![]() |
|
|||
0001 // SPDX-License-Identifier: GPL-2.0-or-later 0002 /* 0003 * decompress_common.c - Code shared by the XPRESS and LZX decompressors 0004 * 0005 * Copyright (C) 2015 Eric Biggers 0006 */ 0007 0008 #include "decompress_common.h" 0009 0010 /* 0011 * make_huffman_decode_table() - 0012 * 0013 * Build a decoding table for a canonical prefix code, or "Huffman code". 0014 * 0015 * This is an internal function, not part of the library API! 0016 * 0017 * This takes as input the length of the codeword for each symbol in the 0018 * alphabet and produces as output a table that can be used for fast 0019 * decoding of prefix-encoded symbols using read_huffsym(). 0020 * 0021 * Strictly speaking, a canonical prefix code might not be a Huffman 0022 * code. But this algorithm will work either way; and in fact, since 0023 * Huffman codes are defined in terms of symbol frequencies, there is no 0024 * way for the decompressor to know whether the code is a true Huffman 0025 * code or not until all symbols have been decoded. 0026 * 0027 * Because the prefix code is assumed to be "canonical", it can be 0028 * reconstructed directly from the codeword lengths. A prefix code is 0029 * canonical if and only if a longer codeword never lexicographically 0030 * precedes a shorter codeword, and the lexicographic ordering of 0031 * codewords of the same length is the same as the lexicographic ordering 0032 * of the corresponding symbols. Consequently, we can sort the symbols 0033 * primarily by codeword length and secondarily by symbol value, then 0034 * reconstruct the prefix code by generating codewords lexicographically 0035 * in that order. 0036 * 0037 * This function does not, however, generate the prefix code explicitly. 0038 * Instead, it directly builds a table for decoding symbols using the 0039 * code. The basic idea is this: given the next 'max_codeword_len' bits 0040 * in the input, we can look up the decoded symbol by indexing a table 0041 * containing 2**max_codeword_len entries. A codeword with length 0042 * 'max_codeword_len' will have exactly one entry in this table, whereas 0043 * a codeword shorter than 'max_codeword_len' will have multiple entries 0044 * in this table. Precisely, a codeword of length n will be represented 0045 * by 2**(max_codeword_len - n) entries in this table. The 0-based index 0046 * of each such entry will contain the corresponding codeword as a prefix 0047 * when zero-padded on the left to 'max_codeword_len' binary digits. 0048 * 0049 * That's the basic idea, but we implement two optimizations regarding 0050 * the format of the decode table itself: 0051 * 0052 * - For many compression formats, the maximum codeword length is too 0053 * long for it to be efficient to build the full decoding table 0054 * whenever a new prefix code is used. Instead, we can build the table 0055 * using only 2**table_bits entries, where 'table_bits' is some number 0056 * less than or equal to 'max_codeword_len'. Then, only codewords of 0057 * length 'table_bits' and shorter can be directly looked up. For 0058 * longer codewords, the direct lookup instead produces the root of a 0059 * binary tree. Using this tree, the decoder can do traditional 0060 * bit-by-bit decoding of the remainder of the codeword. Child nodes 0061 * are allocated in extra entries at the end of the table; leaf nodes 0062 * contain symbols. Note that the long-codeword case is, in general, 0063 * not performance critical, since in Huffman codes the most frequently 0064 * used symbols are assigned the shortest codeword lengths. 0065 * 0066 * - When we decode a symbol using a direct lookup of the table, we still 0067 * need to know its length so that the bitstream can be advanced by the 0068 * appropriate number of bits. The simple solution is to simply retain 0069 * the 'lens' array and use the decoded symbol as an index into it. 0070 * However, this requires two separate array accesses in the fast path. 0071 * The optimization is to store the length directly in the decode 0072 * table. We use the bottom 11 bits for the symbol and the top 5 bits 0073 * for the length. In addition, to combine this optimization with the 0074 * previous one, we introduce a special case where the top 2 bits of 0075 * the length are both set if the entry is actually the root of a 0076 * binary tree. 0077 * 0078 * @decode_table: 0079 * The array in which to create the decoding table. This must have 0080 * a length of at least ((2**table_bits) + 2 * num_syms) entries. 0081 * 0082 * @num_syms: 0083 * The number of symbols in the alphabet; also, the length of the 0084 * 'lens' array. Must be less than or equal to 2048. 0085 * 0086 * @table_bits: 0087 * The order of the decode table size, as explained above. Must be 0088 * less than or equal to 13. 0089 * 0090 * @lens: 0091 * An array of length @num_syms, indexable by symbol, that gives the 0092 * length of the codeword, in bits, for that symbol. The length can 0093 * be 0, which means that the symbol does not have a codeword 0094 * assigned. 0095 * 0096 * @max_codeword_len: 0097 * The longest codeword length allowed in the compression format. 0098 * All entries in 'lens' must be less than or equal to this value. 0099 * This must be less than or equal to 23. 0100 * 0101 * @working_space 0102 * A temporary array of length '2 * (max_codeword_len + 1) + 0103 * num_syms'. 0104 * 0105 * Returns 0 on success, or -1 if the lengths do not form a valid prefix 0106 * code. 0107 */ 0108 int make_huffman_decode_table(u16 decode_table[], const u32 num_syms, 0109 const u32 table_bits, const u8 lens[], 0110 const u32 max_codeword_len, 0111 u16 working_space[]) 0112 { 0113 const u32 table_num_entries = 1 << table_bits; 0114 u16 * const len_counts = &working_space[0]; 0115 u16 * const offsets = &working_space[1 * (max_codeword_len + 1)]; 0116 u16 * const sorted_syms = &working_space[2 * (max_codeword_len + 1)]; 0117 int left; 0118 void *decode_table_ptr; 0119 u32 sym_idx; 0120 u32 codeword_len; 0121 u32 stores_per_loop; 0122 u32 decode_table_pos; 0123 u32 len; 0124 u32 sym; 0125 0126 /* Count how many symbols have each possible codeword length. 0127 * Note that a length of 0 indicates the corresponding symbol is not 0128 * used in the code and therefore does not have a codeword. 0129 */ 0130 for (len = 0; len <= max_codeword_len; len++) 0131 len_counts[len] = 0; 0132 for (sym = 0; sym < num_syms; sym++) 0133 len_counts[lens[sym]]++; 0134 0135 /* We can assume all lengths are <= max_codeword_len, but we 0136 * cannot assume they form a valid prefix code. A codeword of 0137 * length n should require a proportion of the codespace equaling 0138 * (1/2)^n. The code is valid if and only if the codespace is 0139 * exactly filled by the lengths, by this measure. 0140 */ 0141 left = 1; 0142 for (len = 1; len <= max_codeword_len; len++) { 0143 left <<= 1; 0144 left -= len_counts[len]; 0145 if (left < 0) { 0146 /* The lengths overflow the codespace; that is, the code 0147 * is over-subscribed. 0148 */ 0149 return -1; 0150 } 0151 } 0152 0153 if (left) { 0154 /* The lengths do not fill the codespace; that is, they form an 0155 * incomplete set. 0156 */ 0157 if (left == (1 << max_codeword_len)) { 0158 /* The code is completely empty. This is arguably 0159 * invalid, but in fact it is valid in LZX and XPRESS, 0160 * so we must allow it. By definition, no symbols can 0161 * be decoded with an empty code. Consequently, we 0162 * technically don't even need to fill in the decode 0163 * table. However, to avoid accessing uninitialized 0164 * memory if the algorithm nevertheless attempts to 0165 * decode symbols using such a code, we zero out the 0166 * decode table. 0167 */ 0168 memset(decode_table, 0, 0169 table_num_entries * sizeof(decode_table[0])); 0170 return 0; 0171 } 0172 return -1; 0173 } 0174 0175 /* Sort the symbols primarily by length and secondarily by symbol order. 0176 */ 0177 0178 /* Initialize 'offsets' so that offsets[len] for 1 <= len <= 0179 * max_codeword_len is the number of codewords shorter than 'len' bits. 0180 */ 0181 offsets[1] = 0; 0182 for (len = 1; len < max_codeword_len; len++) 0183 offsets[len + 1] = offsets[len] + len_counts[len]; 0184 0185 /* Use the 'offsets' array to sort the symbols. Note that we do not 0186 * include symbols that are not used in the code. Consequently, fewer 0187 * than 'num_syms' entries in 'sorted_syms' may be filled. 0188 */ 0189 for (sym = 0; sym < num_syms; sym++) 0190 if (lens[sym]) 0191 sorted_syms[offsets[lens[sym]]++] = sym; 0192 0193 /* Fill entries for codewords with length <= table_bits 0194 * --- that is, those short enough for a direct mapping. 0195 * 0196 * The table will start with entries for the shortest codeword(s), which 0197 * have the most entries. From there, the number of entries per 0198 * codeword will decrease. 0199 */ 0200 decode_table_ptr = decode_table; 0201 sym_idx = 0; 0202 codeword_len = 1; 0203 stores_per_loop = (1 << (table_bits - codeword_len)); 0204 for (; stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1) { 0205 u32 end_sym_idx = sym_idx + len_counts[codeword_len]; 0206 0207 for (; sym_idx < end_sym_idx; sym_idx++) { 0208 u16 entry; 0209 u16 *p; 0210 u32 n; 0211 0212 entry = ((u32)codeword_len << 11) | sorted_syms[sym_idx]; 0213 p = (u16 *)decode_table_ptr; 0214 n = stores_per_loop; 0215 0216 do { 0217 *p++ = entry; 0218 } while (--n); 0219 0220 decode_table_ptr = p; 0221 } 0222 } 0223 0224 /* If we've filled in the entire table, we are done. Otherwise, 0225 * there are codewords longer than table_bits for which we must 0226 * generate binary trees. 0227 */ 0228 decode_table_pos = (u16 *)decode_table_ptr - decode_table; 0229 if (decode_table_pos != table_num_entries) { 0230 u32 j; 0231 u32 next_free_tree_slot; 0232 u32 cur_codeword; 0233 0234 /* First, zero out the remaining entries. This is 0235 * necessary so that these entries appear as 0236 * "unallocated" in the next part. Each of these entries 0237 * will eventually be filled with the representation of 0238 * the root node of a binary tree. 0239 */ 0240 j = decode_table_pos; 0241 do { 0242 decode_table[j] = 0; 0243 } while (++j != table_num_entries); 0244 0245 /* We allocate child nodes starting at the end of the 0246 * direct lookup table. Note that there should be 0247 * 2*num_syms extra entries for this purpose, although 0248 * fewer than this may actually be needed. 0249 */ 0250 next_free_tree_slot = table_num_entries; 0251 0252 /* Iterate through each codeword with length greater than 0253 * 'table_bits', primarily in order of codeword length 0254 * and secondarily in order of symbol. 0255 */ 0256 for (cur_codeword = decode_table_pos << 1; 0257 codeword_len <= max_codeword_len; 0258 codeword_len++, cur_codeword <<= 1) { 0259 u32 end_sym_idx = sym_idx + len_counts[codeword_len]; 0260 0261 for (; sym_idx < end_sym_idx; sym_idx++, cur_codeword++) { 0262 /* 'sorted_sym' is the symbol represented by the 0263 * codeword. 0264 */ 0265 u32 sorted_sym = sorted_syms[sym_idx]; 0266 u32 extra_bits = codeword_len - table_bits; 0267 u32 node_idx = cur_codeword >> extra_bits; 0268 0269 /* Go through each bit of the current codeword 0270 * beyond the prefix of length @table_bits and 0271 * walk the appropriate binary tree, allocating 0272 * any slots that have not yet been allocated. 0273 * 0274 * Note that the 'pointer' entry to the binary 0275 * tree, which is stored in the direct lookup 0276 * portion of the table, is represented 0277 * identically to other internal (non-leaf) 0278 * nodes of the binary tree; it can be thought 0279 * of as simply the root of the tree. The 0280 * representation of these internal nodes is 0281 * simply the index of the left child combined 0282 * with the special bits 0xC000 to distinguish 0283 * the entry from direct mapping and leaf node 0284 * entries. 0285 */ 0286 do { 0287 /* At least one bit remains in the 0288 * codeword, but the current node is an 0289 * unallocated leaf. Change it to an 0290 * internal node. 0291 */ 0292 if (decode_table[node_idx] == 0) { 0293 decode_table[node_idx] = 0294 next_free_tree_slot | 0xC000; 0295 decode_table[next_free_tree_slot++] = 0; 0296 decode_table[next_free_tree_slot++] = 0; 0297 } 0298 0299 /* Go to the left child if the next bit 0300 * in the codeword is 0; otherwise go to 0301 * the right child. 0302 */ 0303 node_idx = decode_table[node_idx] & 0x3FFF; 0304 --extra_bits; 0305 node_idx += (cur_codeword >> extra_bits) & 1; 0306 } while (extra_bits != 0); 0307 0308 /* We've traversed the tree using the entire 0309 * codeword, and we're now at the entry where 0310 * the actual symbol will be stored. This is 0311 * distinguished from internal nodes by not 0312 * having its high two bits set. 0313 */ 0314 decode_table[node_idx] = sorted_sym; 0315 } 0316 } 0317 } 0318 return 0; 0319 }
[ Source navigation ] | [ Diff markup ] | [ Identifier search ] | [ general search ] |
This page was automatically generated by the 2.1.0 LXR engine. The LXR team |
![]() ![]() |