662         goto out_unlock;
2663 
2664     ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2665             &len, remap_flags);
2666     if (ret < 0 || len == 0)
2667         goto out_unlock;
2668 
2669     /* Lock out changes to the allocation maps and remap. */
2670     down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2671     if (!same_inode)
2672         down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2673                   SINGLE_DEPTH_NESTING);
2674 
2675     /* Zap any page cache for the destination file's range. */
2676     truncate_inode_pages_range(&inode_out->i_data,
2677                    round_down(pos_out, PAGE_SIZE),
2678                    round_up(pos_out + len, PAGE_SIZE) - 1);
2679 
2680     remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2681             inode_out, out_bh, pos_out, len);
2682     up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2683     if (!same_inode)
2684         up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2685     if (remapped < 0) {
2686         ret = remapped;
2687         mlog_errno(ret);
2688         goto out_unlock;
2689     }
2690 
2691     /*
2692      * Empty the extent map so that we may get the right extent
2693      * record from the disk.
2694      */
2695     ocfs2_extent_map_trunc(inode_in, 0);
2696     ocfs2_extent_map_trunc(inode_out, 0);
2697 
2698     ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2699     if (ret) {
2700         mlog_errno(ret);
2701         goto out_unlock;
2702     }
2703 
2704 out_unlock:
2705     ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2706     return remapped > 0 ? remapped : ret;
2707 }
2708 
2709 const struct inode_operations ocfs2_file_iops = {
2710     .setattr    = ocfs2_setattr,
2711     .getattr    = ocfs2_getattr,
2712     .permission = ocfs2_permission,
2713     .listxattr  = ocfs2_listxattr,
2714     .fiemap     = ocfs2_fiemap,
2715     .get_acl    = ocfs2_iop_get_acl,
2716     .set_acl    = ocfs2_iop_set_acl,
2717     .fileattr_get   = ocfs2_fileattr_get,
2718     .fileattr_set   = ocfs2_fileattr_set,
2719 };
2720 
2721 const struct inode_operations ocfs2_special_file_iops = {
2722     .setattr    = ocfs2_setattr,
2723     .getattr    = ocfs2_getattr,
2724     .permission = ocfs2_permission,
2725     .get_acl    = ocfs2_iop_get_acl,
2726     .set_acl    = ocfs2_iop_set_acl,
2727 };
2728 
2729 /*
2730  * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2731  * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2732  */
2733 const struct file_operations ocfs2_fops = {
2734     .llseek     = ocfs2_file_llseek,
2735     .mmap       = ocfs2_mmap,
2736     .fsync      = ocfs2_sync_file,
2737     .release    = ocfs2_file_release,
2738     .open       = ocfs2_file_open,
2739     .read_iter  = ocfs2_file_read_iter,
2740     .write_iter = ocfs2_file_write_iter,
2741     .unlocked_ioctl = ocfs2_ioctl,
2742 #ifdef CONFIG_COMPAT
2743     .compat_ioctl   = ocfs2_compat_ioctl,
2744 #endif
2745     .lock       = ocfs2_lock,
2746     .flock      = ocfs2_flock,
2747     .splice_read    = generic_file_splice_read,
2748     .splice_write   = iter_file_splice_write,
2749     .fallocate  = ocfs2_fallocate,
2750     .remap_file_range = ocfs2_remap_file_range,
2751 };
2752 
2753 const struct file_operations ocfs2_dops = {
2754     .llseek     = generic_file_llseek,
2755     .read       = generic_read_dir,
2756     .iterate    = ocfs2_readdir,
2757     .fsync      = ocfs2_sync_file,
2758     .release    = ocfs2_dir_release,
2759     .open       = ocfs2_dir_open,
2760     .unlocked_ioctl = ocfs2_ioctl,
2761 #ifdef CONFIG_COMPAT
2762     .compat_ioctl   = ocfs2_compat_ioctl,
2763 #endif
2764     .lock       = ocfs2_lock,
2765     .flock      = ocfs2_flock,
2766 };
2767 
2768 /*
2769  * POSIX-lockless variants of our file_operations.
2770  *
2771  * These will be used if the underlying cluster stack does not support
2772  * posix file locking, if the user passes the "localflocks" mount
2773  * option, or if we have a local-only fs.
2774  *
2775  * ocfs2_flock is in here because all stacks handle UNIX file locks,
2776  * so we still want it in the case of no stack support for
2777  * plocks. Internally, it will do the right thing when asked to ignore
2778  * the cluster.
2779  */
2780 const struct file_operations ocfs2_fops_no_plocks = {
2781     .llseek     = ocfs2_file_llseek,
2782     .mmap       = ocfs2_mmap,
2783     .fsync      = ocfs2_sync_file,
2784     .release    = ocfs2_file_release,
2785     .open       = ocfs2_file_open,
2786     .read_iter  = ocfs2_file_read_iter,
2787     .write_iter = ocfs2_file_write_iter,
2788     .unlocked_ioctl = ocfs2_ioctl,
2789 #ifdef CONFIG_COMPAT
2790     .compat_ioctl   = ocfs2_compat_ioctl,
2791 #endif
2792     .flock      = ocfs2_flock,
2793     .splice_read    = generic_file_splice_read,
2794     .splice_write   = iter_file_splice_write,
2795     .fallocate  = ocfs2_fallocate,
2796     .remap_file_range = ocfs2_remap_file_range,
2797 };
2798 
2799 const struct file_operations ocfs2_dops_no_plocks = {
2800     .llseek     = generic_file_llseek,
2801     .read       = generic_read_dir,
2802     .iterate    = ocfs2_readdir,
2803     .fsync      = ocfs2_sync_file,
2804     .release    = ocfs2_dir_release,
2805     .open       = ocfs2_dir_open,
2806     .unlocked_ioctl = ocfs2_ioctl,
2807 #ifdef CONFIG_COMPAT
2808     .compat_ioctl   = ocfs2_compat_ioctl,
2809 #endif
2810     .flock      = ocfs2_flock,
2811 };