Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  *
0004  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
0005  *
0006  */
0007 
0008 #include <linux/fiemap.h>
0009 #include <linux/fs.h>
0010 #include <linux/minmax.h>
0011 #include <linux/vmalloc.h>
0012 
0013 #include "debug.h"
0014 #include "ntfs.h"
0015 #include "ntfs_fs.h"
0016 #ifdef CONFIG_NTFS3_LZX_XPRESS
0017 #include "lib/lib.h"
0018 #endif
0019 
0020 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
0021                    CLST ino, struct rb_node *ins)
0022 {
0023     struct rb_node **p = &tree->rb_node;
0024     struct rb_node *pr = NULL;
0025 
0026     while (*p) {
0027         struct mft_inode *mi;
0028 
0029         pr = *p;
0030         mi = rb_entry(pr, struct mft_inode, node);
0031         if (mi->rno > ino)
0032             p = &pr->rb_left;
0033         else if (mi->rno < ino)
0034             p = &pr->rb_right;
0035         else
0036             return mi;
0037     }
0038 
0039     if (!ins)
0040         return NULL;
0041 
0042     rb_link_node(ins, pr, p);
0043     rb_insert_color(ins, tree);
0044     return rb_entry(ins, struct mft_inode, node);
0045 }
0046 
0047 /*
0048  * ni_find_mi - Find mft_inode by record number.
0049  */
0050 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
0051 {
0052     return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
0053 }
0054 
0055 /*
0056  * ni_add_mi - Add new mft_inode into ntfs_inode.
0057  */
0058 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
0059 {
0060     ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
0061 }
0062 
0063 /*
0064  * ni_remove_mi - Remove mft_inode from ntfs_inode.
0065  */
0066 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
0067 {
0068     rb_erase(&mi->node, &ni->mi_tree);
0069 }
0070 
0071 /*
0072  * ni_std - Return: Pointer into std_info from primary record.
0073  */
0074 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
0075 {
0076     const struct ATTRIB *attr;
0077 
0078     attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
0079     return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
0080             : NULL;
0081 }
0082 
0083 /*
0084  * ni_std5
0085  *
0086  * Return: Pointer into std_info from primary record.
0087  */
0088 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
0089 {
0090     const struct ATTRIB *attr;
0091 
0092     attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
0093 
0094     return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
0095             : NULL;
0096 }
0097 
0098 /*
0099  * ni_clear - Clear resources allocated by ntfs_inode.
0100  */
0101 void ni_clear(struct ntfs_inode *ni)
0102 {
0103     struct rb_node *node;
0104 
0105     if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
0106         ni_delete_all(ni);
0107 
0108     al_destroy(ni);
0109 
0110     for (node = rb_first(&ni->mi_tree); node;) {
0111         struct rb_node *next = rb_next(node);
0112         struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
0113 
0114         rb_erase(node, &ni->mi_tree);
0115         mi_put(mi);
0116         node = next;
0117     }
0118 
0119     /* Bad inode always has mode == S_IFREG. */
0120     if (ni->ni_flags & NI_FLAG_DIR)
0121         indx_clear(&ni->dir);
0122     else {
0123         run_close(&ni->file.run);
0124 #ifdef CONFIG_NTFS3_LZX_XPRESS
0125         if (ni->file.offs_page) {
0126             /* On-demand allocated page for offsets. */
0127             put_page(ni->file.offs_page);
0128             ni->file.offs_page = NULL;
0129         }
0130 #endif
0131     }
0132 
0133     mi_clear(&ni->mi);
0134 }
0135 
0136 /*
0137  * ni_load_mi_ex - Find mft_inode by record number.
0138  */
0139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
0140 {
0141     int err;
0142     struct mft_inode *r;
0143 
0144     r = ni_find_mi(ni, rno);
0145     if (r)
0146         goto out;
0147 
0148     err = mi_get(ni->mi.sbi, rno, &r);
0149     if (err)
0150         return err;
0151 
0152     ni_add_mi(ni, r);
0153 
0154 out:
0155     if (mi)
0156         *mi = r;
0157     return 0;
0158 }
0159 
0160 /*
0161  * ni_load_mi - Load mft_inode corresponded list_entry.
0162  */
0163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
0164            struct mft_inode **mi)
0165 {
0166     CLST rno;
0167 
0168     if (!le) {
0169         *mi = &ni->mi;
0170         return 0;
0171     }
0172 
0173     rno = ino_get(&le->ref);
0174     if (rno == ni->mi.rno) {
0175         *mi = &ni->mi;
0176         return 0;
0177     }
0178     return ni_load_mi_ex(ni, rno, mi);
0179 }
0180 
0181 /*
0182  * ni_find_attr
0183  *
0184  * Return: Attribute and record this attribute belongs to.
0185  */
0186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
0187                 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
0188                 const __le16 *name, u8 name_len, const CLST *vcn,
0189                 struct mft_inode **mi)
0190 {
0191     struct ATTR_LIST_ENTRY *le;
0192     struct mft_inode *m;
0193 
0194     if (!ni->attr_list.size ||
0195         (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
0196         if (le_o)
0197             *le_o = NULL;
0198         if (mi)
0199             *mi = &ni->mi;
0200 
0201         /* Look for required attribute in primary record. */
0202         return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
0203     }
0204 
0205     /* First look for list entry of required type. */
0206     le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
0207     if (!le)
0208         return NULL;
0209 
0210     if (le_o)
0211         *le_o = le;
0212 
0213     /* Load record that contains this attribute. */
0214     if (ni_load_mi(ni, le, &m))
0215         return NULL;
0216 
0217     /* Look for required attribute. */
0218     attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
0219 
0220     if (!attr)
0221         goto out;
0222 
0223     if (!attr->non_res) {
0224         if (vcn && *vcn)
0225             goto out;
0226     } else if (!vcn) {
0227         if (attr->nres.svcn)
0228             goto out;
0229     } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
0230            *vcn > le64_to_cpu(attr->nres.evcn)) {
0231         goto out;
0232     }
0233 
0234     if (mi)
0235         *mi = m;
0236     return attr;
0237 
0238 out:
0239     ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
0240     return NULL;
0241 }
0242 
0243 /*
0244  * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
0245  */
0246 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
0247                    struct ATTR_LIST_ENTRY **le,
0248                    struct mft_inode **mi)
0249 {
0250     struct mft_inode *mi2;
0251     struct ATTR_LIST_ENTRY *le2;
0252 
0253     /* Do we have an attribute list? */
0254     if (!ni->attr_list.size) {
0255         *le = NULL;
0256         if (mi)
0257             *mi = &ni->mi;
0258         /* Enum attributes in primary record. */
0259         return mi_enum_attr(&ni->mi, attr);
0260     }
0261 
0262     /* Get next list entry. */
0263     le2 = *le = al_enumerate(ni, attr ? *le : NULL);
0264     if (!le2)
0265         return NULL;
0266 
0267     /* Load record that contains the required attribute. */
0268     if (ni_load_mi(ni, le2, &mi2))
0269         return NULL;
0270 
0271     if (mi)
0272         *mi = mi2;
0273 
0274     /* Find attribute in loaded record. */
0275     return rec_find_attr_le(mi2, le2);
0276 }
0277 
0278 /*
0279  * ni_load_attr - Load attribute that contains given VCN.
0280  */
0281 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
0282                 const __le16 *name, u8 name_len, CLST vcn,
0283                 struct mft_inode **pmi)
0284 {
0285     struct ATTR_LIST_ENTRY *le;
0286     struct ATTRIB *attr;
0287     struct mft_inode *mi;
0288     struct ATTR_LIST_ENTRY *next;
0289 
0290     if (!ni->attr_list.size) {
0291         if (pmi)
0292             *pmi = &ni->mi;
0293         return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
0294     }
0295 
0296     le = al_find_ex(ni, NULL, type, name, name_len, NULL);
0297     if (!le)
0298         return NULL;
0299 
0300     /*
0301      * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
0302      * So to find the ATTRIB segment that contains 'vcn' we should
0303      * enumerate some entries.
0304      */
0305     if (vcn) {
0306         for (;; le = next) {
0307             next = al_find_ex(ni, le, type, name, name_len, NULL);
0308             if (!next || le64_to_cpu(next->vcn) > vcn)
0309                 break;
0310         }
0311     }
0312 
0313     if (ni_load_mi(ni, le, &mi))
0314         return NULL;
0315 
0316     if (pmi)
0317         *pmi = mi;
0318 
0319     attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
0320     if (!attr)
0321         return NULL;
0322 
0323     if (!attr->non_res)
0324         return attr;
0325 
0326     if (le64_to_cpu(attr->nres.svcn) <= vcn &&
0327         vcn <= le64_to_cpu(attr->nres.evcn))
0328         return attr;
0329 
0330     return NULL;
0331 }
0332 
0333 /*
0334  * ni_load_all_mi - Load all subrecords.
0335  */
0336 int ni_load_all_mi(struct ntfs_inode *ni)
0337 {
0338     int err;
0339     struct ATTR_LIST_ENTRY *le;
0340 
0341     if (!ni->attr_list.size)
0342         return 0;
0343 
0344     le = NULL;
0345 
0346     while ((le = al_enumerate(ni, le))) {
0347         CLST rno = ino_get(&le->ref);
0348 
0349         if (rno == ni->mi.rno)
0350             continue;
0351 
0352         err = ni_load_mi_ex(ni, rno, NULL);
0353         if (err)
0354             return err;
0355     }
0356 
0357     return 0;
0358 }
0359 
0360 /*
0361  * ni_add_subrecord - Allocate + format + attach a new subrecord.
0362  */
0363 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
0364 {
0365     struct mft_inode *m;
0366 
0367     m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
0368     if (!m)
0369         return false;
0370 
0371     if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
0372         mi_put(m);
0373         return false;
0374     }
0375 
0376     mi_get_ref(&ni->mi, &m->mrec->parent_ref);
0377 
0378     ni_add_mi(ni, m);
0379     *mi = m;
0380     return true;
0381 }
0382 
0383 /*
0384  * ni_remove_attr - Remove all attributes for the given type/name/id.
0385  */
0386 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
0387            const __le16 *name, size_t name_len, bool base_only,
0388            const __le16 *id)
0389 {
0390     int err;
0391     struct ATTRIB *attr;
0392     struct ATTR_LIST_ENTRY *le;
0393     struct mft_inode *mi;
0394     u32 type_in;
0395     int diff;
0396 
0397     if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
0398         attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
0399         if (!attr)
0400             return -ENOENT;
0401 
0402         mi_remove_attr(ni, &ni->mi, attr);
0403         return 0;
0404     }
0405 
0406     type_in = le32_to_cpu(type);
0407     le = NULL;
0408 
0409     for (;;) {
0410         le = al_enumerate(ni, le);
0411         if (!le)
0412             return 0;
0413 
0414 next_le2:
0415         diff = le32_to_cpu(le->type) - type_in;
0416         if (diff < 0)
0417             continue;
0418 
0419         if (diff > 0)
0420             return 0;
0421 
0422         if (le->name_len != name_len)
0423             continue;
0424 
0425         if (name_len &&
0426             memcmp(le_name(le), name, name_len * sizeof(short)))
0427             continue;
0428 
0429         if (id && le->id != *id)
0430             continue;
0431         err = ni_load_mi(ni, le, &mi);
0432         if (err)
0433             return err;
0434 
0435         al_remove_le(ni, le);
0436 
0437         attr = mi_find_attr(mi, NULL, type, name, name_len, id);
0438         if (!attr)
0439             return -ENOENT;
0440 
0441         mi_remove_attr(ni, mi, attr);
0442 
0443         if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
0444             return 0;
0445         goto next_le2;
0446     }
0447 }
0448 
0449 /*
0450  * ni_ins_new_attr - Insert the attribute into record.
0451  *
0452  * Return: Not full constructed attribute or NULL if not possible to create.
0453  */
0454 static struct ATTRIB *
0455 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
0456         struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
0457         const __le16 *name, u8 name_len, u32 asize, u16 name_off,
0458         CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
0459 {
0460     int err;
0461     struct ATTRIB *attr;
0462     bool le_added = false;
0463     struct MFT_REF ref;
0464 
0465     mi_get_ref(mi, &ref);
0466 
0467     if (type != ATTR_LIST && !le && ni->attr_list.size) {
0468         err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
0469                 &ref, &le);
0470         if (err) {
0471             /* No memory or no space. */
0472             return ERR_PTR(err);
0473         }
0474         le_added = true;
0475 
0476         /*
0477          * al_add_le -> attr_set_size (list) -> ni_expand_list
0478          * which moves some attributes out of primary record
0479          * this means that name may point into moved memory
0480          * reinit 'name' from le.
0481          */
0482         name = le->name;
0483     }
0484 
0485     attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
0486     if (!attr) {
0487         if (le_added)
0488             al_remove_le(ni, le);
0489         return NULL;
0490     }
0491 
0492     if (type == ATTR_LIST) {
0493         /* Attr list is not in list entry array. */
0494         goto out;
0495     }
0496 
0497     if (!le)
0498         goto out;
0499 
0500     /* Update ATTRIB Id and record reference. */
0501     le->id = attr->id;
0502     ni->attr_list.dirty = true;
0503     le->ref = ref;
0504 
0505 out:
0506     if (ins_le)
0507         *ins_le = le;
0508     return attr;
0509 }
0510 
0511 /*
0512  * ni_repack
0513  *
0514  * Random write access to sparsed or compressed file may result to
0515  * not optimized packed runs.
0516  * Here is the place to optimize it.
0517  */
0518 static int ni_repack(struct ntfs_inode *ni)
0519 {
0520     int err = 0;
0521     struct ntfs_sb_info *sbi = ni->mi.sbi;
0522     struct mft_inode *mi, *mi_p = NULL;
0523     struct ATTRIB *attr = NULL, *attr_p;
0524     struct ATTR_LIST_ENTRY *le = NULL, *le_p;
0525     CLST alloc = 0;
0526     u8 cluster_bits = sbi->cluster_bits;
0527     CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
0528     u32 roff, rs = sbi->record_size;
0529     struct runs_tree run;
0530 
0531     run_init(&run);
0532 
0533     while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
0534         if (!attr->non_res)
0535             continue;
0536 
0537         svcn = le64_to_cpu(attr->nres.svcn);
0538         if (svcn != le64_to_cpu(le->vcn)) {
0539             err = -EINVAL;
0540             break;
0541         }
0542 
0543         if (!svcn) {
0544             alloc = le64_to_cpu(attr->nres.alloc_size) >>
0545                 cluster_bits;
0546             mi_p = NULL;
0547         } else if (svcn != evcn + 1) {
0548             err = -EINVAL;
0549             break;
0550         }
0551 
0552         evcn = le64_to_cpu(attr->nres.evcn);
0553 
0554         if (svcn > evcn + 1) {
0555             err = -EINVAL;
0556             break;
0557         }
0558 
0559         if (!mi_p) {
0560             /* Do not try if not enogh free space. */
0561             if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
0562                 continue;
0563 
0564             /* Do not try if last attribute segment. */
0565             if (evcn + 1 == alloc)
0566                 continue;
0567             run_close(&run);
0568         }
0569 
0570         roff = le16_to_cpu(attr->nres.run_off);
0571         err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
0572                  Add2Ptr(attr, roff),
0573                  le32_to_cpu(attr->size) - roff);
0574         if (err < 0)
0575             break;
0576 
0577         if (!mi_p) {
0578             mi_p = mi;
0579             attr_p = attr;
0580             svcn_p = svcn;
0581             evcn_p = evcn;
0582             le_p = le;
0583             err = 0;
0584             continue;
0585         }
0586 
0587         /*
0588          * Run contains data from two records: mi_p and mi
0589          * Try to pack in one.
0590          */
0591         err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
0592         if (err)
0593             break;
0594 
0595         next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
0596 
0597         if (next_svcn >= evcn + 1) {
0598             /* We can remove this attribute segment. */
0599             al_remove_le(ni, le);
0600             mi_remove_attr(NULL, mi, attr);
0601             le = le_p;
0602             continue;
0603         }
0604 
0605         attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
0606         mi->dirty = true;
0607         ni->attr_list.dirty = true;
0608 
0609         if (evcn + 1 == alloc) {
0610             err = mi_pack_runs(mi, attr, &run,
0611                        evcn + 1 - next_svcn);
0612             if (err)
0613                 break;
0614             mi_p = NULL;
0615         } else {
0616             mi_p = mi;
0617             attr_p = attr;
0618             svcn_p = next_svcn;
0619             evcn_p = evcn;
0620             le_p = le;
0621             run_truncate_head(&run, next_svcn);
0622         }
0623     }
0624 
0625     if (err) {
0626         ntfs_inode_warn(&ni->vfs_inode, "repack problem");
0627         ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
0628 
0629         /* Pack loaded but not packed runs. */
0630         if (mi_p)
0631             mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
0632     }
0633 
0634     run_close(&run);
0635     return err;
0636 }
0637 
0638 /*
0639  * ni_try_remove_attr_list
0640  *
0641  * Can we remove attribute list?
0642  * Check the case when primary record contains enough space for all attributes.
0643  */
0644 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
0645 {
0646     int err = 0;
0647     struct ntfs_sb_info *sbi = ni->mi.sbi;
0648     struct ATTRIB *attr, *attr_list, *attr_ins;
0649     struct ATTR_LIST_ENTRY *le;
0650     struct mft_inode *mi;
0651     u32 asize, free;
0652     struct MFT_REF ref;
0653     struct MFT_REC *mrec;
0654     __le16 id;
0655 
0656     if (!ni->attr_list.dirty)
0657         return 0;
0658 
0659     err = ni_repack(ni);
0660     if (err)
0661         return err;
0662 
0663     attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
0664     if (!attr_list)
0665         return 0;
0666 
0667     asize = le32_to_cpu(attr_list->size);
0668 
0669     /* Free space in primary record without attribute list. */
0670     free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
0671     mi_get_ref(&ni->mi, &ref);
0672 
0673     le = NULL;
0674     while ((le = al_enumerate(ni, le))) {
0675         if (!memcmp(&le->ref, &ref, sizeof(ref)))
0676             continue;
0677 
0678         if (le->vcn)
0679             return 0;
0680 
0681         mi = ni_find_mi(ni, ino_get(&le->ref));
0682         if (!mi)
0683             return 0;
0684 
0685         attr = mi_find_attr(mi, NULL, le->type, le_name(le),
0686                     le->name_len, &le->id);
0687         if (!attr)
0688             return 0;
0689 
0690         asize = le32_to_cpu(attr->size);
0691         if (asize > free)
0692             return 0;
0693 
0694         free -= asize;
0695     }
0696 
0697     /* Make a copy of primary record to restore if error. */
0698     mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
0699     if (!mrec)
0700         return 0; /* Not critical. */
0701 
0702     /* It seems that attribute list can be removed from primary record. */
0703     mi_remove_attr(NULL, &ni->mi, attr_list);
0704 
0705     /*
0706      * Repeat the cycle above and copy all attributes to primary record.
0707      * Do not remove original attributes from subrecords!
0708      * It should be success!
0709      */
0710     le = NULL;
0711     while ((le = al_enumerate(ni, le))) {
0712         if (!memcmp(&le->ref, &ref, sizeof(ref)))
0713             continue;
0714 
0715         mi = ni_find_mi(ni, ino_get(&le->ref));
0716         if (!mi) {
0717             /* Should never happened, 'cause already checked. */
0718             goto out;
0719         }
0720 
0721         attr = mi_find_attr(mi, NULL, le->type, le_name(le),
0722                     le->name_len, &le->id);
0723         if (!attr) {
0724             /* Should never happened, 'cause already checked. */
0725             goto out;
0726         }
0727         asize = le32_to_cpu(attr->size);
0728 
0729         /* Insert into primary record. */
0730         attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
0731                       le->name_len, asize,
0732                       le16_to_cpu(attr->name_off));
0733         if (!attr_ins) {
0734             /*
0735              * No space in primary record (already checked).
0736              */
0737             goto out;
0738         }
0739 
0740         /* Copy all except id. */
0741         id = attr_ins->id;
0742         memcpy(attr_ins, attr, asize);
0743         attr_ins->id = id;
0744     }
0745 
0746     /*
0747      * Repeat the cycle above and remove all attributes from subrecords.
0748      */
0749     le = NULL;
0750     while ((le = al_enumerate(ni, le))) {
0751         if (!memcmp(&le->ref, &ref, sizeof(ref)))
0752             continue;
0753 
0754         mi = ni_find_mi(ni, ino_get(&le->ref));
0755         if (!mi)
0756             continue;
0757 
0758         attr = mi_find_attr(mi, NULL, le->type, le_name(le),
0759                     le->name_len, &le->id);
0760         if (!attr)
0761             continue;
0762 
0763         /* Remove from original record. */
0764         mi_remove_attr(NULL, mi, attr);
0765     }
0766 
0767     run_deallocate(sbi, &ni->attr_list.run, true);
0768     run_close(&ni->attr_list.run);
0769     ni->attr_list.size = 0;
0770     kfree(ni->attr_list.le);
0771     ni->attr_list.le = NULL;
0772     ni->attr_list.dirty = false;
0773 
0774     kfree(mrec);
0775     return 0;
0776 out:
0777     /* Restore primary record. */
0778     swap(mrec, ni->mi.mrec);
0779     kfree(mrec);
0780     return 0;
0781 }
0782 
0783 /*
0784  * ni_create_attr_list - Generates an attribute list for this primary record.
0785  */
0786 int ni_create_attr_list(struct ntfs_inode *ni)
0787 {
0788     struct ntfs_sb_info *sbi = ni->mi.sbi;
0789     int err;
0790     u32 lsize;
0791     struct ATTRIB *attr;
0792     struct ATTRIB *arr_move[7];
0793     struct ATTR_LIST_ENTRY *le, *le_b[7];
0794     struct MFT_REC *rec;
0795     bool is_mft;
0796     CLST rno = 0;
0797     struct mft_inode *mi;
0798     u32 free_b, nb, to_free, rs;
0799     u16 sz;
0800 
0801     is_mft = ni->mi.rno == MFT_REC_MFT;
0802     rec = ni->mi.mrec;
0803     rs = sbi->record_size;
0804 
0805     /*
0806      * Skip estimating exact memory requirement.
0807      * Looks like one record_size is always enough.
0808      */
0809     le = kmalloc(al_aligned(rs), GFP_NOFS);
0810     if (!le) {
0811         err = -ENOMEM;
0812         goto out;
0813     }
0814 
0815     mi_get_ref(&ni->mi, &le->ref);
0816     ni->attr_list.le = le;
0817 
0818     attr = NULL;
0819     nb = 0;
0820     free_b = 0;
0821     attr = NULL;
0822 
0823     for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
0824         sz = le_size(attr->name_len);
0825         le->type = attr->type;
0826         le->size = cpu_to_le16(sz);
0827         le->name_len = attr->name_len;
0828         le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
0829         le->vcn = 0;
0830         if (le != ni->attr_list.le)
0831             le->ref = ni->attr_list.le->ref;
0832         le->id = attr->id;
0833 
0834         if (attr->name_len)
0835             memcpy(le->name, attr_name(attr),
0836                    sizeof(short) * attr->name_len);
0837         else if (attr->type == ATTR_STD)
0838             continue;
0839         else if (attr->type == ATTR_LIST)
0840             continue;
0841         else if (is_mft && attr->type == ATTR_DATA)
0842             continue;
0843 
0844         if (!nb || nb < ARRAY_SIZE(arr_move)) {
0845             le_b[nb] = le;
0846             arr_move[nb++] = attr;
0847             free_b += le32_to_cpu(attr->size);
0848         }
0849     }
0850 
0851     lsize = PtrOffset(ni->attr_list.le, le);
0852     ni->attr_list.size = lsize;
0853 
0854     to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
0855     if (to_free <= rs) {
0856         to_free = 0;
0857     } else {
0858         to_free -= rs;
0859 
0860         if (to_free > free_b) {
0861             err = -EINVAL;
0862             goto out1;
0863         }
0864     }
0865 
0866     /* Allocate child MFT. */
0867     err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
0868     if (err)
0869         goto out1;
0870 
0871     /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
0872     while (to_free > 0) {
0873         struct ATTRIB *b = arr_move[--nb];
0874         u32 asize = le32_to_cpu(b->size);
0875         u16 name_off = le16_to_cpu(b->name_off);
0876 
0877         attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
0878                       b->name_len, asize, name_off);
0879         WARN_ON(!attr);
0880 
0881         mi_get_ref(mi, &le_b[nb]->ref);
0882         le_b[nb]->id = attr->id;
0883 
0884         /* Copy all except id. */
0885         memcpy(attr, b, asize);
0886         attr->id = le_b[nb]->id;
0887 
0888         /* Remove from primary record. */
0889         WARN_ON(!mi_remove_attr(NULL, &ni->mi, b));
0890 
0891         if (to_free <= asize)
0892             break;
0893         to_free -= asize;
0894         WARN_ON(!nb);
0895     }
0896 
0897     attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
0898                   lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
0899     WARN_ON(!attr);
0900 
0901     attr->non_res = 0;
0902     attr->flags = 0;
0903     attr->res.data_size = cpu_to_le32(lsize);
0904     attr->res.data_off = SIZEOF_RESIDENT_LE;
0905     attr->res.flags = 0;
0906     attr->res.res = 0;
0907 
0908     memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
0909 
0910     ni->attr_list.dirty = false;
0911 
0912     mark_inode_dirty(&ni->vfs_inode);
0913     goto out;
0914 
0915 out1:
0916     kfree(ni->attr_list.le);
0917     ni->attr_list.le = NULL;
0918     ni->attr_list.size = 0;
0919 
0920 out:
0921     return err;
0922 }
0923 
0924 /*
0925  * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
0926  */
0927 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
0928                enum ATTR_TYPE type, const __le16 *name, u8 name_len,
0929                u32 asize, CLST svcn, u16 name_off, bool force_ext,
0930                struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
0931                struct ATTR_LIST_ENTRY **ins_le)
0932 {
0933     struct ATTRIB *attr;
0934     struct mft_inode *mi;
0935     CLST rno;
0936     u64 vbo;
0937     struct rb_node *node;
0938     int err;
0939     bool is_mft, is_mft_data;
0940     struct ntfs_sb_info *sbi = ni->mi.sbi;
0941 
0942     is_mft = ni->mi.rno == MFT_REC_MFT;
0943     is_mft_data = is_mft && type == ATTR_DATA && !name_len;
0944 
0945     if (asize > sbi->max_bytes_per_attr) {
0946         err = -EINVAL;
0947         goto out;
0948     }
0949 
0950     /*
0951      * Standard information and attr_list cannot be made external.
0952      * The Log File cannot have any external attributes.
0953      */
0954     if (type == ATTR_STD || type == ATTR_LIST ||
0955         ni->mi.rno == MFT_REC_LOG) {
0956         err = -EINVAL;
0957         goto out;
0958     }
0959 
0960     /* Create attribute list if it is not already existed. */
0961     if (!ni->attr_list.size) {
0962         err = ni_create_attr_list(ni);
0963         if (err)
0964             goto out;
0965     }
0966 
0967     vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
0968 
0969     if (force_ext)
0970         goto insert_ext;
0971 
0972     /* Load all subrecords into memory. */
0973     err = ni_load_all_mi(ni);
0974     if (err)
0975         goto out;
0976 
0977     /* Check each of loaded subrecord. */
0978     for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
0979         mi = rb_entry(node, struct mft_inode, node);
0980 
0981         if (is_mft_data &&
0982             (mi_enum_attr(mi, NULL) ||
0983              vbo <= ((u64)mi->rno << sbi->record_bits))) {
0984             /* We can't accept this record 'cause MFT's bootstrapping. */
0985             continue;
0986         }
0987         if (is_mft &&
0988             mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
0989             /*
0990              * This child record already has a ATTR_DATA.
0991              * So it can't accept any other records.
0992              */
0993             continue;
0994         }
0995 
0996         if ((type != ATTR_NAME || name_len) &&
0997             mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
0998             /* Only indexed attributes can share same record. */
0999             continue;
1000         }
1001 
1002         /*
1003          * Do not try to insert this attribute
1004          * if there is no room in record.
1005          */
1006         if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1007             continue;
1008 
1009         /* Try to insert attribute into this subrecord. */
1010         attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1011                        name_off, svcn, ins_le);
1012         if (!attr)
1013             continue;
1014         if (IS_ERR(attr))
1015             return PTR_ERR(attr);
1016 
1017         if (ins_attr)
1018             *ins_attr = attr;
1019         if (ins_mi)
1020             *ins_mi = mi;
1021         return 0;
1022     }
1023 
1024 insert_ext:
1025     /* We have to allocate a new child subrecord. */
1026     err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1027     if (err)
1028         goto out;
1029 
1030     if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1031         err = -EINVAL;
1032         goto out1;
1033     }
1034 
1035     attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1036                    name_off, svcn, ins_le);
1037     if (!attr) {
1038         err = -EINVAL;
1039         goto out2;
1040     }
1041 
1042     if (IS_ERR(attr)) {
1043         err = PTR_ERR(attr);
1044         goto out2;
1045     }
1046 
1047     if (ins_attr)
1048         *ins_attr = attr;
1049     if (ins_mi)
1050         *ins_mi = mi;
1051 
1052     return 0;
1053 
1054 out2:
1055     ni_remove_mi(ni, mi);
1056     mi_put(mi);
1057 
1058 out1:
1059     ntfs_mark_rec_free(sbi, rno, is_mft);
1060 
1061 out:
1062     return err;
1063 }
1064 
1065 /*
1066  * ni_insert_attr - Insert an attribute into the file.
1067  *
1068  * If the primary record has room, it will just insert the attribute.
1069  * If not, it may make the attribute external.
1070  * For $MFT::Data it may make room for the attribute by
1071  * making other attributes external.
1072  *
1073  * NOTE:
1074  * The ATTR_LIST and ATTR_STD cannot be made external.
1075  * This function does not fill new attribute full.
1076  * It only fills 'size'/'type'/'id'/'name_len' fields.
1077  */
1078 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1079               const __le16 *name, u8 name_len, u32 asize,
1080               u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1081               struct mft_inode **ins_mi,
1082               struct ATTR_LIST_ENTRY **ins_le)
1083 {
1084     struct ntfs_sb_info *sbi = ni->mi.sbi;
1085     int err;
1086     struct ATTRIB *attr, *eattr;
1087     struct MFT_REC *rec;
1088     bool is_mft;
1089     struct ATTR_LIST_ENTRY *le;
1090     u32 list_reserve, max_free, free, used, t32;
1091     __le16 id;
1092     u16 t16;
1093 
1094     is_mft = ni->mi.rno == MFT_REC_MFT;
1095     rec = ni->mi.mrec;
1096 
1097     list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1098     used = le32_to_cpu(rec->used);
1099     free = sbi->record_size - used;
1100 
1101     if (is_mft && type != ATTR_LIST) {
1102         /* Reserve space for the ATTRIB list. */
1103         if (free < list_reserve)
1104             free = 0;
1105         else
1106             free -= list_reserve;
1107     }
1108 
1109     if (asize <= free) {
1110         attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1111                        asize, name_off, svcn, ins_le);
1112         if (IS_ERR(attr)) {
1113             err = PTR_ERR(attr);
1114             goto out;
1115         }
1116 
1117         if (attr) {
1118             if (ins_attr)
1119                 *ins_attr = attr;
1120             if (ins_mi)
1121                 *ins_mi = &ni->mi;
1122             err = 0;
1123             goto out;
1124         }
1125     }
1126 
1127     if (!is_mft || type != ATTR_DATA || svcn) {
1128         /* This ATTRIB will be external. */
1129         err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1130                       svcn, name_off, false, ins_attr, ins_mi,
1131                       ins_le);
1132         goto out;
1133     }
1134 
1135     /*
1136      * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1137      *
1138      * The first chunk of the $MFT::Data ATTRIB must be the base record.
1139      * Evict as many other attributes as possible.
1140      */
1141     max_free = free;
1142 
1143     /* Estimate the result of moving all possible attributes away. */
1144     attr = NULL;
1145 
1146     while ((attr = mi_enum_attr(&ni->mi, attr))) {
1147         if (attr->type == ATTR_STD)
1148             continue;
1149         if (attr->type == ATTR_LIST)
1150             continue;
1151         max_free += le32_to_cpu(attr->size);
1152     }
1153 
1154     if (max_free < asize + list_reserve) {
1155         /* Impossible to insert this attribute into primary record. */
1156         err = -EINVAL;
1157         goto out;
1158     }
1159 
1160     /* Start real attribute moving. */
1161     attr = NULL;
1162 
1163     for (;;) {
1164         attr = mi_enum_attr(&ni->mi, attr);
1165         if (!attr) {
1166             /* We should never be here 'cause we have already check this case. */
1167             err = -EINVAL;
1168             goto out;
1169         }
1170 
1171         /* Skip attributes that MUST be primary record. */
1172         if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1173             continue;
1174 
1175         le = NULL;
1176         if (ni->attr_list.size) {
1177             le = al_find_le(ni, NULL, attr);
1178             if (!le) {
1179                 /* Really this is a serious bug. */
1180                 err = -EINVAL;
1181                 goto out;
1182             }
1183         }
1184 
1185         t32 = le32_to_cpu(attr->size);
1186         t16 = le16_to_cpu(attr->name_off);
1187         err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1188                       attr->name_len, t32, attr_svcn(attr), t16,
1189                       false, &eattr, NULL, NULL);
1190         if (err)
1191             return err;
1192 
1193         id = eattr->id;
1194         memcpy(eattr, attr, t32);
1195         eattr->id = id;
1196 
1197         /* Remove from primary record. */
1198         mi_remove_attr(NULL, &ni->mi, attr);
1199 
1200         /* attr now points to next attribute. */
1201         if (attr->type == ATTR_END)
1202             goto out;
1203     }
1204     while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1205         ;
1206 
1207     attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1208                    name_off, svcn, ins_le);
1209     if (!attr) {
1210         err = -EINVAL;
1211         goto out;
1212     }
1213 
1214     if (IS_ERR(attr)) {
1215         err = PTR_ERR(attr);
1216         goto out;
1217     }
1218 
1219     if (ins_attr)
1220         *ins_attr = attr;
1221     if (ins_mi)
1222         *ins_mi = &ni->mi;
1223 
1224 out:
1225     return err;
1226 }
1227 
1228 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
1229 static int ni_expand_mft_list(struct ntfs_inode *ni)
1230 {
1231     int err = 0;
1232     struct runs_tree *run = &ni->file.run;
1233     u32 asize, run_size, done = 0;
1234     struct ATTRIB *attr;
1235     struct rb_node *node;
1236     CLST mft_min, mft_new, svcn, evcn, plen;
1237     struct mft_inode *mi, *mi_min, *mi_new;
1238     struct ntfs_sb_info *sbi = ni->mi.sbi;
1239 
1240     /* Find the nearest MFT. */
1241     mft_min = 0;
1242     mft_new = 0;
1243     mi_min = NULL;
1244 
1245     for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1246         mi = rb_entry(node, struct mft_inode, node);
1247 
1248         attr = mi_enum_attr(mi, NULL);
1249 
1250         if (!attr) {
1251             mft_min = mi->rno;
1252             mi_min = mi;
1253             break;
1254         }
1255     }
1256 
1257     if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1258         mft_new = 0;
1259         /* Really this is not critical. */
1260     } else if (mft_min > mft_new) {
1261         mft_min = mft_new;
1262         mi_min = mi_new;
1263     } else {
1264         ntfs_mark_rec_free(sbi, mft_new, true);
1265         mft_new = 0;
1266         ni_remove_mi(ni, mi_new);
1267     }
1268 
1269     attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1270     if (!attr) {
1271         err = -EINVAL;
1272         goto out;
1273     }
1274 
1275     asize = le32_to_cpu(attr->size);
1276 
1277     evcn = le64_to_cpu(attr->nres.evcn);
1278     svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1279     if (evcn + 1 >= svcn) {
1280         err = -EINVAL;
1281         goto out;
1282     }
1283 
1284     /*
1285      * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1286      *
1287      * Update first part of ATTR_DATA in 'primary MFT.
1288      */
1289     err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1290                asize - SIZEOF_NONRESIDENT, &plen);
1291     if (err < 0)
1292         goto out;
1293 
1294     run_size = ALIGN(err, 8);
1295     err = 0;
1296 
1297     if (plen < svcn) {
1298         err = -EINVAL;
1299         goto out;
1300     }
1301 
1302     attr->nres.evcn = cpu_to_le64(svcn - 1);
1303     attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1304     /* 'done' - How many bytes of primary MFT becomes free. */
1305     done = asize - run_size - SIZEOF_NONRESIDENT;
1306     le32_sub_cpu(&ni->mi.mrec->used, done);
1307 
1308     /* Estimate packed size (run_buf=NULL). */
1309     err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1310                &plen);
1311     if (err < 0)
1312         goto out;
1313 
1314     run_size = ALIGN(err, 8);
1315     err = 0;
1316 
1317     if (plen < evcn + 1 - svcn) {
1318         err = -EINVAL;
1319         goto out;
1320     }
1321 
1322     /*
1323      * This function may implicitly call expand attr_list.
1324      * Insert second part of ATTR_DATA in 'mi_min'.
1325      */
1326     attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1327                    SIZEOF_NONRESIDENT + run_size,
1328                    SIZEOF_NONRESIDENT, svcn, NULL);
1329     if (!attr) {
1330         err = -EINVAL;
1331         goto out;
1332     }
1333 
1334     if (IS_ERR(attr)) {
1335         err = PTR_ERR(attr);
1336         goto out;
1337     }
1338 
1339     attr->non_res = 1;
1340     attr->name_off = SIZEOF_NONRESIDENT_LE;
1341     attr->flags = 0;
1342 
1343     /* This function can't fail - cause already checked above. */
1344     run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1345          run_size, &plen);
1346 
1347     attr->nres.svcn = cpu_to_le64(svcn);
1348     attr->nres.evcn = cpu_to_le64(evcn);
1349     attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1350 
1351 out:
1352     if (mft_new) {
1353         ntfs_mark_rec_free(sbi, mft_new, true);
1354         ni_remove_mi(ni, mi_new);
1355     }
1356 
1357     return !err && !done ? -EOPNOTSUPP : err;
1358 }
1359 
1360 /*
1361  * ni_expand_list - Move all possible attributes out of primary record.
1362  */
1363 int ni_expand_list(struct ntfs_inode *ni)
1364 {
1365     int err = 0;
1366     u32 asize, done = 0;
1367     struct ATTRIB *attr, *ins_attr;
1368     struct ATTR_LIST_ENTRY *le;
1369     bool is_mft = ni->mi.rno == MFT_REC_MFT;
1370     struct MFT_REF ref;
1371 
1372     mi_get_ref(&ni->mi, &ref);
1373     le = NULL;
1374 
1375     while ((le = al_enumerate(ni, le))) {
1376         if (le->type == ATTR_STD)
1377             continue;
1378 
1379         if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1380             continue;
1381 
1382         if (is_mft && le->type == ATTR_DATA)
1383             continue;
1384 
1385         /* Find attribute in primary record. */
1386         attr = rec_find_attr_le(&ni->mi, le);
1387         if (!attr) {
1388             err = -EINVAL;
1389             goto out;
1390         }
1391 
1392         asize = le32_to_cpu(attr->size);
1393 
1394         /* Always insert into new record to avoid collisions (deep recursive). */
1395         err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1396                       attr->name_len, asize, attr_svcn(attr),
1397                       le16_to_cpu(attr->name_off), true,
1398                       &ins_attr, NULL, NULL);
1399 
1400         if (err)
1401             goto out;
1402 
1403         memcpy(ins_attr, attr, asize);
1404         ins_attr->id = le->id;
1405         /* Remove from primary record. */
1406         mi_remove_attr(NULL, &ni->mi, attr);
1407 
1408         done += asize;
1409         goto out;
1410     }
1411 
1412     if (!is_mft) {
1413         err = -EFBIG; /* Attr list is too big(?) */
1414         goto out;
1415     }
1416 
1417     /* Split MFT data as much as possible. */
1418     err = ni_expand_mft_list(ni);
1419 
1420 out:
1421     return !err && !done ? -EOPNOTSUPP : err;
1422 }
1423 
1424 /*
1425  * ni_insert_nonresident - Insert new nonresident attribute.
1426  */
1427 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1428               const __le16 *name, u8 name_len,
1429               const struct runs_tree *run, CLST svcn, CLST len,
1430               __le16 flags, struct ATTRIB **new_attr,
1431               struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1432 {
1433     int err;
1434     CLST plen;
1435     struct ATTRIB *attr;
1436     bool is_ext =
1437         (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
1438     u32 name_size = ALIGN(name_len * sizeof(short), 8);
1439     u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1440     u32 run_off = name_off + name_size;
1441     u32 run_size, asize;
1442     struct ntfs_sb_info *sbi = ni->mi.sbi;
1443 
1444     /* Estimate packed size (run_buf=NULL). */
1445     err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1446                &plen);
1447     if (err < 0)
1448         goto out;
1449 
1450     run_size = ALIGN(err, 8);
1451 
1452     if (plen < len) {
1453         err = -EINVAL;
1454         goto out;
1455     }
1456 
1457     asize = run_off + run_size;
1458 
1459     if (asize > sbi->max_bytes_per_attr) {
1460         err = -EINVAL;
1461         goto out;
1462     }
1463 
1464     err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1465                  &attr, mi, le);
1466 
1467     if (err)
1468         goto out;
1469 
1470     attr->non_res = 1;
1471     attr->name_off = cpu_to_le16(name_off);
1472     attr->flags = flags;
1473 
1474     /* This function can't fail - cause already checked above. */
1475     run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1476 
1477     attr->nres.svcn = cpu_to_le64(svcn);
1478     attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1479 
1480     if (new_attr)
1481         *new_attr = attr;
1482 
1483     *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1484 
1485     attr->nres.alloc_size =
1486         svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1487     attr->nres.data_size = attr->nres.alloc_size;
1488     attr->nres.valid_size = attr->nres.alloc_size;
1489 
1490     if (is_ext) {
1491         if (flags & ATTR_FLAG_COMPRESSED)
1492             attr->nres.c_unit = COMPRESSION_UNIT;
1493         attr->nres.total_size = attr->nres.alloc_size;
1494     }
1495 
1496 out:
1497     return err;
1498 }
1499 
1500 /*
1501  * ni_insert_resident - Inserts new resident attribute.
1502  */
1503 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1504                enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1505                struct ATTRIB **new_attr, struct mft_inode **mi,
1506                struct ATTR_LIST_ENTRY **le)
1507 {
1508     int err;
1509     u32 name_size = ALIGN(name_len * sizeof(short), 8);
1510     u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1511     struct ATTRIB *attr;
1512 
1513     err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1514                  0, &attr, mi, le);
1515     if (err)
1516         return err;
1517 
1518     attr->non_res = 0;
1519     attr->flags = 0;
1520 
1521     attr->res.data_size = cpu_to_le32(data_size);
1522     attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1523     if (type == ATTR_NAME) {
1524         attr->res.flags = RESIDENT_FLAG_INDEXED;
1525 
1526         /* is_attr_indexed(attr)) == true */
1527         le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1528         ni->mi.dirty = true;
1529     }
1530     attr->res.res = 0;
1531 
1532     if (new_attr)
1533         *new_attr = attr;
1534 
1535     return 0;
1536 }
1537 
1538 /*
1539  * ni_remove_attr_le - Remove attribute from record.
1540  */
1541 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1542                struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1543 {
1544     mi_remove_attr(ni, mi, attr);
1545 
1546     if (le)
1547         al_remove_le(ni, le);
1548 }
1549 
1550 /*
1551  * ni_delete_all - Remove all attributes and frees allocates space.
1552  *
1553  * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1554  */
1555 int ni_delete_all(struct ntfs_inode *ni)
1556 {
1557     int err;
1558     struct ATTR_LIST_ENTRY *le = NULL;
1559     struct ATTRIB *attr = NULL;
1560     struct rb_node *node;
1561     u16 roff;
1562     u32 asize;
1563     CLST svcn, evcn;
1564     struct ntfs_sb_info *sbi = ni->mi.sbi;
1565     bool nt3 = is_ntfs3(sbi);
1566     struct MFT_REF ref;
1567 
1568     while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1569         if (!nt3 || attr->name_len) {
1570             ;
1571         } else if (attr->type == ATTR_REPARSE) {
1572             mi_get_ref(&ni->mi, &ref);
1573             ntfs_remove_reparse(sbi, 0, &ref);
1574         } else if (attr->type == ATTR_ID && !attr->non_res &&
1575                le32_to_cpu(attr->res.data_size) >=
1576                    sizeof(struct GUID)) {
1577             ntfs_objid_remove(sbi, resident_data(attr));
1578         }
1579 
1580         if (!attr->non_res)
1581             continue;
1582 
1583         svcn = le64_to_cpu(attr->nres.svcn);
1584         evcn = le64_to_cpu(attr->nres.evcn);
1585 
1586         if (evcn + 1 <= svcn)
1587             continue;
1588 
1589         asize = le32_to_cpu(attr->size);
1590         roff = le16_to_cpu(attr->nres.run_off);
1591 
1592         /* run==1 means unpack and deallocate. */
1593         run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1594                   Add2Ptr(attr, roff), asize - roff);
1595     }
1596 
1597     if (ni->attr_list.size) {
1598         run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1599         al_destroy(ni);
1600     }
1601 
1602     /* Free all subrecords. */
1603     for (node = rb_first(&ni->mi_tree); node;) {
1604         struct rb_node *next = rb_next(node);
1605         struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1606 
1607         clear_rec_inuse(mi->mrec);
1608         mi->dirty = true;
1609         mi_write(mi, 0);
1610 
1611         ntfs_mark_rec_free(sbi, mi->rno, false);
1612         ni_remove_mi(ni, mi);
1613         mi_put(mi);
1614         node = next;
1615     }
1616 
1617     /* Free base record. */
1618     clear_rec_inuse(ni->mi.mrec);
1619     ni->mi.dirty = true;
1620     err = mi_write(&ni->mi, 0);
1621 
1622     ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1623 
1624     return err;
1625 }
1626 
1627 /* ni_fname_name
1628  *
1629  * Return: File name attribute by its value.
1630  */
1631 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1632                      const struct cpu_str *uni,
1633                      const struct MFT_REF *home_dir,
1634                      struct mft_inode **mi,
1635                      struct ATTR_LIST_ENTRY **le)
1636 {
1637     struct ATTRIB *attr = NULL;
1638     struct ATTR_FILE_NAME *fname;
1639 
1640     if (le)
1641         *le = NULL;
1642 
1643     /* Enumerate all names. */
1644 next:
1645     attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1646     if (!attr)
1647         return NULL;
1648 
1649     fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1650     if (!fname)
1651         goto next;
1652 
1653     if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1654         goto next;
1655 
1656     if (!uni)
1657         return fname;
1658 
1659     if (uni->len != fname->name_len)
1660         goto next;
1661 
1662     if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL,
1663                    false))
1664         goto next;
1665 
1666     return fname;
1667 }
1668 
1669 /*
1670  * ni_fname_type
1671  *
1672  * Return: File name attribute with given type.
1673  */
1674 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1675                      struct mft_inode **mi,
1676                      struct ATTR_LIST_ENTRY **le)
1677 {
1678     struct ATTRIB *attr = NULL;
1679     struct ATTR_FILE_NAME *fname;
1680 
1681     *le = NULL;
1682 
1683     if (name_type == FILE_NAME_POSIX)
1684         return NULL;
1685 
1686     /* Enumerate all names. */
1687     for (;;) {
1688         attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1689         if (!attr)
1690             return NULL;
1691 
1692         fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1693         if (fname && name_type == fname->type)
1694             return fname;
1695     }
1696 }
1697 
1698 /*
1699  * ni_new_attr_flags
1700  *
1701  * Process compressed/sparsed in special way.
1702  * NOTE: You need to set ni->std_fa = new_fa
1703  * after this function to keep internal structures in consistency.
1704  */
1705 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1706 {
1707     struct ATTRIB *attr;
1708     struct mft_inode *mi;
1709     __le16 new_aflags;
1710     u32 new_asize;
1711 
1712     attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1713     if (!attr)
1714         return -EINVAL;
1715 
1716     new_aflags = attr->flags;
1717 
1718     if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1719         new_aflags |= ATTR_FLAG_SPARSED;
1720     else
1721         new_aflags &= ~ATTR_FLAG_SPARSED;
1722 
1723     if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1724         new_aflags |= ATTR_FLAG_COMPRESSED;
1725     else
1726         new_aflags &= ~ATTR_FLAG_COMPRESSED;
1727 
1728     if (new_aflags == attr->flags)
1729         return 0;
1730 
1731     if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1732         (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1733         ntfs_inode_warn(&ni->vfs_inode,
1734                 "file can't be sparsed and compressed");
1735         return -EOPNOTSUPP;
1736     }
1737 
1738     if (!attr->non_res)
1739         goto out;
1740 
1741     if (attr->nres.data_size) {
1742         ntfs_inode_warn(
1743             &ni->vfs_inode,
1744             "one can change sparsed/compressed only for empty files");
1745         return -EOPNOTSUPP;
1746     }
1747 
1748     /* Resize nonresident empty attribute in-place only. */
1749     new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
1750                 ? (SIZEOF_NONRESIDENT_EX + 8)
1751                 : (SIZEOF_NONRESIDENT + 8);
1752 
1753     if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1754         return -EOPNOTSUPP;
1755 
1756     if (new_aflags & ATTR_FLAG_SPARSED) {
1757         attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1758         /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1759         attr->nres.c_unit = 0;
1760         ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1761     } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1762         attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1763         /* The only allowed: 16 clusters per frame. */
1764         attr->nres.c_unit = NTFS_LZNT_CUNIT;
1765         ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1766     } else {
1767         attr->name_off = SIZEOF_NONRESIDENT_LE;
1768         /* Normal files. */
1769         attr->nres.c_unit = 0;
1770         ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1771     }
1772     attr->nres.run_off = attr->name_off;
1773 out:
1774     attr->flags = new_aflags;
1775     mi->dirty = true;
1776 
1777     return 0;
1778 }
1779 
1780 /*
1781  * ni_parse_reparse
1782  *
1783  * buffer - memory for reparse buffer header
1784  */
1785 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1786                    struct REPARSE_DATA_BUFFER *buffer)
1787 {
1788     const struct REPARSE_DATA_BUFFER *rp = NULL;
1789     u8 bits;
1790     u16 len;
1791     typeof(rp->CompressReparseBuffer) *cmpr;
1792 
1793     /* Try to estimate reparse point. */
1794     if (!attr->non_res) {
1795         rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1796     } else if (le64_to_cpu(attr->nres.data_size) >=
1797            sizeof(struct REPARSE_DATA_BUFFER)) {
1798         struct runs_tree run;
1799 
1800         run_init(&run);
1801 
1802         if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1803             !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1804                       sizeof(struct REPARSE_DATA_BUFFER),
1805                       NULL)) {
1806             rp = buffer;
1807         }
1808 
1809         run_close(&run);
1810     }
1811 
1812     if (!rp)
1813         return REPARSE_NONE;
1814 
1815     len = le16_to_cpu(rp->ReparseDataLength);
1816     switch (rp->ReparseTag) {
1817     case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1818         break; /* Symbolic link. */
1819     case IO_REPARSE_TAG_MOUNT_POINT:
1820         break; /* Mount points and junctions. */
1821     case IO_REPARSE_TAG_SYMLINK:
1822         break;
1823     case IO_REPARSE_TAG_COMPRESS:
1824         /*
1825          * WOF - Windows Overlay Filter - Used to compress files with
1826          * LZX/Xpress.
1827          *
1828          * Unlike native NTFS file compression, the Windows
1829          * Overlay Filter supports only read operations. This means
1830          * that it doesn't need to sector-align each compressed chunk,
1831          * so the compressed data can be packed more tightly together.
1832          * If you open the file for writing, the WOF just decompresses
1833          * the entire file, turning it back into a plain file.
1834          *
1835          * Ntfs3 driver decompresses the entire file only on write or
1836          * change size requests.
1837          */
1838 
1839         cmpr = &rp->CompressReparseBuffer;
1840         if (len < sizeof(*cmpr) ||
1841             cmpr->WofVersion != WOF_CURRENT_VERSION ||
1842             cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1843             cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1844             return REPARSE_NONE;
1845         }
1846 
1847         switch (cmpr->CompressionFormat) {
1848         case WOF_COMPRESSION_XPRESS4K:
1849             bits = 0xc; // 4k
1850             break;
1851         case WOF_COMPRESSION_XPRESS8K:
1852             bits = 0xd; // 8k
1853             break;
1854         case WOF_COMPRESSION_XPRESS16K:
1855             bits = 0xe; // 16k
1856             break;
1857         case WOF_COMPRESSION_LZX32K:
1858             bits = 0xf; // 32k
1859             break;
1860         default:
1861             bits = 0x10; // 64k
1862             break;
1863         }
1864         ni_set_ext_compress_bits(ni, bits);
1865         return REPARSE_COMPRESSED;
1866 
1867     case IO_REPARSE_TAG_DEDUP:
1868         ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1869         return REPARSE_DEDUPLICATED;
1870 
1871     default:
1872         if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1873             break;
1874 
1875         return REPARSE_NONE;
1876     }
1877 
1878     if (buffer != rp)
1879         memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1880 
1881     /* Looks like normal symlink. */
1882     return REPARSE_LINK;
1883 }
1884 
1885 /*
1886  * ni_fiemap - Helper for file_fiemap().
1887  *
1888  * Assumed ni_lock.
1889  * TODO: Less aggressive locks.
1890  */
1891 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1892           __u64 vbo, __u64 len)
1893 {
1894     int err = 0;
1895     struct ntfs_sb_info *sbi = ni->mi.sbi;
1896     u8 cluster_bits = sbi->cluster_bits;
1897     struct runs_tree *run;
1898     struct rw_semaphore *run_lock;
1899     struct ATTRIB *attr;
1900     CLST vcn = vbo >> cluster_bits;
1901     CLST lcn, clen;
1902     u64 valid = ni->i_valid;
1903     u64 lbo, bytes;
1904     u64 end, alloc_size;
1905     size_t idx = -1;
1906     u32 flags;
1907     bool ok;
1908 
1909     if (S_ISDIR(ni->vfs_inode.i_mode)) {
1910         run = &ni->dir.alloc_run;
1911         attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1912                     ARRAY_SIZE(I30_NAME), NULL, NULL);
1913         run_lock = &ni->dir.run_lock;
1914     } else {
1915         run = &ni->file.run;
1916         attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1917                     NULL);
1918         if (!attr) {
1919             err = -EINVAL;
1920             goto out;
1921         }
1922         if (is_attr_compressed(attr)) {
1923             /* Unfortunately cp -r incorrectly treats compressed clusters. */
1924             err = -EOPNOTSUPP;
1925             ntfs_inode_warn(
1926                 &ni->vfs_inode,
1927                 "fiemap is not supported for compressed file (cp -r)");
1928             goto out;
1929         }
1930         run_lock = &ni->file.run_lock;
1931     }
1932 
1933     if (!attr || !attr->non_res) {
1934         err = fiemap_fill_next_extent(
1935             fieinfo, 0, 0,
1936             attr ? le32_to_cpu(attr->res.data_size) : 0,
1937             FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1938                 FIEMAP_EXTENT_MERGED);
1939         goto out;
1940     }
1941 
1942     end = vbo + len;
1943     alloc_size = le64_to_cpu(attr->nres.alloc_size);
1944     if (end > alloc_size)
1945         end = alloc_size;
1946 
1947     down_read(run_lock);
1948 
1949     while (vbo < end) {
1950         if (idx == -1) {
1951             ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1952         } else {
1953             CLST vcn_next = vcn;
1954 
1955             ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1956                  vcn == vcn_next;
1957             if (!ok)
1958                 vcn = vcn_next;
1959         }
1960 
1961         if (!ok) {
1962             up_read(run_lock);
1963             down_write(run_lock);
1964 
1965             err = attr_load_runs_vcn(ni, attr->type,
1966                          attr_name(attr),
1967                          attr->name_len, run, vcn);
1968 
1969             up_write(run_lock);
1970             down_read(run_lock);
1971 
1972             if (err)
1973                 break;
1974 
1975             ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1976 
1977             if (!ok) {
1978                 err = -EINVAL;
1979                 break;
1980             }
1981         }
1982 
1983         if (!clen) {
1984             err = -EINVAL; // ?
1985             break;
1986         }
1987 
1988         if (lcn == SPARSE_LCN) {
1989             vcn += clen;
1990             vbo = (u64)vcn << cluster_bits;
1991             continue;
1992         }
1993 
1994         flags = FIEMAP_EXTENT_MERGED;
1995         if (S_ISDIR(ni->vfs_inode.i_mode)) {
1996             ;
1997         } else if (is_attr_compressed(attr)) {
1998             CLST clst_data;
1999 
2000             err = attr_is_frame_compressed(
2001                 ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2002             if (err)
2003                 break;
2004             if (clst_data < NTFS_LZNT_CLUSTERS)
2005                 flags |= FIEMAP_EXTENT_ENCODED;
2006         } else if (is_attr_encrypted(attr)) {
2007             flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2008         }
2009 
2010         vbo = (u64)vcn << cluster_bits;
2011         bytes = (u64)clen << cluster_bits;
2012         lbo = (u64)lcn << cluster_bits;
2013 
2014         vcn += clen;
2015 
2016         if (vbo + bytes >= end)
2017             bytes = end - vbo;
2018 
2019         if (vbo + bytes <= valid) {
2020             ;
2021         } else if (vbo >= valid) {
2022             flags |= FIEMAP_EXTENT_UNWRITTEN;
2023         } else {
2024             /* vbo < valid && valid < vbo + bytes */
2025             u64 dlen = valid - vbo;
2026 
2027             if (vbo + dlen >= end)
2028                 flags |= FIEMAP_EXTENT_LAST;
2029 
2030             err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2031                               flags);
2032             if (err < 0)
2033                 break;
2034             if (err == 1) {
2035                 err = 0;
2036                 break;
2037             }
2038 
2039             vbo = valid;
2040             bytes -= dlen;
2041             if (!bytes)
2042                 continue;
2043 
2044             lbo += dlen;
2045             flags |= FIEMAP_EXTENT_UNWRITTEN;
2046         }
2047 
2048         if (vbo + bytes >= end)
2049             flags |= FIEMAP_EXTENT_LAST;
2050 
2051         err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2052         if (err < 0)
2053             break;
2054         if (err == 1) {
2055             err = 0;
2056             break;
2057         }
2058 
2059         vbo += bytes;
2060     }
2061 
2062     up_read(run_lock);
2063 
2064 out:
2065     return err;
2066 }
2067 
2068 /*
2069  * ni_readpage_cmpr
2070  *
2071  * When decompressing, we typically obtain more than one page per reference.
2072  * We inject the additional pages into the page cache.
2073  */
2074 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2075 {
2076     int err;
2077     struct ntfs_sb_info *sbi = ni->mi.sbi;
2078     struct address_space *mapping = page->mapping;
2079     pgoff_t index = page->index;
2080     u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2081     struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2082     u8 frame_bits;
2083     CLST frame;
2084     u32 i, idx, frame_size, pages_per_frame;
2085     gfp_t gfp_mask;
2086     struct page *pg;
2087 
2088     if (vbo >= ni->vfs_inode.i_size) {
2089         SetPageUptodate(page);
2090         err = 0;
2091         goto out;
2092     }
2093 
2094     if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2095         /* Xpress or LZX. */
2096         frame_bits = ni_ext_compress_bits(ni);
2097     } else {
2098         /* LZNT compression. */
2099         frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2100     }
2101     frame_size = 1u << frame_bits;
2102     frame = vbo >> frame_bits;
2103     frame_vbo = (u64)frame << frame_bits;
2104     idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2105 
2106     pages_per_frame = frame_size >> PAGE_SHIFT;
2107     pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2108     if (!pages) {
2109         err = -ENOMEM;
2110         goto out;
2111     }
2112 
2113     pages[idx] = page;
2114     index = frame_vbo >> PAGE_SHIFT;
2115     gfp_mask = mapping_gfp_mask(mapping);
2116 
2117     for (i = 0; i < pages_per_frame; i++, index++) {
2118         if (i == idx)
2119             continue;
2120 
2121         pg = find_or_create_page(mapping, index, gfp_mask);
2122         if (!pg) {
2123             err = -ENOMEM;
2124             goto out1;
2125         }
2126         pages[i] = pg;
2127     }
2128 
2129     err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2130 
2131 out1:
2132     if (err)
2133         SetPageError(page);
2134 
2135     for (i = 0; i < pages_per_frame; i++) {
2136         pg = pages[i];
2137         if (i == idx)
2138             continue;
2139         unlock_page(pg);
2140         put_page(pg);
2141     }
2142 
2143 out:
2144     /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2145     kfree(pages);
2146     unlock_page(page);
2147 
2148     return err;
2149 }
2150 
2151 #ifdef CONFIG_NTFS3_LZX_XPRESS
2152 /*
2153  * ni_decompress_file - Decompress LZX/Xpress compressed file.
2154  *
2155  * Remove ATTR_DATA::WofCompressedData.
2156  * Remove ATTR_REPARSE.
2157  */
2158 int ni_decompress_file(struct ntfs_inode *ni)
2159 {
2160     struct ntfs_sb_info *sbi = ni->mi.sbi;
2161     struct inode *inode = &ni->vfs_inode;
2162     loff_t i_size = inode->i_size;
2163     struct address_space *mapping = inode->i_mapping;
2164     gfp_t gfp_mask = mapping_gfp_mask(mapping);
2165     struct page **pages = NULL;
2166     struct ATTR_LIST_ENTRY *le;
2167     struct ATTRIB *attr;
2168     CLST vcn, cend, lcn, clen, end;
2169     pgoff_t index;
2170     u64 vbo;
2171     u8 frame_bits;
2172     u32 i, frame_size, pages_per_frame, bytes;
2173     struct mft_inode *mi;
2174     int err;
2175 
2176     /* Clusters for decompressed data. */
2177     cend = bytes_to_cluster(sbi, i_size);
2178 
2179     if (!i_size)
2180         goto remove_wof;
2181 
2182     /* Check in advance. */
2183     if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2184         err = -ENOSPC;
2185         goto out;
2186     }
2187 
2188     frame_bits = ni_ext_compress_bits(ni);
2189     frame_size = 1u << frame_bits;
2190     pages_per_frame = frame_size >> PAGE_SHIFT;
2191     pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2192     if (!pages) {
2193         err = -ENOMEM;
2194         goto out;
2195     }
2196 
2197     /*
2198      * Step 1: Decompress data and copy to new allocated clusters.
2199      */
2200     index = 0;
2201     for (vbo = 0; vbo < i_size; vbo += bytes) {
2202         u32 nr_pages;
2203         bool new;
2204 
2205         if (vbo + frame_size > i_size) {
2206             bytes = i_size - vbo;
2207             nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2208         } else {
2209             nr_pages = pages_per_frame;
2210             bytes = frame_size;
2211         }
2212 
2213         end = bytes_to_cluster(sbi, vbo + bytes);
2214 
2215         for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2216             err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2217                           &clen, &new);
2218             if (err)
2219                 goto out;
2220         }
2221 
2222         for (i = 0; i < pages_per_frame; i++, index++) {
2223             struct page *pg;
2224 
2225             pg = find_or_create_page(mapping, index, gfp_mask);
2226             if (!pg) {
2227                 while (i--) {
2228                     unlock_page(pages[i]);
2229                     put_page(pages[i]);
2230                 }
2231                 err = -ENOMEM;
2232                 goto out;
2233             }
2234             pages[i] = pg;
2235         }
2236 
2237         err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2238 
2239         if (!err) {
2240             down_read(&ni->file.run_lock);
2241             err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2242                          nr_pages, vbo, bytes,
2243                          REQ_OP_WRITE);
2244             up_read(&ni->file.run_lock);
2245         }
2246 
2247         for (i = 0; i < pages_per_frame; i++) {
2248             unlock_page(pages[i]);
2249             put_page(pages[i]);
2250         }
2251 
2252         if (err)
2253             goto out;
2254 
2255         cond_resched();
2256     }
2257 
2258 remove_wof:
2259     /*
2260      * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2261      * and ATTR_REPARSE.
2262      */
2263     attr = NULL;
2264     le = NULL;
2265     while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2266         CLST svcn, evcn;
2267         u32 asize, roff;
2268 
2269         if (attr->type == ATTR_REPARSE) {
2270             struct MFT_REF ref;
2271 
2272             mi_get_ref(&ni->mi, &ref);
2273             ntfs_remove_reparse(sbi, 0, &ref);
2274         }
2275 
2276         if (!attr->non_res)
2277             continue;
2278 
2279         if (attr->type != ATTR_REPARSE &&
2280             (attr->type != ATTR_DATA ||
2281              attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2282              memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2283             continue;
2284 
2285         svcn = le64_to_cpu(attr->nres.svcn);
2286         evcn = le64_to_cpu(attr->nres.evcn);
2287 
2288         if (evcn + 1 <= svcn)
2289             continue;
2290 
2291         asize = le32_to_cpu(attr->size);
2292         roff = le16_to_cpu(attr->nres.run_off);
2293 
2294         /*run==1  Means unpack and deallocate. */
2295         run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2296                   Add2Ptr(attr, roff), asize - roff);
2297     }
2298 
2299     /*
2300      * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2301      */
2302     err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2303                  false, NULL);
2304     if (err)
2305         goto out;
2306 
2307     /*
2308      * Step 4: Remove ATTR_REPARSE.
2309      */
2310     err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2311     if (err)
2312         goto out;
2313 
2314     /*
2315      * Step 5: Remove sparse flag from data attribute.
2316      */
2317     attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2318     if (!attr) {
2319         err = -EINVAL;
2320         goto out;
2321     }
2322 
2323     if (attr->non_res && is_attr_sparsed(attr)) {
2324         /* Sparsed attribute header is 8 bytes bigger than normal. */
2325         struct MFT_REC *rec = mi->mrec;
2326         u32 used = le32_to_cpu(rec->used);
2327         u32 asize = le32_to_cpu(attr->size);
2328         u16 roff = le16_to_cpu(attr->nres.run_off);
2329         char *rbuf = Add2Ptr(attr, roff);
2330 
2331         memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2332         attr->size = cpu_to_le32(asize - 8);
2333         attr->flags &= ~ATTR_FLAG_SPARSED;
2334         attr->nres.run_off = cpu_to_le16(roff - 8);
2335         attr->nres.c_unit = 0;
2336         rec->used = cpu_to_le32(used - 8);
2337         mi->dirty = true;
2338         ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2339                 FILE_ATTRIBUTE_REPARSE_POINT);
2340 
2341         mark_inode_dirty(inode);
2342     }
2343 
2344     /* Clear cached flag. */
2345     ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2346     if (ni->file.offs_page) {
2347         put_page(ni->file.offs_page);
2348         ni->file.offs_page = NULL;
2349     }
2350     mapping->a_ops = &ntfs_aops;
2351 
2352 out:
2353     kfree(pages);
2354     if (err)
2355         _ntfs_bad_inode(inode);
2356 
2357     return err;
2358 }
2359 
2360 /*
2361  * decompress_lzx_xpress - External compression LZX/Xpress.
2362  */
2363 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2364                  size_t cmpr_size, void *unc, size_t unc_size,
2365                  u32 frame_size)
2366 {
2367     int err;
2368     void *ctx;
2369 
2370     if (cmpr_size == unc_size) {
2371         /* Frame not compressed. */
2372         memcpy(unc, cmpr, unc_size);
2373         return 0;
2374     }
2375 
2376     err = 0;
2377     if (frame_size == 0x8000) {
2378         mutex_lock(&sbi->compress.mtx_lzx);
2379         /* LZX: Frame compressed. */
2380         ctx = sbi->compress.lzx;
2381         if (!ctx) {
2382             /* Lazy initialize LZX decompress context. */
2383             ctx = lzx_allocate_decompressor();
2384             if (!ctx) {
2385                 err = -ENOMEM;
2386                 goto out1;
2387             }
2388 
2389             sbi->compress.lzx = ctx;
2390         }
2391 
2392         if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2393             /* Treat all errors as "invalid argument". */
2394             err = -EINVAL;
2395         }
2396 out1:
2397         mutex_unlock(&sbi->compress.mtx_lzx);
2398     } else {
2399         /* XPRESS: Frame compressed. */
2400         mutex_lock(&sbi->compress.mtx_xpress);
2401         ctx = sbi->compress.xpress;
2402         if (!ctx) {
2403             /* Lazy initialize Xpress decompress context. */
2404             ctx = xpress_allocate_decompressor();
2405             if (!ctx) {
2406                 err = -ENOMEM;
2407                 goto out2;
2408             }
2409 
2410             sbi->compress.xpress = ctx;
2411         }
2412 
2413         if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2414             /* Treat all errors as "invalid argument". */
2415             err = -EINVAL;
2416         }
2417 out2:
2418         mutex_unlock(&sbi->compress.mtx_xpress);
2419     }
2420     return err;
2421 }
2422 #endif
2423 
2424 /*
2425  * ni_read_frame
2426  *
2427  * Pages - Array of locked pages.
2428  */
2429 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2430           u32 pages_per_frame)
2431 {
2432     int err;
2433     struct ntfs_sb_info *sbi = ni->mi.sbi;
2434     u8 cluster_bits = sbi->cluster_bits;
2435     char *frame_ondisk = NULL;
2436     char *frame_mem = NULL;
2437     struct page **pages_disk = NULL;
2438     struct ATTR_LIST_ENTRY *le = NULL;
2439     struct runs_tree *run = &ni->file.run;
2440     u64 valid_size = ni->i_valid;
2441     u64 vbo_disk;
2442     size_t unc_size;
2443     u32 frame_size, i, npages_disk, ondisk_size;
2444     struct page *pg;
2445     struct ATTRIB *attr;
2446     CLST frame, clst_data;
2447 
2448     /*
2449      * To simplify decompress algorithm do vmap for source
2450      * and target pages.
2451      */
2452     for (i = 0; i < pages_per_frame; i++)
2453         kmap(pages[i]);
2454 
2455     frame_size = pages_per_frame << PAGE_SHIFT;
2456     frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2457     if (!frame_mem) {
2458         err = -ENOMEM;
2459         goto out;
2460     }
2461 
2462     attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2463     if (!attr) {
2464         err = -ENOENT;
2465         goto out1;
2466     }
2467 
2468     if (!attr->non_res) {
2469         u32 data_size = le32_to_cpu(attr->res.data_size);
2470 
2471         memset(frame_mem, 0, frame_size);
2472         if (frame_vbo < data_size) {
2473             ondisk_size = data_size - frame_vbo;
2474             memcpy(frame_mem, resident_data(attr) + frame_vbo,
2475                    min(ondisk_size, frame_size));
2476         }
2477         err = 0;
2478         goto out1;
2479     }
2480 
2481     if (frame_vbo >= valid_size) {
2482         memset(frame_mem, 0, frame_size);
2483         err = 0;
2484         goto out1;
2485     }
2486 
2487     if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2488 #ifndef CONFIG_NTFS3_LZX_XPRESS
2489         err = -EOPNOTSUPP;
2490         goto out1;
2491 #else
2492         u32 frame_bits = ni_ext_compress_bits(ni);
2493         u64 frame64 = frame_vbo >> frame_bits;
2494         u64 frames, vbo_data;
2495 
2496         if (frame_size != (1u << frame_bits)) {
2497             err = -EINVAL;
2498             goto out1;
2499         }
2500         switch (frame_size) {
2501         case 0x1000:
2502         case 0x2000:
2503         case 0x4000:
2504         case 0x8000:
2505             break;
2506         default:
2507             /* Unknown compression. */
2508             err = -EOPNOTSUPP;
2509             goto out1;
2510         }
2511 
2512         attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2513                     ARRAY_SIZE(WOF_NAME), NULL, NULL);
2514         if (!attr) {
2515             ntfs_inode_err(
2516                 &ni->vfs_inode,
2517                 "external compressed file should contains data attribute \"WofCompressedData\"");
2518             err = -EINVAL;
2519             goto out1;
2520         }
2521 
2522         if (!attr->non_res) {
2523             run = NULL;
2524         } else {
2525             run = run_alloc();
2526             if (!run) {
2527                 err = -ENOMEM;
2528                 goto out1;
2529             }
2530         }
2531 
2532         frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2533 
2534         err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2535                       frame_bits, &ondisk_size, &vbo_data);
2536         if (err)
2537             goto out2;
2538 
2539         if (frame64 == frames) {
2540             unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2541                     (frame_size - 1));
2542             ondisk_size = attr_size(attr) - vbo_data;
2543         } else {
2544             unc_size = frame_size;
2545         }
2546 
2547         if (ondisk_size > frame_size) {
2548             err = -EINVAL;
2549             goto out2;
2550         }
2551 
2552         if (!attr->non_res) {
2553             if (vbo_data + ondisk_size >
2554                 le32_to_cpu(attr->res.data_size)) {
2555                 err = -EINVAL;
2556                 goto out1;
2557             }
2558 
2559             err = decompress_lzx_xpress(
2560                 sbi, Add2Ptr(resident_data(attr), vbo_data),
2561                 ondisk_size, frame_mem, unc_size, frame_size);
2562             goto out1;
2563         }
2564         vbo_disk = vbo_data;
2565         /* Load all runs to read [vbo_disk-vbo_to). */
2566         err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2567                        ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2568                        vbo_data + ondisk_size);
2569         if (err)
2570             goto out2;
2571         npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2572                    PAGE_SIZE - 1) >>
2573                   PAGE_SHIFT;
2574 #endif
2575     } else if (is_attr_compressed(attr)) {
2576         /* LZNT compression. */
2577         if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2578             err = -EOPNOTSUPP;
2579             goto out1;
2580         }
2581 
2582         if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2583             err = -EOPNOTSUPP;
2584             goto out1;
2585         }
2586 
2587         down_write(&ni->file.run_lock);
2588         run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2589         frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2590         err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2591         up_write(&ni->file.run_lock);
2592         if (err)
2593             goto out1;
2594 
2595         if (!clst_data) {
2596             memset(frame_mem, 0, frame_size);
2597             goto out1;
2598         }
2599 
2600         frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2601         ondisk_size = clst_data << cluster_bits;
2602 
2603         if (clst_data >= NTFS_LZNT_CLUSTERS) {
2604             /* Frame is not compressed. */
2605             down_read(&ni->file.run_lock);
2606             err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2607                          frame_vbo, ondisk_size,
2608                          REQ_OP_READ);
2609             up_read(&ni->file.run_lock);
2610             goto out1;
2611         }
2612         vbo_disk = frame_vbo;
2613         npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2614     } else {
2615         __builtin_unreachable();
2616         err = -EINVAL;
2617         goto out1;
2618     }
2619 
2620     pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2621     if (!pages_disk) {
2622         err = -ENOMEM;
2623         goto out2;
2624     }
2625 
2626     for (i = 0; i < npages_disk; i++) {
2627         pg = alloc_page(GFP_KERNEL);
2628         if (!pg) {
2629             err = -ENOMEM;
2630             goto out3;
2631         }
2632         pages_disk[i] = pg;
2633         lock_page(pg);
2634         kmap(pg);
2635     }
2636 
2637     /* Read 'ondisk_size' bytes from disk. */
2638     down_read(&ni->file.run_lock);
2639     err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2640                  ondisk_size, REQ_OP_READ);
2641     up_read(&ni->file.run_lock);
2642     if (err)
2643         goto out3;
2644 
2645     /*
2646      * To simplify decompress algorithm do vmap for source and target pages.
2647      */
2648     frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2649     if (!frame_ondisk) {
2650         err = -ENOMEM;
2651         goto out3;
2652     }
2653 
2654     /* Decompress: Frame_ondisk -> frame_mem. */
2655 #ifdef CONFIG_NTFS3_LZX_XPRESS
2656     if (run != &ni->file.run) {
2657         /* LZX or XPRESS */
2658         err = decompress_lzx_xpress(
2659             sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2660             ondisk_size, frame_mem, unc_size, frame_size);
2661     } else
2662 #endif
2663     {
2664         /* LZNT - Native NTFS compression. */
2665         unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2666                        frame_size);
2667         if ((ssize_t)unc_size < 0)
2668             err = unc_size;
2669         else if (!unc_size || unc_size > frame_size)
2670             err = -EINVAL;
2671     }
2672     if (!err && valid_size < frame_vbo + frame_size) {
2673         size_t ok = valid_size - frame_vbo;
2674 
2675         memset(frame_mem + ok, 0, frame_size - ok);
2676     }
2677 
2678     vunmap(frame_ondisk);
2679 
2680 out3:
2681     for (i = 0; i < npages_disk; i++) {
2682         pg = pages_disk[i];
2683         if (pg) {
2684             kunmap(pg);
2685             unlock_page(pg);
2686             put_page(pg);
2687         }
2688     }
2689     kfree(pages_disk);
2690 
2691 out2:
2692 #ifdef CONFIG_NTFS3_LZX_XPRESS
2693     if (run != &ni->file.run)
2694         run_free(run);
2695 #endif
2696 out1:
2697     vunmap(frame_mem);
2698 out:
2699     for (i = 0; i < pages_per_frame; i++) {
2700         pg = pages[i];
2701         kunmap(pg);
2702         ClearPageError(pg);
2703         SetPageUptodate(pg);
2704     }
2705 
2706     return err;
2707 }
2708 
2709 /*
2710  * ni_write_frame
2711  *
2712  * Pages - Array of locked pages.
2713  */
2714 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2715            u32 pages_per_frame)
2716 {
2717     int err;
2718     struct ntfs_sb_info *sbi = ni->mi.sbi;
2719     u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2720     u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2721     u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2722     CLST frame = frame_vbo >> frame_bits;
2723     char *frame_ondisk = NULL;
2724     struct page **pages_disk = NULL;
2725     struct ATTR_LIST_ENTRY *le = NULL;
2726     char *frame_mem;
2727     struct ATTRIB *attr;
2728     struct mft_inode *mi;
2729     u32 i;
2730     struct page *pg;
2731     size_t compr_size, ondisk_size;
2732     struct lznt *lznt;
2733 
2734     attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2735     if (!attr) {
2736         err = -ENOENT;
2737         goto out;
2738     }
2739 
2740     if (WARN_ON(!is_attr_compressed(attr))) {
2741         err = -EINVAL;
2742         goto out;
2743     }
2744 
2745     if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2746         err = -EOPNOTSUPP;
2747         goto out;
2748     }
2749 
2750     if (!attr->non_res) {
2751         down_write(&ni->file.run_lock);
2752         err = attr_make_nonresident(ni, attr, le, mi,
2753                         le32_to_cpu(attr->res.data_size),
2754                         &ni->file.run, &attr, pages[0]);
2755         up_write(&ni->file.run_lock);
2756         if (err)
2757             goto out;
2758     }
2759 
2760     if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2761         err = -EOPNOTSUPP;
2762         goto out;
2763     }
2764 
2765     pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2766     if (!pages_disk) {
2767         err = -ENOMEM;
2768         goto out;
2769     }
2770 
2771     for (i = 0; i < pages_per_frame; i++) {
2772         pg = alloc_page(GFP_KERNEL);
2773         if (!pg) {
2774             err = -ENOMEM;
2775             goto out1;
2776         }
2777         pages_disk[i] = pg;
2778         lock_page(pg);
2779         kmap(pg);
2780     }
2781 
2782     /* To simplify compress algorithm do vmap for source and target pages. */
2783     frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2784     if (!frame_ondisk) {
2785         err = -ENOMEM;
2786         goto out1;
2787     }
2788 
2789     for (i = 0; i < pages_per_frame; i++)
2790         kmap(pages[i]);
2791 
2792     /* Map in-memory frame for read-only. */
2793     frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2794     if (!frame_mem) {
2795         err = -ENOMEM;
2796         goto out2;
2797     }
2798 
2799     mutex_lock(&sbi->compress.mtx_lznt);
2800     lznt = NULL;
2801     if (!sbi->compress.lznt) {
2802         /*
2803          * LZNT implements two levels of compression:
2804          * 0 - Standard compression
2805          * 1 - Best compression, requires a lot of cpu
2806          * use mount option?
2807          */
2808         lznt = get_lznt_ctx(0);
2809         if (!lznt) {
2810             mutex_unlock(&sbi->compress.mtx_lznt);
2811             err = -ENOMEM;
2812             goto out3;
2813         }
2814 
2815         sbi->compress.lznt = lznt;
2816         lznt = NULL;
2817     }
2818 
2819     /* Compress: frame_mem -> frame_ondisk */
2820     compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2821                    frame_size, sbi->compress.lznt);
2822     mutex_unlock(&sbi->compress.mtx_lznt);
2823     kfree(lznt);
2824 
2825     if (compr_size + sbi->cluster_size > frame_size) {
2826         /* Frame is not compressed. */
2827         compr_size = frame_size;
2828         ondisk_size = frame_size;
2829     } else if (compr_size) {
2830         /* Frame is compressed. */
2831         ondisk_size = ntfs_up_cluster(sbi, compr_size);
2832         memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2833     } else {
2834         /* Frame is sparsed. */
2835         ondisk_size = 0;
2836     }
2837 
2838     down_write(&ni->file.run_lock);
2839     run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2840     err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2841     up_write(&ni->file.run_lock);
2842     if (err)
2843         goto out2;
2844 
2845     if (!ondisk_size)
2846         goto out2;
2847 
2848     down_read(&ni->file.run_lock);
2849     err = ntfs_bio_pages(sbi, &ni->file.run,
2850                  ondisk_size < frame_size ? pages_disk : pages,
2851                  pages_per_frame, frame_vbo, ondisk_size,
2852                  REQ_OP_WRITE);
2853     up_read(&ni->file.run_lock);
2854 
2855 out3:
2856     vunmap(frame_mem);
2857 
2858 out2:
2859     for (i = 0; i < pages_per_frame; i++)
2860         kunmap(pages[i]);
2861 
2862     vunmap(frame_ondisk);
2863 out1:
2864     for (i = 0; i < pages_per_frame; i++) {
2865         pg = pages_disk[i];
2866         if (pg) {
2867             kunmap(pg);
2868             unlock_page(pg);
2869             put_page(pg);
2870         }
2871     }
2872     kfree(pages_disk);
2873 out:
2874     return err;
2875 }
2876 
2877 /*
2878  * ni_remove_name - Removes name 'de' from MFT and from directory.
2879  * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2880  */
2881 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2882            struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2883 {
2884     int err;
2885     struct ntfs_sb_info *sbi = ni->mi.sbi;
2886     struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2887     struct ATTR_FILE_NAME *fname;
2888     struct ATTR_LIST_ENTRY *le;
2889     struct mft_inode *mi;
2890     u16 de_key_size = le16_to_cpu(de->key_size);
2891     u8 name_type;
2892 
2893     *undo_step = 0;
2894 
2895     /* Find name in record. */
2896     mi_get_ref(&dir_ni->mi, &de_name->home);
2897 
2898     fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
2899                   &de_name->home, &mi, &le);
2900     if (!fname)
2901         return -ENOENT;
2902 
2903     memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2904     name_type = paired_name(fname->type);
2905 
2906     /* Mark ntfs as dirty. It will be cleared at umount. */
2907     ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2908 
2909     /* Step 1: Remove name from directory. */
2910     err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2911     if (err)
2912         return err;
2913 
2914     /* Step 2: Remove name from MFT. */
2915     ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2916 
2917     *undo_step = 2;
2918 
2919     /* Get paired name. */
2920     fname = ni_fname_type(ni, name_type, &mi, &le);
2921     if (fname) {
2922         u16 de2_key_size = fname_full_size(fname);
2923 
2924         *de2 = Add2Ptr(de, 1024);
2925         (*de2)->key_size = cpu_to_le16(de2_key_size);
2926 
2927         memcpy(*de2 + 1, fname, de2_key_size);
2928 
2929         /* Step 3: Remove paired name from directory. */
2930         err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2931                     de2_key_size, sbi);
2932         if (err)
2933             return err;
2934 
2935         /* Step 4: Remove paired name from MFT. */
2936         ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2937 
2938         *undo_step = 4;
2939     }
2940     return 0;
2941 }
2942 
2943 /*
2944  * ni_remove_name_undo - Paired function for ni_remove_name.
2945  *
2946  * Return: True if ok
2947  */
2948 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2949              struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2950 {
2951     struct ntfs_sb_info *sbi = ni->mi.sbi;
2952     struct ATTRIB *attr;
2953     u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
2954 
2955     switch (undo_step) {
2956     case 4:
2957         if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2958                        &attr, NULL, NULL)) {
2959             return false;
2960         }
2961         memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2962 
2963         mi_get_ref(&ni->mi, &de2->ref);
2964         de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2965                     sizeof(struct NTFS_DE));
2966         de2->flags = 0;
2967         de2->res = 0;
2968 
2969         if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
2970                       1)) {
2971             return false;
2972         }
2973         fallthrough;
2974 
2975     case 2:
2976         de_key_size = le16_to_cpu(de->key_size);
2977 
2978         if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2979                        &attr, NULL, NULL)) {
2980             return false;
2981         }
2982 
2983         memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2984         mi_get_ref(&ni->mi, &de->ref);
2985 
2986         if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
2987             return false;
2988     }
2989 
2990     return true;
2991 }
2992 
2993 /*
2994  * ni_add_name - Add new name into MFT and into directory.
2995  */
2996 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2997         struct NTFS_DE *de)
2998 {
2999     int err;
3000     struct ATTRIB *attr;
3001     struct ATTR_LIST_ENTRY *le;
3002     struct mft_inode *mi;
3003     struct ATTR_FILE_NAME *fname;
3004     struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3005     u16 de_key_size = le16_to_cpu(de->key_size);
3006 
3007     mi_get_ref(&ni->mi, &de->ref);
3008     mi_get_ref(&dir_ni->mi, &de_name->home);
3009 
3010     /* Fill duplicate from any ATTR_NAME. */
3011     fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3012     if (fname)
3013         memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3014     de_name->dup.fa = ni->std_fa;
3015 
3016     /* Insert new name into MFT. */
3017     err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3018                  &mi, &le);
3019     if (err)
3020         return err;
3021 
3022     memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3023 
3024     /* Insert new name into directory. */
3025     err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0);
3026     if (err)
3027         ni_remove_attr_le(ni, attr, mi, le);
3028 
3029     return err;
3030 }
3031 
3032 /*
3033  * ni_rename - Remove one name and insert new name.
3034  */
3035 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3036           struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3037           bool *is_bad)
3038 {
3039     int err;
3040     struct NTFS_DE *de2 = NULL;
3041     int undo = 0;
3042 
3043     /*
3044      * There are two possible ways to rename:
3045      * 1) Add new name and remove old name.
3046      * 2) Remove old name and add new name.
3047      *
3048      * In most cases (not all!) adding new name into MFT and into directory can
3049      * allocate additional cluster(s).
3050      * Second way may result to bad inode if we can't add new name
3051      * and then can't restore (add) old name.
3052      */
3053 
3054     /*
3055      * Way 1 - Add new + remove old.
3056      */
3057     err = ni_add_name(new_dir_ni, ni, new_de);
3058     if (!err) {
3059         err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3060         if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3061             *is_bad = true;
3062     }
3063 
3064     /*
3065      * Way 2 - Remove old + add new.
3066      */
3067     /*
3068      *  err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3069      *  if (!err) {
3070      *      err = ni_add_name(new_dir_ni, ni, new_de);
3071      *      if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3072      *          *is_bad = true;
3073      *  }
3074      */
3075 
3076     return err;
3077 }
3078 
3079 /*
3080  * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3081  */
3082 bool ni_is_dirty(struct inode *inode)
3083 {
3084     struct ntfs_inode *ni = ntfs_i(inode);
3085     struct rb_node *node;
3086 
3087     if (ni->mi.dirty || ni->attr_list.dirty ||
3088         (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3089         return true;
3090 
3091     for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3092         if (rb_entry(node, struct mft_inode, node)->dirty)
3093             return true;
3094     }
3095 
3096     return false;
3097 }
3098 
3099 /*
3100  * ni_update_parent
3101  *
3102  * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3103  */
3104 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3105                  int sync)
3106 {
3107     struct ATTRIB *attr;
3108     struct mft_inode *mi;
3109     struct ATTR_LIST_ENTRY *le = NULL;
3110     struct ntfs_sb_info *sbi = ni->mi.sbi;
3111     struct super_block *sb = sbi->sb;
3112     bool re_dirty = false;
3113 
3114     if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3115         dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3116         attr = NULL;
3117         dup->alloc_size = 0;
3118         dup->data_size = 0;
3119     } else {
3120         dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3121 
3122         attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3123                     &mi);
3124         if (!attr) {
3125             dup->alloc_size = dup->data_size = 0;
3126         } else if (!attr->non_res) {
3127             u32 data_size = le32_to_cpu(attr->res.data_size);
3128 
3129             dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3130             dup->data_size = cpu_to_le64(data_size);
3131         } else {
3132             u64 new_valid = ni->i_valid;
3133             u64 data_size = le64_to_cpu(attr->nres.data_size);
3134             __le64 valid_le;
3135 
3136             dup->alloc_size = is_attr_ext(attr)
3137                           ? attr->nres.total_size
3138                           : attr->nres.alloc_size;
3139             dup->data_size = attr->nres.data_size;
3140 
3141             if (new_valid > data_size)
3142                 new_valid = data_size;
3143 
3144             valid_le = cpu_to_le64(new_valid);
3145             if (valid_le != attr->nres.valid_size) {
3146                 attr->nres.valid_size = valid_le;
3147                 mi->dirty = true;
3148             }
3149         }
3150     }
3151 
3152     /* TODO: Fill reparse info. */
3153     dup->reparse = 0;
3154     dup->ea_size = 0;
3155 
3156     if (ni->ni_flags & NI_FLAG_EA) {
3157         attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3158                     NULL);
3159         if (attr) {
3160             const struct EA_INFO *info;
3161 
3162             info = resident_data_ex(attr, sizeof(struct EA_INFO));
3163             /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3164             if (info)
3165                 dup->ea_size = info->size_pack;
3166         }
3167     }
3168 
3169     attr = NULL;
3170     le = NULL;
3171 
3172     while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3173                     &mi))) {
3174         struct inode *dir;
3175         struct ATTR_FILE_NAME *fname;
3176 
3177         fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3178         if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3179             continue;
3180 
3181         /* ntfs_iget5 may sleep. */
3182         dir = ntfs_iget5(sb, &fname->home, NULL);
3183         if (IS_ERR(dir)) {
3184             ntfs_inode_warn(
3185                 &ni->vfs_inode,
3186                 "failed to open parent directory r=%lx to update",
3187                 (long)ino_get(&fname->home));
3188             continue;
3189         }
3190 
3191         if (!is_bad_inode(dir)) {
3192             struct ntfs_inode *dir_ni = ntfs_i(dir);
3193 
3194             if (!ni_trylock(dir_ni)) {
3195                 re_dirty = true;
3196             } else {
3197                 indx_update_dup(dir_ni, sbi, fname, dup, sync);
3198                 ni_unlock(dir_ni);
3199                 memcpy(&fname->dup, dup, sizeof(fname->dup));
3200                 mi->dirty = true;
3201             }
3202         }
3203         iput(dir);
3204     }
3205 
3206     return re_dirty;
3207 }
3208 
3209 /*
3210  * ni_write_inode - Write MFT base record and all subrecords to disk.
3211  */
3212 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3213 {
3214     int err = 0, err2;
3215     struct ntfs_inode *ni = ntfs_i(inode);
3216     struct super_block *sb = inode->i_sb;
3217     struct ntfs_sb_info *sbi = sb->s_fs_info;
3218     bool re_dirty = false;
3219     struct ATTR_STD_INFO *std;
3220     struct rb_node *node, *next;
3221     struct NTFS_DUP_INFO dup;
3222 
3223     if (is_bad_inode(inode) || sb_rdonly(sb))
3224         return 0;
3225 
3226     if (!ni_trylock(ni)) {
3227         /* 'ni' is under modification, skip for now. */
3228         mark_inode_dirty_sync(inode);
3229         return 0;
3230     }
3231 
3232     if (is_rec_inuse(ni->mi.mrec) &&
3233         !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3234         bool modified = false;
3235 
3236         /* Update times in standard attribute. */
3237         std = ni_std(ni);
3238         if (!std) {
3239             err = -EINVAL;
3240             goto out;
3241         }
3242 
3243         /* Update the access times if they have changed. */
3244         dup.m_time = kernel2nt(&inode->i_mtime);
3245         if (std->m_time != dup.m_time) {
3246             std->m_time = dup.m_time;
3247             modified = true;
3248         }
3249 
3250         dup.c_time = kernel2nt(&inode->i_ctime);
3251         if (std->c_time != dup.c_time) {
3252             std->c_time = dup.c_time;
3253             modified = true;
3254         }
3255 
3256         dup.a_time = kernel2nt(&inode->i_atime);
3257         if (std->a_time != dup.a_time) {
3258             std->a_time = dup.a_time;
3259             modified = true;
3260         }
3261 
3262         dup.fa = ni->std_fa;
3263         if (std->fa != dup.fa) {
3264             std->fa = dup.fa;
3265             modified = true;
3266         }
3267 
3268         if (modified)
3269             ni->mi.dirty = true;
3270 
3271         if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3272             (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3273             /* Avoid __wait_on_freeing_inode(inode). */
3274             && (sb->s_flags & SB_ACTIVE)) {
3275             dup.cr_time = std->cr_time;
3276             /* Not critical if this function fail. */
3277             re_dirty = ni_update_parent(ni, &dup, sync);
3278 
3279             if (re_dirty)
3280                 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3281             else
3282                 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3283         }
3284 
3285         /* Update attribute list. */
3286         if (ni->attr_list.size && ni->attr_list.dirty) {
3287             if (inode->i_ino != MFT_REC_MFT || sync) {
3288                 err = ni_try_remove_attr_list(ni);
3289                 if (err)
3290                     goto out;
3291             }
3292 
3293             err = al_update(ni, sync);
3294             if (err)
3295                 goto out;
3296         }
3297     }
3298 
3299     for (node = rb_first(&ni->mi_tree); node; node = next) {
3300         struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3301         bool is_empty;
3302 
3303         next = rb_next(node);
3304 
3305         if (!mi->dirty)
3306             continue;
3307 
3308         is_empty = !mi_enum_attr(mi, NULL);
3309 
3310         if (is_empty)
3311             clear_rec_inuse(mi->mrec);
3312 
3313         err2 = mi_write(mi, sync);
3314         if (!err && err2)
3315             err = err2;
3316 
3317         if (is_empty) {
3318             ntfs_mark_rec_free(sbi, mi->rno, false);
3319             rb_erase(node, &ni->mi_tree);
3320             mi_put(mi);
3321         }
3322     }
3323 
3324     if (ni->mi.dirty) {
3325         err2 = mi_write(&ni->mi, sync);
3326         if (!err && err2)
3327             err = err2;
3328     }
3329 out:
3330     ni_unlock(ni);
3331 
3332     if (err) {
3333         ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
3334         ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3335         return err;
3336     }
3337 
3338     if (re_dirty)
3339         mark_inode_dirty_sync(inode);
3340 
3341     return 0;
3342 }