Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/fs/namespace.c
0004  *
0005  * (C) Copyright Al Viro 2000, 2001
0006  *
0007  * Based on code from fs/super.c, copyright Linus Torvalds and others.
0008  * Heavily rewritten.
0009  */
0010 
0011 #include <linux/syscalls.h>
0012 #include <linux/export.h>
0013 #include <linux/capability.h>
0014 #include <linux/mnt_namespace.h>
0015 #include <linux/user_namespace.h>
0016 #include <linux/namei.h>
0017 #include <linux/security.h>
0018 #include <linux/cred.h>
0019 #include <linux/idr.h>
0020 #include <linux/init.h>     /* init_rootfs */
0021 #include <linux/fs_struct.h>    /* get_fs_root et.al. */
0022 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
0023 #include <linux/file.h>
0024 #include <linux/uaccess.h>
0025 #include <linux/proc_ns.h>
0026 #include <linux/magic.h>
0027 #include <linux/memblock.h>
0028 #include <linux/proc_fs.h>
0029 #include <linux/task_work.h>
0030 #include <linux/sched/task.h>
0031 #include <uapi/linux/mount.h>
0032 #include <linux/fs_context.h>
0033 #include <linux/shmem_fs.h>
0034 #include <linux/mnt_idmapping.h>
0035 
0036 #include "pnode.h"
0037 #include "internal.h"
0038 
0039 /* Maximum number of mounts in a mount namespace */
0040 static unsigned int sysctl_mount_max __read_mostly = 100000;
0041 
0042 static unsigned int m_hash_mask __read_mostly;
0043 static unsigned int m_hash_shift __read_mostly;
0044 static unsigned int mp_hash_mask __read_mostly;
0045 static unsigned int mp_hash_shift __read_mostly;
0046 
0047 static __initdata unsigned long mhash_entries;
0048 static int __init set_mhash_entries(char *str)
0049 {
0050     if (!str)
0051         return 0;
0052     mhash_entries = simple_strtoul(str, &str, 0);
0053     return 1;
0054 }
0055 __setup("mhash_entries=", set_mhash_entries);
0056 
0057 static __initdata unsigned long mphash_entries;
0058 static int __init set_mphash_entries(char *str)
0059 {
0060     if (!str)
0061         return 0;
0062     mphash_entries = simple_strtoul(str, &str, 0);
0063     return 1;
0064 }
0065 __setup("mphash_entries=", set_mphash_entries);
0066 
0067 static u64 event;
0068 static DEFINE_IDA(mnt_id_ida);
0069 static DEFINE_IDA(mnt_group_ida);
0070 
0071 static struct hlist_head *mount_hashtable __read_mostly;
0072 static struct hlist_head *mountpoint_hashtable __read_mostly;
0073 static struct kmem_cache *mnt_cache __read_mostly;
0074 static DECLARE_RWSEM(namespace_sem);
0075 static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
0076 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
0077 
0078 struct mount_kattr {
0079     unsigned int attr_set;
0080     unsigned int attr_clr;
0081     unsigned int propagation;
0082     unsigned int lookup_flags;
0083     bool recurse;
0084     struct user_namespace *mnt_userns;
0085 };
0086 
0087 /* /sys/fs */
0088 struct kobject *fs_kobj;
0089 EXPORT_SYMBOL_GPL(fs_kobj);
0090 
0091 /*
0092  * vfsmount lock may be taken for read to prevent changes to the
0093  * vfsmount hash, ie. during mountpoint lookups or walking back
0094  * up the tree.
0095  *
0096  * It should be taken for write in all cases where the vfsmount
0097  * tree or hash is modified or when a vfsmount structure is modified.
0098  */
0099 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
0100 
0101 static inline void lock_mount_hash(void)
0102 {
0103     write_seqlock(&mount_lock);
0104 }
0105 
0106 static inline void unlock_mount_hash(void)
0107 {
0108     write_sequnlock(&mount_lock);
0109 }
0110 
0111 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
0112 {
0113     unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
0114     tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0115     tmp = tmp + (tmp >> m_hash_shift);
0116     return &mount_hashtable[tmp & m_hash_mask];
0117 }
0118 
0119 static inline struct hlist_head *mp_hash(struct dentry *dentry)
0120 {
0121     unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
0122     tmp = tmp + (tmp >> mp_hash_shift);
0123     return &mountpoint_hashtable[tmp & mp_hash_mask];
0124 }
0125 
0126 static int mnt_alloc_id(struct mount *mnt)
0127 {
0128     int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
0129 
0130     if (res < 0)
0131         return res;
0132     mnt->mnt_id = res;
0133     return 0;
0134 }
0135 
0136 static void mnt_free_id(struct mount *mnt)
0137 {
0138     ida_free(&mnt_id_ida, mnt->mnt_id);
0139 }
0140 
0141 /*
0142  * Allocate a new peer group ID
0143  */
0144 static int mnt_alloc_group_id(struct mount *mnt)
0145 {
0146     int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
0147 
0148     if (res < 0)
0149         return res;
0150     mnt->mnt_group_id = res;
0151     return 0;
0152 }
0153 
0154 /*
0155  * Release a peer group ID
0156  */
0157 void mnt_release_group_id(struct mount *mnt)
0158 {
0159     ida_free(&mnt_group_ida, mnt->mnt_group_id);
0160     mnt->mnt_group_id = 0;
0161 }
0162 
0163 /*
0164  * vfsmount lock must be held for read
0165  */
0166 static inline void mnt_add_count(struct mount *mnt, int n)
0167 {
0168 #ifdef CONFIG_SMP
0169     this_cpu_add(mnt->mnt_pcp->mnt_count, n);
0170 #else
0171     preempt_disable();
0172     mnt->mnt_count += n;
0173     preempt_enable();
0174 #endif
0175 }
0176 
0177 /*
0178  * vfsmount lock must be held for write
0179  */
0180 int mnt_get_count(struct mount *mnt)
0181 {
0182 #ifdef CONFIG_SMP
0183     int count = 0;
0184     int cpu;
0185 
0186     for_each_possible_cpu(cpu) {
0187         count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
0188     }
0189 
0190     return count;
0191 #else
0192     return mnt->mnt_count;
0193 #endif
0194 }
0195 
0196 static struct mount *alloc_vfsmnt(const char *name)
0197 {
0198     struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
0199     if (mnt) {
0200         int err;
0201 
0202         err = mnt_alloc_id(mnt);
0203         if (err)
0204             goto out_free_cache;
0205 
0206         if (name) {
0207             mnt->mnt_devname = kstrdup_const(name,
0208                              GFP_KERNEL_ACCOUNT);
0209             if (!mnt->mnt_devname)
0210                 goto out_free_id;
0211         }
0212 
0213 #ifdef CONFIG_SMP
0214         mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
0215         if (!mnt->mnt_pcp)
0216             goto out_free_devname;
0217 
0218         this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
0219 #else
0220         mnt->mnt_count = 1;
0221         mnt->mnt_writers = 0;
0222 #endif
0223 
0224         INIT_HLIST_NODE(&mnt->mnt_hash);
0225         INIT_LIST_HEAD(&mnt->mnt_child);
0226         INIT_LIST_HEAD(&mnt->mnt_mounts);
0227         INIT_LIST_HEAD(&mnt->mnt_list);
0228         INIT_LIST_HEAD(&mnt->mnt_expire);
0229         INIT_LIST_HEAD(&mnt->mnt_share);
0230         INIT_LIST_HEAD(&mnt->mnt_slave_list);
0231         INIT_LIST_HEAD(&mnt->mnt_slave);
0232         INIT_HLIST_NODE(&mnt->mnt_mp_list);
0233         INIT_LIST_HEAD(&mnt->mnt_umounting);
0234         INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
0235         mnt->mnt.mnt_userns = &init_user_ns;
0236     }
0237     return mnt;
0238 
0239 #ifdef CONFIG_SMP
0240 out_free_devname:
0241     kfree_const(mnt->mnt_devname);
0242 #endif
0243 out_free_id:
0244     mnt_free_id(mnt);
0245 out_free_cache:
0246     kmem_cache_free(mnt_cache, mnt);
0247     return NULL;
0248 }
0249 
0250 /*
0251  * Most r/o checks on a fs are for operations that take
0252  * discrete amounts of time, like a write() or unlink().
0253  * We must keep track of when those operations start
0254  * (for permission checks) and when they end, so that
0255  * we can determine when writes are able to occur to
0256  * a filesystem.
0257  */
0258 /*
0259  * __mnt_is_readonly: check whether a mount is read-only
0260  * @mnt: the mount to check for its write status
0261  *
0262  * This shouldn't be used directly ouside of the VFS.
0263  * It does not guarantee that the filesystem will stay
0264  * r/w, just that it is right *now*.  This can not and
0265  * should not be used in place of IS_RDONLY(inode).
0266  * mnt_want/drop_write() will _keep_ the filesystem
0267  * r/w.
0268  */
0269 bool __mnt_is_readonly(struct vfsmount *mnt)
0270 {
0271     return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
0272 }
0273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
0274 
0275 static inline void mnt_inc_writers(struct mount *mnt)
0276 {
0277 #ifdef CONFIG_SMP
0278     this_cpu_inc(mnt->mnt_pcp->mnt_writers);
0279 #else
0280     mnt->mnt_writers++;
0281 #endif
0282 }
0283 
0284 static inline void mnt_dec_writers(struct mount *mnt)
0285 {
0286 #ifdef CONFIG_SMP
0287     this_cpu_dec(mnt->mnt_pcp->mnt_writers);
0288 #else
0289     mnt->mnt_writers--;
0290 #endif
0291 }
0292 
0293 static unsigned int mnt_get_writers(struct mount *mnt)
0294 {
0295 #ifdef CONFIG_SMP
0296     unsigned int count = 0;
0297     int cpu;
0298 
0299     for_each_possible_cpu(cpu) {
0300         count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
0301     }
0302 
0303     return count;
0304 #else
0305     return mnt->mnt_writers;
0306 #endif
0307 }
0308 
0309 static int mnt_is_readonly(struct vfsmount *mnt)
0310 {
0311     if (mnt->mnt_sb->s_readonly_remount)
0312         return 1;
0313     /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
0314     smp_rmb();
0315     return __mnt_is_readonly(mnt);
0316 }
0317 
0318 /*
0319  * Most r/o & frozen checks on a fs are for operations that take discrete
0320  * amounts of time, like a write() or unlink().  We must keep track of when
0321  * those operations start (for permission checks) and when they end, so that we
0322  * can determine when writes are able to occur to a filesystem.
0323  */
0324 /**
0325  * __mnt_want_write - get write access to a mount without freeze protection
0326  * @m: the mount on which to take a write
0327  *
0328  * This tells the low-level filesystem that a write is about to be performed to
0329  * it, and makes sure that writes are allowed (mnt it read-write) before
0330  * returning success. This operation does not protect against filesystem being
0331  * frozen. When the write operation is finished, __mnt_drop_write() must be
0332  * called. This is effectively a refcount.
0333  */
0334 int __mnt_want_write(struct vfsmount *m)
0335 {
0336     struct mount *mnt = real_mount(m);
0337     int ret = 0;
0338 
0339     preempt_disable();
0340     mnt_inc_writers(mnt);
0341     /*
0342      * The store to mnt_inc_writers must be visible before we pass
0343      * MNT_WRITE_HOLD loop below, so that the slowpath can see our
0344      * incremented count after it has set MNT_WRITE_HOLD.
0345      */
0346     smp_mb();
0347     might_lock(&mount_lock.lock);
0348     while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
0349         if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
0350             cpu_relax();
0351         } else {
0352             /*
0353              * This prevents priority inversion, if the task
0354              * setting MNT_WRITE_HOLD got preempted on a remote
0355              * CPU, and it prevents life lock if the task setting
0356              * MNT_WRITE_HOLD has a lower priority and is bound to
0357              * the same CPU as the task that is spinning here.
0358              */
0359             preempt_enable();
0360             lock_mount_hash();
0361             unlock_mount_hash();
0362             preempt_disable();
0363         }
0364     }
0365     /*
0366      * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
0367      * be set to match its requirements. So we must not load that until
0368      * MNT_WRITE_HOLD is cleared.
0369      */
0370     smp_rmb();
0371     if (mnt_is_readonly(m)) {
0372         mnt_dec_writers(mnt);
0373         ret = -EROFS;
0374     }
0375     preempt_enable();
0376 
0377     return ret;
0378 }
0379 
0380 /**
0381  * mnt_want_write - get write access to a mount
0382  * @m: the mount on which to take a write
0383  *
0384  * This tells the low-level filesystem that a write is about to be performed to
0385  * it, and makes sure that writes are allowed (mount is read-write, filesystem
0386  * is not frozen) before returning success.  When the write operation is
0387  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
0388  */
0389 int mnt_want_write(struct vfsmount *m)
0390 {
0391     int ret;
0392 
0393     sb_start_write(m->mnt_sb);
0394     ret = __mnt_want_write(m);
0395     if (ret)
0396         sb_end_write(m->mnt_sb);
0397     return ret;
0398 }
0399 EXPORT_SYMBOL_GPL(mnt_want_write);
0400 
0401 /**
0402  * __mnt_want_write_file - get write access to a file's mount
0403  * @file: the file who's mount on which to take a write
0404  *
0405  * This is like __mnt_want_write, but if the file is already open for writing it
0406  * skips incrementing mnt_writers (since the open file already has a reference)
0407  * and instead only does the check for emergency r/o remounts.  This must be
0408  * paired with __mnt_drop_write_file.
0409  */
0410 int __mnt_want_write_file(struct file *file)
0411 {
0412     if (file->f_mode & FMODE_WRITER) {
0413         /*
0414          * Superblock may have become readonly while there are still
0415          * writable fd's, e.g. due to a fs error with errors=remount-ro
0416          */
0417         if (__mnt_is_readonly(file->f_path.mnt))
0418             return -EROFS;
0419         return 0;
0420     }
0421     return __mnt_want_write(file->f_path.mnt);
0422 }
0423 
0424 /**
0425  * mnt_want_write_file - get write access to a file's mount
0426  * @file: the file who's mount on which to take a write
0427  *
0428  * This is like mnt_want_write, but if the file is already open for writing it
0429  * skips incrementing mnt_writers (since the open file already has a reference)
0430  * and instead only does the freeze protection and the check for emergency r/o
0431  * remounts.  This must be paired with mnt_drop_write_file.
0432  */
0433 int mnt_want_write_file(struct file *file)
0434 {
0435     int ret;
0436 
0437     sb_start_write(file_inode(file)->i_sb);
0438     ret = __mnt_want_write_file(file);
0439     if (ret)
0440         sb_end_write(file_inode(file)->i_sb);
0441     return ret;
0442 }
0443 EXPORT_SYMBOL_GPL(mnt_want_write_file);
0444 
0445 /**
0446  * __mnt_drop_write - give up write access to a mount
0447  * @mnt: the mount on which to give up write access
0448  *
0449  * Tells the low-level filesystem that we are done
0450  * performing writes to it.  Must be matched with
0451  * __mnt_want_write() call above.
0452  */
0453 void __mnt_drop_write(struct vfsmount *mnt)
0454 {
0455     preempt_disable();
0456     mnt_dec_writers(real_mount(mnt));
0457     preempt_enable();
0458 }
0459 
0460 /**
0461  * mnt_drop_write - give up write access to a mount
0462  * @mnt: the mount on which to give up write access
0463  *
0464  * Tells the low-level filesystem that we are done performing writes to it and
0465  * also allows filesystem to be frozen again.  Must be matched with
0466  * mnt_want_write() call above.
0467  */
0468 void mnt_drop_write(struct vfsmount *mnt)
0469 {
0470     __mnt_drop_write(mnt);
0471     sb_end_write(mnt->mnt_sb);
0472 }
0473 EXPORT_SYMBOL_GPL(mnt_drop_write);
0474 
0475 void __mnt_drop_write_file(struct file *file)
0476 {
0477     if (!(file->f_mode & FMODE_WRITER))
0478         __mnt_drop_write(file->f_path.mnt);
0479 }
0480 
0481 void mnt_drop_write_file(struct file *file)
0482 {
0483     __mnt_drop_write_file(file);
0484     sb_end_write(file_inode(file)->i_sb);
0485 }
0486 EXPORT_SYMBOL(mnt_drop_write_file);
0487 
0488 /**
0489  * mnt_hold_writers - prevent write access to the given mount
0490  * @mnt: mnt to prevent write access to
0491  *
0492  * Prevents write access to @mnt if there are no active writers for @mnt.
0493  * This function needs to be called and return successfully before changing
0494  * properties of @mnt that need to remain stable for callers with write access
0495  * to @mnt.
0496  *
0497  * After this functions has been called successfully callers must pair it with
0498  * a call to mnt_unhold_writers() in order to stop preventing write access to
0499  * @mnt.
0500  *
0501  * Context: This function expects lock_mount_hash() to be held serializing
0502  *          setting MNT_WRITE_HOLD.
0503  * Return: On success 0 is returned.
0504  *     On error, -EBUSY is returned.
0505  */
0506 static inline int mnt_hold_writers(struct mount *mnt)
0507 {
0508     mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
0509     /*
0510      * After storing MNT_WRITE_HOLD, we'll read the counters. This store
0511      * should be visible before we do.
0512      */
0513     smp_mb();
0514 
0515     /*
0516      * With writers on hold, if this value is zero, then there are
0517      * definitely no active writers (although held writers may subsequently
0518      * increment the count, they'll have to wait, and decrement it after
0519      * seeing MNT_READONLY).
0520      *
0521      * It is OK to have counter incremented on one CPU and decremented on
0522      * another: the sum will add up correctly. The danger would be when we
0523      * sum up each counter, if we read a counter before it is incremented,
0524      * but then read another CPU's count which it has been subsequently
0525      * decremented from -- we would see more decrements than we should.
0526      * MNT_WRITE_HOLD protects against this scenario, because
0527      * mnt_want_write first increments count, then smp_mb, then spins on
0528      * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
0529      * we're counting up here.
0530      */
0531     if (mnt_get_writers(mnt) > 0)
0532         return -EBUSY;
0533 
0534     return 0;
0535 }
0536 
0537 /**
0538  * mnt_unhold_writers - stop preventing write access to the given mount
0539  * @mnt: mnt to stop preventing write access to
0540  *
0541  * Stop preventing write access to @mnt allowing callers to gain write access
0542  * to @mnt again.
0543  *
0544  * This function can only be called after a successful call to
0545  * mnt_hold_writers().
0546  *
0547  * Context: This function expects lock_mount_hash() to be held.
0548  */
0549 static inline void mnt_unhold_writers(struct mount *mnt)
0550 {
0551     /*
0552      * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
0553      * that become unheld will see MNT_READONLY.
0554      */
0555     smp_wmb();
0556     mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
0557 }
0558 
0559 static int mnt_make_readonly(struct mount *mnt)
0560 {
0561     int ret;
0562 
0563     ret = mnt_hold_writers(mnt);
0564     if (!ret)
0565         mnt->mnt.mnt_flags |= MNT_READONLY;
0566     mnt_unhold_writers(mnt);
0567     return ret;
0568 }
0569 
0570 int sb_prepare_remount_readonly(struct super_block *sb)
0571 {
0572     struct mount *mnt;
0573     int err = 0;
0574 
0575     /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
0576     if (atomic_long_read(&sb->s_remove_count))
0577         return -EBUSY;
0578 
0579     lock_mount_hash();
0580     list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
0581         if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
0582             err = mnt_hold_writers(mnt);
0583             if (err)
0584                 break;
0585         }
0586     }
0587     if (!err && atomic_long_read(&sb->s_remove_count))
0588         err = -EBUSY;
0589 
0590     if (!err) {
0591         sb->s_readonly_remount = 1;
0592         smp_wmb();
0593     }
0594     list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
0595         if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
0596             mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
0597     }
0598     unlock_mount_hash();
0599 
0600     return err;
0601 }
0602 
0603 static void free_vfsmnt(struct mount *mnt)
0604 {
0605     struct user_namespace *mnt_userns;
0606 
0607     mnt_userns = mnt_user_ns(&mnt->mnt);
0608     if (!initial_idmapping(mnt_userns))
0609         put_user_ns(mnt_userns);
0610     kfree_const(mnt->mnt_devname);
0611 #ifdef CONFIG_SMP
0612     free_percpu(mnt->mnt_pcp);
0613 #endif
0614     kmem_cache_free(mnt_cache, mnt);
0615 }
0616 
0617 static void delayed_free_vfsmnt(struct rcu_head *head)
0618 {
0619     free_vfsmnt(container_of(head, struct mount, mnt_rcu));
0620 }
0621 
0622 /* call under rcu_read_lock */
0623 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
0624 {
0625     struct mount *mnt;
0626     if (read_seqretry(&mount_lock, seq))
0627         return 1;
0628     if (bastard == NULL)
0629         return 0;
0630     mnt = real_mount(bastard);
0631     mnt_add_count(mnt, 1);
0632     smp_mb();           // see mntput_no_expire()
0633     if (likely(!read_seqretry(&mount_lock, seq)))
0634         return 0;
0635     if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
0636         mnt_add_count(mnt, -1);
0637         return 1;
0638     }
0639     lock_mount_hash();
0640     if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
0641         mnt_add_count(mnt, -1);
0642         unlock_mount_hash();
0643         return 1;
0644     }
0645     unlock_mount_hash();
0646     /* caller will mntput() */
0647     return -1;
0648 }
0649 
0650 /* call under rcu_read_lock */
0651 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
0652 {
0653     int res = __legitimize_mnt(bastard, seq);
0654     if (likely(!res))
0655         return true;
0656     if (unlikely(res < 0)) {
0657         rcu_read_unlock();
0658         mntput(bastard);
0659         rcu_read_lock();
0660     }
0661     return false;
0662 }
0663 
0664 /*
0665  * find the first mount at @dentry on vfsmount @mnt.
0666  * call under rcu_read_lock()
0667  */
0668 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
0669 {
0670     struct hlist_head *head = m_hash(mnt, dentry);
0671     struct mount *p;
0672 
0673     hlist_for_each_entry_rcu(p, head, mnt_hash)
0674         if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
0675             return p;
0676     return NULL;
0677 }
0678 
0679 /*
0680  * lookup_mnt - Return the first child mount mounted at path
0681  *
0682  * "First" means first mounted chronologically.  If you create the
0683  * following mounts:
0684  *
0685  * mount /dev/sda1 /mnt
0686  * mount /dev/sda2 /mnt
0687  * mount /dev/sda3 /mnt
0688  *
0689  * Then lookup_mnt() on the base /mnt dentry in the root mount will
0690  * return successively the root dentry and vfsmount of /dev/sda1, then
0691  * /dev/sda2, then /dev/sda3, then NULL.
0692  *
0693  * lookup_mnt takes a reference to the found vfsmount.
0694  */
0695 struct vfsmount *lookup_mnt(const struct path *path)
0696 {
0697     struct mount *child_mnt;
0698     struct vfsmount *m;
0699     unsigned seq;
0700 
0701     rcu_read_lock();
0702     do {
0703         seq = read_seqbegin(&mount_lock);
0704         child_mnt = __lookup_mnt(path->mnt, path->dentry);
0705         m = child_mnt ? &child_mnt->mnt : NULL;
0706     } while (!legitimize_mnt(m, seq));
0707     rcu_read_unlock();
0708     return m;
0709 }
0710 
0711 static inline void lock_ns_list(struct mnt_namespace *ns)
0712 {
0713     spin_lock(&ns->ns_lock);
0714 }
0715 
0716 static inline void unlock_ns_list(struct mnt_namespace *ns)
0717 {
0718     spin_unlock(&ns->ns_lock);
0719 }
0720 
0721 static inline bool mnt_is_cursor(struct mount *mnt)
0722 {
0723     return mnt->mnt.mnt_flags & MNT_CURSOR;
0724 }
0725 
0726 /*
0727  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
0728  *                         current mount namespace.
0729  *
0730  * The common case is dentries are not mountpoints at all and that
0731  * test is handled inline.  For the slow case when we are actually
0732  * dealing with a mountpoint of some kind, walk through all of the
0733  * mounts in the current mount namespace and test to see if the dentry
0734  * is a mountpoint.
0735  *
0736  * The mount_hashtable is not usable in the context because we
0737  * need to identify all mounts that may be in the current mount
0738  * namespace not just a mount that happens to have some specified
0739  * parent mount.
0740  */
0741 bool __is_local_mountpoint(struct dentry *dentry)
0742 {
0743     struct mnt_namespace *ns = current->nsproxy->mnt_ns;
0744     struct mount *mnt;
0745     bool is_covered = false;
0746 
0747     down_read(&namespace_sem);
0748     lock_ns_list(ns);
0749     list_for_each_entry(mnt, &ns->list, mnt_list) {
0750         if (mnt_is_cursor(mnt))
0751             continue;
0752         is_covered = (mnt->mnt_mountpoint == dentry);
0753         if (is_covered)
0754             break;
0755     }
0756     unlock_ns_list(ns);
0757     up_read(&namespace_sem);
0758 
0759     return is_covered;
0760 }
0761 
0762 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
0763 {
0764     struct hlist_head *chain = mp_hash(dentry);
0765     struct mountpoint *mp;
0766 
0767     hlist_for_each_entry(mp, chain, m_hash) {
0768         if (mp->m_dentry == dentry) {
0769             mp->m_count++;
0770             return mp;
0771         }
0772     }
0773     return NULL;
0774 }
0775 
0776 static struct mountpoint *get_mountpoint(struct dentry *dentry)
0777 {
0778     struct mountpoint *mp, *new = NULL;
0779     int ret;
0780 
0781     if (d_mountpoint(dentry)) {
0782         /* might be worth a WARN_ON() */
0783         if (d_unlinked(dentry))
0784             return ERR_PTR(-ENOENT);
0785 mountpoint:
0786         read_seqlock_excl(&mount_lock);
0787         mp = lookup_mountpoint(dentry);
0788         read_sequnlock_excl(&mount_lock);
0789         if (mp)
0790             goto done;
0791     }
0792 
0793     if (!new)
0794         new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
0795     if (!new)
0796         return ERR_PTR(-ENOMEM);
0797 
0798 
0799     /* Exactly one processes may set d_mounted */
0800     ret = d_set_mounted(dentry);
0801 
0802     /* Someone else set d_mounted? */
0803     if (ret == -EBUSY)
0804         goto mountpoint;
0805 
0806     /* The dentry is not available as a mountpoint? */
0807     mp = ERR_PTR(ret);
0808     if (ret)
0809         goto done;
0810 
0811     /* Add the new mountpoint to the hash table */
0812     read_seqlock_excl(&mount_lock);
0813     new->m_dentry = dget(dentry);
0814     new->m_count = 1;
0815     hlist_add_head(&new->m_hash, mp_hash(dentry));
0816     INIT_HLIST_HEAD(&new->m_list);
0817     read_sequnlock_excl(&mount_lock);
0818 
0819     mp = new;
0820     new = NULL;
0821 done:
0822     kfree(new);
0823     return mp;
0824 }
0825 
0826 /*
0827  * vfsmount lock must be held.  Additionally, the caller is responsible
0828  * for serializing calls for given disposal list.
0829  */
0830 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
0831 {
0832     if (!--mp->m_count) {
0833         struct dentry *dentry = mp->m_dentry;
0834         BUG_ON(!hlist_empty(&mp->m_list));
0835         spin_lock(&dentry->d_lock);
0836         dentry->d_flags &= ~DCACHE_MOUNTED;
0837         spin_unlock(&dentry->d_lock);
0838         dput_to_list(dentry, list);
0839         hlist_del(&mp->m_hash);
0840         kfree(mp);
0841     }
0842 }
0843 
0844 /* called with namespace_lock and vfsmount lock */
0845 static void put_mountpoint(struct mountpoint *mp)
0846 {
0847     __put_mountpoint(mp, &ex_mountpoints);
0848 }
0849 
0850 static inline int check_mnt(struct mount *mnt)
0851 {
0852     return mnt->mnt_ns == current->nsproxy->mnt_ns;
0853 }
0854 
0855 /*
0856  * vfsmount lock must be held for write
0857  */
0858 static void touch_mnt_namespace(struct mnt_namespace *ns)
0859 {
0860     if (ns) {
0861         ns->event = ++event;
0862         wake_up_interruptible(&ns->poll);
0863     }
0864 }
0865 
0866 /*
0867  * vfsmount lock must be held for write
0868  */
0869 static void __touch_mnt_namespace(struct mnt_namespace *ns)
0870 {
0871     if (ns && ns->event != event) {
0872         ns->event = event;
0873         wake_up_interruptible(&ns->poll);
0874     }
0875 }
0876 
0877 /*
0878  * vfsmount lock must be held for write
0879  */
0880 static struct mountpoint *unhash_mnt(struct mount *mnt)
0881 {
0882     struct mountpoint *mp;
0883     mnt->mnt_parent = mnt;
0884     mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0885     list_del_init(&mnt->mnt_child);
0886     hlist_del_init_rcu(&mnt->mnt_hash);
0887     hlist_del_init(&mnt->mnt_mp_list);
0888     mp = mnt->mnt_mp;
0889     mnt->mnt_mp = NULL;
0890     return mp;
0891 }
0892 
0893 /*
0894  * vfsmount lock must be held for write
0895  */
0896 static void umount_mnt(struct mount *mnt)
0897 {
0898     put_mountpoint(unhash_mnt(mnt));
0899 }
0900 
0901 /*
0902  * vfsmount lock must be held for write
0903  */
0904 void mnt_set_mountpoint(struct mount *mnt,
0905             struct mountpoint *mp,
0906             struct mount *child_mnt)
0907 {
0908     mp->m_count++;
0909     mnt_add_count(mnt, 1);  /* essentially, that's mntget */
0910     child_mnt->mnt_mountpoint = mp->m_dentry;
0911     child_mnt->mnt_parent = mnt;
0912     child_mnt->mnt_mp = mp;
0913     hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
0914 }
0915 
0916 static void __attach_mnt(struct mount *mnt, struct mount *parent)
0917 {
0918     hlist_add_head_rcu(&mnt->mnt_hash,
0919                m_hash(&parent->mnt, mnt->mnt_mountpoint));
0920     list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
0921 }
0922 
0923 /*
0924  * vfsmount lock must be held for write
0925  */
0926 static void attach_mnt(struct mount *mnt,
0927             struct mount *parent,
0928             struct mountpoint *mp)
0929 {
0930     mnt_set_mountpoint(parent, mp, mnt);
0931     __attach_mnt(mnt, parent);
0932 }
0933 
0934 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
0935 {
0936     struct mountpoint *old_mp = mnt->mnt_mp;
0937     struct mount *old_parent = mnt->mnt_parent;
0938 
0939     list_del_init(&mnt->mnt_child);
0940     hlist_del_init(&mnt->mnt_mp_list);
0941     hlist_del_init_rcu(&mnt->mnt_hash);
0942 
0943     attach_mnt(mnt, parent, mp);
0944 
0945     put_mountpoint(old_mp);
0946     mnt_add_count(old_parent, -1);
0947 }
0948 
0949 /*
0950  * vfsmount lock must be held for write
0951  */
0952 static void commit_tree(struct mount *mnt)
0953 {
0954     struct mount *parent = mnt->mnt_parent;
0955     struct mount *m;
0956     LIST_HEAD(head);
0957     struct mnt_namespace *n = parent->mnt_ns;
0958 
0959     BUG_ON(parent == mnt);
0960 
0961     list_add_tail(&head, &mnt->mnt_list);
0962     list_for_each_entry(m, &head, mnt_list)
0963         m->mnt_ns = n;
0964 
0965     list_splice(&head, n->list.prev);
0966 
0967     n->mounts += n->pending_mounts;
0968     n->pending_mounts = 0;
0969 
0970     __attach_mnt(mnt, parent);
0971     touch_mnt_namespace(n);
0972 }
0973 
0974 static struct mount *next_mnt(struct mount *p, struct mount *root)
0975 {
0976     struct list_head *next = p->mnt_mounts.next;
0977     if (next == &p->mnt_mounts) {
0978         while (1) {
0979             if (p == root)
0980                 return NULL;
0981             next = p->mnt_child.next;
0982             if (next != &p->mnt_parent->mnt_mounts)
0983                 break;
0984             p = p->mnt_parent;
0985         }
0986     }
0987     return list_entry(next, struct mount, mnt_child);
0988 }
0989 
0990 static struct mount *skip_mnt_tree(struct mount *p)
0991 {
0992     struct list_head *prev = p->mnt_mounts.prev;
0993     while (prev != &p->mnt_mounts) {
0994         p = list_entry(prev, struct mount, mnt_child);
0995         prev = p->mnt_mounts.prev;
0996     }
0997     return p;
0998 }
0999 
1000 /**
1001  * vfs_create_mount - Create a mount for a configured superblock
1002  * @fc: The configuration context with the superblock attached
1003  *
1004  * Create a mount to an already configured superblock.  If necessary, the
1005  * caller should invoke vfs_get_tree() before calling this.
1006  *
1007  * Note that this does not attach the mount to anything.
1008  */
1009 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1010 {
1011     struct mount *mnt;
1012     struct user_namespace *fs_userns;
1013 
1014     if (!fc->root)
1015         return ERR_PTR(-EINVAL);
1016 
1017     mnt = alloc_vfsmnt(fc->source ?: "none");
1018     if (!mnt)
1019         return ERR_PTR(-ENOMEM);
1020 
1021     if (fc->sb_flags & SB_KERNMOUNT)
1022         mnt->mnt.mnt_flags = MNT_INTERNAL;
1023 
1024     atomic_inc(&fc->root->d_sb->s_active);
1025     mnt->mnt.mnt_sb     = fc->root->d_sb;
1026     mnt->mnt.mnt_root   = dget(fc->root);
1027     mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1028     mnt->mnt_parent     = mnt;
1029 
1030     fs_userns = mnt->mnt.mnt_sb->s_user_ns;
1031     if (!initial_idmapping(fs_userns))
1032         mnt->mnt.mnt_userns = get_user_ns(fs_userns);
1033 
1034     lock_mount_hash();
1035     list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1036     unlock_mount_hash();
1037     return &mnt->mnt;
1038 }
1039 EXPORT_SYMBOL(vfs_create_mount);
1040 
1041 struct vfsmount *fc_mount(struct fs_context *fc)
1042 {
1043     int err = vfs_get_tree(fc);
1044     if (!err) {
1045         up_write(&fc->root->d_sb->s_umount);
1046         return vfs_create_mount(fc);
1047     }
1048     return ERR_PTR(err);
1049 }
1050 EXPORT_SYMBOL(fc_mount);
1051 
1052 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1053                 int flags, const char *name,
1054                 void *data)
1055 {
1056     struct fs_context *fc;
1057     struct vfsmount *mnt;
1058     int ret = 0;
1059 
1060     if (!type)
1061         return ERR_PTR(-EINVAL);
1062 
1063     fc = fs_context_for_mount(type, flags);
1064     if (IS_ERR(fc))
1065         return ERR_CAST(fc);
1066 
1067     if (name)
1068         ret = vfs_parse_fs_string(fc, "source",
1069                       name, strlen(name));
1070     if (!ret)
1071         ret = parse_monolithic_mount_data(fc, data);
1072     if (!ret)
1073         mnt = fc_mount(fc);
1074     else
1075         mnt = ERR_PTR(ret);
1076 
1077     put_fs_context(fc);
1078     return mnt;
1079 }
1080 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1081 
1082 struct vfsmount *
1083 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1084          const char *name, void *data)
1085 {
1086     /* Until it is worked out how to pass the user namespace
1087      * through from the parent mount to the submount don't support
1088      * unprivileged mounts with submounts.
1089      */
1090     if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1091         return ERR_PTR(-EPERM);
1092 
1093     return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1094 }
1095 EXPORT_SYMBOL_GPL(vfs_submount);
1096 
1097 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1098                     int flag)
1099 {
1100     struct super_block *sb = old->mnt.mnt_sb;
1101     struct mount *mnt;
1102     int err;
1103 
1104     mnt = alloc_vfsmnt(old->mnt_devname);
1105     if (!mnt)
1106         return ERR_PTR(-ENOMEM);
1107 
1108     if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1109         mnt->mnt_group_id = 0; /* not a peer of original */
1110     else
1111         mnt->mnt_group_id = old->mnt_group_id;
1112 
1113     if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1114         err = mnt_alloc_group_id(mnt);
1115         if (err)
1116             goto out_free;
1117     }
1118 
1119     mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1120     mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1121 
1122     atomic_inc(&sb->s_active);
1123     mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1124     if (!initial_idmapping(mnt->mnt.mnt_userns))
1125         mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1126     mnt->mnt.mnt_sb = sb;
1127     mnt->mnt.mnt_root = dget(root);
1128     mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1129     mnt->mnt_parent = mnt;
1130     lock_mount_hash();
1131     list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1132     unlock_mount_hash();
1133 
1134     if ((flag & CL_SLAVE) ||
1135         ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1136         list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1137         mnt->mnt_master = old;
1138         CLEAR_MNT_SHARED(mnt);
1139     } else if (!(flag & CL_PRIVATE)) {
1140         if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1141             list_add(&mnt->mnt_share, &old->mnt_share);
1142         if (IS_MNT_SLAVE(old))
1143             list_add(&mnt->mnt_slave, &old->mnt_slave);
1144         mnt->mnt_master = old->mnt_master;
1145     } else {
1146         CLEAR_MNT_SHARED(mnt);
1147     }
1148     if (flag & CL_MAKE_SHARED)
1149         set_mnt_shared(mnt);
1150 
1151     /* stick the duplicate mount on the same expiry list
1152      * as the original if that was on one */
1153     if (flag & CL_EXPIRE) {
1154         if (!list_empty(&old->mnt_expire))
1155             list_add(&mnt->mnt_expire, &old->mnt_expire);
1156     }
1157 
1158     return mnt;
1159 
1160  out_free:
1161     mnt_free_id(mnt);
1162     free_vfsmnt(mnt);
1163     return ERR_PTR(err);
1164 }
1165 
1166 static void cleanup_mnt(struct mount *mnt)
1167 {
1168     struct hlist_node *p;
1169     struct mount *m;
1170     /*
1171      * The warning here probably indicates that somebody messed
1172      * up a mnt_want/drop_write() pair.  If this happens, the
1173      * filesystem was probably unable to make r/w->r/o transitions.
1174      * The locking used to deal with mnt_count decrement provides barriers,
1175      * so mnt_get_writers() below is safe.
1176      */
1177     WARN_ON(mnt_get_writers(mnt));
1178     if (unlikely(mnt->mnt_pins.first))
1179         mnt_pin_kill(mnt);
1180     hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1181         hlist_del(&m->mnt_umount);
1182         mntput(&m->mnt);
1183     }
1184     fsnotify_vfsmount_delete(&mnt->mnt);
1185     dput(mnt->mnt.mnt_root);
1186     deactivate_super(mnt->mnt.mnt_sb);
1187     mnt_free_id(mnt);
1188     call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1189 }
1190 
1191 static void __cleanup_mnt(struct rcu_head *head)
1192 {
1193     cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1194 }
1195 
1196 static LLIST_HEAD(delayed_mntput_list);
1197 static void delayed_mntput(struct work_struct *unused)
1198 {
1199     struct llist_node *node = llist_del_all(&delayed_mntput_list);
1200     struct mount *m, *t;
1201 
1202     llist_for_each_entry_safe(m, t, node, mnt_llist)
1203         cleanup_mnt(m);
1204 }
1205 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1206 
1207 static void mntput_no_expire(struct mount *mnt)
1208 {
1209     LIST_HEAD(list);
1210     int count;
1211 
1212     rcu_read_lock();
1213     if (likely(READ_ONCE(mnt->mnt_ns))) {
1214         /*
1215          * Since we don't do lock_mount_hash() here,
1216          * ->mnt_ns can change under us.  However, if it's
1217          * non-NULL, then there's a reference that won't
1218          * be dropped until after an RCU delay done after
1219          * turning ->mnt_ns NULL.  So if we observe it
1220          * non-NULL under rcu_read_lock(), the reference
1221          * we are dropping is not the final one.
1222          */
1223         mnt_add_count(mnt, -1);
1224         rcu_read_unlock();
1225         return;
1226     }
1227     lock_mount_hash();
1228     /*
1229      * make sure that if __legitimize_mnt() has not seen us grab
1230      * mount_lock, we'll see their refcount increment here.
1231      */
1232     smp_mb();
1233     mnt_add_count(mnt, -1);
1234     count = mnt_get_count(mnt);
1235     if (count != 0) {
1236         WARN_ON(count < 0);
1237         rcu_read_unlock();
1238         unlock_mount_hash();
1239         return;
1240     }
1241     if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1242         rcu_read_unlock();
1243         unlock_mount_hash();
1244         return;
1245     }
1246     mnt->mnt.mnt_flags |= MNT_DOOMED;
1247     rcu_read_unlock();
1248 
1249     list_del(&mnt->mnt_instance);
1250 
1251     if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1252         struct mount *p, *tmp;
1253         list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1254             __put_mountpoint(unhash_mnt(p), &list);
1255             hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1256         }
1257     }
1258     unlock_mount_hash();
1259     shrink_dentry_list(&list);
1260 
1261     if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1262         struct task_struct *task = current;
1263         if (likely(!(task->flags & PF_KTHREAD))) {
1264             init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1265             if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1266                 return;
1267         }
1268         if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1269             schedule_delayed_work(&delayed_mntput_work, 1);
1270         return;
1271     }
1272     cleanup_mnt(mnt);
1273 }
1274 
1275 void mntput(struct vfsmount *mnt)
1276 {
1277     if (mnt) {
1278         struct mount *m = real_mount(mnt);
1279         /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1280         if (unlikely(m->mnt_expiry_mark))
1281             m->mnt_expiry_mark = 0;
1282         mntput_no_expire(m);
1283     }
1284 }
1285 EXPORT_SYMBOL(mntput);
1286 
1287 struct vfsmount *mntget(struct vfsmount *mnt)
1288 {
1289     if (mnt)
1290         mnt_add_count(real_mount(mnt), 1);
1291     return mnt;
1292 }
1293 EXPORT_SYMBOL(mntget);
1294 
1295 /**
1296  * path_is_mountpoint() - Check if path is a mount in the current namespace.
1297  * @path: path to check
1298  *
1299  *  d_mountpoint() can only be used reliably to establish if a dentry is
1300  *  not mounted in any namespace and that common case is handled inline.
1301  *  d_mountpoint() isn't aware of the possibility there may be multiple
1302  *  mounts using a given dentry in a different namespace. This function
1303  *  checks if the passed in path is a mountpoint rather than the dentry
1304  *  alone.
1305  */
1306 bool path_is_mountpoint(const struct path *path)
1307 {
1308     unsigned seq;
1309     bool res;
1310 
1311     if (!d_mountpoint(path->dentry))
1312         return false;
1313 
1314     rcu_read_lock();
1315     do {
1316         seq = read_seqbegin(&mount_lock);
1317         res = __path_is_mountpoint(path);
1318     } while (read_seqretry(&mount_lock, seq));
1319     rcu_read_unlock();
1320 
1321     return res;
1322 }
1323 EXPORT_SYMBOL(path_is_mountpoint);
1324 
1325 struct vfsmount *mnt_clone_internal(const struct path *path)
1326 {
1327     struct mount *p;
1328     p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1329     if (IS_ERR(p))
1330         return ERR_CAST(p);
1331     p->mnt.mnt_flags |= MNT_INTERNAL;
1332     return &p->mnt;
1333 }
1334 
1335 #ifdef CONFIG_PROC_FS
1336 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1337                    struct list_head *p)
1338 {
1339     struct mount *mnt, *ret = NULL;
1340 
1341     lock_ns_list(ns);
1342     list_for_each_continue(p, &ns->list) {
1343         mnt = list_entry(p, typeof(*mnt), mnt_list);
1344         if (!mnt_is_cursor(mnt)) {
1345             ret = mnt;
1346             break;
1347         }
1348     }
1349     unlock_ns_list(ns);
1350 
1351     return ret;
1352 }
1353 
1354 /* iterator; we want it to have access to namespace_sem, thus here... */
1355 static void *m_start(struct seq_file *m, loff_t *pos)
1356 {
1357     struct proc_mounts *p = m->private;
1358     struct list_head *prev;
1359 
1360     down_read(&namespace_sem);
1361     if (!*pos) {
1362         prev = &p->ns->list;
1363     } else {
1364         prev = &p->cursor.mnt_list;
1365 
1366         /* Read after we'd reached the end? */
1367         if (list_empty(prev))
1368             return NULL;
1369     }
1370 
1371     return mnt_list_next(p->ns, prev);
1372 }
1373 
1374 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1375 {
1376     struct proc_mounts *p = m->private;
1377     struct mount *mnt = v;
1378 
1379     ++*pos;
1380     return mnt_list_next(p->ns, &mnt->mnt_list);
1381 }
1382 
1383 static void m_stop(struct seq_file *m, void *v)
1384 {
1385     struct proc_mounts *p = m->private;
1386     struct mount *mnt = v;
1387 
1388     lock_ns_list(p->ns);
1389     if (mnt)
1390         list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1391     else
1392         list_del_init(&p->cursor.mnt_list);
1393     unlock_ns_list(p->ns);
1394     up_read(&namespace_sem);
1395 }
1396 
1397 static int m_show(struct seq_file *m, void *v)
1398 {
1399     struct proc_mounts *p = m->private;
1400     struct mount *r = v;
1401     return p->show(m, &r->mnt);
1402 }
1403 
1404 const struct seq_operations mounts_op = {
1405     .start  = m_start,
1406     .next   = m_next,
1407     .stop   = m_stop,
1408     .show   = m_show,
1409 };
1410 
1411 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1412 {
1413     down_read(&namespace_sem);
1414     lock_ns_list(ns);
1415     list_del(&cursor->mnt_list);
1416     unlock_ns_list(ns);
1417     up_read(&namespace_sem);
1418 }
1419 #endif  /* CONFIG_PROC_FS */
1420 
1421 /**
1422  * may_umount_tree - check if a mount tree is busy
1423  * @m: root of mount tree
1424  *
1425  * This is called to check if a tree of mounts has any
1426  * open files, pwds, chroots or sub mounts that are
1427  * busy.
1428  */
1429 int may_umount_tree(struct vfsmount *m)
1430 {
1431     struct mount *mnt = real_mount(m);
1432     int actual_refs = 0;
1433     int minimum_refs = 0;
1434     struct mount *p;
1435     BUG_ON(!m);
1436 
1437     /* write lock needed for mnt_get_count */
1438     lock_mount_hash();
1439     for (p = mnt; p; p = next_mnt(p, mnt)) {
1440         actual_refs += mnt_get_count(p);
1441         minimum_refs += 2;
1442     }
1443     unlock_mount_hash();
1444 
1445     if (actual_refs > minimum_refs)
1446         return 0;
1447 
1448     return 1;
1449 }
1450 
1451 EXPORT_SYMBOL(may_umount_tree);
1452 
1453 /**
1454  * may_umount - check if a mount point is busy
1455  * @mnt: root of mount
1456  *
1457  * This is called to check if a mount point has any
1458  * open files, pwds, chroots or sub mounts. If the
1459  * mount has sub mounts this will return busy
1460  * regardless of whether the sub mounts are busy.
1461  *
1462  * Doesn't take quota and stuff into account. IOW, in some cases it will
1463  * give false negatives. The main reason why it's here is that we need
1464  * a non-destructive way to look for easily umountable filesystems.
1465  */
1466 int may_umount(struct vfsmount *mnt)
1467 {
1468     int ret = 1;
1469     down_read(&namespace_sem);
1470     lock_mount_hash();
1471     if (propagate_mount_busy(real_mount(mnt), 2))
1472         ret = 0;
1473     unlock_mount_hash();
1474     up_read(&namespace_sem);
1475     return ret;
1476 }
1477 
1478 EXPORT_SYMBOL(may_umount);
1479 
1480 static void namespace_unlock(void)
1481 {
1482     struct hlist_head head;
1483     struct hlist_node *p;
1484     struct mount *m;
1485     LIST_HEAD(list);
1486 
1487     hlist_move_list(&unmounted, &head);
1488     list_splice_init(&ex_mountpoints, &list);
1489 
1490     up_write(&namespace_sem);
1491 
1492     shrink_dentry_list(&list);
1493 
1494     if (likely(hlist_empty(&head)))
1495         return;
1496 
1497     synchronize_rcu_expedited();
1498 
1499     hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1500         hlist_del(&m->mnt_umount);
1501         mntput(&m->mnt);
1502     }
1503 }
1504 
1505 static inline void namespace_lock(void)
1506 {
1507     down_write(&namespace_sem);
1508 }
1509 
1510 enum umount_tree_flags {
1511     UMOUNT_SYNC = 1,
1512     UMOUNT_PROPAGATE = 2,
1513     UMOUNT_CONNECTED = 4,
1514 };
1515 
1516 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1517 {
1518     /* Leaving mounts connected is only valid for lazy umounts */
1519     if (how & UMOUNT_SYNC)
1520         return true;
1521 
1522     /* A mount without a parent has nothing to be connected to */
1523     if (!mnt_has_parent(mnt))
1524         return true;
1525 
1526     /* Because the reference counting rules change when mounts are
1527      * unmounted and connected, umounted mounts may not be
1528      * connected to mounted mounts.
1529      */
1530     if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1531         return true;
1532 
1533     /* Has it been requested that the mount remain connected? */
1534     if (how & UMOUNT_CONNECTED)
1535         return false;
1536 
1537     /* Is the mount locked such that it needs to remain connected? */
1538     if (IS_MNT_LOCKED(mnt))
1539         return false;
1540 
1541     /* By default disconnect the mount */
1542     return true;
1543 }
1544 
1545 /*
1546  * mount_lock must be held
1547  * namespace_sem must be held for write
1548  */
1549 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1550 {
1551     LIST_HEAD(tmp_list);
1552     struct mount *p;
1553 
1554     if (how & UMOUNT_PROPAGATE)
1555         propagate_mount_unlock(mnt);
1556 
1557     /* Gather the mounts to umount */
1558     for (p = mnt; p; p = next_mnt(p, mnt)) {
1559         p->mnt.mnt_flags |= MNT_UMOUNT;
1560         list_move(&p->mnt_list, &tmp_list);
1561     }
1562 
1563     /* Hide the mounts from mnt_mounts */
1564     list_for_each_entry(p, &tmp_list, mnt_list) {
1565         list_del_init(&p->mnt_child);
1566     }
1567 
1568     /* Add propogated mounts to the tmp_list */
1569     if (how & UMOUNT_PROPAGATE)
1570         propagate_umount(&tmp_list);
1571 
1572     while (!list_empty(&tmp_list)) {
1573         struct mnt_namespace *ns;
1574         bool disconnect;
1575         p = list_first_entry(&tmp_list, struct mount, mnt_list);
1576         list_del_init(&p->mnt_expire);
1577         list_del_init(&p->mnt_list);
1578         ns = p->mnt_ns;
1579         if (ns) {
1580             ns->mounts--;
1581             __touch_mnt_namespace(ns);
1582         }
1583         p->mnt_ns = NULL;
1584         if (how & UMOUNT_SYNC)
1585             p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1586 
1587         disconnect = disconnect_mount(p, how);
1588         if (mnt_has_parent(p)) {
1589             mnt_add_count(p->mnt_parent, -1);
1590             if (!disconnect) {
1591                 /* Don't forget about p */
1592                 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1593             } else {
1594                 umount_mnt(p);
1595             }
1596         }
1597         change_mnt_propagation(p, MS_PRIVATE);
1598         if (disconnect)
1599             hlist_add_head(&p->mnt_umount, &unmounted);
1600     }
1601 }
1602 
1603 static void shrink_submounts(struct mount *mnt);
1604 
1605 static int do_umount_root(struct super_block *sb)
1606 {
1607     int ret = 0;
1608 
1609     down_write(&sb->s_umount);
1610     if (!sb_rdonly(sb)) {
1611         struct fs_context *fc;
1612 
1613         fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1614                         SB_RDONLY);
1615         if (IS_ERR(fc)) {
1616             ret = PTR_ERR(fc);
1617         } else {
1618             ret = parse_monolithic_mount_data(fc, NULL);
1619             if (!ret)
1620                 ret = reconfigure_super(fc);
1621             put_fs_context(fc);
1622         }
1623     }
1624     up_write(&sb->s_umount);
1625     return ret;
1626 }
1627 
1628 static int do_umount(struct mount *mnt, int flags)
1629 {
1630     struct super_block *sb = mnt->mnt.mnt_sb;
1631     int retval;
1632 
1633     retval = security_sb_umount(&mnt->mnt, flags);
1634     if (retval)
1635         return retval;
1636 
1637     /*
1638      * Allow userspace to request a mountpoint be expired rather than
1639      * unmounting unconditionally. Unmount only happens if:
1640      *  (1) the mark is already set (the mark is cleared by mntput())
1641      *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1642      */
1643     if (flags & MNT_EXPIRE) {
1644         if (&mnt->mnt == current->fs->root.mnt ||
1645             flags & (MNT_FORCE | MNT_DETACH))
1646             return -EINVAL;
1647 
1648         /*
1649          * probably don't strictly need the lock here if we examined
1650          * all race cases, but it's a slowpath.
1651          */
1652         lock_mount_hash();
1653         if (mnt_get_count(mnt) != 2) {
1654             unlock_mount_hash();
1655             return -EBUSY;
1656         }
1657         unlock_mount_hash();
1658 
1659         if (!xchg(&mnt->mnt_expiry_mark, 1))
1660             return -EAGAIN;
1661     }
1662 
1663     /*
1664      * If we may have to abort operations to get out of this
1665      * mount, and they will themselves hold resources we must
1666      * allow the fs to do things. In the Unix tradition of
1667      * 'Gee thats tricky lets do it in userspace' the umount_begin
1668      * might fail to complete on the first run through as other tasks
1669      * must return, and the like. Thats for the mount program to worry
1670      * about for the moment.
1671      */
1672 
1673     if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1674         sb->s_op->umount_begin(sb);
1675     }
1676 
1677     /*
1678      * No sense to grab the lock for this test, but test itself looks
1679      * somewhat bogus. Suggestions for better replacement?
1680      * Ho-hum... In principle, we might treat that as umount + switch
1681      * to rootfs. GC would eventually take care of the old vfsmount.
1682      * Actually it makes sense, especially if rootfs would contain a
1683      * /reboot - static binary that would close all descriptors and
1684      * call reboot(9). Then init(8) could umount root and exec /reboot.
1685      */
1686     if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1687         /*
1688          * Special case for "unmounting" root ...
1689          * we just try to remount it readonly.
1690          */
1691         if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1692             return -EPERM;
1693         return do_umount_root(sb);
1694     }
1695 
1696     namespace_lock();
1697     lock_mount_hash();
1698 
1699     /* Recheck MNT_LOCKED with the locks held */
1700     retval = -EINVAL;
1701     if (mnt->mnt.mnt_flags & MNT_LOCKED)
1702         goto out;
1703 
1704     event++;
1705     if (flags & MNT_DETACH) {
1706         if (!list_empty(&mnt->mnt_list))
1707             umount_tree(mnt, UMOUNT_PROPAGATE);
1708         retval = 0;
1709     } else {
1710         shrink_submounts(mnt);
1711         retval = -EBUSY;
1712         if (!propagate_mount_busy(mnt, 2)) {
1713             if (!list_empty(&mnt->mnt_list))
1714                 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1715             retval = 0;
1716         }
1717     }
1718 out:
1719     unlock_mount_hash();
1720     namespace_unlock();
1721     return retval;
1722 }
1723 
1724 /*
1725  * __detach_mounts - lazily unmount all mounts on the specified dentry
1726  *
1727  * During unlink, rmdir, and d_drop it is possible to loose the path
1728  * to an existing mountpoint, and wind up leaking the mount.
1729  * detach_mounts allows lazily unmounting those mounts instead of
1730  * leaking them.
1731  *
1732  * The caller may hold dentry->d_inode->i_mutex.
1733  */
1734 void __detach_mounts(struct dentry *dentry)
1735 {
1736     struct mountpoint *mp;
1737     struct mount *mnt;
1738 
1739     namespace_lock();
1740     lock_mount_hash();
1741     mp = lookup_mountpoint(dentry);
1742     if (!mp)
1743         goto out_unlock;
1744 
1745     event++;
1746     while (!hlist_empty(&mp->m_list)) {
1747         mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1748         if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1749             umount_mnt(mnt);
1750             hlist_add_head(&mnt->mnt_umount, &unmounted);
1751         }
1752         else umount_tree(mnt, UMOUNT_CONNECTED);
1753     }
1754     put_mountpoint(mp);
1755 out_unlock:
1756     unlock_mount_hash();
1757     namespace_unlock();
1758 }
1759 
1760 /*
1761  * Is the caller allowed to modify his namespace?
1762  */
1763 bool may_mount(void)
1764 {
1765     return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1766 }
1767 
1768 static void warn_mandlock(void)
1769 {
1770     pr_warn_once("=======================================================\n"
1771              "WARNING: The mand mount option has been deprecated and\n"
1772              "         and is ignored by this kernel. Remove the mand\n"
1773              "         option from the mount to silence this warning.\n"
1774              "=======================================================\n");
1775 }
1776 
1777 static int can_umount(const struct path *path, int flags)
1778 {
1779     struct mount *mnt = real_mount(path->mnt);
1780 
1781     if (!may_mount())
1782         return -EPERM;
1783     if (path->dentry != path->mnt->mnt_root)
1784         return -EINVAL;
1785     if (!check_mnt(mnt))
1786         return -EINVAL;
1787     if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1788         return -EINVAL;
1789     if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1790         return -EPERM;
1791     return 0;
1792 }
1793 
1794 // caller is responsible for flags being sane
1795 int path_umount(struct path *path, int flags)
1796 {
1797     struct mount *mnt = real_mount(path->mnt);
1798     int ret;
1799 
1800     ret = can_umount(path, flags);
1801     if (!ret)
1802         ret = do_umount(mnt, flags);
1803 
1804     /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1805     dput(path->dentry);
1806     mntput_no_expire(mnt);
1807     return ret;
1808 }
1809 
1810 static int ksys_umount(char __user *name, int flags)
1811 {
1812     int lookup_flags = LOOKUP_MOUNTPOINT;
1813     struct path path;
1814     int ret;
1815 
1816     // basic validity checks done first
1817     if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1818         return -EINVAL;
1819 
1820     if (!(flags & UMOUNT_NOFOLLOW))
1821         lookup_flags |= LOOKUP_FOLLOW;
1822     ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1823     if (ret)
1824         return ret;
1825     return path_umount(&path, flags);
1826 }
1827 
1828 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1829 {
1830     return ksys_umount(name, flags);
1831 }
1832 
1833 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1834 
1835 /*
1836  *  The 2.0 compatible umount. No flags.
1837  */
1838 SYSCALL_DEFINE1(oldumount, char __user *, name)
1839 {
1840     return ksys_umount(name, 0);
1841 }
1842 
1843 #endif
1844 
1845 static bool is_mnt_ns_file(struct dentry *dentry)
1846 {
1847     /* Is this a proxy for a mount namespace? */
1848     return dentry->d_op == &ns_dentry_operations &&
1849            dentry->d_fsdata == &mntns_operations;
1850 }
1851 
1852 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1853 {
1854     return container_of(ns, struct mnt_namespace, ns);
1855 }
1856 
1857 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1858 {
1859     return &mnt->ns;
1860 }
1861 
1862 static bool mnt_ns_loop(struct dentry *dentry)
1863 {
1864     /* Could bind mounting the mount namespace inode cause a
1865      * mount namespace loop?
1866      */
1867     struct mnt_namespace *mnt_ns;
1868     if (!is_mnt_ns_file(dentry))
1869         return false;
1870 
1871     mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1872     return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1873 }
1874 
1875 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1876                     int flag)
1877 {
1878     struct mount *res, *p, *q, *r, *parent;
1879 
1880     if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1881         return ERR_PTR(-EINVAL);
1882 
1883     if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1884         return ERR_PTR(-EINVAL);
1885 
1886     res = q = clone_mnt(mnt, dentry, flag);
1887     if (IS_ERR(q))
1888         return q;
1889 
1890     q->mnt_mountpoint = mnt->mnt_mountpoint;
1891 
1892     p = mnt;
1893     list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1894         struct mount *s;
1895         if (!is_subdir(r->mnt_mountpoint, dentry))
1896             continue;
1897 
1898         for (s = r; s; s = next_mnt(s, r)) {
1899             if (!(flag & CL_COPY_UNBINDABLE) &&
1900                 IS_MNT_UNBINDABLE(s)) {
1901                 if (s->mnt.mnt_flags & MNT_LOCKED) {
1902                     /* Both unbindable and locked. */
1903                     q = ERR_PTR(-EPERM);
1904                     goto out;
1905                 } else {
1906                     s = skip_mnt_tree(s);
1907                     continue;
1908                 }
1909             }
1910             if (!(flag & CL_COPY_MNT_NS_FILE) &&
1911                 is_mnt_ns_file(s->mnt.mnt_root)) {
1912                 s = skip_mnt_tree(s);
1913                 continue;
1914             }
1915             while (p != s->mnt_parent) {
1916                 p = p->mnt_parent;
1917                 q = q->mnt_parent;
1918             }
1919             p = s;
1920             parent = q;
1921             q = clone_mnt(p, p->mnt.mnt_root, flag);
1922             if (IS_ERR(q))
1923                 goto out;
1924             lock_mount_hash();
1925             list_add_tail(&q->mnt_list, &res->mnt_list);
1926             attach_mnt(q, parent, p->mnt_mp);
1927             unlock_mount_hash();
1928         }
1929     }
1930     return res;
1931 out:
1932     if (res) {
1933         lock_mount_hash();
1934         umount_tree(res, UMOUNT_SYNC);
1935         unlock_mount_hash();
1936     }
1937     return q;
1938 }
1939 
1940 /* Caller should check returned pointer for errors */
1941 
1942 struct vfsmount *collect_mounts(const struct path *path)
1943 {
1944     struct mount *tree;
1945     namespace_lock();
1946     if (!check_mnt(real_mount(path->mnt)))
1947         tree = ERR_PTR(-EINVAL);
1948     else
1949         tree = copy_tree(real_mount(path->mnt), path->dentry,
1950                  CL_COPY_ALL | CL_PRIVATE);
1951     namespace_unlock();
1952     if (IS_ERR(tree))
1953         return ERR_CAST(tree);
1954     return &tree->mnt;
1955 }
1956 
1957 static void free_mnt_ns(struct mnt_namespace *);
1958 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1959 
1960 void dissolve_on_fput(struct vfsmount *mnt)
1961 {
1962     struct mnt_namespace *ns;
1963     namespace_lock();
1964     lock_mount_hash();
1965     ns = real_mount(mnt)->mnt_ns;
1966     if (ns) {
1967         if (is_anon_ns(ns))
1968             umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1969         else
1970             ns = NULL;
1971     }
1972     unlock_mount_hash();
1973     namespace_unlock();
1974     if (ns)
1975         free_mnt_ns(ns);
1976 }
1977 
1978 void drop_collected_mounts(struct vfsmount *mnt)
1979 {
1980     namespace_lock();
1981     lock_mount_hash();
1982     umount_tree(real_mount(mnt), 0);
1983     unlock_mount_hash();
1984     namespace_unlock();
1985 }
1986 
1987 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1988 {
1989     struct mount *child;
1990 
1991     list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1992         if (!is_subdir(child->mnt_mountpoint, dentry))
1993             continue;
1994 
1995         if (child->mnt.mnt_flags & MNT_LOCKED)
1996             return true;
1997     }
1998     return false;
1999 }
2000 
2001 /**
2002  * clone_private_mount - create a private clone of a path
2003  * @path: path to clone
2004  *
2005  * This creates a new vfsmount, which will be the clone of @path.  The new mount
2006  * will not be attached anywhere in the namespace and will be private (i.e.
2007  * changes to the originating mount won't be propagated into this).
2008  *
2009  * Release with mntput().
2010  */
2011 struct vfsmount *clone_private_mount(const struct path *path)
2012 {
2013     struct mount *old_mnt = real_mount(path->mnt);
2014     struct mount *new_mnt;
2015 
2016     down_read(&namespace_sem);
2017     if (IS_MNT_UNBINDABLE(old_mnt))
2018         goto invalid;
2019 
2020     if (!check_mnt(old_mnt))
2021         goto invalid;
2022 
2023     if (has_locked_children(old_mnt, path->dentry))
2024         goto invalid;
2025 
2026     new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2027     up_read(&namespace_sem);
2028 
2029     if (IS_ERR(new_mnt))
2030         return ERR_CAST(new_mnt);
2031 
2032     /* Longterm mount to be removed by kern_unmount*() */
2033     new_mnt->mnt_ns = MNT_NS_INTERNAL;
2034 
2035     return &new_mnt->mnt;
2036 
2037 invalid:
2038     up_read(&namespace_sem);
2039     return ERR_PTR(-EINVAL);
2040 }
2041 EXPORT_SYMBOL_GPL(clone_private_mount);
2042 
2043 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2044            struct vfsmount *root)
2045 {
2046     struct mount *mnt;
2047     int res = f(root, arg);
2048     if (res)
2049         return res;
2050     list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2051         res = f(&mnt->mnt, arg);
2052         if (res)
2053             return res;
2054     }
2055     return 0;
2056 }
2057 
2058 static void lock_mnt_tree(struct mount *mnt)
2059 {
2060     struct mount *p;
2061 
2062     for (p = mnt; p; p = next_mnt(p, mnt)) {
2063         int flags = p->mnt.mnt_flags;
2064         /* Don't allow unprivileged users to change mount flags */
2065         flags |= MNT_LOCK_ATIME;
2066 
2067         if (flags & MNT_READONLY)
2068             flags |= MNT_LOCK_READONLY;
2069 
2070         if (flags & MNT_NODEV)
2071             flags |= MNT_LOCK_NODEV;
2072 
2073         if (flags & MNT_NOSUID)
2074             flags |= MNT_LOCK_NOSUID;
2075 
2076         if (flags & MNT_NOEXEC)
2077             flags |= MNT_LOCK_NOEXEC;
2078         /* Don't allow unprivileged users to reveal what is under a mount */
2079         if (list_empty(&p->mnt_expire))
2080             flags |= MNT_LOCKED;
2081         p->mnt.mnt_flags = flags;
2082     }
2083 }
2084 
2085 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2086 {
2087     struct mount *p;
2088 
2089     for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2090         if (p->mnt_group_id && !IS_MNT_SHARED(p))
2091             mnt_release_group_id(p);
2092     }
2093 }
2094 
2095 static int invent_group_ids(struct mount *mnt, bool recurse)
2096 {
2097     struct mount *p;
2098 
2099     for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2100         if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2101             int err = mnt_alloc_group_id(p);
2102             if (err) {
2103                 cleanup_group_ids(mnt, p);
2104                 return err;
2105             }
2106         }
2107     }
2108 
2109     return 0;
2110 }
2111 
2112 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2113 {
2114     unsigned int max = READ_ONCE(sysctl_mount_max);
2115     unsigned int mounts = 0;
2116     struct mount *p;
2117 
2118     if (ns->mounts >= max)
2119         return -ENOSPC;
2120     max -= ns->mounts;
2121     if (ns->pending_mounts >= max)
2122         return -ENOSPC;
2123     max -= ns->pending_mounts;
2124 
2125     for (p = mnt; p; p = next_mnt(p, mnt))
2126         mounts++;
2127 
2128     if (mounts > max)
2129         return -ENOSPC;
2130 
2131     ns->pending_mounts += mounts;
2132     return 0;
2133 }
2134 
2135 /*
2136  *  @source_mnt : mount tree to be attached
2137  *  @nd         : place the mount tree @source_mnt is attached
2138  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
2139  *             store the parent mount and mountpoint dentry.
2140  *             (done when source_mnt is moved)
2141  *
2142  *  NOTE: in the table below explains the semantics when a source mount
2143  *  of a given type is attached to a destination mount of a given type.
2144  * ---------------------------------------------------------------------------
2145  * |         BIND MOUNT OPERATION                                            |
2146  * |**************************************************************************
2147  * | source-->| shared        |       private  |       slave    | unbindable |
2148  * | dest     |               |                |                |            |
2149  * |   |      |               |                |                |            |
2150  * |   v      |               |                |                |            |
2151  * |**************************************************************************
2152  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2153  * |          |               |                |                |            |
2154  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2155  * ***************************************************************************
2156  * A bind operation clones the source mount and mounts the clone on the
2157  * destination mount.
2158  *
2159  * (++)  the cloned mount is propagated to all the mounts in the propagation
2160  *   tree of the destination mount and the cloned mount is added to
2161  *   the peer group of the source mount.
2162  * (+)   the cloned mount is created under the destination mount and is marked
2163  *       as shared. The cloned mount is added to the peer group of the source
2164  *       mount.
2165  * (+++) the mount is propagated to all the mounts in the propagation tree
2166  *       of the destination mount and the cloned mount is made slave
2167  *       of the same master as that of the source mount. The cloned mount
2168  *       is marked as 'shared and slave'.
2169  * (*)   the cloned mount is made a slave of the same master as that of the
2170  *   source mount.
2171  *
2172  * ---------------------------------------------------------------------------
2173  * |                MOVE MOUNT OPERATION                                 |
2174  * |**************************************************************************
2175  * | source-->| shared        |       private  |       slave    | unbindable |
2176  * | dest     |               |                |                |            |
2177  * |   |      |               |                |                |            |
2178  * |   v      |               |                |                |            |
2179  * |**************************************************************************
2180  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2181  * |          |               |                |                |            |
2182  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2183  * ***************************************************************************
2184  *
2185  * (+)  the mount is moved to the destination. And is then propagated to
2186  *  all the mounts in the propagation tree of the destination mount.
2187  * (+*)  the mount is moved to the destination.
2188  * (+++)  the mount is moved to the destination and is then propagated to
2189  *  all the mounts belonging to the destination mount's propagation tree.
2190  *  the mount is marked as 'shared and slave'.
2191  * (*)  the mount continues to be a slave at the new location.
2192  *
2193  * if the source mount is a tree, the operations explained above is
2194  * applied to each mount in the tree.
2195  * Must be called without spinlocks held, since this function can sleep
2196  * in allocations.
2197  */
2198 static int attach_recursive_mnt(struct mount *source_mnt,
2199             struct mount *dest_mnt,
2200             struct mountpoint *dest_mp,
2201             bool moving)
2202 {
2203     struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2204     HLIST_HEAD(tree_list);
2205     struct mnt_namespace *ns = dest_mnt->mnt_ns;
2206     struct mountpoint *smp;
2207     struct mount *child, *p;
2208     struct hlist_node *n;
2209     int err;
2210 
2211     /* Preallocate a mountpoint in case the new mounts need
2212      * to be tucked under other mounts.
2213      */
2214     smp = get_mountpoint(source_mnt->mnt.mnt_root);
2215     if (IS_ERR(smp))
2216         return PTR_ERR(smp);
2217 
2218     /* Is there space to add these mounts to the mount namespace? */
2219     if (!moving) {
2220         err = count_mounts(ns, source_mnt);
2221         if (err)
2222             goto out;
2223     }
2224 
2225     if (IS_MNT_SHARED(dest_mnt)) {
2226         err = invent_group_ids(source_mnt, true);
2227         if (err)
2228             goto out;
2229         err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2230         lock_mount_hash();
2231         if (err)
2232             goto out_cleanup_ids;
2233         for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2234             set_mnt_shared(p);
2235     } else {
2236         lock_mount_hash();
2237     }
2238     if (moving) {
2239         unhash_mnt(source_mnt);
2240         attach_mnt(source_mnt, dest_mnt, dest_mp);
2241         touch_mnt_namespace(source_mnt->mnt_ns);
2242     } else {
2243         if (source_mnt->mnt_ns) {
2244             /* move from anon - the caller will destroy */
2245             list_del_init(&source_mnt->mnt_ns->list);
2246         }
2247         mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2248         commit_tree(source_mnt);
2249     }
2250 
2251     hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2252         struct mount *q;
2253         hlist_del_init(&child->mnt_hash);
2254         q = __lookup_mnt(&child->mnt_parent->mnt,
2255                  child->mnt_mountpoint);
2256         if (q)
2257             mnt_change_mountpoint(child, smp, q);
2258         /* Notice when we are propagating across user namespaces */
2259         if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2260             lock_mnt_tree(child);
2261         child->mnt.mnt_flags &= ~MNT_LOCKED;
2262         commit_tree(child);
2263     }
2264     put_mountpoint(smp);
2265     unlock_mount_hash();
2266 
2267     return 0;
2268 
2269  out_cleanup_ids:
2270     while (!hlist_empty(&tree_list)) {
2271         child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2272         child->mnt_parent->mnt_ns->pending_mounts = 0;
2273         umount_tree(child, UMOUNT_SYNC);
2274     }
2275     unlock_mount_hash();
2276     cleanup_group_ids(source_mnt, NULL);
2277  out:
2278     ns->pending_mounts = 0;
2279 
2280     read_seqlock_excl(&mount_lock);
2281     put_mountpoint(smp);
2282     read_sequnlock_excl(&mount_lock);
2283 
2284     return err;
2285 }
2286 
2287 static struct mountpoint *lock_mount(struct path *path)
2288 {
2289     struct vfsmount *mnt;
2290     struct dentry *dentry = path->dentry;
2291 retry:
2292     inode_lock(dentry->d_inode);
2293     if (unlikely(cant_mount(dentry))) {
2294         inode_unlock(dentry->d_inode);
2295         return ERR_PTR(-ENOENT);
2296     }
2297     namespace_lock();
2298     mnt = lookup_mnt(path);
2299     if (likely(!mnt)) {
2300         struct mountpoint *mp = get_mountpoint(dentry);
2301         if (IS_ERR(mp)) {
2302             namespace_unlock();
2303             inode_unlock(dentry->d_inode);
2304             return mp;
2305         }
2306         return mp;
2307     }
2308     namespace_unlock();
2309     inode_unlock(path->dentry->d_inode);
2310     path_put(path);
2311     path->mnt = mnt;
2312     dentry = path->dentry = dget(mnt->mnt_root);
2313     goto retry;
2314 }
2315 
2316 static void unlock_mount(struct mountpoint *where)
2317 {
2318     struct dentry *dentry = where->m_dentry;
2319 
2320     read_seqlock_excl(&mount_lock);
2321     put_mountpoint(where);
2322     read_sequnlock_excl(&mount_lock);
2323 
2324     namespace_unlock();
2325     inode_unlock(dentry->d_inode);
2326 }
2327 
2328 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2329 {
2330     if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2331         return -EINVAL;
2332 
2333     if (d_is_dir(mp->m_dentry) !=
2334           d_is_dir(mnt->mnt.mnt_root))
2335         return -ENOTDIR;
2336 
2337     return attach_recursive_mnt(mnt, p, mp, false);
2338 }
2339 
2340 /*
2341  * Sanity check the flags to change_mnt_propagation.
2342  */
2343 
2344 static int flags_to_propagation_type(int ms_flags)
2345 {
2346     int type = ms_flags & ~(MS_REC | MS_SILENT);
2347 
2348     /* Fail if any non-propagation flags are set */
2349     if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2350         return 0;
2351     /* Only one propagation flag should be set */
2352     if (!is_power_of_2(type))
2353         return 0;
2354     return type;
2355 }
2356 
2357 /*
2358  * recursively change the type of the mountpoint.
2359  */
2360 static int do_change_type(struct path *path, int ms_flags)
2361 {
2362     struct mount *m;
2363     struct mount *mnt = real_mount(path->mnt);
2364     int recurse = ms_flags & MS_REC;
2365     int type;
2366     int err = 0;
2367 
2368     if (path->dentry != path->mnt->mnt_root)
2369         return -EINVAL;
2370 
2371     type = flags_to_propagation_type(ms_flags);
2372     if (!type)
2373         return -EINVAL;
2374 
2375     namespace_lock();
2376     if (type == MS_SHARED) {
2377         err = invent_group_ids(mnt, recurse);
2378         if (err)
2379             goto out_unlock;
2380     }
2381 
2382     lock_mount_hash();
2383     for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2384         change_mnt_propagation(m, type);
2385     unlock_mount_hash();
2386 
2387  out_unlock:
2388     namespace_unlock();
2389     return err;
2390 }
2391 
2392 static struct mount *__do_loopback(struct path *old_path, int recurse)
2393 {
2394     struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2395 
2396     if (IS_MNT_UNBINDABLE(old))
2397         return mnt;
2398 
2399     if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2400         return mnt;
2401 
2402     if (!recurse && has_locked_children(old, old_path->dentry))
2403         return mnt;
2404 
2405     if (recurse)
2406         mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2407     else
2408         mnt = clone_mnt(old, old_path->dentry, 0);
2409 
2410     if (!IS_ERR(mnt))
2411         mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2412 
2413     return mnt;
2414 }
2415 
2416 /*
2417  * do loopback mount.
2418  */
2419 static int do_loopback(struct path *path, const char *old_name,
2420                 int recurse)
2421 {
2422     struct path old_path;
2423     struct mount *mnt = NULL, *parent;
2424     struct mountpoint *mp;
2425     int err;
2426     if (!old_name || !*old_name)
2427         return -EINVAL;
2428     err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2429     if (err)
2430         return err;
2431 
2432     err = -EINVAL;
2433     if (mnt_ns_loop(old_path.dentry))
2434         goto out;
2435 
2436     mp = lock_mount(path);
2437     if (IS_ERR(mp)) {
2438         err = PTR_ERR(mp);
2439         goto out;
2440     }
2441 
2442     parent = real_mount(path->mnt);
2443     if (!check_mnt(parent))
2444         goto out2;
2445 
2446     mnt = __do_loopback(&old_path, recurse);
2447     if (IS_ERR(mnt)) {
2448         err = PTR_ERR(mnt);
2449         goto out2;
2450     }
2451 
2452     err = graft_tree(mnt, parent, mp);
2453     if (err) {
2454         lock_mount_hash();
2455         umount_tree(mnt, UMOUNT_SYNC);
2456         unlock_mount_hash();
2457     }
2458 out2:
2459     unlock_mount(mp);
2460 out:
2461     path_put(&old_path);
2462     return err;
2463 }
2464 
2465 static struct file *open_detached_copy(struct path *path, bool recursive)
2466 {
2467     struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2468     struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2469     struct mount *mnt, *p;
2470     struct file *file;
2471 
2472     if (IS_ERR(ns))
2473         return ERR_CAST(ns);
2474 
2475     namespace_lock();
2476     mnt = __do_loopback(path, recursive);
2477     if (IS_ERR(mnt)) {
2478         namespace_unlock();
2479         free_mnt_ns(ns);
2480         return ERR_CAST(mnt);
2481     }
2482 
2483     lock_mount_hash();
2484     for (p = mnt; p; p = next_mnt(p, mnt)) {
2485         p->mnt_ns = ns;
2486         ns->mounts++;
2487     }
2488     ns->root = mnt;
2489     list_add_tail(&ns->list, &mnt->mnt_list);
2490     mntget(&mnt->mnt);
2491     unlock_mount_hash();
2492     namespace_unlock();
2493 
2494     mntput(path->mnt);
2495     path->mnt = &mnt->mnt;
2496     file = dentry_open(path, O_PATH, current_cred());
2497     if (IS_ERR(file))
2498         dissolve_on_fput(path->mnt);
2499     else
2500         file->f_mode |= FMODE_NEED_UNMOUNT;
2501     return file;
2502 }
2503 
2504 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2505 {
2506     struct file *file;
2507     struct path path;
2508     int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2509     bool detached = flags & OPEN_TREE_CLONE;
2510     int error;
2511     int fd;
2512 
2513     BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2514 
2515     if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2516               AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2517               OPEN_TREE_CLOEXEC))
2518         return -EINVAL;
2519 
2520     if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2521         return -EINVAL;
2522 
2523     if (flags & AT_NO_AUTOMOUNT)
2524         lookup_flags &= ~LOOKUP_AUTOMOUNT;
2525     if (flags & AT_SYMLINK_NOFOLLOW)
2526         lookup_flags &= ~LOOKUP_FOLLOW;
2527     if (flags & AT_EMPTY_PATH)
2528         lookup_flags |= LOOKUP_EMPTY;
2529 
2530     if (detached && !may_mount())
2531         return -EPERM;
2532 
2533     fd = get_unused_fd_flags(flags & O_CLOEXEC);
2534     if (fd < 0)
2535         return fd;
2536 
2537     error = user_path_at(dfd, filename, lookup_flags, &path);
2538     if (unlikely(error)) {
2539         file = ERR_PTR(error);
2540     } else {
2541         if (detached)
2542             file = open_detached_copy(&path, flags & AT_RECURSIVE);
2543         else
2544             file = dentry_open(&path, O_PATH, current_cred());
2545         path_put(&path);
2546     }
2547     if (IS_ERR(file)) {
2548         put_unused_fd(fd);
2549         return PTR_ERR(file);
2550     }
2551     fd_install(fd, file);
2552     return fd;
2553 }
2554 
2555 /*
2556  * Don't allow locked mount flags to be cleared.
2557  *
2558  * No locks need to be held here while testing the various MNT_LOCK
2559  * flags because those flags can never be cleared once they are set.
2560  */
2561 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2562 {
2563     unsigned int fl = mnt->mnt.mnt_flags;
2564 
2565     if ((fl & MNT_LOCK_READONLY) &&
2566         !(mnt_flags & MNT_READONLY))
2567         return false;
2568 
2569     if ((fl & MNT_LOCK_NODEV) &&
2570         !(mnt_flags & MNT_NODEV))
2571         return false;
2572 
2573     if ((fl & MNT_LOCK_NOSUID) &&
2574         !(mnt_flags & MNT_NOSUID))
2575         return false;
2576 
2577     if ((fl & MNT_LOCK_NOEXEC) &&
2578         !(mnt_flags & MNT_NOEXEC))
2579         return false;
2580 
2581     if ((fl & MNT_LOCK_ATIME) &&
2582         ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2583         return false;
2584 
2585     return true;
2586 }
2587 
2588 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2589 {
2590     bool readonly_request = (mnt_flags & MNT_READONLY);
2591 
2592     if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2593         return 0;
2594 
2595     if (readonly_request)
2596         return mnt_make_readonly(mnt);
2597 
2598     mnt->mnt.mnt_flags &= ~MNT_READONLY;
2599     return 0;
2600 }
2601 
2602 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2603 {
2604     mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2605     mnt->mnt.mnt_flags = mnt_flags;
2606     touch_mnt_namespace(mnt->mnt_ns);
2607 }
2608 
2609 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2610 {
2611     struct super_block *sb = mnt->mnt_sb;
2612 
2613     if (!__mnt_is_readonly(mnt) &&
2614        (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2615        (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2616         char *buf = (char *)__get_free_page(GFP_KERNEL);
2617         char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2618         struct tm tm;
2619 
2620         time64_to_tm(sb->s_time_max, 0, &tm);
2621 
2622         pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2623             sb->s_type->name,
2624             is_mounted(mnt) ? "remounted" : "mounted",
2625             mntpath,
2626             tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2627 
2628         free_page((unsigned long)buf);
2629         sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2630     }
2631 }
2632 
2633 /*
2634  * Handle reconfiguration of the mountpoint only without alteration of the
2635  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2636  * to mount(2).
2637  */
2638 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2639 {
2640     struct super_block *sb = path->mnt->mnt_sb;
2641     struct mount *mnt = real_mount(path->mnt);
2642     int ret;
2643 
2644     if (!check_mnt(mnt))
2645         return -EINVAL;
2646 
2647     if (path->dentry != mnt->mnt.mnt_root)
2648         return -EINVAL;
2649 
2650     if (!can_change_locked_flags(mnt, mnt_flags))
2651         return -EPERM;
2652 
2653     /*
2654      * We're only checking whether the superblock is read-only not
2655      * changing it, so only take down_read(&sb->s_umount).
2656      */
2657     down_read(&sb->s_umount);
2658     lock_mount_hash();
2659     ret = change_mount_ro_state(mnt, mnt_flags);
2660     if (ret == 0)
2661         set_mount_attributes(mnt, mnt_flags);
2662     unlock_mount_hash();
2663     up_read(&sb->s_umount);
2664 
2665     mnt_warn_timestamp_expiry(path, &mnt->mnt);
2666 
2667     return ret;
2668 }
2669 
2670 /*
2671  * change filesystem flags. dir should be a physical root of filesystem.
2672  * If you've mounted a non-root directory somewhere and want to do remount
2673  * on it - tough luck.
2674  */
2675 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2676               int mnt_flags, void *data)
2677 {
2678     int err;
2679     struct super_block *sb = path->mnt->mnt_sb;
2680     struct mount *mnt = real_mount(path->mnt);
2681     struct fs_context *fc;
2682 
2683     if (!check_mnt(mnt))
2684         return -EINVAL;
2685 
2686     if (path->dentry != path->mnt->mnt_root)
2687         return -EINVAL;
2688 
2689     if (!can_change_locked_flags(mnt, mnt_flags))
2690         return -EPERM;
2691 
2692     fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2693     if (IS_ERR(fc))
2694         return PTR_ERR(fc);
2695 
2696     fc->oldapi = true;
2697     err = parse_monolithic_mount_data(fc, data);
2698     if (!err) {
2699         down_write(&sb->s_umount);
2700         err = -EPERM;
2701         if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2702             err = reconfigure_super(fc);
2703             if (!err) {
2704                 lock_mount_hash();
2705                 set_mount_attributes(mnt, mnt_flags);
2706                 unlock_mount_hash();
2707             }
2708         }
2709         up_write(&sb->s_umount);
2710     }
2711 
2712     mnt_warn_timestamp_expiry(path, &mnt->mnt);
2713 
2714     put_fs_context(fc);
2715     return err;
2716 }
2717 
2718 static inline int tree_contains_unbindable(struct mount *mnt)
2719 {
2720     struct mount *p;
2721     for (p = mnt; p; p = next_mnt(p, mnt)) {
2722         if (IS_MNT_UNBINDABLE(p))
2723             return 1;
2724     }
2725     return 0;
2726 }
2727 
2728 /*
2729  * Check that there aren't references to earlier/same mount namespaces in the
2730  * specified subtree.  Such references can act as pins for mount namespaces
2731  * that aren't checked by the mount-cycle checking code, thereby allowing
2732  * cycles to be made.
2733  */
2734 static bool check_for_nsfs_mounts(struct mount *subtree)
2735 {
2736     struct mount *p;
2737     bool ret = false;
2738 
2739     lock_mount_hash();
2740     for (p = subtree; p; p = next_mnt(p, subtree))
2741         if (mnt_ns_loop(p->mnt.mnt_root))
2742             goto out;
2743 
2744     ret = true;
2745 out:
2746     unlock_mount_hash();
2747     return ret;
2748 }
2749 
2750 static int do_set_group(struct path *from_path, struct path *to_path)
2751 {
2752     struct mount *from, *to;
2753     int err;
2754 
2755     from = real_mount(from_path->mnt);
2756     to = real_mount(to_path->mnt);
2757 
2758     namespace_lock();
2759 
2760     err = -EINVAL;
2761     /* To and From must be mounted */
2762     if (!is_mounted(&from->mnt))
2763         goto out;
2764     if (!is_mounted(&to->mnt))
2765         goto out;
2766 
2767     err = -EPERM;
2768     /* We should be allowed to modify mount namespaces of both mounts */
2769     if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2770         goto out;
2771     if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2772         goto out;
2773 
2774     err = -EINVAL;
2775     /* To and From paths should be mount roots */
2776     if (from_path->dentry != from_path->mnt->mnt_root)
2777         goto out;
2778     if (to_path->dentry != to_path->mnt->mnt_root)
2779         goto out;
2780 
2781     /* Setting sharing groups is only allowed across same superblock */
2782     if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2783         goto out;
2784 
2785     /* From mount root should be wider than To mount root */
2786     if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2787         goto out;
2788 
2789     /* From mount should not have locked children in place of To's root */
2790     if (has_locked_children(from, to->mnt.mnt_root))
2791         goto out;
2792 
2793     /* Setting sharing groups is only allowed on private mounts */
2794     if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2795         goto out;
2796 
2797     /* From should not be private */
2798     if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2799         goto out;
2800 
2801     if (IS_MNT_SLAVE(from)) {
2802         struct mount *m = from->mnt_master;
2803 
2804         list_add(&to->mnt_slave, &m->mnt_slave_list);
2805         to->mnt_master = m;
2806     }
2807 
2808     if (IS_MNT_SHARED(from)) {
2809         to->mnt_group_id = from->mnt_group_id;
2810         list_add(&to->mnt_share, &from->mnt_share);
2811         lock_mount_hash();
2812         set_mnt_shared(to);
2813         unlock_mount_hash();
2814     }
2815 
2816     err = 0;
2817 out:
2818     namespace_unlock();
2819     return err;
2820 }
2821 
2822 static int do_move_mount(struct path *old_path, struct path *new_path)
2823 {
2824     struct mnt_namespace *ns;
2825     struct mount *p;
2826     struct mount *old;
2827     struct mount *parent;
2828     struct mountpoint *mp, *old_mp;
2829     int err;
2830     bool attached;
2831 
2832     mp = lock_mount(new_path);
2833     if (IS_ERR(mp))
2834         return PTR_ERR(mp);
2835 
2836     old = real_mount(old_path->mnt);
2837     p = real_mount(new_path->mnt);
2838     parent = old->mnt_parent;
2839     attached = mnt_has_parent(old);
2840     old_mp = old->mnt_mp;
2841     ns = old->mnt_ns;
2842 
2843     err = -EINVAL;
2844     /* The mountpoint must be in our namespace. */
2845     if (!check_mnt(p))
2846         goto out;
2847 
2848     /* The thing moved must be mounted... */
2849     if (!is_mounted(&old->mnt))
2850         goto out;
2851 
2852     /* ... and either ours or the root of anon namespace */
2853     if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2854         goto out;
2855 
2856     if (old->mnt.mnt_flags & MNT_LOCKED)
2857         goto out;
2858 
2859     if (old_path->dentry != old_path->mnt->mnt_root)
2860         goto out;
2861 
2862     if (d_is_dir(new_path->dentry) !=
2863         d_is_dir(old_path->dentry))
2864         goto out;
2865     /*
2866      * Don't move a mount residing in a shared parent.
2867      */
2868     if (attached && IS_MNT_SHARED(parent))
2869         goto out;
2870     /*
2871      * Don't move a mount tree containing unbindable mounts to a destination
2872      * mount which is shared.
2873      */
2874     if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2875         goto out;
2876     err = -ELOOP;
2877     if (!check_for_nsfs_mounts(old))
2878         goto out;
2879     for (; mnt_has_parent(p); p = p->mnt_parent)
2880         if (p == old)
2881             goto out;
2882 
2883     err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2884                    attached);
2885     if (err)
2886         goto out;
2887 
2888     /* if the mount is moved, it should no longer be expire
2889      * automatically */
2890     list_del_init(&old->mnt_expire);
2891     if (attached)
2892         put_mountpoint(old_mp);
2893 out:
2894     unlock_mount(mp);
2895     if (!err) {
2896         if (attached)
2897             mntput_no_expire(parent);
2898         else
2899             free_mnt_ns(ns);
2900     }
2901     return err;
2902 }
2903 
2904 static int do_move_mount_old(struct path *path, const char *old_name)
2905 {
2906     struct path old_path;
2907     int err;
2908 
2909     if (!old_name || !*old_name)
2910         return -EINVAL;
2911 
2912     err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2913     if (err)
2914         return err;
2915 
2916     err = do_move_mount(&old_path, path);
2917     path_put(&old_path);
2918     return err;
2919 }
2920 
2921 /*
2922  * add a mount into a namespace's mount tree
2923  */
2924 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2925             const struct path *path, int mnt_flags)
2926 {
2927     struct mount *parent = real_mount(path->mnt);
2928 
2929     mnt_flags &= ~MNT_INTERNAL_FLAGS;
2930 
2931     if (unlikely(!check_mnt(parent))) {
2932         /* that's acceptable only for automounts done in private ns */
2933         if (!(mnt_flags & MNT_SHRINKABLE))
2934             return -EINVAL;
2935         /* ... and for those we'd better have mountpoint still alive */
2936         if (!parent->mnt_ns)
2937             return -EINVAL;
2938     }
2939 
2940     /* Refuse the same filesystem on the same mount point */
2941     if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2942         path->mnt->mnt_root == path->dentry)
2943         return -EBUSY;
2944 
2945     if (d_is_symlink(newmnt->mnt.mnt_root))
2946         return -EINVAL;
2947 
2948     newmnt->mnt.mnt_flags = mnt_flags;
2949     return graft_tree(newmnt, parent, mp);
2950 }
2951 
2952 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2953 
2954 /*
2955  * Create a new mount using a superblock configuration and request it
2956  * be added to the namespace tree.
2957  */
2958 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2959                unsigned int mnt_flags)
2960 {
2961     struct vfsmount *mnt;
2962     struct mountpoint *mp;
2963     struct super_block *sb = fc->root->d_sb;
2964     int error;
2965 
2966     error = security_sb_kern_mount(sb);
2967     if (!error && mount_too_revealing(sb, &mnt_flags))
2968         error = -EPERM;
2969 
2970     if (unlikely(error)) {
2971         fc_drop_locked(fc);
2972         return error;
2973     }
2974 
2975     up_write(&sb->s_umount);
2976 
2977     mnt = vfs_create_mount(fc);
2978     if (IS_ERR(mnt))
2979         return PTR_ERR(mnt);
2980 
2981     mnt_warn_timestamp_expiry(mountpoint, mnt);
2982 
2983     mp = lock_mount(mountpoint);
2984     if (IS_ERR(mp)) {
2985         mntput(mnt);
2986         return PTR_ERR(mp);
2987     }
2988     error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2989     unlock_mount(mp);
2990     if (error < 0)
2991         mntput(mnt);
2992     return error;
2993 }
2994 
2995 /*
2996  * create a new mount for userspace and request it to be added into the
2997  * namespace's tree
2998  */
2999 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3000             int mnt_flags, const char *name, void *data)
3001 {
3002     struct file_system_type *type;
3003     struct fs_context *fc;
3004     const char *subtype = NULL;
3005     int err = 0;
3006 
3007     if (!fstype)
3008         return -EINVAL;
3009 
3010     type = get_fs_type(fstype);
3011     if (!type)
3012         return -ENODEV;
3013 
3014     if (type->fs_flags & FS_HAS_SUBTYPE) {
3015         subtype = strchr(fstype, '.');
3016         if (subtype) {
3017             subtype++;
3018             if (!*subtype) {
3019                 put_filesystem(type);
3020                 return -EINVAL;
3021             }
3022         }
3023     }
3024 
3025     fc = fs_context_for_mount(type, sb_flags);
3026     put_filesystem(type);
3027     if (IS_ERR(fc))
3028         return PTR_ERR(fc);
3029 
3030     if (subtype)
3031         err = vfs_parse_fs_string(fc, "subtype",
3032                       subtype, strlen(subtype));
3033     if (!err && name)
3034         err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3035     if (!err)
3036         err = parse_monolithic_mount_data(fc, data);
3037     if (!err && !mount_capable(fc))
3038         err = -EPERM;
3039     if (!err)
3040         err = vfs_get_tree(fc);
3041     if (!err)
3042         err = do_new_mount_fc(fc, path, mnt_flags);
3043 
3044     put_fs_context(fc);
3045     return err;
3046 }
3047 
3048 int finish_automount(struct vfsmount *m, const struct path *path)
3049 {
3050     struct dentry *dentry = path->dentry;
3051     struct mountpoint *mp;
3052     struct mount *mnt;
3053     int err;
3054 
3055     if (!m)
3056         return 0;
3057     if (IS_ERR(m))
3058         return PTR_ERR(m);
3059 
3060     mnt = real_mount(m);
3061     /* The new mount record should have at least 2 refs to prevent it being
3062      * expired before we get a chance to add it
3063      */
3064     BUG_ON(mnt_get_count(mnt) < 2);
3065 
3066     if (m->mnt_sb == path->mnt->mnt_sb &&
3067         m->mnt_root == dentry) {
3068         err = -ELOOP;
3069         goto discard;
3070     }
3071 
3072     /*
3073      * we don't want to use lock_mount() - in this case finding something
3074      * that overmounts our mountpoint to be means "quitely drop what we've
3075      * got", not "try to mount it on top".
3076      */
3077     inode_lock(dentry->d_inode);
3078     namespace_lock();
3079     if (unlikely(cant_mount(dentry))) {
3080         err = -ENOENT;
3081         goto discard_locked;
3082     }
3083     rcu_read_lock();
3084     if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3085         rcu_read_unlock();
3086         err = 0;
3087         goto discard_locked;
3088     }
3089     rcu_read_unlock();
3090     mp = get_mountpoint(dentry);
3091     if (IS_ERR(mp)) {
3092         err = PTR_ERR(mp);
3093         goto discard_locked;
3094     }
3095 
3096     err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3097     unlock_mount(mp);
3098     if (unlikely(err))
3099         goto discard;
3100     mntput(m);
3101     return 0;
3102 
3103 discard_locked:
3104     namespace_unlock();
3105     inode_unlock(dentry->d_inode);
3106 discard:
3107     /* remove m from any expiration list it may be on */
3108     if (!list_empty(&mnt->mnt_expire)) {
3109         namespace_lock();
3110         list_del_init(&mnt->mnt_expire);
3111         namespace_unlock();
3112     }
3113     mntput(m);
3114     mntput(m);
3115     return err;
3116 }
3117 
3118 /**
3119  * mnt_set_expiry - Put a mount on an expiration list
3120  * @mnt: The mount to list.
3121  * @expiry_list: The list to add the mount to.
3122  */
3123 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3124 {
3125     namespace_lock();
3126 
3127     list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3128 
3129     namespace_unlock();
3130 }
3131 EXPORT_SYMBOL(mnt_set_expiry);
3132 
3133 /*
3134  * process a list of expirable mountpoints with the intent of discarding any
3135  * mountpoints that aren't in use and haven't been touched since last we came
3136  * here
3137  */
3138 void mark_mounts_for_expiry(struct list_head *mounts)
3139 {
3140     struct mount *mnt, *next;
3141     LIST_HEAD(graveyard);
3142 
3143     if (list_empty(mounts))
3144         return;
3145 
3146     namespace_lock();
3147     lock_mount_hash();
3148 
3149     /* extract from the expiration list every vfsmount that matches the
3150      * following criteria:
3151      * - only referenced by its parent vfsmount
3152      * - still marked for expiry (marked on the last call here; marks are
3153      *   cleared by mntput())
3154      */
3155     list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3156         if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3157             propagate_mount_busy(mnt, 1))
3158             continue;
3159         list_move(&mnt->mnt_expire, &graveyard);
3160     }
3161     while (!list_empty(&graveyard)) {
3162         mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3163         touch_mnt_namespace(mnt->mnt_ns);
3164         umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3165     }
3166     unlock_mount_hash();
3167     namespace_unlock();
3168 }
3169 
3170 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3171 
3172 /*
3173  * Ripoff of 'select_parent()'
3174  *
3175  * search the list of submounts for a given mountpoint, and move any
3176  * shrinkable submounts to the 'graveyard' list.
3177  */
3178 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3179 {
3180     struct mount *this_parent = parent;
3181     struct list_head *next;
3182     int found = 0;
3183 
3184 repeat:
3185     next = this_parent->mnt_mounts.next;
3186 resume:
3187     while (next != &this_parent->mnt_mounts) {
3188         struct list_head *tmp = next;
3189         struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3190 
3191         next = tmp->next;
3192         if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3193             continue;
3194         /*
3195          * Descend a level if the d_mounts list is non-empty.
3196          */
3197         if (!list_empty(&mnt->mnt_mounts)) {
3198             this_parent = mnt;
3199             goto repeat;
3200         }
3201 
3202         if (!propagate_mount_busy(mnt, 1)) {
3203             list_move_tail(&mnt->mnt_expire, graveyard);
3204             found++;
3205         }
3206     }
3207     /*
3208      * All done at this level ... ascend and resume the search
3209      */
3210     if (this_parent != parent) {
3211         next = this_parent->mnt_child.next;
3212         this_parent = this_parent->mnt_parent;
3213         goto resume;
3214     }
3215     return found;
3216 }
3217 
3218 /*
3219  * process a list of expirable mountpoints with the intent of discarding any
3220  * submounts of a specific parent mountpoint
3221  *
3222  * mount_lock must be held for write
3223  */
3224 static void shrink_submounts(struct mount *mnt)
3225 {
3226     LIST_HEAD(graveyard);
3227     struct mount *m;
3228 
3229     /* extract submounts of 'mountpoint' from the expiration list */
3230     while (select_submounts(mnt, &graveyard)) {
3231         while (!list_empty(&graveyard)) {
3232             m = list_first_entry(&graveyard, struct mount,
3233                         mnt_expire);
3234             touch_mnt_namespace(m->mnt_ns);
3235             umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3236         }
3237     }
3238 }
3239 
3240 static void *copy_mount_options(const void __user * data)
3241 {
3242     char *copy;
3243     unsigned left, offset;
3244 
3245     if (!data)
3246         return NULL;
3247 
3248     copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3249     if (!copy)
3250         return ERR_PTR(-ENOMEM);
3251 
3252     left = copy_from_user(copy, data, PAGE_SIZE);
3253 
3254     /*
3255      * Not all architectures have an exact copy_from_user(). Resort to
3256      * byte at a time.
3257      */
3258     offset = PAGE_SIZE - left;
3259     while (left) {
3260         char c;
3261         if (get_user(c, (const char __user *)data + offset))
3262             break;
3263         copy[offset] = c;
3264         left--;
3265         offset++;
3266     }
3267 
3268     if (left == PAGE_SIZE) {
3269         kfree(copy);
3270         return ERR_PTR(-EFAULT);
3271     }
3272 
3273     return copy;
3274 }
3275 
3276 static char *copy_mount_string(const void __user *data)
3277 {
3278     return data ? strndup_user(data, PATH_MAX) : NULL;
3279 }
3280 
3281 /*
3282  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3283  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3284  *
3285  * data is a (void *) that can point to any structure up to
3286  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3287  * information (or be NULL).
3288  *
3289  * Pre-0.97 versions of mount() didn't have a flags word.
3290  * When the flags word was introduced its top half was required
3291  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3292  * Therefore, if this magic number is present, it carries no information
3293  * and must be discarded.
3294  */
3295 int path_mount(const char *dev_name, struct path *path,
3296         const char *type_page, unsigned long flags, void *data_page)
3297 {
3298     unsigned int mnt_flags = 0, sb_flags;
3299     int ret;
3300 
3301     /* Discard magic */
3302     if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3303         flags &= ~MS_MGC_MSK;
3304 
3305     /* Basic sanity checks */
3306     if (data_page)
3307         ((char *)data_page)[PAGE_SIZE - 1] = 0;
3308 
3309     if (flags & MS_NOUSER)
3310         return -EINVAL;
3311 
3312     ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3313     if (ret)
3314         return ret;
3315     if (!may_mount())
3316         return -EPERM;
3317     if (flags & SB_MANDLOCK)
3318         warn_mandlock();
3319 
3320     /* Default to relatime unless overriden */
3321     if (!(flags & MS_NOATIME))
3322         mnt_flags |= MNT_RELATIME;
3323 
3324     /* Separate the per-mountpoint flags */
3325     if (flags & MS_NOSUID)
3326         mnt_flags |= MNT_NOSUID;
3327     if (flags & MS_NODEV)
3328         mnt_flags |= MNT_NODEV;
3329     if (flags & MS_NOEXEC)
3330         mnt_flags |= MNT_NOEXEC;
3331     if (flags & MS_NOATIME)
3332         mnt_flags |= MNT_NOATIME;
3333     if (flags & MS_NODIRATIME)
3334         mnt_flags |= MNT_NODIRATIME;
3335     if (flags & MS_STRICTATIME)
3336         mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3337     if (flags & MS_RDONLY)
3338         mnt_flags |= MNT_READONLY;
3339     if (flags & MS_NOSYMFOLLOW)
3340         mnt_flags |= MNT_NOSYMFOLLOW;
3341 
3342     /* The default atime for remount is preservation */
3343     if ((flags & MS_REMOUNT) &&
3344         ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3345                MS_STRICTATIME)) == 0)) {
3346         mnt_flags &= ~MNT_ATIME_MASK;
3347         mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3348     }
3349 
3350     sb_flags = flags & (SB_RDONLY |
3351                 SB_SYNCHRONOUS |
3352                 SB_MANDLOCK |
3353                 SB_DIRSYNC |
3354                 SB_SILENT |
3355                 SB_POSIXACL |
3356                 SB_LAZYTIME |
3357                 SB_I_VERSION);
3358 
3359     if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3360         return do_reconfigure_mnt(path, mnt_flags);
3361     if (flags & MS_REMOUNT)
3362         return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3363     if (flags & MS_BIND)
3364         return do_loopback(path, dev_name, flags & MS_REC);
3365     if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3366         return do_change_type(path, flags);
3367     if (flags & MS_MOVE)
3368         return do_move_mount_old(path, dev_name);
3369 
3370     return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3371                 data_page);
3372 }
3373 
3374 long do_mount(const char *dev_name, const char __user *dir_name,
3375         const char *type_page, unsigned long flags, void *data_page)
3376 {
3377     struct path path;
3378     int ret;
3379 
3380     ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3381     if (ret)
3382         return ret;
3383     ret = path_mount(dev_name, &path, type_page, flags, data_page);
3384     path_put(&path);
3385     return ret;
3386 }
3387 
3388 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3389 {
3390     return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3391 }
3392 
3393 static void dec_mnt_namespaces(struct ucounts *ucounts)
3394 {
3395     dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3396 }
3397 
3398 static void free_mnt_ns(struct mnt_namespace *ns)
3399 {
3400     if (!is_anon_ns(ns))
3401         ns_free_inum(&ns->ns);
3402     dec_mnt_namespaces(ns->ucounts);
3403     put_user_ns(ns->user_ns);
3404     kfree(ns);
3405 }
3406 
3407 /*
3408  * Assign a sequence number so we can detect when we attempt to bind
3409  * mount a reference to an older mount namespace into the current
3410  * mount namespace, preventing reference counting loops.  A 64bit
3411  * number incrementing at 10Ghz will take 12,427 years to wrap which
3412  * is effectively never, so we can ignore the possibility.
3413  */
3414 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3415 
3416 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3417 {
3418     struct mnt_namespace *new_ns;
3419     struct ucounts *ucounts;
3420     int ret;
3421 
3422     ucounts = inc_mnt_namespaces(user_ns);
3423     if (!ucounts)
3424         return ERR_PTR(-ENOSPC);
3425 
3426     new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3427     if (!new_ns) {
3428         dec_mnt_namespaces(ucounts);
3429         return ERR_PTR(-ENOMEM);
3430     }
3431     if (!anon) {
3432         ret = ns_alloc_inum(&new_ns->ns);
3433         if (ret) {
3434             kfree(new_ns);
3435             dec_mnt_namespaces(ucounts);
3436             return ERR_PTR(ret);
3437         }
3438     }
3439     new_ns->ns.ops = &mntns_operations;
3440     if (!anon)
3441         new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3442     refcount_set(&new_ns->ns.count, 1);
3443     INIT_LIST_HEAD(&new_ns->list);
3444     init_waitqueue_head(&new_ns->poll);
3445     spin_lock_init(&new_ns->ns_lock);
3446     new_ns->user_ns = get_user_ns(user_ns);
3447     new_ns->ucounts = ucounts;
3448     return new_ns;
3449 }
3450 
3451 __latent_entropy
3452 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3453         struct user_namespace *user_ns, struct fs_struct *new_fs)
3454 {
3455     struct mnt_namespace *new_ns;
3456     struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3457     struct mount *p, *q;
3458     struct mount *old;
3459     struct mount *new;
3460     int copy_flags;
3461 
3462     BUG_ON(!ns);
3463 
3464     if (likely(!(flags & CLONE_NEWNS))) {
3465         get_mnt_ns(ns);
3466         return ns;
3467     }
3468 
3469     old = ns->root;
3470 
3471     new_ns = alloc_mnt_ns(user_ns, false);
3472     if (IS_ERR(new_ns))
3473         return new_ns;
3474 
3475     namespace_lock();
3476     /* First pass: copy the tree topology */
3477     copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3478     if (user_ns != ns->user_ns)
3479         copy_flags |= CL_SHARED_TO_SLAVE;
3480     new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3481     if (IS_ERR(new)) {
3482         namespace_unlock();
3483         free_mnt_ns(new_ns);
3484         return ERR_CAST(new);
3485     }
3486     if (user_ns != ns->user_ns) {
3487         lock_mount_hash();
3488         lock_mnt_tree(new);
3489         unlock_mount_hash();
3490     }
3491     new_ns->root = new;
3492     list_add_tail(&new_ns->list, &new->mnt_list);
3493 
3494     /*
3495      * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3496      * as belonging to new namespace.  We have already acquired a private
3497      * fs_struct, so tsk->fs->lock is not needed.
3498      */
3499     p = old;
3500     q = new;
3501     while (p) {
3502         q->mnt_ns = new_ns;
3503         new_ns->mounts++;
3504         if (new_fs) {
3505             if (&p->mnt == new_fs->root.mnt) {
3506                 new_fs->root.mnt = mntget(&q->mnt);
3507                 rootmnt = &p->mnt;
3508             }
3509             if (&p->mnt == new_fs->pwd.mnt) {
3510                 new_fs->pwd.mnt = mntget(&q->mnt);
3511                 pwdmnt = &p->mnt;
3512             }
3513         }
3514         p = next_mnt(p, old);
3515         q = next_mnt(q, new);
3516         if (!q)
3517             break;
3518         while (p->mnt.mnt_root != q->mnt.mnt_root)
3519             p = next_mnt(p, old);
3520     }
3521     namespace_unlock();
3522 
3523     if (rootmnt)
3524         mntput(rootmnt);
3525     if (pwdmnt)
3526         mntput(pwdmnt);
3527 
3528     return new_ns;
3529 }
3530 
3531 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3532 {
3533     struct mount *mnt = real_mount(m);
3534     struct mnt_namespace *ns;
3535     struct super_block *s;
3536     struct path path;
3537     int err;
3538 
3539     ns = alloc_mnt_ns(&init_user_ns, true);
3540     if (IS_ERR(ns)) {
3541         mntput(m);
3542         return ERR_CAST(ns);
3543     }
3544     mnt->mnt_ns = ns;
3545     ns->root = mnt;
3546     ns->mounts++;
3547     list_add(&mnt->mnt_list, &ns->list);
3548 
3549     err = vfs_path_lookup(m->mnt_root, m,
3550             name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3551 
3552     put_mnt_ns(ns);
3553 
3554     if (err)
3555         return ERR_PTR(err);
3556 
3557     /* trade a vfsmount reference for active sb one */
3558     s = path.mnt->mnt_sb;
3559     atomic_inc(&s->s_active);
3560     mntput(path.mnt);
3561     /* lock the sucker */
3562     down_write(&s->s_umount);
3563     /* ... and return the root of (sub)tree on it */
3564     return path.dentry;
3565 }
3566 EXPORT_SYMBOL(mount_subtree);
3567 
3568 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3569         char __user *, type, unsigned long, flags, void __user *, data)
3570 {
3571     int ret;
3572     char *kernel_type;
3573     char *kernel_dev;
3574     void *options;
3575 
3576     kernel_type = copy_mount_string(type);
3577     ret = PTR_ERR(kernel_type);
3578     if (IS_ERR(kernel_type))
3579         goto out_type;
3580 
3581     kernel_dev = copy_mount_string(dev_name);
3582     ret = PTR_ERR(kernel_dev);
3583     if (IS_ERR(kernel_dev))
3584         goto out_dev;
3585 
3586     options = copy_mount_options(data);
3587     ret = PTR_ERR(options);
3588     if (IS_ERR(options))
3589         goto out_data;
3590 
3591     ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3592 
3593     kfree(options);
3594 out_data:
3595     kfree(kernel_dev);
3596 out_dev:
3597     kfree(kernel_type);
3598 out_type:
3599     return ret;
3600 }
3601 
3602 #define FSMOUNT_VALID_FLAGS                                                    \
3603     (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV |            \
3604      MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME |       \
3605      MOUNT_ATTR_NOSYMFOLLOW)
3606 
3607 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3608 
3609 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3610     (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3611 
3612 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3613 {
3614     unsigned int mnt_flags = 0;
3615 
3616     if (attr_flags & MOUNT_ATTR_RDONLY)
3617         mnt_flags |= MNT_READONLY;
3618     if (attr_flags & MOUNT_ATTR_NOSUID)
3619         mnt_flags |= MNT_NOSUID;
3620     if (attr_flags & MOUNT_ATTR_NODEV)
3621         mnt_flags |= MNT_NODEV;
3622     if (attr_flags & MOUNT_ATTR_NOEXEC)
3623         mnt_flags |= MNT_NOEXEC;
3624     if (attr_flags & MOUNT_ATTR_NODIRATIME)
3625         mnt_flags |= MNT_NODIRATIME;
3626     if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3627         mnt_flags |= MNT_NOSYMFOLLOW;
3628 
3629     return mnt_flags;
3630 }
3631 
3632 /*
3633  * Create a kernel mount representation for a new, prepared superblock
3634  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3635  */
3636 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3637         unsigned int, attr_flags)
3638 {
3639     struct mnt_namespace *ns;
3640     struct fs_context *fc;
3641     struct file *file;
3642     struct path newmount;
3643     struct mount *mnt;
3644     struct fd f;
3645     unsigned int mnt_flags = 0;
3646     long ret;
3647 
3648     if (!may_mount())
3649         return -EPERM;
3650 
3651     if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3652         return -EINVAL;
3653 
3654     if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3655         return -EINVAL;
3656 
3657     mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3658 
3659     switch (attr_flags & MOUNT_ATTR__ATIME) {
3660     case MOUNT_ATTR_STRICTATIME:
3661         break;
3662     case MOUNT_ATTR_NOATIME:
3663         mnt_flags |= MNT_NOATIME;
3664         break;
3665     case MOUNT_ATTR_RELATIME:
3666         mnt_flags |= MNT_RELATIME;
3667         break;
3668     default:
3669         return -EINVAL;
3670     }
3671 
3672     f = fdget(fs_fd);
3673     if (!f.file)
3674         return -EBADF;
3675 
3676     ret = -EINVAL;
3677     if (f.file->f_op != &fscontext_fops)
3678         goto err_fsfd;
3679 
3680     fc = f.file->private_data;
3681 
3682     ret = mutex_lock_interruptible(&fc->uapi_mutex);
3683     if (ret < 0)
3684         goto err_fsfd;
3685 
3686     /* There must be a valid superblock or we can't mount it */
3687     ret = -EINVAL;
3688     if (!fc->root)
3689         goto err_unlock;
3690 
3691     ret = -EPERM;
3692     if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3693         pr_warn("VFS: Mount too revealing\n");
3694         goto err_unlock;
3695     }
3696 
3697     ret = -EBUSY;
3698     if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3699         goto err_unlock;
3700 
3701     if (fc->sb_flags & SB_MANDLOCK)
3702         warn_mandlock();
3703 
3704     newmount.mnt = vfs_create_mount(fc);
3705     if (IS_ERR(newmount.mnt)) {
3706         ret = PTR_ERR(newmount.mnt);
3707         goto err_unlock;
3708     }
3709     newmount.dentry = dget(fc->root);
3710     newmount.mnt->mnt_flags = mnt_flags;
3711 
3712     /* We've done the mount bit - now move the file context into more or
3713      * less the same state as if we'd done an fspick().  We don't want to
3714      * do any memory allocation or anything like that at this point as we
3715      * don't want to have to handle any errors incurred.
3716      */
3717     vfs_clean_context(fc);
3718 
3719     ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3720     if (IS_ERR(ns)) {
3721         ret = PTR_ERR(ns);
3722         goto err_path;
3723     }
3724     mnt = real_mount(newmount.mnt);
3725     mnt->mnt_ns = ns;
3726     ns->root = mnt;
3727     ns->mounts = 1;
3728     list_add(&mnt->mnt_list, &ns->list);
3729     mntget(newmount.mnt);
3730 
3731     /* Attach to an apparent O_PATH fd with a note that we need to unmount
3732      * it, not just simply put it.
3733      */
3734     file = dentry_open(&newmount, O_PATH, fc->cred);
3735     if (IS_ERR(file)) {
3736         dissolve_on_fput(newmount.mnt);
3737         ret = PTR_ERR(file);
3738         goto err_path;
3739     }
3740     file->f_mode |= FMODE_NEED_UNMOUNT;
3741 
3742     ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3743     if (ret >= 0)
3744         fd_install(ret, file);
3745     else
3746         fput(file);
3747 
3748 err_path:
3749     path_put(&newmount);
3750 err_unlock:
3751     mutex_unlock(&fc->uapi_mutex);
3752 err_fsfd:
3753     fdput(f);
3754     return ret;
3755 }
3756 
3757 /*
3758  * Move a mount from one place to another.  In combination with
3759  * fsopen()/fsmount() this is used to install a new mount and in combination
3760  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3761  * a mount subtree.
3762  *
3763  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3764  */
3765 SYSCALL_DEFINE5(move_mount,
3766         int, from_dfd, const char __user *, from_pathname,
3767         int, to_dfd, const char __user *, to_pathname,
3768         unsigned int, flags)
3769 {
3770     struct path from_path, to_path;
3771     unsigned int lflags;
3772     int ret = 0;
3773 
3774     if (!may_mount())
3775         return -EPERM;
3776 
3777     if (flags & ~MOVE_MOUNT__MASK)
3778         return -EINVAL;
3779 
3780     /* If someone gives a pathname, they aren't permitted to move
3781      * from an fd that requires unmount as we can't get at the flag
3782      * to clear it afterwards.
3783      */
3784     lflags = 0;
3785     if (flags & MOVE_MOUNT_F_SYMLINKS)  lflags |= LOOKUP_FOLLOW;
3786     if (flags & MOVE_MOUNT_F_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3787     if (flags & MOVE_MOUNT_F_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3788 
3789     ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3790     if (ret < 0)
3791         return ret;
3792 
3793     lflags = 0;
3794     if (flags & MOVE_MOUNT_T_SYMLINKS)  lflags |= LOOKUP_FOLLOW;
3795     if (flags & MOVE_MOUNT_T_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3796     if (flags & MOVE_MOUNT_T_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3797 
3798     ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3799     if (ret < 0)
3800         goto out_from;
3801 
3802     ret = security_move_mount(&from_path, &to_path);
3803     if (ret < 0)
3804         goto out_to;
3805 
3806     if (flags & MOVE_MOUNT_SET_GROUP)
3807         ret = do_set_group(&from_path, &to_path);
3808     else
3809         ret = do_move_mount(&from_path, &to_path);
3810 
3811 out_to:
3812     path_put(&to_path);
3813 out_from:
3814     path_put(&from_path);
3815     return ret;
3816 }
3817 
3818 /*
3819  * Return true if path is reachable from root
3820  *
3821  * namespace_sem or mount_lock is held
3822  */
3823 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3824              const struct path *root)
3825 {
3826     while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3827         dentry = mnt->mnt_mountpoint;
3828         mnt = mnt->mnt_parent;
3829     }
3830     return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3831 }
3832 
3833 bool path_is_under(const struct path *path1, const struct path *path2)
3834 {
3835     bool res;
3836     read_seqlock_excl(&mount_lock);
3837     res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3838     read_sequnlock_excl(&mount_lock);
3839     return res;
3840 }
3841 EXPORT_SYMBOL(path_is_under);
3842 
3843 /*
3844  * pivot_root Semantics:
3845  * Moves the root file system of the current process to the directory put_old,
3846  * makes new_root as the new root file system of the current process, and sets
3847  * root/cwd of all processes which had them on the current root to new_root.
3848  *
3849  * Restrictions:
3850  * The new_root and put_old must be directories, and  must not be on the
3851  * same file  system as the current process root. The put_old  must  be
3852  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3853  * pointed to by put_old must yield the same directory as new_root. No other
3854  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3855  *
3856  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3857  * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3858  * in this situation.
3859  *
3860  * Notes:
3861  *  - we don't move root/cwd if they are not at the root (reason: if something
3862  *    cared enough to change them, it's probably wrong to force them elsewhere)
3863  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3864  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3865  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3866  *    first.
3867  */
3868 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3869         const char __user *, put_old)
3870 {
3871     struct path new, old, root;
3872     struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3873     struct mountpoint *old_mp, *root_mp;
3874     int error;
3875 
3876     if (!may_mount())
3877         return -EPERM;
3878 
3879     error = user_path_at(AT_FDCWD, new_root,
3880                  LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3881     if (error)
3882         goto out0;
3883 
3884     error = user_path_at(AT_FDCWD, put_old,
3885                  LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3886     if (error)
3887         goto out1;
3888 
3889     error = security_sb_pivotroot(&old, &new);
3890     if (error)
3891         goto out2;
3892 
3893     get_fs_root(current->fs, &root);
3894     old_mp = lock_mount(&old);
3895     error = PTR_ERR(old_mp);
3896     if (IS_ERR(old_mp))
3897         goto out3;
3898 
3899     error = -EINVAL;
3900     new_mnt = real_mount(new.mnt);
3901     root_mnt = real_mount(root.mnt);
3902     old_mnt = real_mount(old.mnt);
3903     ex_parent = new_mnt->mnt_parent;
3904     root_parent = root_mnt->mnt_parent;
3905     if (IS_MNT_SHARED(old_mnt) ||
3906         IS_MNT_SHARED(ex_parent) ||
3907         IS_MNT_SHARED(root_parent))
3908         goto out4;
3909     if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3910         goto out4;
3911     if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3912         goto out4;
3913     error = -ENOENT;
3914     if (d_unlinked(new.dentry))
3915         goto out4;
3916     error = -EBUSY;
3917     if (new_mnt == root_mnt || old_mnt == root_mnt)
3918         goto out4; /* loop, on the same file system  */
3919     error = -EINVAL;
3920     if (root.mnt->mnt_root != root.dentry)
3921         goto out4; /* not a mountpoint */
3922     if (!mnt_has_parent(root_mnt))
3923         goto out4; /* not attached */
3924     if (new.mnt->mnt_root != new.dentry)
3925         goto out4; /* not a mountpoint */
3926     if (!mnt_has_parent(new_mnt))
3927         goto out4; /* not attached */
3928     /* make sure we can reach put_old from new_root */
3929     if (!is_path_reachable(old_mnt, old.dentry, &new))
3930         goto out4;
3931     /* make certain new is below the root */
3932     if (!is_path_reachable(new_mnt, new.dentry, &root))
3933         goto out4;
3934     lock_mount_hash();
3935     umount_mnt(new_mnt);
3936     root_mp = unhash_mnt(root_mnt);  /* we'll need its mountpoint */
3937     if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3938         new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3939         root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3940     }
3941     /* mount old root on put_old */
3942     attach_mnt(root_mnt, old_mnt, old_mp);
3943     /* mount new_root on / */
3944     attach_mnt(new_mnt, root_parent, root_mp);
3945     mnt_add_count(root_parent, -1);
3946     touch_mnt_namespace(current->nsproxy->mnt_ns);
3947     /* A moved mount should not expire automatically */
3948     list_del_init(&new_mnt->mnt_expire);
3949     put_mountpoint(root_mp);
3950     unlock_mount_hash();
3951     chroot_fs_refs(&root, &new);
3952     error = 0;
3953 out4:
3954     unlock_mount(old_mp);
3955     if (!error)
3956         mntput_no_expire(ex_parent);
3957 out3:
3958     path_put(&root);
3959 out2:
3960     path_put(&old);
3961 out1:
3962     path_put(&new);
3963 out0:
3964     return error;
3965 }
3966 
3967 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3968 {
3969     unsigned int flags = mnt->mnt.mnt_flags;
3970 
3971     /*  flags to clear */
3972     flags &= ~kattr->attr_clr;
3973     /* flags to raise */
3974     flags |= kattr->attr_set;
3975 
3976     return flags;
3977 }
3978 
3979 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3980 {
3981     struct vfsmount *m = &mnt->mnt;
3982     struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3983 
3984     if (!kattr->mnt_userns)
3985         return 0;
3986 
3987     /*
3988      * Creating an idmapped mount with the filesystem wide idmapping
3989      * doesn't make sense so block that. We don't allow mushy semantics.
3990      */
3991     if (kattr->mnt_userns == fs_userns)
3992         return -EINVAL;
3993 
3994     /*
3995      * Once a mount has been idmapped we don't allow it to change its
3996      * mapping. It makes things simpler and callers can just create
3997      * another bind-mount they can idmap if they want to.
3998      */
3999     if (is_idmapped_mnt(m))
4000         return -EPERM;
4001 
4002     /* The underlying filesystem doesn't support idmapped mounts yet. */
4003     if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4004         return -EINVAL;
4005 
4006     /* We're not controlling the superblock. */
4007     if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4008         return -EPERM;
4009 
4010     /* Mount has already been visible in the filesystem hierarchy. */
4011     if (!is_anon_ns(mnt->mnt_ns))
4012         return -EINVAL;
4013 
4014     return 0;
4015 }
4016 
4017 /**
4018  * mnt_allow_writers() - check whether the attribute change allows writers
4019  * @kattr: the new mount attributes
4020  * @mnt: the mount to which @kattr will be applied
4021  *
4022  * Check whether thew new mount attributes in @kattr allow concurrent writers.
4023  *
4024  * Return: true if writers need to be held, false if not
4025  */
4026 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4027                      const struct mount *mnt)
4028 {
4029     return (!(kattr->attr_set & MNT_READONLY) ||
4030         (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4031            !kattr->mnt_userns;
4032 }
4033 
4034 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4035 {
4036     struct mount *m;
4037     int err;
4038 
4039     for (m = mnt; m; m = next_mnt(m, mnt)) {
4040         if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4041             err = -EPERM;
4042             break;
4043         }
4044 
4045         err = can_idmap_mount(kattr, m);
4046         if (err)
4047             break;
4048 
4049         if (!mnt_allow_writers(kattr, m)) {
4050             err = mnt_hold_writers(m);
4051             if (err)
4052                 break;
4053         }
4054 
4055         if (!kattr->recurse)
4056             return 0;
4057     }
4058 
4059     if (err) {
4060         struct mount *p;
4061 
4062         /*
4063          * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4064          * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4065          * mounts and needs to take care to include the first mount.
4066          */
4067         for (p = mnt; p; p = next_mnt(p, mnt)) {
4068             /* If we had to hold writers unblock them. */
4069             if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4070                 mnt_unhold_writers(p);
4071 
4072             /*
4073              * We're done once the first mount we changed got
4074              * MNT_WRITE_HOLD unset.
4075              */
4076             if (p == m)
4077                 break;
4078         }
4079     }
4080     return err;
4081 }
4082 
4083 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4084 {
4085     struct user_namespace *mnt_userns, *old_mnt_userns;
4086 
4087     if (!kattr->mnt_userns)
4088         return;
4089 
4090     /*
4091      * We're the only ones able to change the mount's idmapping. So
4092      * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
4093      */
4094     old_mnt_userns = mnt->mnt.mnt_userns;
4095 
4096     mnt_userns = get_user_ns(kattr->mnt_userns);
4097     /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4098     smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4099 
4100     /*
4101      * If this is an idmapped filesystem drop the reference we've taken
4102      * in vfs_create_mount() before.
4103      */
4104     if (!initial_idmapping(old_mnt_userns))
4105         put_user_ns(old_mnt_userns);
4106 }
4107 
4108 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4109 {
4110     struct mount *m;
4111 
4112     for (m = mnt; m; m = next_mnt(m, mnt)) {
4113         unsigned int flags;
4114 
4115         do_idmap_mount(kattr, m);
4116         flags = recalc_flags(kattr, m);
4117         WRITE_ONCE(m->mnt.mnt_flags, flags);
4118 
4119         /* If we had to hold writers unblock them. */
4120         if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4121             mnt_unhold_writers(m);
4122 
4123         if (kattr->propagation)
4124             change_mnt_propagation(m, kattr->propagation);
4125         if (!kattr->recurse)
4126             break;
4127     }
4128     touch_mnt_namespace(mnt->mnt_ns);
4129 }
4130 
4131 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4132 {
4133     struct mount *mnt = real_mount(path->mnt);
4134     int err = 0;
4135 
4136     if (path->dentry != mnt->mnt.mnt_root)
4137         return -EINVAL;
4138 
4139     if (kattr->propagation) {
4140         /*
4141          * Only take namespace_lock() if we're actually changing
4142          * propagation.
4143          */
4144         namespace_lock();
4145         if (kattr->propagation == MS_SHARED) {
4146             err = invent_group_ids(mnt, kattr->recurse);
4147             if (err) {
4148                 namespace_unlock();
4149                 return err;
4150             }
4151         }
4152     }
4153 
4154     err = -EINVAL;
4155     lock_mount_hash();
4156 
4157     /* Ensure that this isn't anything purely vfs internal. */
4158     if (!is_mounted(&mnt->mnt))
4159         goto out;
4160 
4161     /*
4162      * If this is an attached mount make sure it's located in the callers
4163      * mount namespace. If it's not don't let the caller interact with it.
4164      * If this is a detached mount make sure it has an anonymous mount
4165      * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4166      */
4167     if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4168         goto out;
4169 
4170     /*
4171      * First, we get the mount tree in a shape where we can change mount
4172      * properties without failure. If we succeeded to do so we commit all
4173      * changes and if we failed we clean up.
4174      */
4175     err = mount_setattr_prepare(kattr, mnt);
4176     if (!err)
4177         mount_setattr_commit(kattr, mnt);
4178 
4179 out:
4180     unlock_mount_hash();
4181 
4182     if (kattr->propagation) {
4183         namespace_unlock();
4184         if (err)
4185             cleanup_group_ids(mnt, NULL);
4186     }
4187 
4188     return err;
4189 }
4190 
4191 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4192                 struct mount_kattr *kattr, unsigned int flags)
4193 {
4194     int err = 0;
4195     struct ns_common *ns;
4196     struct user_namespace *mnt_userns;
4197     struct file *file;
4198 
4199     if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4200         return 0;
4201 
4202     /*
4203      * We currently do not support clearing an idmapped mount. If this ever
4204      * is a use-case we can revisit this but for now let's keep it simple
4205      * and not allow it.
4206      */
4207     if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4208         return -EINVAL;
4209 
4210     if (attr->userns_fd > INT_MAX)
4211         return -EINVAL;
4212 
4213     file = fget(attr->userns_fd);
4214     if (!file)
4215         return -EBADF;
4216 
4217     if (!proc_ns_file(file)) {
4218         err = -EINVAL;
4219         goto out_fput;
4220     }
4221 
4222     ns = get_proc_ns(file_inode(file));
4223     if (ns->ops->type != CLONE_NEWUSER) {
4224         err = -EINVAL;
4225         goto out_fput;
4226     }
4227 
4228     /*
4229      * The initial idmapping cannot be used to create an idmapped
4230      * mount. We use the initial idmapping as an indicator of a mount
4231      * that is not idmapped. It can simply be passed into helpers that
4232      * are aware of idmapped mounts as a convenient shortcut. A user
4233      * can just create a dedicated identity mapping to achieve the same
4234      * result.
4235      */
4236     mnt_userns = container_of(ns, struct user_namespace, ns);
4237     if (initial_idmapping(mnt_userns)) {
4238         err = -EPERM;
4239         goto out_fput;
4240     }
4241 
4242     /* We're not controlling the target namespace. */
4243     if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) {
4244         err = -EPERM;
4245         goto out_fput;
4246     }
4247 
4248     kattr->mnt_userns = get_user_ns(mnt_userns);
4249 
4250 out_fput:
4251     fput(file);
4252     return err;
4253 }
4254 
4255 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4256                  struct mount_kattr *kattr, unsigned int flags)
4257 {
4258     unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4259 
4260     if (flags & AT_NO_AUTOMOUNT)
4261         lookup_flags &= ~LOOKUP_AUTOMOUNT;
4262     if (flags & AT_SYMLINK_NOFOLLOW)
4263         lookup_flags &= ~LOOKUP_FOLLOW;
4264     if (flags & AT_EMPTY_PATH)
4265         lookup_flags |= LOOKUP_EMPTY;
4266 
4267     *kattr = (struct mount_kattr) {
4268         .lookup_flags   = lookup_flags,
4269         .recurse    = !!(flags & AT_RECURSIVE),
4270     };
4271 
4272     if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4273         return -EINVAL;
4274     if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4275         return -EINVAL;
4276     kattr->propagation = attr->propagation;
4277 
4278     if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4279         return -EINVAL;
4280 
4281     kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4282     kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4283 
4284     /*
4285      * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4286      * users wanting to transition to a different atime setting cannot
4287      * simply specify the atime setting in @attr_set, but must also
4288      * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4289      * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4290      * @attr_clr and that @attr_set can't have any atime bits set if
4291      * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4292      */
4293     if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4294         if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4295             return -EINVAL;
4296 
4297         /*
4298          * Clear all previous time settings as they are mutually
4299          * exclusive.
4300          */
4301         kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4302         switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4303         case MOUNT_ATTR_RELATIME:
4304             kattr->attr_set |= MNT_RELATIME;
4305             break;
4306         case MOUNT_ATTR_NOATIME:
4307             kattr->attr_set |= MNT_NOATIME;
4308             break;
4309         case MOUNT_ATTR_STRICTATIME:
4310             break;
4311         default:
4312             return -EINVAL;
4313         }
4314     } else {
4315         if (attr->attr_set & MOUNT_ATTR__ATIME)
4316             return -EINVAL;
4317     }
4318 
4319     return build_mount_idmapped(attr, usize, kattr, flags);
4320 }
4321 
4322 static void finish_mount_kattr(struct mount_kattr *kattr)
4323 {
4324     put_user_ns(kattr->mnt_userns);
4325     kattr->mnt_userns = NULL;
4326 }
4327 
4328 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4329         unsigned int, flags, struct mount_attr __user *, uattr,
4330         size_t, usize)
4331 {
4332     int err;
4333     struct path target;
4334     struct mount_attr attr;
4335     struct mount_kattr kattr;
4336 
4337     BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4338 
4339     if (flags & ~(AT_EMPTY_PATH |
4340               AT_RECURSIVE |
4341               AT_SYMLINK_NOFOLLOW |
4342               AT_NO_AUTOMOUNT))
4343         return -EINVAL;
4344 
4345     if (unlikely(usize > PAGE_SIZE))
4346         return -E2BIG;
4347     if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4348         return -EINVAL;
4349 
4350     if (!may_mount())
4351         return -EPERM;
4352 
4353     err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4354     if (err)
4355         return err;
4356 
4357     /* Don't bother walking through the mounts if this is a nop. */
4358     if (attr.attr_set == 0 &&
4359         attr.attr_clr == 0 &&
4360         attr.propagation == 0)
4361         return 0;
4362 
4363     err = build_mount_kattr(&attr, usize, &kattr, flags);
4364     if (err)
4365         return err;
4366 
4367     err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4368     if (!err) {
4369         err = do_mount_setattr(&target, &kattr);
4370         path_put(&target);
4371     }
4372     finish_mount_kattr(&kattr);
4373     return err;
4374 }
4375 
4376 static void __init init_mount_tree(void)
4377 {
4378     struct vfsmount *mnt;
4379     struct mount *m;
4380     struct mnt_namespace *ns;
4381     struct path root;
4382 
4383     mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4384     if (IS_ERR(mnt))
4385         panic("Can't create rootfs");
4386 
4387     ns = alloc_mnt_ns(&init_user_ns, false);
4388     if (IS_ERR(ns))
4389         panic("Can't allocate initial namespace");
4390     m = real_mount(mnt);
4391     m->mnt_ns = ns;
4392     ns->root = m;
4393     ns->mounts = 1;
4394     list_add(&m->mnt_list, &ns->list);
4395     init_task.nsproxy->mnt_ns = ns;
4396     get_mnt_ns(ns);
4397 
4398     root.mnt = mnt;
4399     root.dentry = mnt->mnt_root;
4400     mnt->mnt_flags |= MNT_LOCKED;
4401 
4402     set_fs_pwd(current->fs, &root);
4403     set_fs_root(current->fs, &root);
4404 }
4405 
4406 void __init mnt_init(void)
4407 {
4408     int err;
4409 
4410     mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4411             0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4412 
4413     mount_hashtable = alloc_large_system_hash("Mount-cache",
4414                 sizeof(struct hlist_head),
4415                 mhash_entries, 19,
4416                 HASH_ZERO,
4417                 &m_hash_shift, &m_hash_mask, 0, 0);
4418     mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4419                 sizeof(struct hlist_head),
4420                 mphash_entries, 19,
4421                 HASH_ZERO,
4422                 &mp_hash_shift, &mp_hash_mask, 0, 0);
4423 
4424     if (!mount_hashtable || !mountpoint_hashtable)
4425         panic("Failed to allocate mount hash table\n");
4426 
4427     kernfs_init();
4428 
4429     err = sysfs_init();
4430     if (err)
4431         printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4432             __func__, err);
4433     fs_kobj = kobject_create_and_add("fs", NULL);
4434     if (!fs_kobj)
4435         printk(KERN_WARNING "%s: kobj create error\n", __func__);
4436     shmem_init();
4437     init_rootfs();
4438     init_mount_tree();
4439 }
4440 
4441 void put_mnt_ns(struct mnt_namespace *ns)
4442 {
4443     if (!refcount_dec_and_test(&ns->ns.count))
4444         return;
4445     drop_collected_mounts(&ns->root->mnt);
4446     free_mnt_ns(ns);
4447 }
4448 
4449 struct vfsmount *kern_mount(struct file_system_type *type)
4450 {
4451     struct vfsmount *mnt;
4452     mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4453     if (!IS_ERR(mnt)) {
4454         /*
4455          * it is a longterm mount, don't release mnt until
4456          * we unmount before file sys is unregistered
4457         */
4458         real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4459     }
4460     return mnt;
4461 }
4462 EXPORT_SYMBOL_GPL(kern_mount);
4463 
4464 void kern_unmount(struct vfsmount *mnt)
4465 {
4466     /* release long term mount so mount point can be released */
4467     if (!IS_ERR_OR_NULL(mnt)) {
4468         real_mount(mnt)->mnt_ns = NULL;
4469         synchronize_rcu();  /* yecchhh... */
4470         mntput(mnt);
4471     }
4472 }
4473 EXPORT_SYMBOL(kern_unmount);
4474 
4475 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4476 {
4477     unsigned int i;
4478 
4479     for (i = 0; i < num; i++)
4480         if (mnt[i])
4481             real_mount(mnt[i])->mnt_ns = NULL;
4482     synchronize_rcu_expedited();
4483     for (i = 0; i < num; i++)
4484         mntput(mnt[i]);
4485 }
4486 EXPORT_SYMBOL(kern_unmount_array);
4487 
4488 bool our_mnt(struct vfsmount *mnt)
4489 {
4490     return check_mnt(real_mount(mnt));
4491 }
4492 
4493 bool current_chrooted(void)
4494 {
4495     /* Does the current process have a non-standard root */
4496     struct path ns_root;
4497     struct path fs_root;
4498     bool chrooted;
4499 
4500     /* Find the namespace root */
4501     ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
4502     ns_root.dentry = ns_root.mnt->mnt_root;
4503     path_get(&ns_root);
4504     while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4505         ;
4506 
4507     get_fs_root(current->fs, &fs_root);
4508 
4509     chrooted = !path_equal(&fs_root, &ns_root);
4510 
4511     path_put(&fs_root);
4512     path_put(&ns_root);
4513 
4514     return chrooted;
4515 }
4516 
4517 static bool mnt_already_visible(struct mnt_namespace *ns,
4518                 const struct super_block *sb,
4519                 int *new_mnt_flags)
4520 {
4521     int new_flags = *new_mnt_flags;
4522     struct mount *mnt;
4523     bool visible = false;
4524 
4525     down_read(&namespace_sem);
4526     lock_ns_list(ns);
4527     list_for_each_entry(mnt, &ns->list, mnt_list) {
4528         struct mount *child;
4529         int mnt_flags;
4530 
4531         if (mnt_is_cursor(mnt))
4532             continue;
4533 
4534         if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4535             continue;
4536 
4537         /* This mount is not fully visible if it's root directory
4538          * is not the root directory of the filesystem.
4539          */
4540         if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4541             continue;
4542 
4543         /* A local view of the mount flags */
4544         mnt_flags = mnt->mnt.mnt_flags;
4545 
4546         /* Don't miss readonly hidden in the superblock flags */
4547         if (sb_rdonly(mnt->mnt.mnt_sb))
4548             mnt_flags |= MNT_LOCK_READONLY;
4549 
4550         /* Verify the mount flags are equal to or more permissive
4551          * than the proposed new mount.
4552          */
4553         if ((mnt_flags & MNT_LOCK_READONLY) &&
4554             !(new_flags & MNT_READONLY))
4555             continue;
4556         if ((mnt_flags & MNT_LOCK_ATIME) &&
4557             ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4558             continue;
4559 
4560         /* This mount is not fully visible if there are any
4561          * locked child mounts that cover anything except for
4562          * empty directories.
4563          */
4564         list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4565             struct inode *inode = child->mnt_mountpoint->d_inode;
4566             /* Only worry about locked mounts */
4567             if (!(child->mnt.mnt_flags & MNT_LOCKED))
4568                 continue;
4569             /* Is the directory permanetly empty? */
4570             if (!is_empty_dir_inode(inode))
4571                 goto next;
4572         }
4573         /* Preserve the locked attributes */
4574         *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4575                            MNT_LOCK_ATIME);
4576         visible = true;
4577         goto found;
4578     next:   ;
4579     }
4580 found:
4581     unlock_ns_list(ns);
4582     up_read(&namespace_sem);
4583     return visible;
4584 }
4585 
4586 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4587 {
4588     const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4589     struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4590     unsigned long s_iflags;
4591 
4592     if (ns->user_ns == &init_user_ns)
4593         return false;
4594 
4595     /* Can this filesystem be too revealing? */
4596     s_iflags = sb->s_iflags;
4597     if (!(s_iflags & SB_I_USERNS_VISIBLE))
4598         return false;
4599 
4600     if ((s_iflags & required_iflags) != required_iflags) {
4601         WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4602               required_iflags);
4603         return true;
4604     }
4605 
4606     return !mnt_already_visible(ns, sb, new_mnt_flags);
4607 }
4608 
4609 bool mnt_may_suid(struct vfsmount *mnt)
4610 {
4611     /*
4612      * Foreign mounts (accessed via fchdir or through /proc
4613      * symlinks) are always treated as if they are nosuid.  This
4614      * prevents namespaces from trusting potentially unsafe
4615      * suid/sgid bits, file caps, or security labels that originate
4616      * in other namespaces.
4617      */
4618     return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4619            current_in_userns(mnt->mnt_sb->s_user_ns);
4620 }
4621 
4622 static struct ns_common *mntns_get(struct task_struct *task)
4623 {
4624     struct ns_common *ns = NULL;
4625     struct nsproxy *nsproxy;
4626 
4627     task_lock(task);
4628     nsproxy = task->nsproxy;
4629     if (nsproxy) {
4630         ns = &nsproxy->mnt_ns->ns;
4631         get_mnt_ns(to_mnt_ns(ns));
4632     }
4633     task_unlock(task);
4634 
4635     return ns;
4636 }
4637 
4638 static void mntns_put(struct ns_common *ns)
4639 {
4640     put_mnt_ns(to_mnt_ns(ns));
4641 }
4642 
4643 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4644 {
4645     struct nsproxy *nsproxy = nsset->nsproxy;
4646     struct fs_struct *fs = nsset->fs;
4647     struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4648     struct user_namespace *user_ns = nsset->cred->user_ns;
4649     struct path root;
4650     int err;
4651 
4652     if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4653         !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4654         !ns_capable(user_ns, CAP_SYS_ADMIN))
4655         return -EPERM;
4656 
4657     if (is_anon_ns(mnt_ns))
4658         return -EINVAL;
4659 
4660     if (fs->users != 1)
4661         return -EINVAL;
4662 
4663     get_mnt_ns(mnt_ns);
4664     old_mnt_ns = nsproxy->mnt_ns;
4665     nsproxy->mnt_ns = mnt_ns;
4666 
4667     /* Find the root */
4668     err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4669                 "/", LOOKUP_DOWN, &root);
4670     if (err) {
4671         /* revert to old namespace */
4672         nsproxy->mnt_ns = old_mnt_ns;
4673         put_mnt_ns(mnt_ns);
4674         return err;
4675     }
4676 
4677     put_mnt_ns(old_mnt_ns);
4678 
4679     /* Update the pwd and root */
4680     set_fs_pwd(fs, &root);
4681     set_fs_root(fs, &root);
4682 
4683     path_put(&root);
4684     return 0;
4685 }
4686 
4687 static struct user_namespace *mntns_owner(struct ns_common *ns)
4688 {
4689     return to_mnt_ns(ns)->user_ns;
4690 }
4691 
4692 const struct proc_ns_operations mntns_operations = {
4693     .name       = "mnt",
4694     .type       = CLONE_NEWNS,
4695     .get        = mntns_get,
4696     .put        = mntns_put,
4697     .install    = mntns_install,
4698     .owner      = mntns_owner,
4699 };
4700 
4701 #ifdef CONFIG_SYSCTL
4702 static struct ctl_table fs_namespace_sysctls[] = {
4703     {
4704         .procname   = "mount-max",
4705         .data       = &sysctl_mount_max,
4706         .maxlen     = sizeof(unsigned int),
4707         .mode       = 0644,
4708         .proc_handler   = proc_dointvec_minmax,
4709         .extra1     = SYSCTL_ONE,
4710     },
4711     { }
4712 };
4713 
4714 static int __init init_fs_namespace_sysctls(void)
4715 {
4716     register_sysctl_init("fs", fs_namespace_sysctls);
4717     return 0;
4718 }
4719 fs_initcall(init_fs_namespace_sysctls);
4720 
4721 #endif /* CONFIG_SYSCTL */