Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
0004  */
0005 
0006 #include <linux/fs.h>
0007 #include <linux/slab.h>
0008 #include <linux/highmem.h>
0009 #include <linux/pagemap.h>
0010 #include <asm/byteorder.h>
0011 #include <linux/swap.h>
0012 #include <linux/mpage.h>
0013 #include <linux/quotaops.h>
0014 #include <linux/blkdev.h>
0015 #include <linux/uio.h>
0016 #include <linux/mm.h>
0017 
0018 #include <cluster/masklog.h>
0019 
0020 #include "ocfs2.h"
0021 
0022 #include "alloc.h"
0023 #include "aops.h"
0024 #include "dlmglue.h"
0025 #include "extent_map.h"
0026 #include "file.h"
0027 #include "inode.h"
0028 #include "journal.h"
0029 #include "suballoc.h"
0030 #include "super.h"
0031 #include "symlink.h"
0032 #include "refcounttree.h"
0033 #include "ocfs2_trace.h"
0034 
0035 #include "buffer_head_io.h"
0036 #include "dir.h"
0037 #include "namei.h"
0038 #include "sysfile.h"
0039 
0040 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
0041                    struct buffer_head *bh_result, int create)
0042 {
0043     int err = -EIO;
0044     int status;
0045     struct ocfs2_dinode *fe = NULL;
0046     struct buffer_head *bh = NULL;
0047     struct buffer_head *buffer_cache_bh = NULL;
0048     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
0049     void *kaddr;
0050 
0051     trace_ocfs2_symlink_get_block(
0052             (unsigned long long)OCFS2_I(inode)->ip_blkno,
0053             (unsigned long long)iblock, bh_result, create);
0054 
0055     BUG_ON(ocfs2_inode_is_fast_symlink(inode));
0056 
0057     if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
0058         mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
0059              (unsigned long long)iblock);
0060         goto bail;
0061     }
0062 
0063     status = ocfs2_read_inode_block(inode, &bh);
0064     if (status < 0) {
0065         mlog_errno(status);
0066         goto bail;
0067     }
0068     fe = (struct ocfs2_dinode *) bh->b_data;
0069 
0070     if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
0071                             le32_to_cpu(fe->i_clusters))) {
0072         err = -ENOMEM;
0073         mlog(ML_ERROR, "block offset is outside the allocated size: "
0074              "%llu\n", (unsigned long long)iblock);
0075         goto bail;
0076     }
0077 
0078     /* We don't use the page cache to create symlink data, so if
0079      * need be, copy it over from the buffer cache. */
0080     if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
0081         u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
0082                 iblock;
0083         buffer_cache_bh = sb_getblk(osb->sb, blkno);
0084         if (!buffer_cache_bh) {
0085             err = -ENOMEM;
0086             mlog(ML_ERROR, "couldn't getblock for symlink!\n");
0087             goto bail;
0088         }
0089 
0090         /* we haven't locked out transactions, so a commit
0091          * could've happened. Since we've got a reference on
0092          * the bh, even if it commits while we're doing the
0093          * copy, the data is still good. */
0094         if (buffer_jbd(buffer_cache_bh)
0095             && ocfs2_inode_is_new(inode)) {
0096             kaddr = kmap_atomic(bh_result->b_page);
0097             if (!kaddr) {
0098                 mlog(ML_ERROR, "couldn't kmap!\n");
0099                 goto bail;
0100             }
0101             memcpy(kaddr + (bh_result->b_size * iblock),
0102                    buffer_cache_bh->b_data,
0103                    bh_result->b_size);
0104             kunmap_atomic(kaddr);
0105             set_buffer_uptodate(bh_result);
0106         }
0107         brelse(buffer_cache_bh);
0108     }
0109 
0110     map_bh(bh_result, inode->i_sb,
0111            le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
0112 
0113     err = 0;
0114 
0115 bail:
0116     brelse(bh);
0117 
0118     return err;
0119 }
0120 
0121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
0122             struct buffer_head *bh_result, int create)
0123 {
0124     int ret = 0;
0125     struct ocfs2_inode_info *oi = OCFS2_I(inode);
0126 
0127     down_read(&oi->ip_alloc_sem);
0128     ret = ocfs2_get_block(inode, iblock, bh_result, create);
0129     up_read(&oi->ip_alloc_sem);
0130 
0131     return ret;
0132 }
0133 
0134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
0135             struct buffer_head *bh_result, int create)
0136 {
0137     int err = 0;
0138     unsigned int ext_flags;
0139     u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
0140     u64 p_blkno, count, past_eof;
0141     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
0142 
0143     trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
0144                   (unsigned long long)iblock, bh_result, create);
0145 
0146     if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
0147         mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
0148              inode, inode->i_ino);
0149 
0150     if (S_ISLNK(inode->i_mode)) {
0151         /* this always does I/O for some reason. */
0152         err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
0153         goto bail;
0154     }
0155 
0156     err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
0157                       &ext_flags);
0158     if (err) {
0159         mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
0160              "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
0161              (unsigned long long)p_blkno);
0162         goto bail;
0163     }
0164 
0165     if (max_blocks < count)
0166         count = max_blocks;
0167 
0168     /*
0169      * ocfs2 never allocates in this function - the only time we
0170      * need to use BH_New is when we're extending i_size on a file
0171      * system which doesn't support holes, in which case BH_New
0172      * allows __block_write_begin() to zero.
0173      *
0174      * If we see this on a sparse file system, then a truncate has
0175      * raced us and removed the cluster. In this case, we clear
0176      * the buffers dirty and uptodate bits and let the buffer code
0177      * ignore it as a hole.
0178      */
0179     if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
0180         clear_buffer_dirty(bh_result);
0181         clear_buffer_uptodate(bh_result);
0182         goto bail;
0183     }
0184 
0185     /* Treat the unwritten extent as a hole for zeroing purposes. */
0186     if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
0187         map_bh(bh_result, inode->i_sb, p_blkno);
0188 
0189     bh_result->b_size = count << inode->i_blkbits;
0190 
0191     if (!ocfs2_sparse_alloc(osb)) {
0192         if (p_blkno == 0) {
0193             err = -EIO;
0194             mlog(ML_ERROR,
0195                  "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
0196                  (unsigned long long)iblock,
0197                  (unsigned long long)p_blkno,
0198                  (unsigned long long)OCFS2_I(inode)->ip_blkno);
0199             mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
0200             dump_stack();
0201             goto bail;
0202         }
0203     }
0204 
0205     past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
0206 
0207     trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
0208                   (unsigned long long)past_eof);
0209     if (create && (iblock >= past_eof))
0210         set_buffer_new(bh_result);
0211 
0212 bail:
0213     if (err < 0)
0214         err = -EIO;
0215 
0216     return err;
0217 }
0218 
0219 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
0220                struct buffer_head *di_bh)
0221 {
0222     void *kaddr;
0223     loff_t size;
0224     struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
0225 
0226     if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
0227         ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
0228                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
0229         return -EROFS;
0230     }
0231 
0232     size = i_size_read(inode);
0233 
0234     if (size > PAGE_SIZE ||
0235         size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
0236         ocfs2_error(inode->i_sb,
0237                 "Inode %llu has with inline data has bad size: %Lu\n",
0238                 (unsigned long long)OCFS2_I(inode)->ip_blkno,
0239                 (unsigned long long)size);
0240         return -EROFS;
0241     }
0242 
0243     kaddr = kmap_atomic(page);
0244     if (size)
0245         memcpy(kaddr, di->id2.i_data.id_data, size);
0246     /* Clear the remaining part of the page */
0247     memset(kaddr + size, 0, PAGE_SIZE - size);
0248     flush_dcache_page(page);
0249     kunmap_atomic(kaddr);
0250 
0251     SetPageUptodate(page);
0252 
0253     return 0;
0254 }
0255 
0256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
0257 {
0258     int ret;
0259     struct buffer_head *di_bh = NULL;
0260 
0261     BUG_ON(!PageLocked(page));
0262     BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
0263 
0264     ret = ocfs2_read_inode_block(inode, &di_bh);
0265     if (ret) {
0266         mlog_errno(ret);
0267         goto out;
0268     }
0269 
0270     ret = ocfs2_read_inline_data(inode, page, di_bh);
0271 out:
0272     unlock_page(page);
0273 
0274     brelse(di_bh);
0275     return ret;
0276 }
0277 
0278 static int ocfs2_read_folio(struct file *file, struct folio *folio)
0279 {
0280     struct inode *inode = folio->mapping->host;
0281     struct ocfs2_inode_info *oi = OCFS2_I(inode);
0282     loff_t start = folio_pos(folio);
0283     int ret, unlock = 1;
0284 
0285     trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
0286 
0287     ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
0288     if (ret != 0) {
0289         if (ret == AOP_TRUNCATED_PAGE)
0290             unlock = 0;
0291         mlog_errno(ret);
0292         goto out;
0293     }
0294 
0295     if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
0296         /*
0297          * Unlock the folio and cycle ip_alloc_sem so that we don't
0298          * busyloop waiting for ip_alloc_sem to unlock
0299          */
0300         ret = AOP_TRUNCATED_PAGE;
0301         folio_unlock(folio);
0302         unlock = 0;
0303         down_read(&oi->ip_alloc_sem);
0304         up_read(&oi->ip_alloc_sem);
0305         goto out_inode_unlock;
0306     }
0307 
0308     /*
0309      * i_size might have just been updated as we grabed the meta lock.  We
0310      * might now be discovering a truncate that hit on another node.
0311      * block_read_full_folio->get_block freaks out if it is asked to read
0312      * beyond the end of a file, so we check here.  Callers
0313      * (generic_file_read, vm_ops->fault) are clever enough to check i_size
0314      * and notice that the folio they just read isn't needed.
0315      *
0316      * XXX sys_readahead() seems to get that wrong?
0317      */
0318     if (start >= i_size_read(inode)) {
0319         folio_zero_segment(folio, 0, folio_size(folio));
0320         folio_mark_uptodate(folio);
0321         ret = 0;
0322         goto out_alloc;
0323     }
0324 
0325     if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
0326         ret = ocfs2_readpage_inline(inode, &folio->page);
0327     else
0328         ret = block_read_full_folio(folio, ocfs2_get_block);
0329     unlock = 0;
0330 
0331 out_alloc:
0332     up_read(&oi->ip_alloc_sem);
0333 out_inode_unlock:
0334     ocfs2_inode_unlock(inode, 0);
0335 out:
0336     if (unlock)
0337         folio_unlock(folio);
0338     return ret;
0339 }
0340 
0341 /*
0342  * This is used only for read-ahead. Failures or difficult to handle
0343  * situations are safe to ignore.
0344  *
0345  * Right now, we don't bother with BH_Boundary - in-inode extent lists
0346  * are quite large (243 extents on 4k blocks), so most inodes don't
0347  * grow out to a tree. If need be, detecting boundary extents could
0348  * trivially be added in a future version of ocfs2_get_block().
0349  */
0350 static void ocfs2_readahead(struct readahead_control *rac)
0351 {
0352     int ret;
0353     struct inode *inode = rac->mapping->host;
0354     struct ocfs2_inode_info *oi = OCFS2_I(inode);
0355 
0356     /*
0357      * Use the nonblocking flag for the dlm code to avoid page
0358      * lock inversion, but don't bother with retrying.
0359      */
0360     ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
0361     if (ret)
0362         return;
0363 
0364     if (down_read_trylock(&oi->ip_alloc_sem) == 0)
0365         goto out_unlock;
0366 
0367     /*
0368      * Don't bother with inline-data. There isn't anything
0369      * to read-ahead in that case anyway...
0370      */
0371     if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
0372         goto out_up;
0373 
0374     /*
0375      * Check whether a remote node truncated this file - we just
0376      * drop out in that case as it's not worth handling here.
0377      */
0378     if (readahead_pos(rac) >= i_size_read(inode))
0379         goto out_up;
0380 
0381     mpage_readahead(rac, ocfs2_get_block);
0382 
0383 out_up:
0384     up_read(&oi->ip_alloc_sem);
0385 out_unlock:
0386     ocfs2_inode_unlock(inode, 0);
0387 }
0388 
0389 /* Note: Because we don't support holes, our allocation has
0390  * already happened (allocation writes zeros to the file data)
0391  * so we don't have to worry about ordered writes in
0392  * ocfs2_writepage.
0393  *
0394  * ->writepage is called during the process of invalidating the page cache
0395  * during blocked lock processing.  It can't block on any cluster locks
0396  * to during block mapping.  It's relying on the fact that the block
0397  * mapping can't have disappeared under the dirty pages that it is
0398  * being asked to write back.
0399  */
0400 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
0401 {
0402     trace_ocfs2_writepage(
0403         (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
0404         page->index);
0405 
0406     return block_write_full_page(page, ocfs2_get_block, wbc);
0407 }
0408 
0409 /* Taken from ext3. We don't necessarily need the full blown
0410  * functionality yet, but IMHO it's better to cut and paste the whole
0411  * thing so we can avoid introducing our own bugs (and easily pick up
0412  * their fixes when they happen) --Mark */
0413 int walk_page_buffers(  handle_t *handle,
0414             struct buffer_head *head,
0415             unsigned from,
0416             unsigned to,
0417             int *partial,
0418             int (*fn)(  handle_t *handle,
0419                     struct buffer_head *bh))
0420 {
0421     struct buffer_head *bh;
0422     unsigned block_start, block_end;
0423     unsigned blocksize = head->b_size;
0424     int err, ret = 0;
0425     struct buffer_head *next;
0426 
0427     for (   bh = head, block_start = 0;
0428         ret == 0 && (bh != head || !block_start);
0429             block_start = block_end, bh = next)
0430     {
0431         next = bh->b_this_page;
0432         block_end = block_start + blocksize;
0433         if (block_end <= from || block_start >= to) {
0434             if (partial && !buffer_uptodate(bh))
0435                 *partial = 1;
0436             continue;
0437         }
0438         err = (*fn)(handle, bh);
0439         if (!ret)
0440             ret = err;
0441     }
0442     return ret;
0443 }
0444 
0445 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
0446 {
0447     sector_t status;
0448     u64 p_blkno = 0;
0449     int err = 0;
0450     struct inode *inode = mapping->host;
0451 
0452     trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
0453              (unsigned long long)block);
0454 
0455     /*
0456      * The swap code (ab-)uses ->bmap to get a block mapping and then
0457      * bypasseѕ the file system for actual I/O.  We really can't allow
0458      * that on refcounted inodes, so we have to skip out here.  And yes,
0459      * 0 is the magic code for a bmap error..
0460      */
0461     if (ocfs2_is_refcount_inode(inode))
0462         return 0;
0463 
0464     /* We don't need to lock journal system files, since they aren't
0465      * accessed concurrently from multiple nodes.
0466      */
0467     if (!INODE_JOURNAL(inode)) {
0468         err = ocfs2_inode_lock(inode, NULL, 0);
0469         if (err) {
0470             if (err != -ENOENT)
0471                 mlog_errno(err);
0472             goto bail;
0473         }
0474         down_read(&OCFS2_I(inode)->ip_alloc_sem);
0475     }
0476 
0477     if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
0478         err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
0479                           NULL);
0480 
0481     if (!INODE_JOURNAL(inode)) {
0482         up_read(&OCFS2_I(inode)->ip_alloc_sem);
0483         ocfs2_inode_unlock(inode, 0);
0484     }
0485 
0486     if (err) {
0487         mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
0488              (unsigned long long)block);
0489         mlog_errno(err);
0490         goto bail;
0491     }
0492 
0493 bail:
0494     status = err ? 0 : p_blkno;
0495 
0496     return status;
0497 }
0498 
0499 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
0500 {
0501     if (!folio_buffers(folio))
0502         return false;
0503     return try_to_free_buffers(folio);
0504 }
0505 
0506 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
0507                         u32 cpos,
0508                         unsigned int *start,
0509                         unsigned int *end)
0510 {
0511     unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
0512 
0513     if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
0514         unsigned int cpp;
0515 
0516         cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
0517 
0518         cluster_start = cpos % cpp;
0519         cluster_start = cluster_start << osb->s_clustersize_bits;
0520 
0521         cluster_end = cluster_start + osb->s_clustersize;
0522     }
0523 
0524     BUG_ON(cluster_start > PAGE_SIZE);
0525     BUG_ON(cluster_end > PAGE_SIZE);
0526 
0527     if (start)
0528         *start = cluster_start;
0529     if (end)
0530         *end = cluster_end;
0531 }
0532 
0533 /*
0534  * 'from' and 'to' are the region in the page to avoid zeroing.
0535  *
0536  * If pagesize > clustersize, this function will avoid zeroing outside
0537  * of the cluster boundary.
0538  *
0539  * from == to == 0 is code for "zero the entire cluster region"
0540  */
0541 static void ocfs2_clear_page_regions(struct page *page,
0542                      struct ocfs2_super *osb, u32 cpos,
0543                      unsigned from, unsigned to)
0544 {
0545     void *kaddr;
0546     unsigned int cluster_start, cluster_end;
0547 
0548     ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
0549 
0550     kaddr = kmap_atomic(page);
0551 
0552     if (from || to) {
0553         if (from > cluster_start)
0554             memset(kaddr + cluster_start, 0, from - cluster_start);
0555         if (to < cluster_end)
0556             memset(kaddr + to, 0, cluster_end - to);
0557     } else {
0558         memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
0559     }
0560 
0561     kunmap_atomic(kaddr);
0562 }
0563 
0564 /*
0565  * Nonsparse file systems fully allocate before we get to the write
0566  * code. This prevents ocfs2_write() from tagging the write as an
0567  * allocating one, which means ocfs2_map_page_blocks() might try to
0568  * read-in the blocks at the tail of our file. Avoid reading them by
0569  * testing i_size against each block offset.
0570  */
0571 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
0572                  unsigned int block_start)
0573 {
0574     u64 offset = page_offset(page) + block_start;
0575 
0576     if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
0577         return 1;
0578 
0579     if (i_size_read(inode) > offset)
0580         return 1;
0581 
0582     return 0;
0583 }
0584 
0585 /*
0586  * Some of this taken from __block_write_begin(). We already have our
0587  * mapping by now though, and the entire write will be allocating or
0588  * it won't, so not much need to use BH_New.
0589  *
0590  * This will also skip zeroing, which is handled externally.
0591  */
0592 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
0593               struct inode *inode, unsigned int from,
0594               unsigned int to, int new)
0595 {
0596     int ret = 0;
0597     struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
0598     unsigned int block_end, block_start;
0599     unsigned int bsize = i_blocksize(inode);
0600 
0601     if (!page_has_buffers(page))
0602         create_empty_buffers(page, bsize, 0);
0603 
0604     head = page_buffers(page);
0605     for (bh = head, block_start = 0; bh != head || !block_start;
0606          bh = bh->b_this_page, block_start += bsize) {
0607         block_end = block_start + bsize;
0608 
0609         clear_buffer_new(bh);
0610 
0611         /*
0612          * Ignore blocks outside of our i/o range -
0613          * they may belong to unallocated clusters.
0614          */
0615         if (block_start >= to || block_end <= from) {
0616             if (PageUptodate(page))
0617                 set_buffer_uptodate(bh);
0618             continue;
0619         }
0620 
0621         /*
0622          * For an allocating write with cluster size >= page
0623          * size, we always write the entire page.
0624          */
0625         if (new)
0626             set_buffer_new(bh);
0627 
0628         if (!buffer_mapped(bh)) {
0629             map_bh(bh, inode->i_sb, *p_blkno);
0630             clean_bdev_bh_alias(bh);
0631         }
0632 
0633         if (PageUptodate(page)) {
0634             set_buffer_uptodate(bh);
0635         } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
0636                !buffer_new(bh) &&
0637                ocfs2_should_read_blk(inode, page, block_start) &&
0638                (block_start < from || block_end > to)) {
0639             ll_rw_block(REQ_OP_READ, 1, &bh);
0640             *wait_bh++=bh;
0641         }
0642 
0643         *p_blkno = *p_blkno + 1;
0644     }
0645 
0646     /*
0647      * If we issued read requests - let them complete.
0648      */
0649     while(wait_bh > wait) {
0650         wait_on_buffer(*--wait_bh);
0651         if (!buffer_uptodate(*wait_bh))
0652             ret = -EIO;
0653     }
0654 
0655     if (ret == 0 || !new)
0656         return ret;
0657 
0658     /*
0659      * If we get -EIO above, zero out any newly allocated blocks
0660      * to avoid exposing stale data.
0661      */
0662     bh = head;
0663     block_start = 0;
0664     do {
0665         block_end = block_start + bsize;
0666         if (block_end <= from)
0667             goto next_bh;
0668         if (block_start >= to)
0669             break;
0670 
0671         zero_user(page, block_start, bh->b_size);
0672         set_buffer_uptodate(bh);
0673         mark_buffer_dirty(bh);
0674 
0675 next_bh:
0676         block_start = block_end;
0677         bh = bh->b_this_page;
0678     } while (bh != head);
0679 
0680     return ret;
0681 }
0682 
0683 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
0684 #define OCFS2_MAX_CTXT_PAGES    1
0685 #else
0686 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
0687 #endif
0688 
0689 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
0690 
0691 struct ocfs2_unwritten_extent {
0692     struct list_head    ue_node;
0693     struct list_head    ue_ip_node;
0694     u32         ue_cpos;
0695     u32         ue_phys;
0696 };
0697 
0698 /*
0699  * Describe the state of a single cluster to be written to.
0700  */
0701 struct ocfs2_write_cluster_desc {
0702     u32     c_cpos;
0703     u32     c_phys;
0704     /*
0705      * Give this a unique field because c_phys eventually gets
0706      * filled.
0707      */
0708     unsigned    c_new;
0709     unsigned    c_clear_unwritten;
0710     unsigned    c_needs_zero;
0711 };
0712 
0713 struct ocfs2_write_ctxt {
0714     /* Logical cluster position / len of write */
0715     u32             w_cpos;
0716     u32             w_clen;
0717 
0718     /* First cluster allocated in a nonsparse extend */
0719     u32             w_first_new_cpos;
0720 
0721     /* Type of caller. Must be one of buffer, mmap, direct.  */
0722     ocfs2_write_type_t      w_type;
0723 
0724     struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
0725 
0726     /*
0727      * This is true if page_size > cluster_size.
0728      *
0729      * It triggers a set of special cases during write which might
0730      * have to deal with allocating writes to partial pages.
0731      */
0732     unsigned int            w_large_pages;
0733 
0734     /*
0735      * Pages involved in this write.
0736      *
0737      * w_target_page is the page being written to by the user.
0738      *
0739      * w_pages is an array of pages which always contains
0740      * w_target_page, and in the case of an allocating write with
0741      * page_size < cluster size, it will contain zero'd and mapped
0742      * pages adjacent to w_target_page which need to be written
0743      * out in so that future reads from that region will get
0744      * zero's.
0745      */
0746     unsigned int            w_num_pages;
0747     struct page         *w_pages[OCFS2_MAX_CTXT_PAGES];
0748     struct page         *w_target_page;
0749 
0750     /*
0751      * w_target_locked is used for page_mkwrite path indicating no unlocking
0752      * against w_target_page in ocfs2_write_end_nolock.
0753      */
0754     unsigned int            w_target_locked:1;
0755 
0756     /*
0757      * ocfs2_write_end() uses this to know what the real range to
0758      * write in the target should be.
0759      */
0760     unsigned int            w_target_from;
0761     unsigned int            w_target_to;
0762 
0763     /*
0764      * We could use journal_current_handle() but this is cleaner,
0765      * IMHO -Mark
0766      */
0767     handle_t            *w_handle;
0768 
0769     struct buffer_head      *w_di_bh;
0770 
0771     struct ocfs2_cached_dealloc_ctxt w_dealloc;
0772 
0773     struct list_head        w_unwritten_list;
0774     unsigned int            w_unwritten_count;
0775 };
0776 
0777 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
0778 {
0779     int i;
0780 
0781     for(i = 0; i < num_pages; i++) {
0782         if (pages[i]) {
0783             unlock_page(pages[i]);
0784             mark_page_accessed(pages[i]);
0785             put_page(pages[i]);
0786         }
0787     }
0788 }
0789 
0790 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
0791 {
0792     int i;
0793 
0794     /*
0795      * w_target_locked is only set to true in the page_mkwrite() case.
0796      * The intent is to allow us to lock the target page from write_begin()
0797      * to write_end(). The caller must hold a ref on w_target_page.
0798      */
0799     if (wc->w_target_locked) {
0800         BUG_ON(!wc->w_target_page);
0801         for (i = 0; i < wc->w_num_pages; i++) {
0802             if (wc->w_target_page == wc->w_pages[i]) {
0803                 wc->w_pages[i] = NULL;
0804                 break;
0805             }
0806         }
0807         mark_page_accessed(wc->w_target_page);
0808         put_page(wc->w_target_page);
0809     }
0810     ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
0811 }
0812 
0813 static void ocfs2_free_unwritten_list(struct inode *inode,
0814                  struct list_head *head)
0815 {
0816     struct ocfs2_inode_info *oi = OCFS2_I(inode);
0817     struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
0818 
0819     list_for_each_entry_safe(ue, tmp, head, ue_node) {
0820         list_del(&ue->ue_node);
0821         spin_lock(&oi->ip_lock);
0822         list_del(&ue->ue_ip_node);
0823         spin_unlock(&oi->ip_lock);
0824         kfree(ue);
0825     }
0826 }
0827 
0828 static void ocfs2_free_write_ctxt(struct inode *inode,
0829                   struct ocfs2_write_ctxt *wc)
0830 {
0831     ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
0832     ocfs2_unlock_pages(wc);
0833     brelse(wc->w_di_bh);
0834     kfree(wc);
0835 }
0836 
0837 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
0838                   struct ocfs2_super *osb, loff_t pos,
0839                   unsigned len, ocfs2_write_type_t type,
0840                   struct buffer_head *di_bh)
0841 {
0842     u32 cend;
0843     struct ocfs2_write_ctxt *wc;
0844 
0845     wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
0846     if (!wc)
0847         return -ENOMEM;
0848 
0849     wc->w_cpos = pos >> osb->s_clustersize_bits;
0850     wc->w_first_new_cpos = UINT_MAX;
0851     cend = (pos + len - 1) >> osb->s_clustersize_bits;
0852     wc->w_clen = cend - wc->w_cpos + 1;
0853     get_bh(di_bh);
0854     wc->w_di_bh = di_bh;
0855     wc->w_type = type;
0856 
0857     if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
0858         wc->w_large_pages = 1;
0859     else
0860         wc->w_large_pages = 0;
0861 
0862     ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
0863     INIT_LIST_HEAD(&wc->w_unwritten_list);
0864 
0865     *wcp = wc;
0866 
0867     return 0;
0868 }
0869 
0870 /*
0871  * If a page has any new buffers, zero them out here, and mark them uptodate
0872  * and dirty so they'll be written out (in order to prevent uninitialised
0873  * block data from leaking). And clear the new bit.
0874  */
0875 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
0876 {
0877     unsigned int block_start, block_end;
0878     struct buffer_head *head, *bh;
0879 
0880     BUG_ON(!PageLocked(page));
0881     if (!page_has_buffers(page))
0882         return;
0883 
0884     bh = head = page_buffers(page);
0885     block_start = 0;
0886     do {
0887         block_end = block_start + bh->b_size;
0888 
0889         if (buffer_new(bh)) {
0890             if (block_end > from && block_start < to) {
0891                 if (!PageUptodate(page)) {
0892                     unsigned start, end;
0893 
0894                     start = max(from, block_start);
0895                     end = min(to, block_end);
0896 
0897                     zero_user_segment(page, start, end);
0898                     set_buffer_uptodate(bh);
0899                 }
0900 
0901                 clear_buffer_new(bh);
0902                 mark_buffer_dirty(bh);
0903             }
0904         }
0905 
0906         block_start = block_end;
0907         bh = bh->b_this_page;
0908     } while (bh != head);
0909 }
0910 
0911 /*
0912  * Only called when we have a failure during allocating write to write
0913  * zero's to the newly allocated region.
0914  */
0915 static void ocfs2_write_failure(struct inode *inode,
0916                 struct ocfs2_write_ctxt *wc,
0917                 loff_t user_pos, unsigned user_len)
0918 {
0919     int i;
0920     unsigned from = user_pos & (PAGE_SIZE - 1),
0921         to = user_pos + user_len;
0922     struct page *tmppage;
0923 
0924     if (wc->w_target_page)
0925         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
0926 
0927     for(i = 0; i < wc->w_num_pages; i++) {
0928         tmppage = wc->w_pages[i];
0929 
0930         if (tmppage && page_has_buffers(tmppage)) {
0931             if (ocfs2_should_order_data(inode))
0932                 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
0933                                user_pos, user_len);
0934 
0935             block_commit_write(tmppage, from, to);
0936         }
0937     }
0938 }
0939 
0940 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
0941                     struct ocfs2_write_ctxt *wc,
0942                     struct page *page, u32 cpos,
0943                     loff_t user_pos, unsigned user_len,
0944                     int new)
0945 {
0946     int ret;
0947     unsigned int map_from = 0, map_to = 0;
0948     unsigned int cluster_start, cluster_end;
0949     unsigned int user_data_from = 0, user_data_to = 0;
0950 
0951     ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
0952                     &cluster_start, &cluster_end);
0953 
0954     /* treat the write as new if the a hole/lseek spanned across
0955      * the page boundary.
0956      */
0957     new = new | ((i_size_read(inode) <= page_offset(page)) &&
0958             (page_offset(page) <= user_pos));
0959 
0960     if (page == wc->w_target_page) {
0961         map_from = user_pos & (PAGE_SIZE - 1);
0962         map_to = map_from + user_len;
0963 
0964         if (new)
0965             ret = ocfs2_map_page_blocks(page, p_blkno, inode,
0966                             cluster_start, cluster_end,
0967                             new);
0968         else
0969             ret = ocfs2_map_page_blocks(page, p_blkno, inode,
0970                             map_from, map_to, new);
0971         if (ret) {
0972             mlog_errno(ret);
0973             goto out;
0974         }
0975 
0976         user_data_from = map_from;
0977         user_data_to = map_to;
0978         if (new) {
0979             map_from = cluster_start;
0980             map_to = cluster_end;
0981         }
0982     } else {
0983         /*
0984          * If we haven't allocated the new page yet, we
0985          * shouldn't be writing it out without copying user
0986          * data. This is likely a math error from the caller.
0987          */
0988         BUG_ON(!new);
0989 
0990         map_from = cluster_start;
0991         map_to = cluster_end;
0992 
0993         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
0994                         cluster_start, cluster_end, new);
0995         if (ret) {
0996             mlog_errno(ret);
0997             goto out;
0998         }
0999     }
1000 
1001     /*
1002      * Parts of newly allocated pages need to be zero'd.
1003      *
1004      * Above, we have also rewritten 'to' and 'from' - as far as
1005      * the rest of the function is concerned, the entire cluster
1006      * range inside of a page needs to be written.
1007      *
1008      * We can skip this if the page is up to date - it's already
1009      * been zero'd from being read in as a hole.
1010      */
1011     if (new && !PageUptodate(page))
1012         ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1013                      cpos, user_data_from, user_data_to);
1014 
1015     flush_dcache_page(page);
1016 
1017 out:
1018     return ret;
1019 }
1020 
1021 /*
1022  * This function will only grab one clusters worth of pages.
1023  */
1024 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1025                       struct ocfs2_write_ctxt *wc,
1026                       u32 cpos, loff_t user_pos,
1027                       unsigned user_len, int new,
1028                       struct page *mmap_page)
1029 {
1030     int ret = 0, i;
1031     unsigned long start, target_index, end_index, index;
1032     struct inode *inode = mapping->host;
1033     loff_t last_byte;
1034 
1035     target_index = user_pos >> PAGE_SHIFT;
1036 
1037     /*
1038      * Figure out how many pages we'll be manipulating here. For
1039      * non allocating write, we just change the one
1040      * page. Otherwise, we'll need a whole clusters worth.  If we're
1041      * writing past i_size, we only need enough pages to cover the
1042      * last page of the write.
1043      */
1044     if (new) {
1045         wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1046         start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1047         /*
1048          * We need the index *past* the last page we could possibly
1049          * touch.  This is the page past the end of the write or
1050          * i_size, whichever is greater.
1051          */
1052         last_byte = max(user_pos + user_len, i_size_read(inode));
1053         BUG_ON(last_byte < 1);
1054         end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1055         if ((start + wc->w_num_pages) > end_index)
1056             wc->w_num_pages = end_index - start;
1057     } else {
1058         wc->w_num_pages = 1;
1059         start = target_index;
1060     }
1061     end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1062 
1063     for(i = 0; i < wc->w_num_pages; i++) {
1064         index = start + i;
1065 
1066         if (index >= target_index && index <= end_index &&
1067             wc->w_type == OCFS2_WRITE_MMAP) {
1068             /*
1069              * ocfs2_pagemkwrite() is a little different
1070              * and wants us to directly use the page
1071              * passed in.
1072              */
1073             lock_page(mmap_page);
1074 
1075             /* Exit and let the caller retry */
1076             if (mmap_page->mapping != mapping) {
1077                 WARN_ON(mmap_page->mapping);
1078                 unlock_page(mmap_page);
1079                 ret = -EAGAIN;
1080                 goto out;
1081             }
1082 
1083             get_page(mmap_page);
1084             wc->w_pages[i] = mmap_page;
1085             wc->w_target_locked = true;
1086         } else if (index >= target_index && index <= end_index &&
1087                wc->w_type == OCFS2_WRITE_DIRECT) {
1088             /* Direct write has no mapping page. */
1089             wc->w_pages[i] = NULL;
1090             continue;
1091         } else {
1092             wc->w_pages[i] = find_or_create_page(mapping, index,
1093                                  GFP_NOFS);
1094             if (!wc->w_pages[i]) {
1095                 ret = -ENOMEM;
1096                 mlog_errno(ret);
1097                 goto out;
1098             }
1099         }
1100         wait_for_stable_page(wc->w_pages[i]);
1101 
1102         if (index == target_index)
1103             wc->w_target_page = wc->w_pages[i];
1104     }
1105 out:
1106     if (ret)
1107         wc->w_target_locked = false;
1108     return ret;
1109 }
1110 
1111 /*
1112  * Prepare a single cluster for write one cluster into the file.
1113  */
1114 static int ocfs2_write_cluster(struct address_space *mapping,
1115                    u32 *phys, unsigned int new,
1116                    unsigned int clear_unwritten,
1117                    unsigned int should_zero,
1118                    struct ocfs2_alloc_context *data_ac,
1119                    struct ocfs2_alloc_context *meta_ac,
1120                    struct ocfs2_write_ctxt *wc, u32 cpos,
1121                    loff_t user_pos, unsigned user_len)
1122 {
1123     int ret, i;
1124     u64 p_blkno;
1125     struct inode *inode = mapping->host;
1126     struct ocfs2_extent_tree et;
1127     int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1128 
1129     if (new) {
1130         u32 tmp_pos;
1131 
1132         /*
1133          * This is safe to call with the page locks - it won't take
1134          * any additional semaphores or cluster locks.
1135          */
1136         tmp_pos = cpos;
1137         ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1138                        &tmp_pos, 1, !clear_unwritten,
1139                        wc->w_di_bh, wc->w_handle,
1140                        data_ac, meta_ac, NULL);
1141         /*
1142          * This shouldn't happen because we must have already
1143          * calculated the correct meta data allocation required. The
1144          * internal tree allocation code should know how to increase
1145          * transaction credits itself.
1146          *
1147          * If need be, we could handle -EAGAIN for a
1148          * RESTART_TRANS here.
1149          */
1150         mlog_bug_on_msg(ret == -EAGAIN,
1151                 "Inode %llu: EAGAIN return during allocation.\n",
1152                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1153         if (ret < 0) {
1154             mlog_errno(ret);
1155             goto out;
1156         }
1157     } else if (clear_unwritten) {
1158         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1159                           wc->w_di_bh);
1160         ret = ocfs2_mark_extent_written(inode, &et,
1161                         wc->w_handle, cpos, 1, *phys,
1162                         meta_ac, &wc->w_dealloc);
1163         if (ret < 0) {
1164             mlog_errno(ret);
1165             goto out;
1166         }
1167     }
1168 
1169     /*
1170      * The only reason this should fail is due to an inability to
1171      * find the extent added.
1172      */
1173     ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1174     if (ret < 0) {
1175         mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1176                 "at logical cluster %u",
1177                 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1178         goto out;
1179     }
1180 
1181     BUG_ON(*phys == 0);
1182 
1183     p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1184     if (!should_zero)
1185         p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1186 
1187     for(i = 0; i < wc->w_num_pages; i++) {
1188         int tmpret;
1189 
1190         /* This is the direct io target page. */
1191         if (wc->w_pages[i] == NULL) {
1192             p_blkno++;
1193             continue;
1194         }
1195 
1196         tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1197                               wc->w_pages[i], cpos,
1198                               user_pos, user_len,
1199                               should_zero);
1200         if (tmpret) {
1201             mlog_errno(tmpret);
1202             if (ret == 0)
1203                 ret = tmpret;
1204         }
1205     }
1206 
1207     /*
1208      * We only have cleanup to do in case of allocating write.
1209      */
1210     if (ret && new)
1211         ocfs2_write_failure(inode, wc, user_pos, user_len);
1212 
1213 out:
1214 
1215     return ret;
1216 }
1217 
1218 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1219                        struct ocfs2_alloc_context *data_ac,
1220                        struct ocfs2_alloc_context *meta_ac,
1221                        struct ocfs2_write_ctxt *wc,
1222                        loff_t pos, unsigned len)
1223 {
1224     int ret, i;
1225     loff_t cluster_off;
1226     unsigned int local_len = len;
1227     struct ocfs2_write_cluster_desc *desc;
1228     struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1229 
1230     for (i = 0; i < wc->w_clen; i++) {
1231         desc = &wc->w_desc[i];
1232 
1233         /*
1234          * We have to make sure that the total write passed in
1235          * doesn't extend past a single cluster.
1236          */
1237         local_len = len;
1238         cluster_off = pos & (osb->s_clustersize - 1);
1239         if ((cluster_off + local_len) > osb->s_clustersize)
1240             local_len = osb->s_clustersize - cluster_off;
1241 
1242         ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1243                       desc->c_new,
1244                       desc->c_clear_unwritten,
1245                       desc->c_needs_zero,
1246                       data_ac, meta_ac,
1247                       wc, desc->c_cpos, pos, local_len);
1248         if (ret) {
1249             mlog_errno(ret);
1250             goto out;
1251         }
1252 
1253         len -= local_len;
1254         pos += local_len;
1255     }
1256 
1257     ret = 0;
1258 out:
1259     return ret;
1260 }
1261 
1262 /*
1263  * ocfs2_write_end() wants to know which parts of the target page it
1264  * should complete the write on. It's easiest to compute them ahead of
1265  * time when a more complete view of the write is available.
1266  */
1267 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1268                     struct ocfs2_write_ctxt *wc,
1269                     loff_t pos, unsigned len, int alloc)
1270 {
1271     struct ocfs2_write_cluster_desc *desc;
1272 
1273     wc->w_target_from = pos & (PAGE_SIZE - 1);
1274     wc->w_target_to = wc->w_target_from + len;
1275 
1276     if (alloc == 0)
1277         return;
1278 
1279     /*
1280      * Allocating write - we may have different boundaries based
1281      * on page size and cluster size.
1282      *
1283      * NOTE: We can no longer compute one value from the other as
1284      * the actual write length and user provided length may be
1285      * different.
1286      */
1287 
1288     if (wc->w_large_pages) {
1289         /*
1290          * We only care about the 1st and last cluster within
1291          * our range and whether they should be zero'd or not. Either
1292          * value may be extended out to the start/end of a
1293          * newly allocated cluster.
1294          */
1295         desc = &wc->w_desc[0];
1296         if (desc->c_needs_zero)
1297             ocfs2_figure_cluster_boundaries(osb,
1298                             desc->c_cpos,
1299                             &wc->w_target_from,
1300                             NULL);
1301 
1302         desc = &wc->w_desc[wc->w_clen - 1];
1303         if (desc->c_needs_zero)
1304             ocfs2_figure_cluster_boundaries(osb,
1305                             desc->c_cpos,
1306                             NULL,
1307                             &wc->w_target_to);
1308     } else {
1309         wc->w_target_from = 0;
1310         wc->w_target_to = PAGE_SIZE;
1311     }
1312 }
1313 
1314 /*
1315  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1316  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1317  * by the direct io procedure.
1318  * If this is a new extent that allocated by direct io, we should mark it in
1319  * the ip_unwritten_list.
1320  */
1321 static int ocfs2_unwritten_check(struct inode *inode,
1322                  struct ocfs2_write_ctxt *wc,
1323                  struct ocfs2_write_cluster_desc *desc)
1324 {
1325     struct ocfs2_inode_info *oi = OCFS2_I(inode);
1326     struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1327     int ret = 0;
1328 
1329     if (!desc->c_needs_zero)
1330         return 0;
1331 
1332 retry:
1333     spin_lock(&oi->ip_lock);
1334     /* Needs not to zero no metter buffer or direct. The one who is zero
1335      * the cluster is doing zero. And he will clear unwritten after all
1336      * cluster io finished. */
1337     list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1338         if (desc->c_cpos == ue->ue_cpos) {
1339             BUG_ON(desc->c_new);
1340             desc->c_needs_zero = 0;
1341             desc->c_clear_unwritten = 0;
1342             goto unlock;
1343         }
1344     }
1345 
1346     if (wc->w_type != OCFS2_WRITE_DIRECT)
1347         goto unlock;
1348 
1349     if (new == NULL) {
1350         spin_unlock(&oi->ip_lock);
1351         new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1352                  GFP_NOFS);
1353         if (new == NULL) {
1354             ret = -ENOMEM;
1355             goto out;
1356         }
1357         goto retry;
1358     }
1359     /* This direct write will doing zero. */
1360     new->ue_cpos = desc->c_cpos;
1361     new->ue_phys = desc->c_phys;
1362     desc->c_clear_unwritten = 0;
1363     list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1364     list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1365     wc->w_unwritten_count++;
1366     new = NULL;
1367 unlock:
1368     spin_unlock(&oi->ip_lock);
1369 out:
1370     kfree(new);
1371     return ret;
1372 }
1373 
1374 /*
1375  * Populate each single-cluster write descriptor in the write context
1376  * with information about the i/o to be done.
1377  *
1378  * Returns the number of clusters that will have to be allocated, as
1379  * well as a worst case estimate of the number of extent records that
1380  * would have to be created during a write to an unwritten region.
1381  */
1382 static int ocfs2_populate_write_desc(struct inode *inode,
1383                      struct ocfs2_write_ctxt *wc,
1384                      unsigned int *clusters_to_alloc,
1385                      unsigned int *extents_to_split)
1386 {
1387     int ret;
1388     struct ocfs2_write_cluster_desc *desc;
1389     unsigned int num_clusters = 0;
1390     unsigned int ext_flags = 0;
1391     u32 phys = 0;
1392     int i;
1393 
1394     *clusters_to_alloc = 0;
1395     *extents_to_split = 0;
1396 
1397     for (i = 0; i < wc->w_clen; i++) {
1398         desc = &wc->w_desc[i];
1399         desc->c_cpos = wc->w_cpos + i;
1400 
1401         if (num_clusters == 0) {
1402             /*
1403              * Need to look up the next extent record.
1404              */
1405             ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1406                          &num_clusters, &ext_flags);
1407             if (ret) {
1408                 mlog_errno(ret);
1409                 goto out;
1410             }
1411 
1412             /* We should already CoW the refcountd extent. */
1413             BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1414 
1415             /*
1416              * Assume worst case - that we're writing in
1417              * the middle of the extent.
1418              *
1419              * We can assume that the write proceeds from
1420              * left to right, in which case the extent
1421              * insert code is smart enough to coalesce the
1422              * next splits into the previous records created.
1423              */
1424             if (ext_flags & OCFS2_EXT_UNWRITTEN)
1425                 *extents_to_split = *extents_to_split + 2;
1426         } else if (phys) {
1427             /*
1428              * Only increment phys if it doesn't describe
1429              * a hole.
1430              */
1431             phys++;
1432         }
1433 
1434         /*
1435          * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1436          * file that got extended.  w_first_new_cpos tells us
1437          * where the newly allocated clusters are so we can
1438          * zero them.
1439          */
1440         if (desc->c_cpos >= wc->w_first_new_cpos) {
1441             BUG_ON(phys == 0);
1442             desc->c_needs_zero = 1;
1443         }
1444 
1445         desc->c_phys = phys;
1446         if (phys == 0) {
1447             desc->c_new = 1;
1448             desc->c_needs_zero = 1;
1449             desc->c_clear_unwritten = 1;
1450             *clusters_to_alloc = *clusters_to_alloc + 1;
1451         }
1452 
1453         if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1454             desc->c_clear_unwritten = 1;
1455             desc->c_needs_zero = 1;
1456         }
1457 
1458         ret = ocfs2_unwritten_check(inode, wc, desc);
1459         if (ret) {
1460             mlog_errno(ret);
1461             goto out;
1462         }
1463 
1464         num_clusters--;
1465     }
1466 
1467     ret = 0;
1468 out:
1469     return ret;
1470 }
1471 
1472 static int ocfs2_write_begin_inline(struct address_space *mapping,
1473                     struct inode *inode,
1474                     struct ocfs2_write_ctxt *wc)
1475 {
1476     int ret;
1477     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1478     struct page *page;
1479     handle_t *handle;
1480     struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1481 
1482     handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1483     if (IS_ERR(handle)) {
1484         ret = PTR_ERR(handle);
1485         mlog_errno(ret);
1486         goto out;
1487     }
1488 
1489     page = find_or_create_page(mapping, 0, GFP_NOFS);
1490     if (!page) {
1491         ocfs2_commit_trans(osb, handle);
1492         ret = -ENOMEM;
1493         mlog_errno(ret);
1494         goto out;
1495     }
1496     /*
1497      * If we don't set w_num_pages then this page won't get unlocked
1498      * and freed on cleanup of the write context.
1499      */
1500     wc->w_pages[0] = wc->w_target_page = page;
1501     wc->w_num_pages = 1;
1502 
1503     ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1504                       OCFS2_JOURNAL_ACCESS_WRITE);
1505     if (ret) {
1506         ocfs2_commit_trans(osb, handle);
1507 
1508         mlog_errno(ret);
1509         goto out;
1510     }
1511 
1512     if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1513         ocfs2_set_inode_data_inline(inode, di);
1514 
1515     if (!PageUptodate(page)) {
1516         ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1517         if (ret) {
1518             ocfs2_commit_trans(osb, handle);
1519 
1520             goto out;
1521         }
1522     }
1523 
1524     wc->w_handle = handle;
1525 out:
1526     return ret;
1527 }
1528 
1529 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1530 {
1531     struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1532 
1533     if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1534         return 1;
1535     return 0;
1536 }
1537 
1538 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1539                       struct inode *inode, loff_t pos,
1540                       unsigned len, struct page *mmap_page,
1541                       struct ocfs2_write_ctxt *wc)
1542 {
1543     int ret, written = 0;
1544     loff_t end = pos + len;
1545     struct ocfs2_inode_info *oi = OCFS2_I(inode);
1546     struct ocfs2_dinode *di = NULL;
1547 
1548     trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1549                          len, (unsigned long long)pos,
1550                          oi->ip_dyn_features);
1551 
1552     /*
1553      * Handle inodes which already have inline data 1st.
1554      */
1555     if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1556         if (mmap_page == NULL &&
1557             ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1558             goto do_inline_write;
1559 
1560         /*
1561          * The write won't fit - we have to give this inode an
1562          * inline extent list now.
1563          */
1564         ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1565         if (ret)
1566             mlog_errno(ret);
1567         goto out;
1568     }
1569 
1570     /*
1571      * Check whether the inode can accept inline data.
1572      */
1573     if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1574         return 0;
1575 
1576     /*
1577      * Check whether the write can fit.
1578      */
1579     di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1580     if (mmap_page ||
1581         end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1582         return 0;
1583 
1584 do_inline_write:
1585     ret = ocfs2_write_begin_inline(mapping, inode, wc);
1586     if (ret) {
1587         mlog_errno(ret);
1588         goto out;
1589     }
1590 
1591     /*
1592      * This signals to the caller that the data can be written
1593      * inline.
1594      */
1595     written = 1;
1596 out:
1597     return written ? written : ret;
1598 }
1599 
1600 /*
1601  * This function only does anything for file systems which can't
1602  * handle sparse files.
1603  *
1604  * What we want to do here is fill in any hole between the current end
1605  * of allocation and the end of our write. That way the rest of the
1606  * write path can treat it as an non-allocating write, which has no
1607  * special case code for sparse/nonsparse files.
1608  */
1609 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1610                     struct buffer_head *di_bh,
1611                     loff_t pos, unsigned len,
1612                     struct ocfs2_write_ctxt *wc)
1613 {
1614     int ret;
1615     loff_t newsize = pos + len;
1616 
1617     BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1618 
1619     if (newsize <= i_size_read(inode))
1620         return 0;
1621 
1622     ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1623     if (ret)
1624         mlog_errno(ret);
1625 
1626     /* There is no wc if this is call from direct. */
1627     if (wc)
1628         wc->w_first_new_cpos =
1629             ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1630 
1631     return ret;
1632 }
1633 
1634 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1635                loff_t pos)
1636 {
1637     int ret = 0;
1638 
1639     BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1640     if (pos > i_size_read(inode))
1641         ret = ocfs2_zero_extend(inode, di_bh, pos);
1642 
1643     return ret;
1644 }
1645 
1646 int ocfs2_write_begin_nolock(struct address_space *mapping,
1647                  loff_t pos, unsigned len, ocfs2_write_type_t type,
1648                  struct page **pagep, void **fsdata,
1649                  struct buffer_head *di_bh, struct page *mmap_page)
1650 {
1651     int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1652     unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1653     struct ocfs2_write_ctxt *wc;
1654     struct inode *inode = mapping->host;
1655     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1656     struct ocfs2_dinode *di;
1657     struct ocfs2_alloc_context *data_ac = NULL;
1658     struct ocfs2_alloc_context *meta_ac = NULL;
1659     handle_t *handle;
1660     struct ocfs2_extent_tree et;
1661     int try_free = 1, ret1;
1662 
1663 try_again:
1664     ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1665     if (ret) {
1666         mlog_errno(ret);
1667         return ret;
1668     }
1669 
1670     if (ocfs2_supports_inline_data(osb)) {
1671         ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1672                              mmap_page, wc);
1673         if (ret == 1) {
1674             ret = 0;
1675             goto success;
1676         }
1677         if (ret < 0) {
1678             mlog_errno(ret);
1679             goto out;
1680         }
1681     }
1682 
1683     /* Direct io change i_size late, should not zero tail here. */
1684     if (type != OCFS2_WRITE_DIRECT) {
1685         if (ocfs2_sparse_alloc(osb))
1686             ret = ocfs2_zero_tail(inode, di_bh, pos);
1687         else
1688             ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1689                                len, wc);
1690         if (ret) {
1691             mlog_errno(ret);
1692             goto out;
1693         }
1694     }
1695 
1696     ret = ocfs2_check_range_for_refcount(inode, pos, len);
1697     if (ret < 0) {
1698         mlog_errno(ret);
1699         goto out;
1700     } else if (ret == 1) {
1701         clusters_need = wc->w_clen;
1702         ret = ocfs2_refcount_cow(inode, di_bh,
1703                      wc->w_cpos, wc->w_clen, UINT_MAX);
1704         if (ret) {
1705             mlog_errno(ret);
1706             goto out;
1707         }
1708     }
1709 
1710     ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1711                     &extents_to_split);
1712     if (ret) {
1713         mlog_errno(ret);
1714         goto out;
1715     }
1716     clusters_need += clusters_to_alloc;
1717 
1718     di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1719 
1720     trace_ocfs2_write_begin_nolock(
1721             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1722             (long long)i_size_read(inode),
1723             le32_to_cpu(di->i_clusters),
1724             pos, len, type, mmap_page,
1725             clusters_to_alloc, extents_to_split);
1726 
1727     /*
1728      * We set w_target_from, w_target_to here so that
1729      * ocfs2_write_end() knows which range in the target page to
1730      * write out. An allocation requires that we write the entire
1731      * cluster range.
1732      */
1733     if (clusters_to_alloc || extents_to_split) {
1734         /*
1735          * XXX: We are stretching the limits of
1736          * ocfs2_lock_allocators(). It greatly over-estimates
1737          * the work to be done.
1738          */
1739         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1740                           wc->w_di_bh);
1741         ret = ocfs2_lock_allocators(inode, &et,
1742                         clusters_to_alloc, extents_to_split,
1743                         &data_ac, &meta_ac);
1744         if (ret) {
1745             mlog_errno(ret);
1746             goto out;
1747         }
1748 
1749         if (data_ac)
1750             data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1751 
1752         credits = ocfs2_calc_extend_credits(inode->i_sb,
1753                             &di->id2.i_list);
1754     } else if (type == OCFS2_WRITE_DIRECT)
1755         /* direct write needs not to start trans if no extents alloc. */
1756         goto success;
1757 
1758     /*
1759      * We have to zero sparse allocated clusters, unwritten extent clusters,
1760      * and non-sparse clusters we just extended.  For non-sparse writes,
1761      * we know zeros will only be needed in the first and/or last cluster.
1762      */
1763     if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1764                wc->w_desc[wc->w_clen - 1].c_needs_zero))
1765         cluster_of_pages = 1;
1766     else
1767         cluster_of_pages = 0;
1768 
1769     ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1770 
1771     handle = ocfs2_start_trans(osb, credits);
1772     if (IS_ERR(handle)) {
1773         ret = PTR_ERR(handle);
1774         mlog_errno(ret);
1775         goto out;
1776     }
1777 
1778     wc->w_handle = handle;
1779 
1780     if (clusters_to_alloc) {
1781         ret = dquot_alloc_space_nodirty(inode,
1782             ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1783         if (ret)
1784             goto out_commit;
1785     }
1786 
1787     ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1788                       OCFS2_JOURNAL_ACCESS_WRITE);
1789     if (ret) {
1790         mlog_errno(ret);
1791         goto out_quota;
1792     }
1793 
1794     /*
1795      * Fill our page array first. That way we've grabbed enough so
1796      * that we can zero and flush if we error after adding the
1797      * extent.
1798      */
1799     ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1800                      cluster_of_pages, mmap_page);
1801     if (ret) {
1802         /*
1803          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1804          * the target page. In this case, we exit with no error and no target
1805          * page. This will trigger the caller, page_mkwrite(), to re-try
1806          * the operation.
1807          */
1808         if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1809             BUG_ON(wc->w_target_page);
1810             ret = 0;
1811             goto out_quota;
1812         }
1813 
1814         mlog_errno(ret);
1815         goto out_quota;
1816     }
1817 
1818     ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1819                       len);
1820     if (ret) {
1821         mlog_errno(ret);
1822         goto out_quota;
1823     }
1824 
1825     if (data_ac)
1826         ocfs2_free_alloc_context(data_ac);
1827     if (meta_ac)
1828         ocfs2_free_alloc_context(meta_ac);
1829 
1830 success:
1831     if (pagep)
1832         *pagep = wc->w_target_page;
1833     *fsdata = wc;
1834     return 0;
1835 out_quota:
1836     if (clusters_to_alloc)
1837         dquot_free_space(inode,
1838               ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1839 out_commit:
1840     ocfs2_commit_trans(osb, handle);
1841 
1842 out:
1843     /*
1844      * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1845      * even in case of error here like ENOSPC and ENOMEM. So, we need
1846      * to unlock the target page manually to prevent deadlocks when
1847      * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1848      * to VM code.
1849      */
1850     if (wc->w_target_locked)
1851         unlock_page(mmap_page);
1852 
1853     ocfs2_free_write_ctxt(inode, wc);
1854 
1855     if (data_ac) {
1856         ocfs2_free_alloc_context(data_ac);
1857         data_ac = NULL;
1858     }
1859     if (meta_ac) {
1860         ocfs2_free_alloc_context(meta_ac);
1861         meta_ac = NULL;
1862     }
1863 
1864     if (ret == -ENOSPC && try_free) {
1865         /*
1866          * Try to free some truncate log so that we can have enough
1867          * clusters to allocate.
1868          */
1869         try_free = 0;
1870 
1871         ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1872         if (ret1 == 1)
1873             goto try_again;
1874 
1875         if (ret1 < 0)
1876             mlog_errno(ret1);
1877     }
1878 
1879     return ret;
1880 }
1881 
1882 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1883                  loff_t pos, unsigned len,
1884                  struct page **pagep, void **fsdata)
1885 {
1886     int ret;
1887     struct buffer_head *di_bh = NULL;
1888     struct inode *inode = mapping->host;
1889 
1890     ret = ocfs2_inode_lock(inode, &di_bh, 1);
1891     if (ret) {
1892         mlog_errno(ret);
1893         return ret;
1894     }
1895 
1896     /*
1897      * Take alloc sem here to prevent concurrent lookups. That way
1898      * the mapping, zeroing and tree manipulation within
1899      * ocfs2_write() will be safe against ->read_folio(). This
1900      * should also serve to lock out allocation from a shared
1901      * writeable region.
1902      */
1903     down_write(&OCFS2_I(inode)->ip_alloc_sem);
1904 
1905     ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1906                        pagep, fsdata, di_bh, NULL);
1907     if (ret) {
1908         mlog_errno(ret);
1909         goto out_fail;
1910     }
1911 
1912     brelse(di_bh);
1913 
1914     return 0;
1915 
1916 out_fail:
1917     up_write(&OCFS2_I(inode)->ip_alloc_sem);
1918 
1919     brelse(di_bh);
1920     ocfs2_inode_unlock(inode, 1);
1921 
1922     return ret;
1923 }
1924 
1925 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1926                    unsigned len, unsigned *copied,
1927                    struct ocfs2_dinode *di,
1928                    struct ocfs2_write_ctxt *wc)
1929 {
1930     void *kaddr;
1931 
1932     if (unlikely(*copied < len)) {
1933         if (!PageUptodate(wc->w_target_page)) {
1934             *copied = 0;
1935             return;
1936         }
1937     }
1938 
1939     kaddr = kmap_atomic(wc->w_target_page);
1940     memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1941     kunmap_atomic(kaddr);
1942 
1943     trace_ocfs2_write_end_inline(
1944          (unsigned long long)OCFS2_I(inode)->ip_blkno,
1945          (unsigned long long)pos, *copied,
1946          le16_to_cpu(di->id2.i_data.id_count),
1947          le16_to_cpu(di->i_dyn_features));
1948 }
1949 
1950 int ocfs2_write_end_nolock(struct address_space *mapping,
1951                loff_t pos, unsigned len, unsigned copied, void *fsdata)
1952 {
1953     int i, ret;
1954     unsigned from, to, start = pos & (PAGE_SIZE - 1);
1955     struct inode *inode = mapping->host;
1956     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1957     struct ocfs2_write_ctxt *wc = fsdata;
1958     struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1959     handle_t *handle = wc->w_handle;
1960     struct page *tmppage;
1961 
1962     BUG_ON(!list_empty(&wc->w_unwritten_list));
1963 
1964     if (handle) {
1965         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1966                 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1967         if (ret) {
1968             copied = ret;
1969             mlog_errno(ret);
1970             goto out;
1971         }
1972     }
1973 
1974     if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1975         ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1976         goto out_write_size;
1977     }
1978 
1979     if (unlikely(copied < len) && wc->w_target_page) {
1980         if (!PageUptodate(wc->w_target_page))
1981             copied = 0;
1982 
1983         ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1984                        start+len);
1985     }
1986     if (wc->w_target_page)
1987         flush_dcache_page(wc->w_target_page);
1988 
1989     for(i = 0; i < wc->w_num_pages; i++) {
1990         tmppage = wc->w_pages[i];
1991 
1992         /* This is the direct io target page. */
1993         if (tmppage == NULL)
1994             continue;
1995 
1996         if (tmppage == wc->w_target_page) {
1997             from = wc->w_target_from;
1998             to = wc->w_target_to;
1999 
2000             BUG_ON(from > PAGE_SIZE ||
2001                    to > PAGE_SIZE ||
2002                    to < from);
2003         } else {
2004             /*
2005              * Pages adjacent to the target (if any) imply
2006              * a hole-filling write in which case we want
2007              * to flush their entire range.
2008              */
2009             from = 0;
2010             to = PAGE_SIZE;
2011         }
2012 
2013         if (page_has_buffers(tmppage)) {
2014             if (handle && ocfs2_should_order_data(inode)) {
2015                 loff_t start_byte =
2016                     ((loff_t)tmppage->index << PAGE_SHIFT) +
2017                     from;
2018                 loff_t length = to - from;
2019                 ocfs2_jbd2_inode_add_write(handle, inode,
2020                                start_byte, length);
2021             }
2022             block_commit_write(tmppage, from, to);
2023         }
2024     }
2025 
2026 out_write_size:
2027     /* Direct io do not update i_size here. */
2028     if (wc->w_type != OCFS2_WRITE_DIRECT) {
2029         pos += copied;
2030         if (pos > i_size_read(inode)) {
2031             i_size_write(inode, pos);
2032             mark_inode_dirty(inode);
2033         }
2034         inode->i_blocks = ocfs2_inode_sector_count(inode);
2035         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2036         inode->i_mtime = inode->i_ctime = current_time(inode);
2037         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2038         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2039         if (handle)
2040             ocfs2_update_inode_fsync_trans(handle, inode, 1);
2041     }
2042     if (handle)
2043         ocfs2_journal_dirty(handle, wc->w_di_bh);
2044 
2045 out:
2046     /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2047      * lock, or it will cause a deadlock since journal commit threads holds
2048      * this lock and will ask for the page lock when flushing the data.
2049      * put it here to preserve the unlock order.
2050      */
2051     ocfs2_unlock_pages(wc);
2052 
2053     if (handle)
2054         ocfs2_commit_trans(osb, handle);
2055 
2056     ocfs2_run_deallocs(osb, &wc->w_dealloc);
2057 
2058     brelse(wc->w_di_bh);
2059     kfree(wc);
2060 
2061     return copied;
2062 }
2063 
2064 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2065                loff_t pos, unsigned len, unsigned copied,
2066                struct page *page, void *fsdata)
2067 {
2068     int ret;
2069     struct inode *inode = mapping->host;
2070 
2071     ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2072 
2073     up_write(&OCFS2_I(inode)->ip_alloc_sem);
2074     ocfs2_inode_unlock(inode, 1);
2075 
2076     return ret;
2077 }
2078 
2079 struct ocfs2_dio_write_ctxt {
2080     struct list_head    dw_zero_list;
2081     unsigned        dw_zero_count;
2082     int         dw_orphaned;
2083     pid_t           dw_writer_pid;
2084 };
2085 
2086 static struct ocfs2_dio_write_ctxt *
2087 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2088 {
2089     struct ocfs2_dio_write_ctxt *dwc = NULL;
2090 
2091     if (bh->b_private)
2092         return bh->b_private;
2093 
2094     dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2095     if (dwc == NULL)
2096         return NULL;
2097     INIT_LIST_HEAD(&dwc->dw_zero_list);
2098     dwc->dw_zero_count = 0;
2099     dwc->dw_orphaned = 0;
2100     dwc->dw_writer_pid = task_pid_nr(current);
2101     bh->b_private = dwc;
2102     *alloc = 1;
2103 
2104     return dwc;
2105 }
2106 
2107 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2108                      struct ocfs2_dio_write_ctxt *dwc)
2109 {
2110     ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2111     kfree(dwc);
2112 }
2113 
2114 /*
2115  * TODO: Make this into a generic get_blocks function.
2116  *
2117  * From do_direct_io in direct-io.c:
2118  *  "So what we do is to permit the ->get_blocks function to populate
2119  *   bh.b_size with the size of IO which is permitted at this offset and
2120  *   this i_blkbits."
2121  *
2122  * This function is called directly from get_more_blocks in direct-io.c.
2123  *
2124  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2125  *                  fs_count, map_bh, dio->rw == WRITE);
2126  */
2127 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2128                    struct buffer_head *bh_result, int create)
2129 {
2130     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2131     struct ocfs2_inode_info *oi = OCFS2_I(inode);
2132     struct ocfs2_write_ctxt *wc;
2133     struct ocfs2_write_cluster_desc *desc = NULL;
2134     struct ocfs2_dio_write_ctxt *dwc = NULL;
2135     struct buffer_head *di_bh = NULL;
2136     u64 p_blkno;
2137     unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2138     loff_t pos = iblock << i_blkbits;
2139     sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2140     unsigned len, total_len = bh_result->b_size;
2141     int ret = 0, first_get_block = 0;
2142 
2143     len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2144     len = min(total_len, len);
2145 
2146     /*
2147      * bh_result->b_size is count in get_more_blocks according to write
2148      * "pos" and "end", we need map twice to return different buffer state:
2149      * 1. area in file size, not set NEW;
2150      * 2. area out file size, set  NEW.
2151      *
2152      *         iblock    endblk
2153      * |--------|---------|---------|---------
2154      * |<-------area in file------->|
2155      */
2156 
2157     if ((iblock <= endblk) &&
2158         ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2159         len = (endblk - iblock + 1) << i_blkbits;
2160 
2161     mlog(0, "get block of %lu at %llu:%u req %u\n",
2162             inode->i_ino, pos, len, total_len);
2163 
2164     /*
2165      * Because we need to change file size in ocfs2_dio_end_io_write(), or
2166      * we may need to add it to orphan dir. So can not fall to fast path
2167      * while file size will be changed.
2168      */
2169     if (pos + total_len <= i_size_read(inode)) {
2170 
2171         /* This is the fast path for re-write. */
2172         ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2173         if (buffer_mapped(bh_result) &&
2174             !buffer_new(bh_result) &&
2175             ret == 0)
2176             goto out;
2177 
2178         /* Clear state set by ocfs2_get_block. */
2179         bh_result->b_state = 0;
2180     }
2181 
2182     dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2183     if (unlikely(dwc == NULL)) {
2184         ret = -ENOMEM;
2185         mlog_errno(ret);
2186         goto out;
2187     }
2188 
2189     if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2190         ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2191         !dwc->dw_orphaned) {
2192         /*
2193          * when we are going to alloc extents beyond file size, add the
2194          * inode to orphan dir, so we can recall those spaces when
2195          * system crashed during write.
2196          */
2197         ret = ocfs2_add_inode_to_orphan(osb, inode);
2198         if (ret < 0) {
2199             mlog_errno(ret);
2200             goto out;
2201         }
2202         dwc->dw_orphaned = 1;
2203     }
2204 
2205     ret = ocfs2_inode_lock(inode, &di_bh, 1);
2206     if (ret) {
2207         mlog_errno(ret);
2208         goto out;
2209     }
2210 
2211     down_write(&oi->ip_alloc_sem);
2212 
2213     if (first_get_block) {
2214         if (ocfs2_sparse_alloc(osb))
2215             ret = ocfs2_zero_tail(inode, di_bh, pos);
2216         else
2217             ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2218                                total_len, NULL);
2219         if (ret < 0) {
2220             mlog_errno(ret);
2221             goto unlock;
2222         }
2223     }
2224 
2225     ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2226                        OCFS2_WRITE_DIRECT, NULL,
2227                        (void **)&wc, di_bh, NULL);
2228     if (ret) {
2229         mlog_errno(ret);
2230         goto unlock;
2231     }
2232 
2233     desc = &wc->w_desc[0];
2234 
2235     p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2236     BUG_ON(p_blkno == 0);
2237     p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2238 
2239     map_bh(bh_result, inode->i_sb, p_blkno);
2240     bh_result->b_size = len;
2241     if (desc->c_needs_zero)
2242         set_buffer_new(bh_result);
2243 
2244     if (iblock > endblk)
2245         set_buffer_new(bh_result);
2246 
2247     /* May sleep in end_io. It should not happen in a irq context. So defer
2248      * it to dio work queue. */
2249     set_buffer_defer_completion(bh_result);
2250 
2251     if (!list_empty(&wc->w_unwritten_list)) {
2252         struct ocfs2_unwritten_extent *ue = NULL;
2253 
2254         ue = list_first_entry(&wc->w_unwritten_list,
2255                       struct ocfs2_unwritten_extent,
2256                       ue_node);
2257         BUG_ON(ue->ue_cpos != desc->c_cpos);
2258         /* The physical address may be 0, fill it. */
2259         ue->ue_phys = desc->c_phys;
2260 
2261         list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2262         dwc->dw_zero_count += wc->w_unwritten_count;
2263     }
2264 
2265     ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2266     BUG_ON(ret != len);
2267     ret = 0;
2268 unlock:
2269     up_write(&oi->ip_alloc_sem);
2270     ocfs2_inode_unlock(inode, 1);
2271     brelse(di_bh);
2272 out:
2273     if (ret < 0)
2274         ret = -EIO;
2275     return ret;
2276 }
2277 
2278 static int ocfs2_dio_end_io_write(struct inode *inode,
2279                   struct ocfs2_dio_write_ctxt *dwc,
2280                   loff_t offset,
2281                   ssize_t bytes)
2282 {
2283     struct ocfs2_cached_dealloc_ctxt dealloc;
2284     struct ocfs2_extent_tree et;
2285     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2286     struct ocfs2_inode_info *oi = OCFS2_I(inode);
2287     struct ocfs2_unwritten_extent *ue = NULL;
2288     struct buffer_head *di_bh = NULL;
2289     struct ocfs2_dinode *di;
2290     struct ocfs2_alloc_context *data_ac = NULL;
2291     struct ocfs2_alloc_context *meta_ac = NULL;
2292     handle_t *handle = NULL;
2293     loff_t end = offset + bytes;
2294     int ret = 0, credits = 0;
2295 
2296     ocfs2_init_dealloc_ctxt(&dealloc);
2297 
2298     /* We do clear unwritten, delete orphan, change i_size here. If neither
2299      * of these happen, we can skip all this. */
2300     if (list_empty(&dwc->dw_zero_list) &&
2301         end <= i_size_read(inode) &&
2302         !dwc->dw_orphaned)
2303         goto out;
2304 
2305     ret = ocfs2_inode_lock(inode, &di_bh, 1);
2306     if (ret < 0) {
2307         mlog_errno(ret);
2308         goto out;
2309     }
2310 
2311     down_write(&oi->ip_alloc_sem);
2312 
2313     /* Delete orphan before acquire i_rwsem. */
2314     if (dwc->dw_orphaned) {
2315         BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2316 
2317         end = end > i_size_read(inode) ? end : 0;
2318 
2319         ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2320                 !!end, end);
2321         if (ret < 0)
2322             mlog_errno(ret);
2323     }
2324 
2325     di = (struct ocfs2_dinode *)di_bh->b_data;
2326 
2327     ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2328 
2329     /* Attach dealloc with extent tree in case that we may reuse extents
2330      * which are already unlinked from current extent tree due to extent
2331      * rotation and merging.
2332      */
2333     et.et_dealloc = &dealloc;
2334 
2335     ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2336                     &data_ac, &meta_ac);
2337     if (ret) {
2338         mlog_errno(ret);
2339         goto unlock;
2340     }
2341 
2342     credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2343 
2344     handle = ocfs2_start_trans(osb, credits);
2345     if (IS_ERR(handle)) {
2346         ret = PTR_ERR(handle);
2347         mlog_errno(ret);
2348         goto unlock;
2349     }
2350     ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2351                       OCFS2_JOURNAL_ACCESS_WRITE);
2352     if (ret) {
2353         mlog_errno(ret);
2354         goto commit;
2355     }
2356 
2357     list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2358         ret = ocfs2_mark_extent_written(inode, &et, handle,
2359                         ue->ue_cpos, 1,
2360                         ue->ue_phys,
2361                         meta_ac, &dealloc);
2362         if (ret < 0) {
2363             mlog_errno(ret);
2364             break;
2365         }
2366     }
2367 
2368     if (end > i_size_read(inode)) {
2369         ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2370         if (ret < 0)
2371             mlog_errno(ret);
2372     }
2373 commit:
2374     ocfs2_commit_trans(osb, handle);
2375 unlock:
2376     up_write(&oi->ip_alloc_sem);
2377     ocfs2_inode_unlock(inode, 1);
2378     brelse(di_bh);
2379 out:
2380     if (data_ac)
2381         ocfs2_free_alloc_context(data_ac);
2382     if (meta_ac)
2383         ocfs2_free_alloc_context(meta_ac);
2384     ocfs2_run_deallocs(osb, &dealloc);
2385     ocfs2_dio_free_write_ctx(inode, dwc);
2386 
2387     return ret;
2388 }
2389 
2390 /*
2391  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2392  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2393  * to protect io on one node from truncation on another.
2394  */
2395 static int ocfs2_dio_end_io(struct kiocb *iocb,
2396                 loff_t offset,
2397                 ssize_t bytes,
2398                 void *private)
2399 {
2400     struct inode *inode = file_inode(iocb->ki_filp);
2401     int level;
2402     int ret = 0;
2403 
2404     /* this io's submitter should not have unlocked this before we could */
2405     BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2406 
2407     if (bytes <= 0)
2408         mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2409                  (long long)bytes);
2410     if (private) {
2411         if (bytes > 0)
2412             ret = ocfs2_dio_end_io_write(inode, private, offset,
2413                              bytes);
2414         else
2415             ocfs2_dio_free_write_ctx(inode, private);
2416     }
2417 
2418     ocfs2_iocb_clear_rw_locked(iocb);
2419 
2420     level = ocfs2_iocb_rw_locked_level(iocb);
2421     ocfs2_rw_unlock(inode, level);
2422     return ret;
2423 }
2424 
2425 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2426 {
2427     struct file *file = iocb->ki_filp;
2428     struct inode *inode = file->f_mapping->host;
2429     struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2430     get_block_t *get_block;
2431 
2432     /*
2433      * Fallback to buffered I/O if we see an inode without
2434      * extents.
2435      */
2436     if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2437         return 0;
2438 
2439     /* Fallback to buffered I/O if we do not support append dio. */
2440     if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2441         !ocfs2_supports_append_dio(osb))
2442         return 0;
2443 
2444     if (iov_iter_rw(iter) == READ)
2445         get_block = ocfs2_lock_get_block;
2446     else
2447         get_block = ocfs2_dio_wr_get_block;
2448 
2449     return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2450                     iter, get_block,
2451                     ocfs2_dio_end_io, NULL, 0);
2452 }
2453 
2454 const struct address_space_operations ocfs2_aops = {
2455     .dirty_folio        = block_dirty_folio,
2456     .read_folio     = ocfs2_read_folio,
2457     .readahead      = ocfs2_readahead,
2458     .writepage      = ocfs2_writepage,
2459     .write_begin        = ocfs2_write_begin,
2460     .write_end      = ocfs2_write_end,
2461     .bmap           = ocfs2_bmap,
2462     .direct_IO      = ocfs2_direct_IO,
2463     .invalidate_folio   = block_invalidate_folio,
2464     .release_folio      = ocfs2_release_folio,
2465     .migrate_folio      = buffer_migrate_folio,
2466     .is_partially_uptodate  = block_is_partially_uptodate,
2467     .error_remove_page  = generic_error_remove_page,
2468 };