Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  *  linux/fs/namei.c
0004  *
0005  *  Copyright (C) 1991, 1992  Linus Torvalds
0006  */
0007 
0008 /*
0009  * Some corrections by tytso.
0010  */
0011 
0012 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
0013  * lookup logic.
0014  */
0015 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
0016  */
0017 
0018 #include <linux/init.h>
0019 #include <linux/export.h>
0020 #include <linux/kernel.h>
0021 #include <linux/slab.h>
0022 #include <linux/fs.h>
0023 #include <linux/namei.h>
0024 #include <linux/pagemap.h>
0025 #include <linux/sched/mm.h>
0026 #include <linux/fsnotify.h>
0027 #include <linux/personality.h>
0028 #include <linux/security.h>
0029 #include <linux/ima.h>
0030 #include <linux/syscalls.h>
0031 #include <linux/mount.h>
0032 #include <linux/audit.h>
0033 #include <linux/capability.h>
0034 #include <linux/file.h>
0035 #include <linux/fcntl.h>
0036 #include <linux/device_cgroup.h>
0037 #include <linux/fs_struct.h>
0038 #include <linux/posix_acl.h>
0039 #include <linux/hash.h>
0040 #include <linux/bitops.h>
0041 #include <linux/init_task.h>
0042 #include <linux/uaccess.h>
0043 
0044 #include "internal.h"
0045 #include "mount.h"
0046 
0047 /* [Feb-1997 T. Schoebel-Theuer]
0048  * Fundamental changes in the pathname lookup mechanisms (namei)
0049  * were necessary because of omirr.  The reason is that omirr needs
0050  * to know the _real_ pathname, not the user-supplied one, in case
0051  * of symlinks (and also when transname replacements occur).
0052  *
0053  * The new code replaces the old recursive symlink resolution with
0054  * an iterative one (in case of non-nested symlink chains).  It does
0055  * this with calls to <fs>_follow_link().
0056  * As a side effect, dir_namei(), _namei() and follow_link() are now 
0057  * replaced with a single function lookup_dentry() that can handle all 
0058  * the special cases of the former code.
0059  *
0060  * With the new dcache, the pathname is stored at each inode, at least as
0061  * long as the refcount of the inode is positive.  As a side effect, the
0062  * size of the dcache depends on the inode cache and thus is dynamic.
0063  *
0064  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
0065  * resolution to correspond with current state of the code.
0066  *
0067  * Note that the symlink resolution is not *completely* iterative.
0068  * There is still a significant amount of tail- and mid- recursion in
0069  * the algorithm.  Also, note that <fs>_readlink() is not used in
0070  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
0071  * may return different results than <fs>_follow_link().  Many virtual
0072  * filesystems (including /proc) exhibit this behavior.
0073  */
0074 
0075 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
0076  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
0077  * and the name already exists in form of a symlink, try to create the new
0078  * name indicated by the symlink. The old code always complained that the
0079  * name already exists, due to not following the symlink even if its target
0080  * is nonexistent.  The new semantics affects also mknod() and link() when
0081  * the name is a symlink pointing to a non-existent name.
0082  *
0083  * I don't know which semantics is the right one, since I have no access
0084  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
0085  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
0086  * "old" one. Personally, I think the new semantics is much more logical.
0087  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
0088  * file does succeed in both HP-UX and SunOs, but not in Solaris
0089  * and in the old Linux semantics.
0090  */
0091 
0092 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
0093  * semantics.  See the comments in "open_namei" and "do_link" below.
0094  *
0095  * [10-Sep-98 Alan Modra] Another symlink change.
0096  */
0097 
0098 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
0099  *  inside the path - always follow.
0100  *  in the last component in creation/removal/renaming - never follow.
0101  *  if LOOKUP_FOLLOW passed - follow.
0102  *  if the pathname has trailing slashes - follow.
0103  *  otherwise - don't follow.
0104  * (applied in that order).
0105  *
0106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
0107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
0108  * During the 2.4 we need to fix the userland stuff depending on it -
0109  * hopefully we will be able to get rid of that wart in 2.5. So far only
0110  * XEmacs seems to be relying on it...
0111  */
0112 /*
0113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
0114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
0115  * any extra contention...
0116  */
0117 
0118 /* In order to reduce some races, while at the same time doing additional
0119  * checking and hopefully speeding things up, we copy filenames to the
0120  * kernel data space before using them..
0121  *
0122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
0123  * PATH_MAX includes the nul terminator --RR.
0124  */
0125 
0126 #define EMBEDDED_NAME_MAX   (PATH_MAX - offsetof(struct filename, iname))
0127 
0128 struct filename *
0129 getname_flags(const char __user *filename, int flags, int *empty)
0130 {
0131     struct filename *result;
0132     char *kname;
0133     int len;
0134 
0135     result = audit_reusename(filename);
0136     if (result)
0137         return result;
0138 
0139     result = __getname();
0140     if (unlikely(!result))
0141         return ERR_PTR(-ENOMEM);
0142 
0143     /*
0144      * First, try to embed the struct filename inside the names_cache
0145      * allocation
0146      */
0147     kname = (char *)result->iname;
0148     result->name = kname;
0149 
0150     len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
0151     if (unlikely(len < 0)) {
0152         __putname(result);
0153         return ERR_PTR(len);
0154     }
0155 
0156     /*
0157      * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
0158      * separate struct filename so we can dedicate the entire
0159      * names_cache allocation for the pathname, and re-do the copy from
0160      * userland.
0161      */
0162     if (unlikely(len == EMBEDDED_NAME_MAX)) {
0163         const size_t size = offsetof(struct filename, iname[1]);
0164         kname = (char *)result;
0165 
0166         /*
0167          * size is chosen that way we to guarantee that
0168          * result->iname[0] is within the same object and that
0169          * kname can't be equal to result->iname, no matter what.
0170          */
0171         result = kzalloc(size, GFP_KERNEL);
0172         if (unlikely(!result)) {
0173             __putname(kname);
0174             return ERR_PTR(-ENOMEM);
0175         }
0176         result->name = kname;
0177         len = strncpy_from_user(kname, filename, PATH_MAX);
0178         if (unlikely(len < 0)) {
0179             __putname(kname);
0180             kfree(result);
0181             return ERR_PTR(len);
0182         }
0183         if (unlikely(len == PATH_MAX)) {
0184             __putname(kname);
0185             kfree(result);
0186             return ERR_PTR(-ENAMETOOLONG);
0187         }
0188     }
0189 
0190     result->refcnt = 1;
0191     /* The empty path is special. */
0192     if (unlikely(!len)) {
0193         if (empty)
0194             *empty = 1;
0195         if (!(flags & LOOKUP_EMPTY)) {
0196             putname(result);
0197             return ERR_PTR(-ENOENT);
0198         }
0199     }
0200 
0201     result->uptr = filename;
0202     result->aname = NULL;
0203     audit_getname(result);
0204     return result;
0205 }
0206 
0207 struct filename *
0208 getname_uflags(const char __user *filename, int uflags)
0209 {
0210     int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
0211 
0212     return getname_flags(filename, flags, NULL);
0213 }
0214 
0215 struct filename *
0216 getname(const char __user * filename)
0217 {
0218     return getname_flags(filename, 0, NULL);
0219 }
0220 
0221 struct filename *
0222 getname_kernel(const char * filename)
0223 {
0224     struct filename *result;
0225     int len = strlen(filename) + 1;
0226 
0227     result = __getname();
0228     if (unlikely(!result))
0229         return ERR_PTR(-ENOMEM);
0230 
0231     if (len <= EMBEDDED_NAME_MAX) {
0232         result->name = (char *)result->iname;
0233     } else if (len <= PATH_MAX) {
0234         const size_t size = offsetof(struct filename, iname[1]);
0235         struct filename *tmp;
0236 
0237         tmp = kmalloc(size, GFP_KERNEL);
0238         if (unlikely(!tmp)) {
0239             __putname(result);
0240             return ERR_PTR(-ENOMEM);
0241         }
0242         tmp->name = (char *)result;
0243         result = tmp;
0244     } else {
0245         __putname(result);
0246         return ERR_PTR(-ENAMETOOLONG);
0247     }
0248     memcpy((char *)result->name, filename, len);
0249     result->uptr = NULL;
0250     result->aname = NULL;
0251     result->refcnt = 1;
0252     audit_getname(result);
0253 
0254     return result;
0255 }
0256 
0257 void putname(struct filename *name)
0258 {
0259     if (IS_ERR(name))
0260         return;
0261 
0262     BUG_ON(name->refcnt <= 0);
0263 
0264     if (--name->refcnt > 0)
0265         return;
0266 
0267     if (name->name != name->iname) {
0268         __putname(name->name);
0269         kfree(name);
0270     } else
0271         __putname(name);
0272 }
0273 
0274 /**
0275  * check_acl - perform ACL permission checking
0276  * @mnt_userns: user namespace of the mount the inode was found from
0277  * @inode:  inode to check permissions on
0278  * @mask:   right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
0279  *
0280  * This function performs the ACL permission checking. Since this function
0281  * retrieve POSIX acls it needs to know whether it is called from a blocking or
0282  * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
0283  *
0284  * If the inode has been found through an idmapped mount the user namespace of
0285  * the vfsmount must be passed through @mnt_userns. This function will then take
0286  * care to map the inode according to @mnt_userns before checking permissions.
0287  * On non-idmapped mounts or if permission checking is to be performed on the
0288  * raw inode simply passs init_user_ns.
0289  */
0290 static int check_acl(struct user_namespace *mnt_userns,
0291              struct inode *inode, int mask)
0292 {
0293 #ifdef CONFIG_FS_POSIX_ACL
0294     struct posix_acl *acl;
0295 
0296     if (mask & MAY_NOT_BLOCK) {
0297         acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
0298             if (!acl)
0299                     return -EAGAIN;
0300         /* no ->get_acl() calls in RCU mode... */
0301         if (is_uncached_acl(acl))
0302             return -ECHILD;
0303             return posix_acl_permission(mnt_userns, inode, acl, mask);
0304     }
0305 
0306     acl = get_acl(inode, ACL_TYPE_ACCESS);
0307     if (IS_ERR(acl))
0308         return PTR_ERR(acl);
0309     if (acl) {
0310             int error = posix_acl_permission(mnt_userns, inode, acl, mask);
0311             posix_acl_release(acl);
0312             return error;
0313     }
0314 #endif
0315 
0316     return -EAGAIN;
0317 }
0318 
0319 /**
0320  * acl_permission_check - perform basic UNIX permission checking
0321  * @mnt_userns: user namespace of the mount the inode was found from
0322  * @inode:  inode to check permissions on
0323  * @mask:   right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
0324  *
0325  * This function performs the basic UNIX permission checking. Since this
0326  * function may retrieve POSIX acls it needs to know whether it is called from a
0327  * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
0328  *
0329  * If the inode has been found through an idmapped mount the user namespace of
0330  * the vfsmount must be passed through @mnt_userns. This function will then take
0331  * care to map the inode according to @mnt_userns before checking permissions.
0332  * On non-idmapped mounts or if permission checking is to be performed on the
0333  * raw inode simply passs init_user_ns.
0334  */
0335 static int acl_permission_check(struct user_namespace *mnt_userns,
0336                 struct inode *inode, int mask)
0337 {
0338     unsigned int mode = inode->i_mode;
0339     kuid_t i_uid;
0340 
0341     /* Are we the owner? If so, ACL's don't matter */
0342     i_uid = i_uid_into_mnt(mnt_userns, inode);
0343     if (likely(uid_eq(current_fsuid(), i_uid))) {
0344         mask &= 7;
0345         mode >>= 6;
0346         return (mask & ~mode) ? -EACCES : 0;
0347     }
0348 
0349     /* Do we have ACL's? */
0350     if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
0351         int error = check_acl(mnt_userns, inode, mask);
0352         if (error != -EAGAIN)
0353             return error;
0354     }
0355 
0356     /* Only RWX matters for group/other mode bits */
0357     mask &= 7;
0358 
0359     /*
0360      * Are the group permissions different from
0361      * the other permissions in the bits we care
0362      * about? Need to check group ownership if so.
0363      */
0364     if (mask & (mode ^ (mode >> 3))) {
0365         kgid_t kgid = i_gid_into_mnt(mnt_userns, inode);
0366         if (in_group_p(kgid))
0367             mode >>= 3;
0368     }
0369 
0370     /* Bits in 'mode' clear that we require? */
0371     return (mask & ~mode) ? -EACCES : 0;
0372 }
0373 
0374 /**
0375  * generic_permission -  check for access rights on a Posix-like filesystem
0376  * @mnt_userns: user namespace of the mount the inode was found from
0377  * @inode:  inode to check access rights for
0378  * @mask:   right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
0379  *      %MAY_NOT_BLOCK ...)
0380  *
0381  * Used to check for read/write/execute permissions on a file.
0382  * We use "fsuid" for this, letting us set arbitrary permissions
0383  * for filesystem access without changing the "normal" uids which
0384  * are used for other things.
0385  *
0386  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
0387  * request cannot be satisfied (eg. requires blocking or too much complexity).
0388  * It would then be called again in ref-walk mode.
0389  *
0390  * If the inode has been found through an idmapped mount the user namespace of
0391  * the vfsmount must be passed through @mnt_userns. This function will then take
0392  * care to map the inode according to @mnt_userns before checking permissions.
0393  * On non-idmapped mounts or if permission checking is to be performed on the
0394  * raw inode simply passs init_user_ns.
0395  */
0396 int generic_permission(struct user_namespace *mnt_userns, struct inode *inode,
0397                int mask)
0398 {
0399     int ret;
0400 
0401     /*
0402      * Do the basic permission checks.
0403      */
0404     ret = acl_permission_check(mnt_userns, inode, mask);
0405     if (ret != -EACCES)
0406         return ret;
0407 
0408     if (S_ISDIR(inode->i_mode)) {
0409         /* DACs are overridable for directories */
0410         if (!(mask & MAY_WRITE))
0411             if (capable_wrt_inode_uidgid(mnt_userns, inode,
0412                              CAP_DAC_READ_SEARCH))
0413                 return 0;
0414         if (capable_wrt_inode_uidgid(mnt_userns, inode,
0415                          CAP_DAC_OVERRIDE))
0416             return 0;
0417         return -EACCES;
0418     }
0419 
0420     /*
0421      * Searching includes executable on directories, else just read.
0422      */
0423     mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
0424     if (mask == MAY_READ)
0425         if (capable_wrt_inode_uidgid(mnt_userns, inode,
0426                          CAP_DAC_READ_SEARCH))
0427             return 0;
0428     /*
0429      * Read/write DACs are always overridable.
0430      * Executable DACs are overridable when there is
0431      * at least one exec bit set.
0432      */
0433     if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
0434         if (capable_wrt_inode_uidgid(mnt_userns, inode,
0435                          CAP_DAC_OVERRIDE))
0436             return 0;
0437 
0438     return -EACCES;
0439 }
0440 EXPORT_SYMBOL(generic_permission);
0441 
0442 /**
0443  * do_inode_permission - UNIX permission checking
0444  * @mnt_userns: user namespace of the mount the inode was found from
0445  * @inode:  inode to check permissions on
0446  * @mask:   right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
0447  *
0448  * We _really_ want to just do "generic_permission()" without
0449  * even looking at the inode->i_op values. So we keep a cache
0450  * flag in inode->i_opflags, that says "this has not special
0451  * permission function, use the fast case".
0452  */
0453 static inline int do_inode_permission(struct user_namespace *mnt_userns,
0454                       struct inode *inode, int mask)
0455 {
0456     if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
0457         if (likely(inode->i_op->permission))
0458             return inode->i_op->permission(mnt_userns, inode, mask);
0459 
0460         /* This gets set once for the inode lifetime */
0461         spin_lock(&inode->i_lock);
0462         inode->i_opflags |= IOP_FASTPERM;
0463         spin_unlock(&inode->i_lock);
0464     }
0465     return generic_permission(mnt_userns, inode, mask);
0466 }
0467 
0468 /**
0469  * sb_permission - Check superblock-level permissions
0470  * @sb: Superblock of inode to check permission on
0471  * @inode: Inode to check permission on
0472  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
0473  *
0474  * Separate out file-system wide checks from inode-specific permission checks.
0475  */
0476 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
0477 {
0478     if (unlikely(mask & MAY_WRITE)) {
0479         umode_t mode = inode->i_mode;
0480 
0481         /* Nobody gets write access to a read-only fs. */
0482         if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
0483             return -EROFS;
0484     }
0485     return 0;
0486 }
0487 
0488 /**
0489  * inode_permission - Check for access rights to a given inode
0490  * @mnt_userns: User namespace of the mount the inode was found from
0491  * @inode:  Inode to check permission on
0492  * @mask:   Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
0493  *
0494  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
0495  * this, letting us set arbitrary permissions for filesystem access without
0496  * changing the "normal" UIDs which are used for other things.
0497  *
0498  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
0499  */
0500 int inode_permission(struct user_namespace *mnt_userns,
0501              struct inode *inode, int mask)
0502 {
0503     int retval;
0504 
0505     retval = sb_permission(inode->i_sb, inode, mask);
0506     if (retval)
0507         return retval;
0508 
0509     if (unlikely(mask & MAY_WRITE)) {
0510         /*
0511          * Nobody gets write access to an immutable file.
0512          */
0513         if (IS_IMMUTABLE(inode))
0514             return -EPERM;
0515 
0516         /*
0517          * Updating mtime will likely cause i_uid and i_gid to be
0518          * written back improperly if their true value is unknown
0519          * to the vfs.
0520          */
0521         if (HAS_UNMAPPED_ID(mnt_userns, inode))
0522             return -EACCES;
0523     }
0524 
0525     retval = do_inode_permission(mnt_userns, inode, mask);
0526     if (retval)
0527         return retval;
0528 
0529     retval = devcgroup_inode_permission(inode, mask);
0530     if (retval)
0531         return retval;
0532 
0533     return security_inode_permission(inode, mask);
0534 }
0535 EXPORT_SYMBOL(inode_permission);
0536 
0537 /**
0538  * path_get - get a reference to a path
0539  * @path: path to get the reference to
0540  *
0541  * Given a path increment the reference count to the dentry and the vfsmount.
0542  */
0543 void path_get(const struct path *path)
0544 {
0545     mntget(path->mnt);
0546     dget(path->dentry);
0547 }
0548 EXPORT_SYMBOL(path_get);
0549 
0550 /**
0551  * path_put - put a reference to a path
0552  * @path: path to put the reference to
0553  *
0554  * Given a path decrement the reference count to the dentry and the vfsmount.
0555  */
0556 void path_put(const struct path *path)
0557 {
0558     dput(path->dentry);
0559     mntput(path->mnt);
0560 }
0561 EXPORT_SYMBOL(path_put);
0562 
0563 #define EMBEDDED_LEVELS 2
0564 struct nameidata {
0565     struct path path;
0566     struct qstr last;
0567     struct path root;
0568     struct inode    *inode; /* path.dentry.d_inode */
0569     unsigned int    flags, state;
0570     unsigned    seq, next_seq, m_seq, r_seq;
0571     int     last_type;
0572     unsigned    depth;
0573     int     total_link_count;
0574     struct saved {
0575         struct path link;
0576         struct delayed_call done;
0577         const char *name;
0578         unsigned seq;
0579     } *stack, internal[EMBEDDED_LEVELS];
0580     struct filename *name;
0581     struct nameidata *saved;
0582     unsigned    root_seq;
0583     int     dfd;
0584     kuid_t      dir_uid;
0585     umode_t     dir_mode;
0586 } __randomize_layout;
0587 
0588 #define ND_ROOT_PRESET 1
0589 #define ND_ROOT_GRABBED 2
0590 #define ND_JUMPED 4
0591 
0592 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
0593 {
0594     struct nameidata *old = current->nameidata;
0595     p->stack = p->internal;
0596     p->depth = 0;
0597     p->dfd = dfd;
0598     p->name = name;
0599     p->path.mnt = NULL;
0600     p->path.dentry = NULL;
0601     p->total_link_count = old ? old->total_link_count : 0;
0602     p->saved = old;
0603     current->nameidata = p;
0604 }
0605 
0606 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
0607               const struct path *root)
0608 {
0609     __set_nameidata(p, dfd, name);
0610     p->state = 0;
0611     if (unlikely(root)) {
0612         p->state = ND_ROOT_PRESET;
0613         p->root = *root;
0614     }
0615 }
0616 
0617 static void restore_nameidata(void)
0618 {
0619     struct nameidata *now = current->nameidata, *old = now->saved;
0620 
0621     current->nameidata = old;
0622     if (old)
0623         old->total_link_count = now->total_link_count;
0624     if (now->stack != now->internal)
0625         kfree(now->stack);
0626 }
0627 
0628 static bool nd_alloc_stack(struct nameidata *nd)
0629 {
0630     struct saved *p;
0631 
0632     p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
0633              nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
0634     if (unlikely(!p))
0635         return false;
0636     memcpy(p, nd->internal, sizeof(nd->internal));
0637     nd->stack = p;
0638     return true;
0639 }
0640 
0641 /**
0642  * path_connected - Verify that a dentry is below mnt.mnt_root
0643  *
0644  * Rename can sometimes move a file or directory outside of a bind
0645  * mount, path_connected allows those cases to be detected.
0646  */
0647 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
0648 {
0649     struct super_block *sb = mnt->mnt_sb;
0650 
0651     /* Bind mounts can have disconnected paths */
0652     if (mnt->mnt_root == sb->s_root)
0653         return true;
0654 
0655     return is_subdir(dentry, mnt->mnt_root);
0656 }
0657 
0658 static void drop_links(struct nameidata *nd)
0659 {
0660     int i = nd->depth;
0661     while (i--) {
0662         struct saved *last = nd->stack + i;
0663         do_delayed_call(&last->done);
0664         clear_delayed_call(&last->done);
0665     }
0666 }
0667 
0668 static void leave_rcu(struct nameidata *nd)
0669 {
0670     nd->flags &= ~LOOKUP_RCU;
0671     nd->seq = nd->next_seq = 0;
0672     rcu_read_unlock();
0673 }
0674 
0675 static void terminate_walk(struct nameidata *nd)
0676 {
0677     drop_links(nd);
0678     if (!(nd->flags & LOOKUP_RCU)) {
0679         int i;
0680         path_put(&nd->path);
0681         for (i = 0; i < nd->depth; i++)
0682             path_put(&nd->stack[i].link);
0683         if (nd->state & ND_ROOT_GRABBED) {
0684             path_put(&nd->root);
0685             nd->state &= ~ND_ROOT_GRABBED;
0686         }
0687     } else {
0688         leave_rcu(nd);
0689     }
0690     nd->depth = 0;
0691     nd->path.mnt = NULL;
0692     nd->path.dentry = NULL;
0693 }
0694 
0695 /* path_put is needed afterwards regardless of success or failure */
0696 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
0697 {
0698     int res = __legitimize_mnt(path->mnt, mseq);
0699     if (unlikely(res)) {
0700         if (res > 0)
0701             path->mnt = NULL;
0702         path->dentry = NULL;
0703         return false;
0704     }
0705     if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
0706         path->dentry = NULL;
0707         return false;
0708     }
0709     return !read_seqcount_retry(&path->dentry->d_seq, seq);
0710 }
0711 
0712 static inline bool legitimize_path(struct nameidata *nd,
0713                 struct path *path, unsigned seq)
0714 {
0715     return __legitimize_path(path, seq, nd->m_seq);
0716 }
0717 
0718 static bool legitimize_links(struct nameidata *nd)
0719 {
0720     int i;
0721     if (unlikely(nd->flags & LOOKUP_CACHED)) {
0722         drop_links(nd);
0723         nd->depth = 0;
0724         return false;
0725     }
0726     for (i = 0; i < nd->depth; i++) {
0727         struct saved *last = nd->stack + i;
0728         if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
0729             drop_links(nd);
0730             nd->depth = i + 1;
0731             return false;
0732         }
0733     }
0734     return true;
0735 }
0736 
0737 static bool legitimize_root(struct nameidata *nd)
0738 {
0739     /* Nothing to do if nd->root is zero or is managed by the VFS user. */
0740     if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
0741         return true;
0742     nd->state |= ND_ROOT_GRABBED;
0743     return legitimize_path(nd, &nd->root, nd->root_seq);
0744 }
0745 
0746 /*
0747  * Path walking has 2 modes, rcu-walk and ref-walk (see
0748  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
0749  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
0750  * normal reference counts on dentries and vfsmounts to transition to ref-walk
0751  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
0752  * got stuck, so ref-walk may continue from there. If this is not successful
0753  * (eg. a seqcount has changed), then failure is returned and it's up to caller
0754  * to restart the path walk from the beginning in ref-walk mode.
0755  */
0756 
0757 /**
0758  * try_to_unlazy - try to switch to ref-walk mode.
0759  * @nd: nameidata pathwalk data
0760  * Returns: true on success, false on failure
0761  *
0762  * try_to_unlazy attempts to legitimize the current nd->path and nd->root
0763  * for ref-walk mode.
0764  * Must be called from rcu-walk context.
0765  * Nothing should touch nameidata between try_to_unlazy() failure and
0766  * terminate_walk().
0767  */
0768 static bool try_to_unlazy(struct nameidata *nd)
0769 {
0770     struct dentry *parent = nd->path.dentry;
0771 
0772     BUG_ON(!(nd->flags & LOOKUP_RCU));
0773 
0774     if (unlikely(!legitimize_links(nd)))
0775         goto out1;
0776     if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
0777         goto out;
0778     if (unlikely(!legitimize_root(nd)))
0779         goto out;
0780     leave_rcu(nd);
0781     BUG_ON(nd->inode != parent->d_inode);
0782     return true;
0783 
0784 out1:
0785     nd->path.mnt = NULL;
0786     nd->path.dentry = NULL;
0787 out:
0788     leave_rcu(nd);
0789     return false;
0790 }
0791 
0792 /**
0793  * try_to_unlazy_next - try to switch to ref-walk mode.
0794  * @nd: nameidata pathwalk data
0795  * @dentry: next dentry to step into
0796  * Returns: true on success, false on failure
0797  *
0798  * Similar to try_to_unlazy(), but here we have the next dentry already
0799  * picked by rcu-walk and want to legitimize that in addition to the current
0800  * nd->path and nd->root for ref-walk mode.  Must be called from rcu-walk context.
0801  * Nothing should touch nameidata between try_to_unlazy_next() failure and
0802  * terminate_walk().
0803  */
0804 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
0805 {
0806     int res;
0807     BUG_ON(!(nd->flags & LOOKUP_RCU));
0808 
0809     if (unlikely(!legitimize_links(nd)))
0810         goto out2;
0811     res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
0812     if (unlikely(res)) {
0813         if (res > 0)
0814             goto out2;
0815         goto out1;
0816     }
0817     if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
0818         goto out1;
0819 
0820     /*
0821      * We need to move both the parent and the dentry from the RCU domain
0822      * to be properly refcounted. And the sequence number in the dentry
0823      * validates *both* dentry counters, since we checked the sequence
0824      * number of the parent after we got the child sequence number. So we
0825      * know the parent must still be valid if the child sequence number is
0826      */
0827     if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
0828         goto out;
0829     if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
0830         goto out_dput;
0831     /*
0832      * Sequence counts matched. Now make sure that the root is
0833      * still valid and get it if required.
0834      */
0835     if (unlikely(!legitimize_root(nd)))
0836         goto out_dput;
0837     leave_rcu(nd);
0838     return true;
0839 
0840 out2:
0841     nd->path.mnt = NULL;
0842 out1:
0843     nd->path.dentry = NULL;
0844 out:
0845     leave_rcu(nd);
0846     return false;
0847 out_dput:
0848     leave_rcu(nd);
0849     dput(dentry);
0850     return false;
0851 }
0852 
0853 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
0854 {
0855     if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
0856         return dentry->d_op->d_revalidate(dentry, flags);
0857     else
0858         return 1;
0859 }
0860 
0861 /**
0862  * complete_walk - successful completion of path walk
0863  * @nd:  pointer nameidata
0864  *
0865  * If we had been in RCU mode, drop out of it and legitimize nd->path.
0866  * Revalidate the final result, unless we'd already done that during
0867  * the path walk or the filesystem doesn't ask for it.  Return 0 on
0868  * success, -error on failure.  In case of failure caller does not
0869  * need to drop nd->path.
0870  */
0871 static int complete_walk(struct nameidata *nd)
0872 {
0873     struct dentry *dentry = nd->path.dentry;
0874     int status;
0875 
0876     if (nd->flags & LOOKUP_RCU) {
0877         /*
0878          * We don't want to zero nd->root for scoped-lookups or
0879          * externally-managed nd->root.
0880          */
0881         if (!(nd->state & ND_ROOT_PRESET))
0882             if (!(nd->flags & LOOKUP_IS_SCOPED))
0883                 nd->root.mnt = NULL;
0884         nd->flags &= ~LOOKUP_CACHED;
0885         if (!try_to_unlazy(nd))
0886             return -ECHILD;
0887     }
0888 
0889     if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
0890         /*
0891          * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
0892          * ever step outside the root during lookup" and should already
0893          * be guaranteed by the rest of namei, we want to avoid a namei
0894          * BUG resulting in userspace being given a path that was not
0895          * scoped within the root at some point during the lookup.
0896          *
0897          * So, do a final sanity-check to make sure that in the
0898          * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
0899          * we won't silently return an fd completely outside of the
0900          * requested root to userspace.
0901          *
0902          * Userspace could move the path outside the root after this
0903          * check, but as discussed elsewhere this is not a concern (the
0904          * resolved file was inside the root at some point).
0905          */
0906         if (!path_is_under(&nd->path, &nd->root))
0907             return -EXDEV;
0908     }
0909 
0910     if (likely(!(nd->state & ND_JUMPED)))
0911         return 0;
0912 
0913     if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
0914         return 0;
0915 
0916     status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
0917     if (status > 0)
0918         return 0;
0919 
0920     if (!status)
0921         status = -ESTALE;
0922 
0923     return status;
0924 }
0925 
0926 static int set_root(struct nameidata *nd)
0927 {
0928     struct fs_struct *fs = current->fs;
0929 
0930     /*
0931      * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
0932      * still have to ensure it doesn't happen because it will cause a breakout
0933      * from the dirfd.
0934      */
0935     if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
0936         return -ENOTRECOVERABLE;
0937 
0938     if (nd->flags & LOOKUP_RCU) {
0939         unsigned seq;
0940 
0941         do {
0942             seq = read_seqcount_begin(&fs->seq);
0943             nd->root = fs->root;
0944             nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
0945         } while (read_seqcount_retry(&fs->seq, seq));
0946     } else {
0947         get_fs_root(fs, &nd->root);
0948         nd->state |= ND_ROOT_GRABBED;
0949     }
0950     return 0;
0951 }
0952 
0953 static int nd_jump_root(struct nameidata *nd)
0954 {
0955     if (unlikely(nd->flags & LOOKUP_BENEATH))
0956         return -EXDEV;
0957     if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
0958         /* Absolute path arguments to path_init() are allowed. */
0959         if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
0960             return -EXDEV;
0961     }
0962     if (!nd->root.mnt) {
0963         int error = set_root(nd);
0964         if (error)
0965             return error;
0966     }
0967     if (nd->flags & LOOKUP_RCU) {
0968         struct dentry *d;
0969         nd->path = nd->root;
0970         d = nd->path.dentry;
0971         nd->inode = d->d_inode;
0972         nd->seq = nd->root_seq;
0973         if (read_seqcount_retry(&d->d_seq, nd->seq))
0974             return -ECHILD;
0975     } else {
0976         path_put(&nd->path);
0977         nd->path = nd->root;
0978         path_get(&nd->path);
0979         nd->inode = nd->path.dentry->d_inode;
0980     }
0981     nd->state |= ND_JUMPED;
0982     return 0;
0983 }
0984 
0985 /*
0986  * Helper to directly jump to a known parsed path from ->get_link,
0987  * caller must have taken a reference to path beforehand.
0988  */
0989 int nd_jump_link(struct path *path)
0990 {
0991     int error = -ELOOP;
0992     struct nameidata *nd = current->nameidata;
0993 
0994     if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
0995         goto err;
0996 
0997     error = -EXDEV;
0998     if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
0999         if (nd->path.mnt != path->mnt)
1000             goto err;
1001     }
1002     /* Not currently safe for scoped-lookups. */
1003     if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1004         goto err;
1005 
1006     path_put(&nd->path);
1007     nd->path = *path;
1008     nd->inode = nd->path.dentry->d_inode;
1009     nd->state |= ND_JUMPED;
1010     return 0;
1011 
1012 err:
1013     path_put(path);
1014     return error;
1015 }
1016 
1017 static inline void put_link(struct nameidata *nd)
1018 {
1019     struct saved *last = nd->stack + --nd->depth;
1020     do_delayed_call(&last->done);
1021     if (!(nd->flags & LOOKUP_RCU))
1022         path_put(&last->link);
1023 }
1024 
1025 static int sysctl_protected_symlinks __read_mostly;
1026 static int sysctl_protected_hardlinks __read_mostly;
1027 static int sysctl_protected_fifos __read_mostly;
1028 static int sysctl_protected_regular __read_mostly;
1029 
1030 #ifdef CONFIG_SYSCTL
1031 static struct ctl_table namei_sysctls[] = {
1032     {
1033         .procname   = "protected_symlinks",
1034         .data       = &sysctl_protected_symlinks,
1035         .maxlen     = sizeof(int),
1036         .mode       = 0644,
1037         .proc_handler   = proc_dointvec_minmax,
1038         .extra1     = SYSCTL_ZERO,
1039         .extra2     = SYSCTL_ONE,
1040     },
1041     {
1042         .procname   = "protected_hardlinks",
1043         .data       = &sysctl_protected_hardlinks,
1044         .maxlen     = sizeof(int),
1045         .mode       = 0644,
1046         .proc_handler   = proc_dointvec_minmax,
1047         .extra1     = SYSCTL_ZERO,
1048         .extra2     = SYSCTL_ONE,
1049     },
1050     {
1051         .procname   = "protected_fifos",
1052         .data       = &sysctl_protected_fifos,
1053         .maxlen     = sizeof(int),
1054         .mode       = 0644,
1055         .proc_handler   = proc_dointvec_minmax,
1056         .extra1     = SYSCTL_ZERO,
1057         .extra2     = SYSCTL_TWO,
1058     },
1059     {
1060         .procname   = "protected_regular",
1061         .data       = &sysctl_protected_regular,
1062         .maxlen     = sizeof(int),
1063         .mode       = 0644,
1064         .proc_handler   = proc_dointvec_minmax,
1065         .extra1     = SYSCTL_ZERO,
1066         .extra2     = SYSCTL_TWO,
1067     },
1068     { }
1069 };
1070 
1071 static int __init init_fs_namei_sysctls(void)
1072 {
1073     register_sysctl_init("fs", namei_sysctls);
1074     return 0;
1075 }
1076 fs_initcall(init_fs_namei_sysctls);
1077 
1078 #endif /* CONFIG_SYSCTL */
1079 
1080 /**
1081  * may_follow_link - Check symlink following for unsafe situations
1082  * @nd: nameidata pathwalk data
1083  *
1084  * In the case of the sysctl_protected_symlinks sysctl being enabled,
1085  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1086  * in a sticky world-writable directory. This is to protect privileged
1087  * processes from failing races against path names that may change out
1088  * from under them by way of other users creating malicious symlinks.
1089  * It will permit symlinks to be followed only when outside a sticky
1090  * world-writable directory, or when the uid of the symlink and follower
1091  * match, or when the directory owner matches the symlink's owner.
1092  *
1093  * Returns 0 if following the symlink is allowed, -ve on error.
1094  */
1095 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1096 {
1097     struct user_namespace *mnt_userns;
1098     kuid_t i_uid;
1099 
1100     if (!sysctl_protected_symlinks)
1101         return 0;
1102 
1103     mnt_userns = mnt_user_ns(nd->path.mnt);
1104     i_uid = i_uid_into_mnt(mnt_userns, inode);
1105     /* Allowed if owner and follower match. */
1106     if (uid_eq(current_cred()->fsuid, i_uid))
1107         return 0;
1108 
1109     /* Allowed if parent directory not sticky and world-writable. */
1110     if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1111         return 0;
1112 
1113     /* Allowed if parent directory and link owner match. */
1114     if (uid_valid(nd->dir_uid) && uid_eq(nd->dir_uid, i_uid))
1115         return 0;
1116 
1117     if (nd->flags & LOOKUP_RCU)
1118         return -ECHILD;
1119 
1120     audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1121     audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1122     return -EACCES;
1123 }
1124 
1125 /**
1126  * safe_hardlink_source - Check for safe hardlink conditions
1127  * @mnt_userns: user namespace of the mount the inode was found from
1128  * @inode: the source inode to hardlink from
1129  *
1130  * Return false if at least one of the following conditions:
1131  *    - inode is not a regular file
1132  *    - inode is setuid
1133  *    - inode is setgid and group-exec
1134  *    - access failure for read and write
1135  *
1136  * Otherwise returns true.
1137  */
1138 static bool safe_hardlink_source(struct user_namespace *mnt_userns,
1139                  struct inode *inode)
1140 {
1141     umode_t mode = inode->i_mode;
1142 
1143     /* Special files should not get pinned to the filesystem. */
1144     if (!S_ISREG(mode))
1145         return false;
1146 
1147     /* Setuid files should not get pinned to the filesystem. */
1148     if (mode & S_ISUID)
1149         return false;
1150 
1151     /* Executable setgid files should not get pinned to the filesystem. */
1152     if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1153         return false;
1154 
1155     /* Hardlinking to unreadable or unwritable sources is dangerous. */
1156     if (inode_permission(mnt_userns, inode, MAY_READ | MAY_WRITE))
1157         return false;
1158 
1159     return true;
1160 }
1161 
1162 /**
1163  * may_linkat - Check permissions for creating a hardlink
1164  * @mnt_userns: user namespace of the mount the inode was found from
1165  * @link: the source to hardlink from
1166  *
1167  * Block hardlink when all of:
1168  *  - sysctl_protected_hardlinks enabled
1169  *  - fsuid does not match inode
1170  *  - hardlink source is unsafe (see safe_hardlink_source() above)
1171  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1172  *
1173  * If the inode has been found through an idmapped mount the user namespace of
1174  * the vfsmount must be passed through @mnt_userns. This function will then take
1175  * care to map the inode according to @mnt_userns before checking permissions.
1176  * On non-idmapped mounts or if permission checking is to be performed on the
1177  * raw inode simply passs init_user_ns.
1178  *
1179  * Returns 0 if successful, -ve on error.
1180  */
1181 int may_linkat(struct user_namespace *mnt_userns, struct path *link)
1182 {
1183     struct inode *inode = link->dentry->d_inode;
1184 
1185     /* Inode writeback is not safe when the uid or gid are invalid. */
1186     if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
1187         !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
1188         return -EOVERFLOW;
1189 
1190     if (!sysctl_protected_hardlinks)
1191         return 0;
1192 
1193     /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1194      * otherwise, it must be a safe source.
1195      */
1196     if (safe_hardlink_source(mnt_userns, inode) ||
1197         inode_owner_or_capable(mnt_userns, inode))
1198         return 0;
1199 
1200     audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1201     return -EPERM;
1202 }
1203 
1204 /**
1205  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1206  *            should be allowed, or not, on files that already
1207  *            exist.
1208  * @mnt_userns: user namespace of the mount the inode was found from
1209  * @nd: nameidata pathwalk data
1210  * @inode: the inode of the file to open
1211  *
1212  * Block an O_CREAT open of a FIFO (or a regular file) when:
1213  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1214  *   - the file already exists
1215  *   - we are in a sticky directory
1216  *   - we don't own the file
1217  *   - the owner of the directory doesn't own the file
1218  *   - the directory is world writable
1219  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1220  * the directory doesn't have to be world writable: being group writable will
1221  * be enough.
1222  *
1223  * If the inode has been found through an idmapped mount the user namespace of
1224  * the vfsmount must be passed through @mnt_userns. This function will then take
1225  * care to map the inode according to @mnt_userns before checking permissions.
1226  * On non-idmapped mounts or if permission checking is to be performed on the
1227  * raw inode simply passs init_user_ns.
1228  *
1229  * Returns 0 if the open is allowed, -ve on error.
1230  */
1231 static int may_create_in_sticky(struct user_namespace *mnt_userns,
1232                 struct nameidata *nd, struct inode *const inode)
1233 {
1234     umode_t dir_mode = nd->dir_mode;
1235     kuid_t dir_uid = nd->dir_uid;
1236 
1237     if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1238         (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1239         likely(!(dir_mode & S_ISVTX)) ||
1240         uid_eq(i_uid_into_mnt(mnt_userns, inode), dir_uid) ||
1241         uid_eq(current_fsuid(), i_uid_into_mnt(mnt_userns, inode)))
1242         return 0;
1243 
1244     if (likely(dir_mode & 0002) ||
1245         (dir_mode & 0020 &&
1246          ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1247           (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1248         const char *operation = S_ISFIFO(inode->i_mode) ?
1249                     "sticky_create_fifo" :
1250                     "sticky_create_regular";
1251         audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1252         return -EACCES;
1253     }
1254     return 0;
1255 }
1256 
1257 /*
1258  * follow_up - Find the mountpoint of path's vfsmount
1259  *
1260  * Given a path, find the mountpoint of its source file system.
1261  * Replace @path with the path of the mountpoint in the parent mount.
1262  * Up is towards /.
1263  *
1264  * Return 1 if we went up a level and 0 if we were already at the
1265  * root.
1266  */
1267 int follow_up(struct path *path)
1268 {
1269     struct mount *mnt = real_mount(path->mnt);
1270     struct mount *parent;
1271     struct dentry *mountpoint;
1272 
1273     read_seqlock_excl(&mount_lock);
1274     parent = mnt->mnt_parent;
1275     if (parent == mnt) {
1276         read_sequnlock_excl(&mount_lock);
1277         return 0;
1278     }
1279     mntget(&parent->mnt);
1280     mountpoint = dget(mnt->mnt_mountpoint);
1281     read_sequnlock_excl(&mount_lock);
1282     dput(path->dentry);
1283     path->dentry = mountpoint;
1284     mntput(path->mnt);
1285     path->mnt = &parent->mnt;
1286     return 1;
1287 }
1288 EXPORT_SYMBOL(follow_up);
1289 
1290 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1291                   struct path *path, unsigned *seqp)
1292 {
1293     while (mnt_has_parent(m)) {
1294         struct dentry *mountpoint = m->mnt_mountpoint;
1295 
1296         m = m->mnt_parent;
1297         if (unlikely(root->dentry == mountpoint &&
1298                  root->mnt == &m->mnt))
1299             break;
1300         if (mountpoint != m->mnt.mnt_root) {
1301             path->mnt = &m->mnt;
1302             path->dentry = mountpoint;
1303             *seqp = read_seqcount_begin(&mountpoint->d_seq);
1304             return true;
1305         }
1306     }
1307     return false;
1308 }
1309 
1310 static bool choose_mountpoint(struct mount *m, const struct path *root,
1311                   struct path *path)
1312 {
1313     bool found;
1314 
1315     rcu_read_lock();
1316     while (1) {
1317         unsigned seq, mseq = read_seqbegin(&mount_lock);
1318 
1319         found = choose_mountpoint_rcu(m, root, path, &seq);
1320         if (unlikely(!found)) {
1321             if (!read_seqretry(&mount_lock, mseq))
1322                 break;
1323         } else {
1324             if (likely(__legitimize_path(path, seq, mseq)))
1325                 break;
1326             rcu_read_unlock();
1327             path_put(path);
1328             rcu_read_lock();
1329         }
1330     }
1331     rcu_read_unlock();
1332     return found;
1333 }
1334 
1335 /*
1336  * Perform an automount
1337  * - return -EISDIR to tell follow_managed() to stop and return the path we
1338  *   were called with.
1339  */
1340 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1341 {
1342     struct dentry *dentry = path->dentry;
1343 
1344     /* We don't want to mount if someone's just doing a stat -
1345      * unless they're stat'ing a directory and appended a '/' to
1346      * the name.
1347      *
1348      * We do, however, want to mount if someone wants to open or
1349      * create a file of any type under the mountpoint, wants to
1350      * traverse through the mountpoint or wants to open the
1351      * mounted directory.  Also, autofs may mark negative dentries
1352      * as being automount points.  These will need the attentions
1353      * of the daemon to instantiate them before they can be used.
1354      */
1355     if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1356                LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1357         dentry->d_inode)
1358         return -EISDIR;
1359 
1360     if (count && (*count)++ >= MAXSYMLINKS)
1361         return -ELOOP;
1362 
1363     return finish_automount(dentry->d_op->d_automount(path), path);
1364 }
1365 
1366 /*
1367  * mount traversal - out-of-line part.  One note on ->d_flags accesses -
1368  * dentries are pinned but not locked here, so negative dentry can go
1369  * positive right under us.  Use of smp_load_acquire() provides a barrier
1370  * sufficient for ->d_inode and ->d_flags consistency.
1371  */
1372 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1373                  int *count, unsigned lookup_flags)
1374 {
1375     struct vfsmount *mnt = path->mnt;
1376     bool need_mntput = false;
1377     int ret = 0;
1378 
1379     while (flags & DCACHE_MANAGED_DENTRY) {
1380         /* Allow the filesystem to manage the transit without i_mutex
1381          * being held. */
1382         if (flags & DCACHE_MANAGE_TRANSIT) {
1383             ret = path->dentry->d_op->d_manage(path, false);
1384             flags = smp_load_acquire(&path->dentry->d_flags);
1385             if (ret < 0)
1386                 break;
1387         }
1388 
1389         if (flags & DCACHE_MOUNTED) {   // something's mounted on it..
1390             struct vfsmount *mounted = lookup_mnt(path);
1391             if (mounted) {      // ... in our namespace
1392                 dput(path->dentry);
1393                 if (need_mntput)
1394                     mntput(path->mnt);
1395                 path->mnt = mounted;
1396                 path->dentry = dget(mounted->mnt_root);
1397                 // here we know it's positive
1398                 flags = path->dentry->d_flags;
1399                 need_mntput = true;
1400                 continue;
1401             }
1402         }
1403 
1404         if (!(flags & DCACHE_NEED_AUTOMOUNT))
1405             break;
1406 
1407         // uncovered automount point
1408         ret = follow_automount(path, count, lookup_flags);
1409         flags = smp_load_acquire(&path->dentry->d_flags);
1410         if (ret < 0)
1411             break;
1412     }
1413 
1414     if (ret == -EISDIR)
1415         ret = 0;
1416     // possible if you race with several mount --move
1417     if (need_mntput && path->mnt == mnt)
1418         mntput(path->mnt);
1419     if (!ret && unlikely(d_flags_negative(flags)))
1420         ret = -ENOENT;
1421     *jumped = need_mntput;
1422     return ret;
1423 }
1424 
1425 static inline int traverse_mounts(struct path *path, bool *jumped,
1426                   int *count, unsigned lookup_flags)
1427 {
1428     unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1429 
1430     /* fastpath */
1431     if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1432         *jumped = false;
1433         if (unlikely(d_flags_negative(flags)))
1434             return -ENOENT;
1435         return 0;
1436     }
1437     return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1438 }
1439 
1440 int follow_down_one(struct path *path)
1441 {
1442     struct vfsmount *mounted;
1443 
1444     mounted = lookup_mnt(path);
1445     if (mounted) {
1446         dput(path->dentry);
1447         mntput(path->mnt);
1448         path->mnt = mounted;
1449         path->dentry = dget(mounted->mnt_root);
1450         return 1;
1451     }
1452     return 0;
1453 }
1454 EXPORT_SYMBOL(follow_down_one);
1455 
1456 /*
1457  * Follow down to the covering mount currently visible to userspace.  At each
1458  * point, the filesystem owning that dentry may be queried as to whether the
1459  * caller is permitted to proceed or not.
1460  */
1461 int follow_down(struct path *path)
1462 {
1463     struct vfsmount *mnt = path->mnt;
1464     bool jumped;
1465     int ret = traverse_mounts(path, &jumped, NULL, 0);
1466 
1467     if (path->mnt != mnt)
1468         mntput(mnt);
1469     return ret;
1470 }
1471 EXPORT_SYMBOL(follow_down);
1472 
1473 /*
1474  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1475  * we meet a managed dentry that would need blocking.
1476  */
1477 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1478 {
1479     struct dentry *dentry = path->dentry;
1480     unsigned int flags = dentry->d_flags;
1481 
1482     if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1483         return true;
1484 
1485     if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1486         return false;
1487 
1488     for (;;) {
1489         /*
1490          * Don't forget we might have a non-mountpoint managed dentry
1491          * that wants to block transit.
1492          */
1493         if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1494             int res = dentry->d_op->d_manage(path, true);
1495             if (res)
1496                 return res == -EISDIR;
1497             flags = dentry->d_flags;
1498         }
1499 
1500         if (flags & DCACHE_MOUNTED) {
1501             struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1502             if (mounted) {
1503                 path->mnt = &mounted->mnt;
1504                 dentry = path->dentry = mounted->mnt.mnt_root;
1505                 nd->state |= ND_JUMPED;
1506                 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1507                 flags = dentry->d_flags;
1508                 // makes sure that non-RCU pathwalk could reach
1509                 // this state.
1510                 if (read_seqretry(&mount_lock, nd->m_seq))
1511                     return false;
1512                 continue;
1513             }
1514             if (read_seqretry(&mount_lock, nd->m_seq))
1515                 return false;
1516         }
1517         return !(flags & DCACHE_NEED_AUTOMOUNT);
1518     }
1519 }
1520 
1521 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1522               struct path *path)
1523 {
1524     bool jumped;
1525     int ret;
1526 
1527     path->mnt = nd->path.mnt;
1528     path->dentry = dentry;
1529     if (nd->flags & LOOKUP_RCU) {
1530         unsigned int seq = nd->next_seq;
1531         if (likely(__follow_mount_rcu(nd, path)))
1532             return 0;
1533         // *path and nd->next_seq might've been clobbered
1534         path->mnt = nd->path.mnt;
1535         path->dentry = dentry;
1536         nd->next_seq = seq;
1537         if (!try_to_unlazy_next(nd, dentry))
1538             return -ECHILD;
1539     }
1540     ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1541     if (jumped) {
1542         if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1543             ret = -EXDEV;
1544         else
1545             nd->state |= ND_JUMPED;
1546     }
1547     if (unlikely(ret)) {
1548         dput(path->dentry);
1549         if (path->mnt != nd->path.mnt)
1550             mntput(path->mnt);
1551     }
1552     return ret;
1553 }
1554 
1555 /*
1556  * This looks up the name in dcache and possibly revalidates the found dentry.
1557  * NULL is returned if the dentry does not exist in the cache.
1558  */
1559 static struct dentry *lookup_dcache(const struct qstr *name,
1560                     struct dentry *dir,
1561                     unsigned int flags)
1562 {
1563     struct dentry *dentry = d_lookup(dir, name);
1564     if (dentry) {
1565         int error = d_revalidate(dentry, flags);
1566         if (unlikely(error <= 0)) {
1567             if (!error)
1568                 d_invalidate(dentry);
1569             dput(dentry);
1570             return ERR_PTR(error);
1571         }
1572     }
1573     return dentry;
1574 }
1575 
1576 /*
1577  * Parent directory has inode locked exclusive.  This is one
1578  * and only case when ->lookup() gets called on non in-lookup
1579  * dentries - as the matter of fact, this only gets called
1580  * when directory is guaranteed to have no in-lookup children
1581  * at all.
1582  */
1583 static struct dentry *__lookup_hash(const struct qstr *name,
1584         struct dentry *base, unsigned int flags)
1585 {
1586     struct dentry *dentry = lookup_dcache(name, base, flags);
1587     struct dentry *old;
1588     struct inode *dir = base->d_inode;
1589 
1590     if (dentry)
1591         return dentry;
1592 
1593     /* Don't create child dentry for a dead directory. */
1594     if (unlikely(IS_DEADDIR(dir)))
1595         return ERR_PTR(-ENOENT);
1596 
1597     dentry = d_alloc(base, name);
1598     if (unlikely(!dentry))
1599         return ERR_PTR(-ENOMEM);
1600 
1601     old = dir->i_op->lookup(dir, dentry, flags);
1602     if (unlikely(old)) {
1603         dput(dentry);
1604         dentry = old;
1605     }
1606     return dentry;
1607 }
1608 
1609 static struct dentry *lookup_fast(struct nameidata *nd)
1610 {
1611     struct dentry *dentry, *parent = nd->path.dentry;
1612     int status = 1;
1613 
1614     /*
1615      * Rename seqlock is not required here because in the off chance
1616      * of a false negative due to a concurrent rename, the caller is
1617      * going to fall back to non-racy lookup.
1618      */
1619     if (nd->flags & LOOKUP_RCU) {
1620         dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1621         if (unlikely(!dentry)) {
1622             if (!try_to_unlazy(nd))
1623                 return ERR_PTR(-ECHILD);
1624             return NULL;
1625         }
1626 
1627         /*
1628          * This sequence count validates that the parent had no
1629          * changes while we did the lookup of the dentry above.
1630          */
1631         if (read_seqcount_retry(&parent->d_seq, nd->seq))
1632             return ERR_PTR(-ECHILD);
1633 
1634         status = d_revalidate(dentry, nd->flags);
1635         if (likely(status > 0))
1636             return dentry;
1637         if (!try_to_unlazy_next(nd, dentry))
1638             return ERR_PTR(-ECHILD);
1639         if (status == -ECHILD)
1640             /* we'd been told to redo it in non-rcu mode */
1641             status = d_revalidate(dentry, nd->flags);
1642     } else {
1643         dentry = __d_lookup(parent, &nd->last);
1644         if (unlikely(!dentry))
1645             return NULL;
1646         status = d_revalidate(dentry, nd->flags);
1647     }
1648     if (unlikely(status <= 0)) {
1649         if (!status)
1650             d_invalidate(dentry);
1651         dput(dentry);
1652         return ERR_PTR(status);
1653     }
1654     return dentry;
1655 }
1656 
1657 /* Fast lookup failed, do it the slow way */
1658 static struct dentry *__lookup_slow(const struct qstr *name,
1659                     struct dentry *dir,
1660                     unsigned int flags)
1661 {
1662     struct dentry *dentry, *old;
1663     struct inode *inode = dir->d_inode;
1664     DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1665 
1666     /* Don't go there if it's already dead */
1667     if (unlikely(IS_DEADDIR(inode)))
1668         return ERR_PTR(-ENOENT);
1669 again:
1670     dentry = d_alloc_parallel(dir, name, &wq);
1671     if (IS_ERR(dentry))
1672         return dentry;
1673     if (unlikely(!d_in_lookup(dentry))) {
1674         int error = d_revalidate(dentry, flags);
1675         if (unlikely(error <= 0)) {
1676             if (!error) {
1677                 d_invalidate(dentry);
1678                 dput(dentry);
1679                 goto again;
1680             }
1681             dput(dentry);
1682             dentry = ERR_PTR(error);
1683         }
1684     } else {
1685         old = inode->i_op->lookup(inode, dentry, flags);
1686         d_lookup_done(dentry);
1687         if (unlikely(old)) {
1688             dput(dentry);
1689             dentry = old;
1690         }
1691     }
1692     return dentry;
1693 }
1694 
1695 static struct dentry *lookup_slow(const struct qstr *name,
1696                   struct dentry *dir,
1697                   unsigned int flags)
1698 {
1699     struct inode *inode = dir->d_inode;
1700     struct dentry *res;
1701     inode_lock_shared(inode);
1702     res = __lookup_slow(name, dir, flags);
1703     inode_unlock_shared(inode);
1704     return res;
1705 }
1706 
1707 static inline int may_lookup(struct user_namespace *mnt_userns,
1708                  struct nameidata *nd)
1709 {
1710     if (nd->flags & LOOKUP_RCU) {
1711         int err = inode_permission(mnt_userns, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1712         if (err != -ECHILD || !try_to_unlazy(nd))
1713             return err;
1714     }
1715     return inode_permission(mnt_userns, nd->inode, MAY_EXEC);
1716 }
1717 
1718 static int reserve_stack(struct nameidata *nd, struct path *link)
1719 {
1720     if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1721         return -ELOOP;
1722 
1723     if (likely(nd->depth != EMBEDDED_LEVELS))
1724         return 0;
1725     if (likely(nd->stack != nd->internal))
1726         return 0;
1727     if (likely(nd_alloc_stack(nd)))
1728         return 0;
1729 
1730     if (nd->flags & LOOKUP_RCU) {
1731         // we need to grab link before we do unlazy.  And we can't skip
1732         // unlazy even if we fail to grab the link - cleanup needs it
1733         bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1734 
1735         if (!try_to_unlazy(nd) || !grabbed_link)
1736             return -ECHILD;
1737 
1738         if (nd_alloc_stack(nd))
1739             return 0;
1740     }
1741     return -ENOMEM;
1742 }
1743 
1744 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1745 
1746 static const char *pick_link(struct nameidata *nd, struct path *link,
1747              struct inode *inode, int flags)
1748 {
1749     struct saved *last;
1750     const char *res;
1751     int error = reserve_stack(nd, link);
1752 
1753     if (unlikely(error)) {
1754         if (!(nd->flags & LOOKUP_RCU))
1755             path_put(link);
1756         return ERR_PTR(error);
1757     }
1758     last = nd->stack + nd->depth++;
1759     last->link = *link;
1760     clear_delayed_call(&last->done);
1761     last->seq = nd->next_seq;
1762 
1763     if (flags & WALK_TRAILING) {
1764         error = may_follow_link(nd, inode);
1765         if (unlikely(error))
1766             return ERR_PTR(error);
1767     }
1768 
1769     if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1770             unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1771         return ERR_PTR(-ELOOP);
1772 
1773     if (!(nd->flags & LOOKUP_RCU)) {
1774         touch_atime(&last->link);
1775         cond_resched();
1776     } else if (atime_needs_update(&last->link, inode)) {
1777         if (!try_to_unlazy(nd))
1778             return ERR_PTR(-ECHILD);
1779         touch_atime(&last->link);
1780     }
1781 
1782     error = security_inode_follow_link(link->dentry, inode,
1783                        nd->flags & LOOKUP_RCU);
1784     if (unlikely(error))
1785         return ERR_PTR(error);
1786 
1787     res = READ_ONCE(inode->i_link);
1788     if (!res) {
1789         const char * (*get)(struct dentry *, struct inode *,
1790                 struct delayed_call *);
1791         get = inode->i_op->get_link;
1792         if (nd->flags & LOOKUP_RCU) {
1793             res = get(NULL, inode, &last->done);
1794             if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1795                 res = get(link->dentry, inode, &last->done);
1796         } else {
1797             res = get(link->dentry, inode, &last->done);
1798         }
1799         if (!res)
1800             goto all_done;
1801         if (IS_ERR(res))
1802             return res;
1803     }
1804     if (*res == '/') {
1805         error = nd_jump_root(nd);
1806         if (unlikely(error))
1807             return ERR_PTR(error);
1808         while (unlikely(*++res == '/'))
1809             ;
1810     }
1811     if (*res)
1812         return res;
1813 all_done: // pure jump
1814     put_link(nd);
1815     return NULL;
1816 }
1817 
1818 /*
1819  * Do we need to follow links? We _really_ want to be able
1820  * to do this check without having to look at inode->i_op,
1821  * so we keep a cache of "no, this doesn't need follow_link"
1822  * for the common case.
1823  *
1824  * NOTE: dentry must be what nd->next_seq had been sampled from.
1825  */
1826 static const char *step_into(struct nameidata *nd, int flags,
1827              struct dentry *dentry)
1828 {
1829     struct path path;
1830     struct inode *inode;
1831     int err = handle_mounts(nd, dentry, &path);
1832 
1833     if (err < 0)
1834         return ERR_PTR(err);
1835     inode = path.dentry->d_inode;
1836     if (likely(!d_is_symlink(path.dentry)) ||
1837        ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1838        (flags & WALK_NOFOLLOW)) {
1839         /* not a symlink or should not follow */
1840         if (nd->flags & LOOKUP_RCU) {
1841             if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1842                 return ERR_PTR(-ECHILD);
1843             if (unlikely(!inode))
1844                 return ERR_PTR(-ENOENT);
1845         } else {
1846             dput(nd->path.dentry);
1847             if (nd->path.mnt != path.mnt)
1848                 mntput(nd->path.mnt);
1849         }
1850         nd->path = path;
1851         nd->inode = inode;
1852         nd->seq = nd->next_seq;
1853         return NULL;
1854     }
1855     if (nd->flags & LOOKUP_RCU) {
1856         /* make sure that d_is_symlink above matches inode */
1857         if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1858             return ERR_PTR(-ECHILD);
1859     } else {
1860         if (path.mnt == nd->path.mnt)
1861             mntget(path.mnt);
1862     }
1863     return pick_link(nd, &path, inode, flags);
1864 }
1865 
1866 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1867 {
1868     struct dentry *parent, *old;
1869 
1870     if (path_equal(&nd->path, &nd->root))
1871         goto in_root;
1872     if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1873         struct path path;
1874         unsigned seq;
1875         if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1876                        &nd->root, &path, &seq))
1877             goto in_root;
1878         if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1879             return ERR_PTR(-ECHILD);
1880         nd->path = path;
1881         nd->inode = path.dentry->d_inode;
1882         nd->seq = seq;
1883         // makes sure that non-RCU pathwalk could reach this state
1884         if (read_seqretry(&mount_lock, nd->m_seq))
1885             return ERR_PTR(-ECHILD);
1886         /* we know that mountpoint was pinned */
1887     }
1888     old = nd->path.dentry;
1889     parent = old->d_parent;
1890     nd->next_seq = read_seqcount_begin(&parent->d_seq);
1891     // makes sure that non-RCU pathwalk could reach this state
1892     if (read_seqcount_retry(&old->d_seq, nd->seq))
1893         return ERR_PTR(-ECHILD);
1894     if (unlikely(!path_connected(nd->path.mnt, parent)))
1895         return ERR_PTR(-ECHILD);
1896     return parent;
1897 in_root:
1898     if (read_seqretry(&mount_lock, nd->m_seq))
1899         return ERR_PTR(-ECHILD);
1900     if (unlikely(nd->flags & LOOKUP_BENEATH))
1901         return ERR_PTR(-ECHILD);
1902     nd->next_seq = nd->seq;
1903     return nd->path.dentry;
1904 }
1905 
1906 static struct dentry *follow_dotdot(struct nameidata *nd)
1907 {
1908     struct dentry *parent;
1909 
1910     if (path_equal(&nd->path, &nd->root))
1911         goto in_root;
1912     if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1913         struct path path;
1914 
1915         if (!choose_mountpoint(real_mount(nd->path.mnt),
1916                        &nd->root, &path))
1917             goto in_root;
1918         path_put(&nd->path);
1919         nd->path = path;
1920         nd->inode = path.dentry->d_inode;
1921         if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1922             return ERR_PTR(-EXDEV);
1923     }
1924     /* rare case of legitimate dget_parent()... */
1925     parent = dget_parent(nd->path.dentry);
1926     if (unlikely(!path_connected(nd->path.mnt, parent))) {
1927         dput(parent);
1928         return ERR_PTR(-ENOENT);
1929     }
1930     return parent;
1931 
1932 in_root:
1933     if (unlikely(nd->flags & LOOKUP_BENEATH))
1934         return ERR_PTR(-EXDEV);
1935     return dget(nd->path.dentry);
1936 }
1937 
1938 static const char *handle_dots(struct nameidata *nd, int type)
1939 {
1940     if (type == LAST_DOTDOT) {
1941         const char *error = NULL;
1942         struct dentry *parent;
1943 
1944         if (!nd->root.mnt) {
1945             error = ERR_PTR(set_root(nd));
1946             if (error)
1947                 return error;
1948         }
1949         if (nd->flags & LOOKUP_RCU)
1950             parent = follow_dotdot_rcu(nd);
1951         else
1952             parent = follow_dotdot(nd);
1953         if (IS_ERR(parent))
1954             return ERR_CAST(parent);
1955         error = step_into(nd, WALK_NOFOLLOW, parent);
1956         if (unlikely(error))
1957             return error;
1958 
1959         if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1960             /*
1961              * If there was a racing rename or mount along our
1962              * path, then we can't be sure that ".." hasn't jumped
1963              * above nd->root (and so userspace should retry or use
1964              * some fallback).
1965              */
1966             smp_rmb();
1967             if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1968                 return ERR_PTR(-EAGAIN);
1969             if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1970                 return ERR_PTR(-EAGAIN);
1971         }
1972     }
1973     return NULL;
1974 }
1975 
1976 static const char *walk_component(struct nameidata *nd, int flags)
1977 {
1978     struct dentry *dentry;
1979     /*
1980      * "." and ".." are special - ".." especially so because it has
1981      * to be able to know about the current root directory and
1982      * parent relationships.
1983      */
1984     if (unlikely(nd->last_type != LAST_NORM)) {
1985         if (!(flags & WALK_MORE) && nd->depth)
1986             put_link(nd);
1987         return handle_dots(nd, nd->last_type);
1988     }
1989     dentry = lookup_fast(nd);
1990     if (IS_ERR(dentry))
1991         return ERR_CAST(dentry);
1992     if (unlikely(!dentry)) {
1993         dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
1994         if (IS_ERR(dentry))
1995             return ERR_CAST(dentry);
1996     }
1997     if (!(flags & WALK_MORE) && nd->depth)
1998         put_link(nd);
1999     return step_into(nd, flags, dentry);
2000 }
2001 
2002 /*
2003  * We can do the critical dentry name comparison and hashing
2004  * operations one word at a time, but we are limited to:
2005  *
2006  * - Architectures with fast unaligned word accesses. We could
2007  *   do a "get_unaligned()" if this helps and is sufficiently
2008  *   fast.
2009  *
2010  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2011  *   do not trap on the (extremely unlikely) case of a page
2012  *   crossing operation.
2013  *
2014  * - Furthermore, we need an efficient 64-bit compile for the
2015  *   64-bit case in order to generate the "number of bytes in
2016  *   the final mask". Again, that could be replaced with a
2017  *   efficient population count instruction or similar.
2018  */
2019 #ifdef CONFIG_DCACHE_WORD_ACCESS
2020 
2021 #include <asm/word-at-a-time.h>
2022 
2023 #ifdef HASH_MIX
2024 
2025 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2026 
2027 #elif defined(CONFIG_64BIT)
2028 /*
2029  * Register pressure in the mixing function is an issue, particularly
2030  * on 32-bit x86, but almost any function requires one state value and
2031  * one temporary.  Instead, use a function designed for two state values
2032  * and no temporaries.
2033  *
2034  * This function cannot create a collision in only two iterations, so
2035  * we have two iterations to achieve avalanche.  In those two iterations,
2036  * we have six layers of mixing, which is enough to spread one bit's
2037  * influence out to 2^6 = 64 state bits.
2038  *
2039  * Rotate constants are scored by considering either 64 one-bit input
2040  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2041  * probability of that delta causing a change to each of the 128 output
2042  * bits, using a sample of random initial states.
2043  *
2044  * The Shannon entropy of the computed probabilities is then summed
2045  * to produce a score.  Ideally, any input change has a 50% chance of
2046  * toggling any given output bit.
2047  *
2048  * Mixing scores (in bits) for (12,45):
2049  * Input delta: 1-bit      2-bit
2050  * 1 round:     713.3    42542.6
2051  * 2 rounds:   2753.7   140389.8
2052  * 3 rounds:   5954.1   233458.2
2053  * 4 rounds:   7862.6   256672.2
2054  * Perfect:    8192     258048
2055  *            (64*128) (64*63/2 * 128)
2056  */
2057 #define HASH_MIX(x, y, a)   \
2058     (   x ^= (a),   \
2059     y ^= x, x = rol64(x,12),\
2060     x += y, y = rol64(y,45),\
2061     y *= 9          )
2062 
2063 /*
2064  * Fold two longs into one 32-bit hash value.  This must be fast, but
2065  * latency isn't quite as critical, as there is a fair bit of additional
2066  * work done before the hash value is used.
2067  */
2068 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2069 {
2070     y ^= x * GOLDEN_RATIO_64;
2071     y *= GOLDEN_RATIO_64;
2072     return y >> 32;
2073 }
2074 
2075 #else   /* 32-bit case */
2076 
2077 /*
2078  * Mixing scores (in bits) for (7,20):
2079  * Input delta: 1-bit      2-bit
2080  * 1 round:     330.3     9201.6
2081  * 2 rounds:   1246.4    25475.4
2082  * 3 rounds:   1907.1    31295.1
2083  * 4 rounds:   2042.3    31718.6
2084  * Perfect:    2048      31744
2085  *            (32*64)   (32*31/2 * 64)
2086  */
2087 #define HASH_MIX(x, y, a)   \
2088     (   x ^= (a),   \
2089     y ^= x, x = rol32(x, 7),\
2090     x += y, y = rol32(y,20),\
2091     y *= 9          )
2092 
2093 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2094 {
2095     /* Use arch-optimized multiply if one exists */
2096     return __hash_32(y ^ __hash_32(x));
2097 }
2098 
2099 #endif
2100 
2101 /*
2102  * Return the hash of a string of known length.  This is carfully
2103  * designed to match hash_name(), which is the more critical function.
2104  * In particular, we must end by hashing a final word containing 0..7
2105  * payload bytes, to match the way that hash_name() iterates until it
2106  * finds the delimiter after the name.
2107  */
2108 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2109 {
2110     unsigned long a, x = 0, y = (unsigned long)salt;
2111 
2112     for (;;) {
2113         if (!len)
2114             goto done;
2115         a = load_unaligned_zeropad(name);
2116         if (len < sizeof(unsigned long))
2117             break;
2118         HASH_MIX(x, y, a);
2119         name += sizeof(unsigned long);
2120         len -= sizeof(unsigned long);
2121     }
2122     x ^= a & bytemask_from_count(len);
2123 done:
2124     return fold_hash(x, y);
2125 }
2126 EXPORT_SYMBOL(full_name_hash);
2127 
2128 /* Return the "hash_len" (hash and length) of a null-terminated string */
2129 u64 hashlen_string(const void *salt, const char *name)
2130 {
2131     unsigned long a = 0, x = 0, y = (unsigned long)salt;
2132     unsigned long adata, mask, len;
2133     const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2134 
2135     len = 0;
2136     goto inside;
2137 
2138     do {
2139         HASH_MIX(x, y, a);
2140         len += sizeof(unsigned long);
2141 inside:
2142         a = load_unaligned_zeropad(name+len);
2143     } while (!has_zero(a, &adata, &constants));
2144 
2145     adata = prep_zero_mask(a, adata, &constants);
2146     mask = create_zero_mask(adata);
2147     x ^= a & zero_bytemask(mask);
2148 
2149     return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2150 }
2151 EXPORT_SYMBOL(hashlen_string);
2152 
2153 /*
2154  * Calculate the length and hash of the path component, and
2155  * return the "hash_len" as the result.
2156  */
2157 static inline u64 hash_name(const void *salt, const char *name)
2158 {
2159     unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2160     unsigned long adata, bdata, mask, len;
2161     const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2162 
2163     len = 0;
2164     goto inside;
2165 
2166     do {
2167         HASH_MIX(x, y, a);
2168         len += sizeof(unsigned long);
2169 inside:
2170         a = load_unaligned_zeropad(name+len);
2171         b = a ^ REPEAT_BYTE('/');
2172     } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2173 
2174     adata = prep_zero_mask(a, adata, &constants);
2175     bdata = prep_zero_mask(b, bdata, &constants);
2176     mask = create_zero_mask(adata | bdata);
2177     x ^= a & zero_bytemask(mask);
2178 
2179     return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2180 }
2181 
2182 #else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2183 
2184 /* Return the hash of a string of known length */
2185 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2186 {
2187     unsigned long hash = init_name_hash(salt);
2188     while (len--)
2189         hash = partial_name_hash((unsigned char)*name++, hash);
2190     return end_name_hash(hash);
2191 }
2192 EXPORT_SYMBOL(full_name_hash);
2193 
2194 /* Return the "hash_len" (hash and length) of a null-terminated string */
2195 u64 hashlen_string(const void *salt, const char *name)
2196 {
2197     unsigned long hash = init_name_hash(salt);
2198     unsigned long len = 0, c;
2199 
2200     c = (unsigned char)*name;
2201     while (c) {
2202         len++;
2203         hash = partial_name_hash(c, hash);
2204         c = (unsigned char)name[len];
2205     }
2206     return hashlen_create(end_name_hash(hash), len);
2207 }
2208 EXPORT_SYMBOL(hashlen_string);
2209 
2210 /*
2211  * We know there's a real path component here of at least
2212  * one character.
2213  */
2214 static inline u64 hash_name(const void *salt, const char *name)
2215 {
2216     unsigned long hash = init_name_hash(salt);
2217     unsigned long len = 0, c;
2218 
2219     c = (unsigned char)*name;
2220     do {
2221         len++;
2222         hash = partial_name_hash(c, hash);
2223         c = (unsigned char)name[len];
2224     } while (c && c != '/');
2225     return hashlen_create(end_name_hash(hash), len);
2226 }
2227 
2228 #endif
2229 
2230 /*
2231  * Name resolution.
2232  * This is the basic name resolution function, turning a pathname into
2233  * the final dentry. We expect 'base' to be positive and a directory.
2234  *
2235  * Returns 0 and nd will have valid dentry and mnt on success.
2236  * Returns error and drops reference to input namei data on failure.
2237  */
2238 static int link_path_walk(const char *name, struct nameidata *nd)
2239 {
2240     int depth = 0; // depth <= nd->depth
2241     int err;
2242 
2243     nd->last_type = LAST_ROOT;
2244     nd->flags |= LOOKUP_PARENT;
2245     if (IS_ERR(name))
2246         return PTR_ERR(name);
2247     while (*name=='/')
2248         name++;
2249     if (!*name) {
2250         nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2251         return 0;
2252     }
2253 
2254     /* At this point we know we have a real path component. */
2255     for(;;) {
2256         struct user_namespace *mnt_userns;
2257         const char *link;
2258         u64 hash_len;
2259         int type;
2260 
2261         mnt_userns = mnt_user_ns(nd->path.mnt);
2262         err = may_lookup(mnt_userns, nd);
2263         if (err)
2264             return err;
2265 
2266         hash_len = hash_name(nd->path.dentry, name);
2267 
2268         type = LAST_NORM;
2269         if (name[0] == '.') switch (hashlen_len(hash_len)) {
2270             case 2:
2271                 if (name[1] == '.') {
2272                     type = LAST_DOTDOT;
2273                     nd->state |= ND_JUMPED;
2274                 }
2275                 break;
2276             case 1:
2277                 type = LAST_DOT;
2278         }
2279         if (likely(type == LAST_NORM)) {
2280             struct dentry *parent = nd->path.dentry;
2281             nd->state &= ~ND_JUMPED;
2282             if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2283                 struct qstr this = { { .hash_len = hash_len }, .name = name };
2284                 err = parent->d_op->d_hash(parent, &this);
2285                 if (err < 0)
2286                     return err;
2287                 hash_len = this.hash_len;
2288                 name = this.name;
2289             }
2290         }
2291 
2292         nd->last.hash_len = hash_len;
2293         nd->last.name = name;
2294         nd->last_type = type;
2295 
2296         name += hashlen_len(hash_len);
2297         if (!*name)
2298             goto OK;
2299         /*
2300          * If it wasn't NUL, we know it was '/'. Skip that
2301          * slash, and continue until no more slashes.
2302          */
2303         do {
2304             name++;
2305         } while (unlikely(*name == '/'));
2306         if (unlikely(!*name)) {
2307 OK:
2308             /* pathname or trailing symlink, done */
2309             if (!depth) {
2310                 nd->dir_uid = i_uid_into_mnt(mnt_userns, nd->inode);
2311                 nd->dir_mode = nd->inode->i_mode;
2312                 nd->flags &= ~LOOKUP_PARENT;
2313                 return 0;
2314             }
2315             /* last component of nested symlink */
2316             name = nd->stack[--depth].name;
2317             link = walk_component(nd, 0);
2318         } else {
2319             /* not the last component */
2320             link = walk_component(nd, WALK_MORE);
2321         }
2322         if (unlikely(link)) {
2323             if (IS_ERR(link))
2324                 return PTR_ERR(link);
2325             /* a symlink to follow */
2326             nd->stack[depth++].name = name;
2327             name = link;
2328             continue;
2329         }
2330         if (unlikely(!d_can_lookup(nd->path.dentry))) {
2331             if (nd->flags & LOOKUP_RCU) {
2332                 if (!try_to_unlazy(nd))
2333                     return -ECHILD;
2334             }
2335             return -ENOTDIR;
2336         }
2337     }
2338 }
2339 
2340 /* must be paired with terminate_walk() */
2341 static const char *path_init(struct nameidata *nd, unsigned flags)
2342 {
2343     int error;
2344     const char *s = nd->name->name;
2345 
2346     /* LOOKUP_CACHED requires RCU, ask caller to retry */
2347     if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2348         return ERR_PTR(-EAGAIN);
2349 
2350     if (!*s)
2351         flags &= ~LOOKUP_RCU;
2352     if (flags & LOOKUP_RCU)
2353         rcu_read_lock();
2354     else
2355         nd->seq = nd->next_seq = 0;
2356 
2357     nd->flags = flags;
2358     nd->state |= ND_JUMPED;
2359 
2360     nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2361     nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2362     smp_rmb();
2363 
2364     if (nd->state & ND_ROOT_PRESET) {
2365         struct dentry *root = nd->root.dentry;
2366         struct inode *inode = root->d_inode;
2367         if (*s && unlikely(!d_can_lookup(root)))
2368             return ERR_PTR(-ENOTDIR);
2369         nd->path = nd->root;
2370         nd->inode = inode;
2371         if (flags & LOOKUP_RCU) {
2372             nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2373             nd->root_seq = nd->seq;
2374         } else {
2375             path_get(&nd->path);
2376         }
2377         return s;
2378     }
2379 
2380     nd->root.mnt = NULL;
2381 
2382     /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2383     if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2384         error = nd_jump_root(nd);
2385         if (unlikely(error))
2386             return ERR_PTR(error);
2387         return s;
2388     }
2389 
2390     /* Relative pathname -- get the starting-point it is relative to. */
2391     if (nd->dfd == AT_FDCWD) {
2392         if (flags & LOOKUP_RCU) {
2393             struct fs_struct *fs = current->fs;
2394             unsigned seq;
2395 
2396             do {
2397                 seq = read_seqcount_begin(&fs->seq);
2398                 nd->path = fs->pwd;
2399                 nd->inode = nd->path.dentry->d_inode;
2400                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2401             } while (read_seqcount_retry(&fs->seq, seq));
2402         } else {
2403             get_fs_pwd(current->fs, &nd->path);
2404             nd->inode = nd->path.dentry->d_inode;
2405         }
2406     } else {
2407         /* Caller must check execute permissions on the starting path component */
2408         struct fd f = fdget_raw(nd->dfd);
2409         struct dentry *dentry;
2410 
2411         if (!f.file)
2412             return ERR_PTR(-EBADF);
2413 
2414         dentry = f.file->f_path.dentry;
2415 
2416         if (*s && unlikely(!d_can_lookup(dentry))) {
2417             fdput(f);
2418             return ERR_PTR(-ENOTDIR);
2419         }
2420 
2421         nd->path = f.file->f_path;
2422         if (flags & LOOKUP_RCU) {
2423             nd->inode = nd->path.dentry->d_inode;
2424             nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2425         } else {
2426             path_get(&nd->path);
2427             nd->inode = nd->path.dentry->d_inode;
2428         }
2429         fdput(f);
2430     }
2431 
2432     /* For scoped-lookups we need to set the root to the dirfd as well. */
2433     if (flags & LOOKUP_IS_SCOPED) {
2434         nd->root = nd->path;
2435         if (flags & LOOKUP_RCU) {
2436             nd->root_seq = nd->seq;
2437         } else {
2438             path_get(&nd->root);
2439             nd->state |= ND_ROOT_GRABBED;
2440         }
2441     }
2442     return s;
2443 }
2444 
2445 static inline const char *lookup_last(struct nameidata *nd)
2446 {
2447     if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2448         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2449 
2450     return walk_component(nd, WALK_TRAILING);
2451 }
2452 
2453 static int handle_lookup_down(struct nameidata *nd)
2454 {
2455     if (!(nd->flags & LOOKUP_RCU))
2456         dget(nd->path.dentry);
2457     nd->next_seq = nd->seq;
2458     return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2459 }
2460 
2461 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2462 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2463 {
2464     const char *s = path_init(nd, flags);
2465     int err;
2466 
2467     if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2468         err = handle_lookup_down(nd);
2469         if (unlikely(err < 0))
2470             s = ERR_PTR(err);
2471     }
2472 
2473     while (!(err = link_path_walk(s, nd)) &&
2474            (s = lookup_last(nd)) != NULL)
2475         ;
2476     if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2477         err = handle_lookup_down(nd);
2478         nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2479     }
2480     if (!err)
2481         err = complete_walk(nd);
2482 
2483     if (!err && nd->flags & LOOKUP_DIRECTORY)
2484         if (!d_can_lookup(nd->path.dentry))
2485             err = -ENOTDIR;
2486     if (!err) {
2487         *path = nd->path;
2488         nd->path.mnt = NULL;
2489         nd->path.dentry = NULL;
2490     }
2491     terminate_walk(nd);
2492     return err;
2493 }
2494 
2495 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2496             struct path *path, struct path *root)
2497 {
2498     int retval;
2499     struct nameidata nd;
2500     if (IS_ERR(name))
2501         return PTR_ERR(name);
2502     set_nameidata(&nd, dfd, name, root);
2503     retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2504     if (unlikely(retval == -ECHILD))
2505         retval = path_lookupat(&nd, flags, path);
2506     if (unlikely(retval == -ESTALE))
2507         retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2508 
2509     if (likely(!retval))
2510         audit_inode(name, path->dentry,
2511                 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2512     restore_nameidata();
2513     return retval;
2514 }
2515 
2516 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2517 static int path_parentat(struct nameidata *nd, unsigned flags,
2518                 struct path *parent)
2519 {
2520     const char *s = path_init(nd, flags);
2521     int err = link_path_walk(s, nd);
2522     if (!err)
2523         err = complete_walk(nd);
2524     if (!err) {
2525         *parent = nd->path;
2526         nd->path.mnt = NULL;
2527         nd->path.dentry = NULL;
2528     }
2529     terminate_walk(nd);
2530     return err;
2531 }
2532 
2533 /* Note: this does not consume "name" */
2534 static int filename_parentat(int dfd, struct filename *name,
2535                  unsigned int flags, struct path *parent,
2536                  struct qstr *last, int *type)
2537 {
2538     int retval;
2539     struct nameidata nd;
2540 
2541     if (IS_ERR(name))
2542         return PTR_ERR(name);
2543     set_nameidata(&nd, dfd, name, NULL);
2544     retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2545     if (unlikely(retval == -ECHILD))
2546         retval = path_parentat(&nd, flags, parent);
2547     if (unlikely(retval == -ESTALE))
2548         retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2549     if (likely(!retval)) {
2550         *last = nd.last;
2551         *type = nd.last_type;
2552         audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2553     }
2554     restore_nameidata();
2555     return retval;
2556 }
2557 
2558 /* does lookup, returns the object with parent locked */
2559 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2560 {
2561     struct dentry *d;
2562     struct qstr last;
2563     int type, error;
2564 
2565     error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2566     if (error)
2567         return ERR_PTR(error);
2568     if (unlikely(type != LAST_NORM)) {
2569         path_put(path);
2570         return ERR_PTR(-EINVAL);
2571     }
2572     inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2573     d = __lookup_hash(&last, path->dentry, 0);
2574     if (IS_ERR(d)) {
2575         inode_unlock(path->dentry->d_inode);
2576         path_put(path);
2577     }
2578     return d;
2579 }
2580 
2581 struct dentry *kern_path_locked(const char *name, struct path *path)
2582 {
2583     struct filename *filename = getname_kernel(name);
2584     struct dentry *res = __kern_path_locked(filename, path);
2585 
2586     putname(filename);
2587     return res;
2588 }
2589 
2590 int kern_path(const char *name, unsigned int flags, struct path *path)
2591 {
2592     struct filename *filename = getname_kernel(name);
2593     int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2594 
2595     putname(filename);
2596     return ret;
2597 
2598 }
2599 EXPORT_SYMBOL(kern_path);
2600 
2601 /**
2602  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2603  * @dentry:  pointer to dentry of the base directory
2604  * @mnt: pointer to vfs mount of the base directory
2605  * @name: pointer to file name
2606  * @flags: lookup flags
2607  * @path: pointer to struct path to fill
2608  */
2609 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2610             const char *name, unsigned int flags,
2611             struct path *path)
2612 {
2613     struct filename *filename;
2614     struct path root = {.mnt = mnt, .dentry = dentry};
2615     int ret;
2616 
2617     filename = getname_kernel(name);
2618     /* the first argument of filename_lookup() is ignored with root */
2619     ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2620     putname(filename);
2621     return ret;
2622 }
2623 EXPORT_SYMBOL(vfs_path_lookup);
2624 
2625 static int lookup_one_common(struct user_namespace *mnt_userns,
2626                  const char *name, struct dentry *base, int len,
2627                  struct qstr *this)
2628 {
2629     this->name = name;
2630     this->len = len;
2631     this->hash = full_name_hash(base, name, len);
2632     if (!len)
2633         return -EACCES;
2634 
2635     if (unlikely(name[0] == '.')) {
2636         if (len < 2 || (len == 2 && name[1] == '.'))
2637             return -EACCES;
2638     }
2639 
2640     while (len--) {
2641         unsigned int c = *(const unsigned char *)name++;
2642         if (c == '/' || c == '\0')
2643             return -EACCES;
2644     }
2645     /*
2646      * See if the low-level filesystem might want
2647      * to use its own hash..
2648      */
2649     if (base->d_flags & DCACHE_OP_HASH) {
2650         int err = base->d_op->d_hash(base, this);
2651         if (err < 0)
2652             return err;
2653     }
2654 
2655     return inode_permission(mnt_userns, base->d_inode, MAY_EXEC);
2656 }
2657 
2658 /**
2659  * try_lookup_one_len - filesystem helper to lookup single pathname component
2660  * @name:   pathname component to lookup
2661  * @base:   base directory to lookup from
2662  * @len:    maximum length @len should be interpreted to
2663  *
2664  * Look up a dentry by name in the dcache, returning NULL if it does not
2665  * currently exist.  The function does not try to create a dentry.
2666  *
2667  * Note that this routine is purely a helper for filesystem usage and should
2668  * not be called by generic code.
2669  *
2670  * The caller must hold base->i_mutex.
2671  */
2672 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2673 {
2674     struct qstr this;
2675     int err;
2676 
2677     WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2678 
2679     err = lookup_one_common(&init_user_ns, name, base, len, &this);
2680     if (err)
2681         return ERR_PTR(err);
2682 
2683     return lookup_dcache(&this, base, 0);
2684 }
2685 EXPORT_SYMBOL(try_lookup_one_len);
2686 
2687 /**
2688  * lookup_one_len - filesystem helper to lookup single pathname component
2689  * @name:   pathname component to lookup
2690  * @base:   base directory to lookup from
2691  * @len:    maximum length @len should be interpreted to
2692  *
2693  * Note that this routine is purely a helper for filesystem usage and should
2694  * not be called by generic code.
2695  *
2696  * The caller must hold base->i_mutex.
2697  */
2698 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2699 {
2700     struct dentry *dentry;
2701     struct qstr this;
2702     int err;
2703 
2704     WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2705 
2706     err = lookup_one_common(&init_user_ns, name, base, len, &this);
2707     if (err)
2708         return ERR_PTR(err);
2709 
2710     dentry = lookup_dcache(&this, base, 0);
2711     return dentry ? dentry : __lookup_slow(&this, base, 0);
2712 }
2713 EXPORT_SYMBOL(lookup_one_len);
2714 
2715 /**
2716  * lookup_one - filesystem helper to lookup single pathname component
2717  * @mnt_userns: user namespace of the mount the lookup is performed from
2718  * @name:   pathname component to lookup
2719  * @base:   base directory to lookup from
2720  * @len:    maximum length @len should be interpreted to
2721  *
2722  * Note that this routine is purely a helper for filesystem usage and should
2723  * not be called by generic code.
2724  *
2725  * The caller must hold base->i_mutex.
2726  */
2727 struct dentry *lookup_one(struct user_namespace *mnt_userns, const char *name,
2728               struct dentry *base, int len)
2729 {
2730     struct dentry *dentry;
2731     struct qstr this;
2732     int err;
2733 
2734     WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2735 
2736     err = lookup_one_common(mnt_userns, name, base, len, &this);
2737     if (err)
2738         return ERR_PTR(err);
2739 
2740     dentry = lookup_dcache(&this, base, 0);
2741     return dentry ? dentry : __lookup_slow(&this, base, 0);
2742 }
2743 EXPORT_SYMBOL(lookup_one);
2744 
2745 /**
2746  * lookup_one_unlocked - filesystem helper to lookup single pathname component
2747  * @mnt_userns: idmapping of the mount the lookup is performed from
2748  * @name:   pathname component to lookup
2749  * @base:   base directory to lookup from
2750  * @len:    maximum length @len should be interpreted to
2751  *
2752  * Note that this routine is purely a helper for filesystem usage and should
2753  * not be called by generic code.
2754  *
2755  * Unlike lookup_one_len, it should be called without the parent
2756  * i_mutex held, and will take the i_mutex itself if necessary.
2757  */
2758 struct dentry *lookup_one_unlocked(struct user_namespace *mnt_userns,
2759                    const char *name, struct dentry *base,
2760                    int len)
2761 {
2762     struct qstr this;
2763     int err;
2764     struct dentry *ret;
2765 
2766     err = lookup_one_common(mnt_userns, name, base, len, &this);
2767     if (err)
2768         return ERR_PTR(err);
2769 
2770     ret = lookup_dcache(&this, base, 0);
2771     if (!ret)
2772         ret = lookup_slow(&this, base, 0);
2773     return ret;
2774 }
2775 EXPORT_SYMBOL(lookup_one_unlocked);
2776 
2777 /**
2778  * lookup_one_positive_unlocked - filesystem helper to lookup single
2779  *                pathname component
2780  * @mnt_userns: idmapping of the mount the lookup is performed from
2781  * @name:   pathname component to lookup
2782  * @base:   base directory to lookup from
2783  * @len:    maximum length @len should be interpreted to
2784  *
2785  * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2786  * known positive or ERR_PTR(). This is what most of the users want.
2787  *
2788  * Note that pinned negative with unlocked parent _can_ become positive at any
2789  * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2790  * positives have >d_inode stable, so this one avoids such problems.
2791  *
2792  * Note that this routine is purely a helper for filesystem usage and should
2793  * not be called by generic code.
2794  *
2795  * The helper should be called without i_mutex held.
2796  */
2797 struct dentry *lookup_one_positive_unlocked(struct user_namespace *mnt_userns,
2798                         const char *name,
2799                         struct dentry *base, int len)
2800 {
2801     struct dentry *ret = lookup_one_unlocked(mnt_userns, name, base, len);
2802 
2803     if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2804         dput(ret);
2805         ret = ERR_PTR(-ENOENT);
2806     }
2807     return ret;
2808 }
2809 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2810 
2811 /**
2812  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2813  * @name:   pathname component to lookup
2814  * @base:   base directory to lookup from
2815  * @len:    maximum length @len should be interpreted to
2816  *
2817  * Note that this routine is purely a helper for filesystem usage and should
2818  * not be called by generic code.
2819  *
2820  * Unlike lookup_one_len, it should be called without the parent
2821  * i_mutex held, and will take the i_mutex itself if necessary.
2822  */
2823 struct dentry *lookup_one_len_unlocked(const char *name,
2824                        struct dentry *base, int len)
2825 {
2826     return lookup_one_unlocked(&init_user_ns, name, base, len);
2827 }
2828 EXPORT_SYMBOL(lookup_one_len_unlocked);
2829 
2830 /*
2831  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2832  * on negatives.  Returns known positive or ERR_PTR(); that's what
2833  * most of the users want.  Note that pinned negative with unlocked parent
2834  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2835  * need to be very careful; pinned positives have ->d_inode stable, so
2836  * this one avoids such problems.
2837  */
2838 struct dentry *lookup_positive_unlocked(const char *name,
2839                        struct dentry *base, int len)
2840 {
2841     return lookup_one_positive_unlocked(&init_user_ns, name, base, len);
2842 }
2843 EXPORT_SYMBOL(lookup_positive_unlocked);
2844 
2845 #ifdef CONFIG_UNIX98_PTYS
2846 int path_pts(struct path *path)
2847 {
2848     /* Find something mounted on "pts" in the same directory as
2849      * the input path.
2850      */
2851     struct dentry *parent = dget_parent(path->dentry);
2852     struct dentry *child;
2853     struct qstr this = QSTR_INIT("pts", 3);
2854 
2855     if (unlikely(!path_connected(path->mnt, parent))) {
2856         dput(parent);
2857         return -ENOENT;
2858     }
2859     dput(path->dentry);
2860     path->dentry = parent;
2861     child = d_hash_and_lookup(parent, &this);
2862     if (!child)
2863         return -ENOENT;
2864 
2865     path->dentry = child;
2866     dput(parent);
2867     follow_down(path);
2868     return 0;
2869 }
2870 #endif
2871 
2872 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2873          struct path *path, int *empty)
2874 {
2875     struct filename *filename = getname_flags(name, flags, empty);
2876     int ret = filename_lookup(dfd, filename, flags, path, NULL);
2877 
2878     putname(filename);
2879     return ret;
2880 }
2881 EXPORT_SYMBOL(user_path_at_empty);
2882 
2883 int __check_sticky(struct user_namespace *mnt_userns, struct inode *dir,
2884            struct inode *inode)
2885 {
2886     kuid_t fsuid = current_fsuid();
2887 
2888     if (uid_eq(i_uid_into_mnt(mnt_userns, inode), fsuid))
2889         return 0;
2890     if (uid_eq(i_uid_into_mnt(mnt_userns, dir), fsuid))
2891         return 0;
2892     return !capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FOWNER);
2893 }
2894 EXPORT_SYMBOL(__check_sticky);
2895 
2896 /*
2897  *  Check whether we can remove a link victim from directory dir, check
2898  *  whether the type of victim is right.
2899  *  1. We can't do it if dir is read-only (done in permission())
2900  *  2. We should have write and exec permissions on dir
2901  *  3. We can't remove anything from append-only dir
2902  *  4. We can't do anything with immutable dir (done in permission())
2903  *  5. If the sticky bit on dir is set we should either
2904  *  a. be owner of dir, or
2905  *  b. be owner of victim, or
2906  *  c. have CAP_FOWNER capability
2907  *  6. If the victim is append-only or immutable we can't do antyhing with
2908  *     links pointing to it.
2909  *  7. If the victim has an unknown uid or gid we can't change the inode.
2910  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2911  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2912  * 10. We can't remove a root or mountpoint.
2913  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2914  *     nfs_async_unlink().
2915  */
2916 static int may_delete(struct user_namespace *mnt_userns, struct inode *dir,
2917               struct dentry *victim, bool isdir)
2918 {
2919     struct inode *inode = d_backing_inode(victim);
2920     int error;
2921 
2922     if (d_is_negative(victim))
2923         return -ENOENT;
2924     BUG_ON(!inode);
2925 
2926     BUG_ON(victim->d_parent->d_inode != dir);
2927 
2928     /* Inode writeback is not safe when the uid or gid are invalid. */
2929     if (!uid_valid(i_uid_into_mnt(mnt_userns, inode)) ||
2930         !gid_valid(i_gid_into_mnt(mnt_userns, inode)))
2931         return -EOVERFLOW;
2932 
2933     audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2934 
2935     error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2936     if (error)
2937         return error;
2938     if (IS_APPEND(dir))
2939         return -EPERM;
2940 
2941     if (check_sticky(mnt_userns, dir, inode) || IS_APPEND(inode) ||
2942         IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2943         HAS_UNMAPPED_ID(mnt_userns, inode))
2944         return -EPERM;
2945     if (isdir) {
2946         if (!d_is_dir(victim))
2947             return -ENOTDIR;
2948         if (IS_ROOT(victim))
2949             return -EBUSY;
2950     } else if (d_is_dir(victim))
2951         return -EISDIR;
2952     if (IS_DEADDIR(dir))
2953         return -ENOENT;
2954     if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2955         return -EBUSY;
2956     return 0;
2957 }
2958 
2959 /*  Check whether we can create an object with dentry child in directory
2960  *  dir.
2961  *  1. We can't do it if child already exists (open has special treatment for
2962  *     this case, but since we are inlined it's OK)
2963  *  2. We can't do it if dir is read-only (done in permission())
2964  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2965  *  4. We should have write and exec permissions on dir
2966  *  5. We can't do it if dir is immutable (done in permission())
2967  */
2968 static inline int may_create(struct user_namespace *mnt_userns,
2969                  struct inode *dir, struct dentry *child)
2970 {
2971     audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2972     if (child->d_inode)
2973         return -EEXIST;
2974     if (IS_DEADDIR(dir))
2975         return -ENOENT;
2976     if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
2977         return -EOVERFLOW;
2978 
2979     return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
2980 }
2981 
2982 /*
2983  * p1 and p2 should be directories on the same fs.
2984  */
2985 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2986 {
2987     struct dentry *p;
2988 
2989     if (p1 == p2) {
2990         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2991         return NULL;
2992     }
2993 
2994     mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2995 
2996     p = d_ancestor(p2, p1);
2997     if (p) {
2998         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2999         inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3000         return p;
3001     }
3002 
3003     p = d_ancestor(p1, p2);
3004     if (p) {
3005         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3006         inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3007         return p;
3008     }
3009 
3010     inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3011     inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3012     return NULL;
3013 }
3014 EXPORT_SYMBOL(lock_rename);
3015 
3016 void unlock_rename(struct dentry *p1, struct dentry *p2)
3017 {
3018     inode_unlock(p1->d_inode);
3019     if (p1 != p2) {
3020         inode_unlock(p2->d_inode);
3021         mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3022     }
3023 }
3024 EXPORT_SYMBOL(unlock_rename);
3025 
3026 /**
3027  * mode_strip_umask - handle vfs umask stripping
3028  * @dir:    parent directory of the new inode
3029  * @mode:   mode of the new inode to be created in @dir
3030  *
3031  * Umask stripping depends on whether or not the filesystem supports POSIX
3032  * ACLs. If the filesystem doesn't support it umask stripping is done directly
3033  * in here. If the filesystem does support POSIX ACLs umask stripping is
3034  * deferred until the filesystem calls posix_acl_create().
3035  *
3036  * Returns: mode
3037  */
3038 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3039 {
3040     if (!IS_POSIXACL(dir))
3041         mode &= ~current_umask();
3042     return mode;
3043 }
3044 
3045 /**
3046  * vfs_prepare_mode - prepare the mode to be used for a new inode
3047  * @mnt_userns:     user namespace of the mount the inode was found from
3048  * @dir:    parent directory of the new inode
3049  * @mode:   mode of the new inode
3050  * @mask_perms: allowed permission by the vfs
3051  * @type:   type of file to be created
3052  *
3053  * This helper consolidates and enforces vfs restrictions on the @mode of a new
3054  * object to be created.
3055  *
3056  * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3057  * the kernel documentation for mode_strip_umask()). Moving umask stripping
3058  * after setgid stripping allows the same ordering for both non-POSIX ACL and
3059  * POSIX ACL supporting filesystems.
3060  *
3061  * Note that it's currently valid for @type to be 0 if a directory is created.
3062  * Filesystems raise that flag individually and we need to check whether each
3063  * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3064  * non-zero type.
3065  *
3066  * Returns: mode to be passed to the filesystem
3067  */
3068 static inline umode_t vfs_prepare_mode(struct user_namespace *mnt_userns,
3069                        const struct inode *dir, umode_t mode,
3070                        umode_t mask_perms, umode_t type)
3071 {
3072     mode = mode_strip_sgid(mnt_userns, dir, mode);
3073     mode = mode_strip_umask(dir, mode);
3074 
3075     /*
3076      * Apply the vfs mandated allowed permission mask and set the type of
3077      * file to be created before we call into the filesystem.
3078      */
3079     mode &= (mask_perms & ~S_IFMT);
3080     mode |= (type & S_IFMT);
3081 
3082     return mode;
3083 }
3084 
3085 /**
3086  * vfs_create - create new file
3087  * @mnt_userns: user namespace of the mount the inode was found from
3088  * @dir:    inode of @dentry
3089  * @dentry: pointer to dentry of the base directory
3090  * @mode:   mode of the new file
3091  * @want_excl:  whether the file must not yet exist
3092  *
3093  * Create a new file.
3094  *
3095  * If the inode has been found through an idmapped mount the user namespace of
3096  * the vfsmount must be passed through @mnt_userns. This function will then take
3097  * care to map the inode according to @mnt_userns before checking permissions.
3098  * On non-idmapped mounts or if permission checking is to be performed on the
3099  * raw inode simply passs init_user_ns.
3100  */
3101 int vfs_create(struct user_namespace *mnt_userns, struct inode *dir,
3102            struct dentry *dentry, umode_t mode, bool want_excl)
3103 {
3104     int error = may_create(mnt_userns, dir, dentry);
3105     if (error)
3106         return error;
3107 
3108     if (!dir->i_op->create)
3109         return -EACCES; /* shouldn't it be ENOSYS? */
3110 
3111     mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IALLUGO, S_IFREG);
3112     error = security_inode_create(dir, dentry, mode);
3113     if (error)
3114         return error;
3115     error = dir->i_op->create(mnt_userns, dir, dentry, mode, want_excl);
3116     if (!error)
3117         fsnotify_create(dir, dentry);
3118     return error;
3119 }
3120 EXPORT_SYMBOL(vfs_create);
3121 
3122 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3123         int (*f)(struct dentry *, umode_t, void *),
3124         void *arg)
3125 {
3126     struct inode *dir = dentry->d_parent->d_inode;
3127     int error = may_create(&init_user_ns, dir, dentry);
3128     if (error)
3129         return error;
3130 
3131     mode &= S_IALLUGO;
3132     mode |= S_IFREG;
3133     error = security_inode_create(dir, dentry, mode);
3134     if (error)
3135         return error;
3136     error = f(dentry, mode, arg);
3137     if (!error)
3138         fsnotify_create(dir, dentry);
3139     return error;
3140 }
3141 EXPORT_SYMBOL(vfs_mkobj);
3142 
3143 bool may_open_dev(const struct path *path)
3144 {
3145     return !(path->mnt->mnt_flags & MNT_NODEV) &&
3146         !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3147 }
3148 
3149 static int may_open(struct user_namespace *mnt_userns, const struct path *path,
3150             int acc_mode, int flag)
3151 {
3152     struct dentry *dentry = path->dentry;
3153     struct inode *inode = dentry->d_inode;
3154     int error;
3155 
3156     if (!inode)
3157         return -ENOENT;
3158 
3159     switch (inode->i_mode & S_IFMT) {
3160     case S_IFLNK:
3161         return -ELOOP;
3162     case S_IFDIR:
3163         if (acc_mode & MAY_WRITE)
3164             return -EISDIR;
3165         if (acc_mode & MAY_EXEC)
3166             return -EACCES;
3167         break;
3168     case S_IFBLK:
3169     case S_IFCHR:
3170         if (!may_open_dev(path))
3171             return -EACCES;
3172         fallthrough;
3173     case S_IFIFO:
3174     case S_IFSOCK:
3175         if (acc_mode & MAY_EXEC)
3176             return -EACCES;
3177         flag &= ~O_TRUNC;
3178         break;
3179     case S_IFREG:
3180         if ((acc_mode & MAY_EXEC) && path_noexec(path))
3181             return -EACCES;
3182         break;
3183     }
3184 
3185     error = inode_permission(mnt_userns, inode, MAY_OPEN | acc_mode);
3186     if (error)
3187         return error;
3188 
3189     /*
3190      * An append-only file must be opened in append mode for writing.
3191      */
3192     if (IS_APPEND(inode)) {
3193         if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3194             return -EPERM;
3195         if (flag & O_TRUNC)
3196             return -EPERM;
3197     }
3198 
3199     /* O_NOATIME can only be set by the owner or superuser */
3200     if (flag & O_NOATIME && !inode_owner_or_capable(mnt_userns, inode))
3201         return -EPERM;
3202 
3203     return 0;
3204 }
3205 
3206 static int handle_truncate(struct user_namespace *mnt_userns, struct file *filp)
3207 {
3208     const struct path *path = &filp->f_path;
3209     struct inode *inode = path->dentry->d_inode;
3210     int error = get_write_access(inode);
3211     if (error)
3212         return error;
3213 
3214     error = security_path_truncate(path);
3215     if (!error) {
3216         error = do_truncate(mnt_userns, path->dentry, 0,
3217                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3218                     filp);
3219     }
3220     put_write_access(inode);
3221     return error;
3222 }
3223 
3224 static inline int open_to_namei_flags(int flag)
3225 {
3226     if ((flag & O_ACCMODE) == 3)
3227         flag--;
3228     return flag;
3229 }
3230 
3231 static int may_o_create(struct user_namespace *mnt_userns,
3232             const struct path *dir, struct dentry *dentry,
3233             umode_t mode)
3234 {
3235     int error = security_path_mknod(dir, dentry, mode, 0);
3236     if (error)
3237         return error;
3238 
3239     if (!fsuidgid_has_mapping(dir->dentry->d_sb, mnt_userns))
3240         return -EOVERFLOW;
3241 
3242     error = inode_permission(mnt_userns, dir->dentry->d_inode,
3243                  MAY_WRITE | MAY_EXEC);
3244     if (error)
3245         return error;
3246 
3247     return security_inode_create(dir->dentry->d_inode, dentry, mode);
3248 }
3249 
3250 /*
3251  * Attempt to atomically look up, create and open a file from a negative
3252  * dentry.
3253  *
3254  * Returns 0 if successful.  The file will have been created and attached to
3255  * @file by the filesystem calling finish_open().
3256  *
3257  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3258  * be set.  The caller will need to perform the open themselves.  @path will
3259  * have been updated to point to the new dentry.  This may be negative.
3260  *
3261  * Returns an error code otherwise.
3262  */
3263 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3264                   struct file *file,
3265                   int open_flag, umode_t mode)
3266 {
3267     struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3268     struct inode *dir =  nd->path.dentry->d_inode;
3269     int error;
3270 
3271     if (nd->flags & LOOKUP_DIRECTORY)
3272         open_flag |= O_DIRECTORY;
3273 
3274     file->f_path.dentry = DENTRY_NOT_SET;
3275     file->f_path.mnt = nd->path.mnt;
3276     error = dir->i_op->atomic_open(dir, dentry, file,
3277                        open_to_namei_flags(open_flag), mode);
3278     d_lookup_done(dentry);
3279     if (!error) {
3280         if (file->f_mode & FMODE_OPENED) {
3281             if (unlikely(dentry != file->f_path.dentry)) {
3282                 dput(dentry);
3283                 dentry = dget(file->f_path.dentry);
3284             }
3285         } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3286             error = -EIO;
3287         } else {
3288             if (file->f_path.dentry) {
3289                 dput(dentry);
3290                 dentry = file->f_path.dentry;
3291             }
3292             if (unlikely(d_is_negative(dentry)))
3293                 error = -ENOENT;
3294         }
3295     }
3296     if (error) {
3297         dput(dentry);
3298         dentry = ERR_PTR(error);
3299     }
3300     return dentry;
3301 }
3302 
3303 /*
3304  * Look up and maybe create and open the last component.
3305  *
3306  * Must be called with parent locked (exclusive in O_CREAT case).
3307  *
3308  * Returns 0 on success, that is, if
3309  *  the file was successfully atomically created (if necessary) and opened, or
3310  *  the file was not completely opened at this time, though lookups and
3311  *  creations were performed.
3312  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3313  * In the latter case dentry returned in @path might be negative if O_CREAT
3314  * hadn't been specified.
3315  *
3316  * An error code is returned on failure.
3317  */
3318 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3319                   const struct open_flags *op,
3320                   bool got_write)
3321 {
3322     struct user_namespace *mnt_userns;
3323     struct dentry *dir = nd->path.dentry;
3324     struct inode *dir_inode = dir->d_inode;
3325     int open_flag = op->open_flag;
3326     struct dentry *dentry;
3327     int error, create_error = 0;
3328     umode_t mode = op->mode;
3329     DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3330 
3331     if (unlikely(IS_DEADDIR(dir_inode)))
3332         return ERR_PTR(-ENOENT);
3333 
3334     file->f_mode &= ~FMODE_CREATED;
3335     dentry = d_lookup(dir, &nd->last);
3336     for (;;) {
3337         if (!dentry) {
3338             dentry = d_alloc_parallel(dir, &nd->last, &wq);
3339             if (IS_ERR(dentry))
3340                 return dentry;
3341         }
3342         if (d_in_lookup(dentry))
3343             break;
3344 
3345         error = d_revalidate(dentry, nd->flags);
3346         if (likely(error > 0))
3347             break;
3348         if (error)
3349             goto out_dput;
3350         d_invalidate(dentry);
3351         dput(dentry);
3352         dentry = NULL;
3353     }
3354     if (dentry->d_inode) {
3355         /* Cached positive dentry: will open in f_op->open */
3356         return dentry;
3357     }
3358 
3359     /*
3360      * Checking write permission is tricky, bacuse we don't know if we are
3361      * going to actually need it: O_CREAT opens should work as long as the
3362      * file exists.  But checking existence breaks atomicity.  The trick is
3363      * to check access and if not granted clear O_CREAT from the flags.
3364      *
3365      * Another problem is returing the "right" error value (e.g. for an
3366      * O_EXCL open we want to return EEXIST not EROFS).
3367      */
3368     if (unlikely(!got_write))
3369         open_flag &= ~O_TRUNC;
3370     mnt_userns = mnt_user_ns(nd->path.mnt);
3371     if (open_flag & O_CREAT) {
3372         if (open_flag & O_EXCL)
3373             open_flag &= ~O_TRUNC;
3374         mode = vfs_prepare_mode(mnt_userns, dir->d_inode, mode, mode, mode);
3375         if (likely(got_write))
3376             create_error = may_o_create(mnt_userns, &nd->path,
3377                             dentry, mode);
3378         else
3379             create_error = -EROFS;
3380     }
3381     if (create_error)
3382         open_flag &= ~O_CREAT;
3383     if (dir_inode->i_op->atomic_open) {
3384         dentry = atomic_open(nd, dentry, file, open_flag, mode);
3385         if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3386             dentry = ERR_PTR(create_error);
3387         return dentry;
3388     }
3389 
3390     if (d_in_lookup(dentry)) {
3391         struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3392                                  nd->flags);
3393         d_lookup_done(dentry);
3394         if (unlikely(res)) {
3395             if (IS_ERR(res)) {
3396                 error = PTR_ERR(res);
3397                 goto out_dput;
3398             }
3399             dput(dentry);
3400             dentry = res;
3401         }
3402     }
3403 
3404     /* Negative dentry, just create the file */
3405     if (!dentry->d_inode && (open_flag & O_CREAT)) {
3406         file->f_mode |= FMODE_CREATED;
3407         audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3408         if (!dir_inode->i_op->create) {
3409             error = -EACCES;
3410             goto out_dput;
3411         }
3412 
3413         error = dir_inode->i_op->create(mnt_userns, dir_inode, dentry,
3414                         mode, open_flag & O_EXCL);
3415         if (error)
3416             goto out_dput;
3417     }
3418     if (unlikely(create_error) && !dentry->d_inode) {
3419         error = create_error;
3420         goto out_dput;
3421     }
3422     return dentry;
3423 
3424 out_dput:
3425     dput(dentry);
3426     return ERR_PTR(error);
3427 }
3428 
3429 static const char *open_last_lookups(struct nameidata *nd,
3430            struct file *file, const struct open_flags *op)
3431 {
3432     struct dentry *dir = nd->path.dentry;
3433     int open_flag = op->open_flag;
3434     bool got_write = false;
3435     struct dentry *dentry;
3436     const char *res;
3437 
3438     nd->flags |= op->intent;
3439 
3440     if (nd->last_type != LAST_NORM) {
3441         if (nd->depth)
3442             put_link(nd);
3443         return handle_dots(nd, nd->last_type);
3444     }
3445 
3446     if (!(open_flag & O_CREAT)) {
3447         if (nd->last.name[nd->last.len])
3448             nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3449         /* we _can_ be in RCU mode here */
3450         dentry = lookup_fast(nd);
3451         if (IS_ERR(dentry))
3452             return ERR_CAST(dentry);
3453         if (likely(dentry))
3454             goto finish_lookup;
3455 
3456         BUG_ON(nd->flags & LOOKUP_RCU);
3457     } else {
3458         /* create side of things */
3459         if (nd->flags & LOOKUP_RCU) {
3460             if (!try_to_unlazy(nd))
3461                 return ERR_PTR(-ECHILD);
3462         }
3463         audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3464         /* trailing slashes? */
3465         if (unlikely(nd->last.name[nd->last.len]))
3466             return ERR_PTR(-EISDIR);
3467     }
3468 
3469     if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3470         got_write = !mnt_want_write(nd->path.mnt);
3471         /*
3472          * do _not_ fail yet - we might not need that or fail with
3473          * a different error; let lookup_open() decide; we'll be
3474          * dropping this one anyway.
3475          */
3476     }
3477     if (open_flag & O_CREAT)
3478         inode_lock(dir->d_inode);
3479     else
3480         inode_lock_shared(dir->d_inode);
3481     dentry = lookup_open(nd, file, op, got_write);
3482     if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3483         fsnotify_create(dir->d_inode, dentry);
3484     if (open_flag & O_CREAT)
3485         inode_unlock(dir->d_inode);
3486     else
3487         inode_unlock_shared(dir->d_inode);
3488 
3489     if (got_write)
3490         mnt_drop_write(nd->path.mnt);
3491 
3492     if (IS_ERR(dentry))
3493         return ERR_CAST(dentry);
3494 
3495     if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3496         dput(nd->path.dentry);
3497         nd->path.dentry = dentry;
3498         return NULL;
3499     }
3500 
3501 finish_lookup:
3502     if (nd->depth)
3503         put_link(nd);
3504     res = step_into(nd, WALK_TRAILING, dentry);
3505     if (unlikely(res))
3506         nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3507     return res;
3508 }
3509 
3510 /*
3511  * Handle the last step of open()
3512  */
3513 static int do_open(struct nameidata *nd,
3514            struct file *file, const struct open_flags *op)
3515 {
3516     struct user_namespace *mnt_userns;
3517     int open_flag = op->open_flag;
3518     bool do_truncate;
3519     int acc_mode;
3520     int error;
3521 
3522     if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3523         error = complete_walk(nd);
3524         if (error)
3525             return error;
3526     }
3527     if (!(file->f_mode & FMODE_CREATED))
3528         audit_inode(nd->name, nd->path.dentry, 0);
3529     mnt_userns = mnt_user_ns(nd->path.mnt);
3530     if (open_flag & O_CREAT) {
3531         if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3532             return -EEXIST;
3533         if (d_is_dir(nd->path.dentry))
3534             return -EISDIR;
3535         error = may_create_in_sticky(mnt_userns, nd,
3536                          d_backing_inode(nd->path.dentry));
3537         if (unlikely(error))
3538             return error;
3539     }
3540     if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3541         return -ENOTDIR;
3542 
3543     do_truncate = false;
3544     acc_mode = op->acc_mode;
3545     if (file->f_mode & FMODE_CREATED) {
3546         /* Don't check for write permission, don't truncate */
3547         open_flag &= ~O_TRUNC;
3548         acc_mode = 0;
3549     } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3550         error = mnt_want_write(nd->path.mnt);
3551         if (error)
3552             return error;
3553         do_truncate = true;
3554     }
3555     error = may_open(mnt_userns, &nd->path, acc_mode, open_flag);
3556     if (!error && !(file->f_mode & FMODE_OPENED))
3557         error = vfs_open(&nd->path, file);
3558     if (!error)
3559         error = ima_file_check(file, op->acc_mode);
3560     if (!error && do_truncate)
3561         error = handle_truncate(mnt_userns, file);
3562     if (unlikely(error > 0)) {
3563         WARN_ON(1);
3564         error = -EINVAL;
3565     }
3566     if (do_truncate)
3567         mnt_drop_write(nd->path.mnt);
3568     return error;
3569 }
3570 
3571 /**
3572  * vfs_tmpfile - create tmpfile
3573  * @mnt_userns: user namespace of the mount the inode was found from
3574  * @dentry: pointer to dentry of the base directory
3575  * @mode:   mode of the new tmpfile
3576  * @open_flag:  flags
3577  *
3578  * Create a temporary file.
3579  *
3580  * If the inode has been found through an idmapped mount the user namespace of
3581  * the vfsmount must be passed through @mnt_userns. This function will then take
3582  * care to map the inode according to @mnt_userns before checking permissions.
3583  * On non-idmapped mounts or if permission checking is to be performed on the
3584  * raw inode simply passs init_user_ns.
3585  */
3586 struct dentry *vfs_tmpfile(struct user_namespace *mnt_userns,
3587                struct dentry *dentry, umode_t mode, int open_flag)
3588 {
3589     struct dentry *child = NULL;
3590     struct inode *dir = dentry->d_inode;
3591     struct inode *inode;
3592     int error;
3593 
3594     /* we want directory to be writable */
3595     error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
3596     if (error)
3597         goto out_err;
3598     error = -EOPNOTSUPP;
3599     if (!dir->i_op->tmpfile)
3600         goto out_err;
3601     error = -ENOMEM;
3602     child = d_alloc(dentry, &slash_name);
3603     if (unlikely(!child))
3604         goto out_err;
3605     mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3606     error = dir->i_op->tmpfile(mnt_userns, dir, child, mode);
3607     if (error)
3608         goto out_err;
3609     error = -ENOENT;
3610     inode = child->d_inode;
3611     if (unlikely(!inode))
3612         goto out_err;
3613     if (!(open_flag & O_EXCL)) {
3614         spin_lock(&inode->i_lock);
3615         inode->i_state |= I_LINKABLE;
3616         spin_unlock(&inode->i_lock);
3617     }
3618     ima_post_create_tmpfile(mnt_userns, inode);
3619     return child;
3620 
3621 out_err:
3622     dput(child);
3623     return ERR_PTR(error);
3624 }
3625 EXPORT_SYMBOL(vfs_tmpfile);
3626 
3627 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3628         const struct open_flags *op,
3629         struct file *file)
3630 {
3631     struct user_namespace *mnt_userns;
3632     struct dentry *child;
3633     struct path path;
3634     int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3635     if (unlikely(error))
3636         return error;
3637     error = mnt_want_write(path.mnt);
3638     if (unlikely(error))
3639         goto out;
3640     mnt_userns = mnt_user_ns(path.mnt);
3641     child = vfs_tmpfile(mnt_userns, path.dentry, op->mode, op->open_flag);
3642     error = PTR_ERR(child);
3643     if (IS_ERR(child))
3644         goto out2;
3645     dput(path.dentry);
3646     path.dentry = child;
3647     audit_inode(nd->name, child, 0);
3648     /* Don't check for other permissions, the inode was just created */
3649     error = may_open(mnt_userns, &path, 0, op->open_flag);
3650     if (!error)
3651         error = vfs_open(&path, file);
3652 out2:
3653     mnt_drop_write(path.mnt);
3654 out:
3655     path_put(&path);
3656     return error;
3657 }
3658 
3659 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3660 {
3661     struct path path;
3662     int error = path_lookupat(nd, flags, &path);
3663     if (!error) {
3664         audit_inode(nd->name, path.dentry, 0);
3665         error = vfs_open(&path, file);
3666         path_put(&path);
3667     }
3668     return error;
3669 }
3670 
3671 static struct file *path_openat(struct nameidata *nd,
3672             const struct open_flags *op, unsigned flags)
3673 {
3674     struct file *file;
3675     int error;
3676 
3677     file = alloc_empty_file(op->open_flag, current_cred());
3678     if (IS_ERR(file))
3679         return file;
3680 
3681     if (unlikely(file->f_flags & __O_TMPFILE)) {
3682         error = do_tmpfile(nd, flags, op, file);
3683     } else if (unlikely(file->f_flags & O_PATH)) {
3684         error = do_o_path(nd, flags, file);
3685     } else {
3686         const char *s = path_init(nd, flags);
3687         while (!(error = link_path_walk(s, nd)) &&
3688                (s = open_last_lookups(nd, file, op)) != NULL)
3689             ;
3690         if (!error)
3691             error = do_open(nd, file, op);
3692         terminate_walk(nd);
3693     }
3694     if (likely(!error)) {
3695         if (likely(file->f_mode & FMODE_OPENED))
3696             return file;
3697         WARN_ON(1);
3698         error = -EINVAL;
3699     }
3700     fput(file);
3701     if (error == -EOPENSTALE) {
3702         if (flags & LOOKUP_RCU)
3703             error = -ECHILD;
3704         else
3705             error = -ESTALE;
3706     }
3707     return ERR_PTR(error);
3708 }
3709 
3710 struct file *do_filp_open(int dfd, struct filename *pathname,
3711         const struct open_flags *op)
3712 {
3713     struct nameidata nd;
3714     int flags = op->lookup_flags;
3715     struct file *filp;
3716 
3717     set_nameidata(&nd, dfd, pathname, NULL);
3718     filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3719     if (unlikely(filp == ERR_PTR(-ECHILD)))
3720         filp = path_openat(&nd, op, flags);
3721     if (unlikely(filp == ERR_PTR(-ESTALE)))
3722         filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3723     restore_nameidata();
3724     return filp;
3725 }
3726 
3727 struct file *do_file_open_root(const struct path *root,
3728         const char *name, const struct open_flags *op)
3729 {
3730     struct nameidata nd;
3731     struct file *file;
3732     struct filename *filename;
3733     int flags = op->lookup_flags;
3734 
3735     if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3736         return ERR_PTR(-ELOOP);
3737 
3738     filename = getname_kernel(name);
3739     if (IS_ERR(filename))
3740         return ERR_CAST(filename);
3741 
3742     set_nameidata(&nd, -1, filename, root);
3743     file = path_openat(&nd, op, flags | LOOKUP_RCU);
3744     if (unlikely(file == ERR_PTR(-ECHILD)))
3745         file = path_openat(&nd, op, flags);
3746     if (unlikely(file == ERR_PTR(-ESTALE)))
3747         file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3748     restore_nameidata();
3749     putname(filename);
3750     return file;
3751 }
3752 
3753 static struct dentry *filename_create(int dfd, struct filename *name,
3754                       struct path *path, unsigned int lookup_flags)
3755 {
3756     struct dentry *dentry = ERR_PTR(-EEXIST);
3757     struct qstr last;
3758     bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3759     unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3760     unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3761     int type;
3762     int err2;
3763     int error;
3764 
3765     error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3766     if (error)
3767         return ERR_PTR(error);
3768 
3769     /*
3770      * Yucky last component or no last component at all?
3771      * (foo/., foo/.., /////)
3772      */
3773     if (unlikely(type != LAST_NORM))
3774         goto out;
3775 
3776     /* don't fail immediately if it's r/o, at least try to report other errors */
3777     err2 = mnt_want_write(path->mnt);
3778     /*
3779      * Do the final lookup.  Suppress 'create' if there is a trailing
3780      * '/', and a directory wasn't requested.
3781      */
3782     if (last.name[last.len] && !want_dir)
3783         create_flags = 0;
3784     inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3785     dentry = __lookup_hash(&last, path->dentry, reval_flag | create_flags);
3786     if (IS_ERR(dentry))
3787         goto unlock;
3788 
3789     error = -EEXIST;
3790     if (d_is_positive(dentry))
3791         goto fail;
3792 
3793     /*
3794      * Special case - lookup gave negative, but... we had foo/bar/
3795      * From the vfs_mknod() POV we just have a negative dentry -
3796      * all is fine. Let's be bastards - you had / on the end, you've
3797      * been asking for (non-existent) directory. -ENOENT for you.
3798      */
3799     if (unlikely(!create_flags)) {
3800         error = -ENOENT;
3801         goto fail;
3802     }
3803     if (unlikely(err2)) {
3804         error = err2;
3805         goto fail;
3806     }
3807     return dentry;
3808 fail:
3809     dput(dentry);
3810     dentry = ERR_PTR(error);
3811 unlock:
3812     inode_unlock(path->dentry->d_inode);
3813     if (!err2)
3814         mnt_drop_write(path->mnt);
3815 out:
3816     path_put(path);
3817     return dentry;
3818 }
3819 
3820 struct dentry *kern_path_create(int dfd, const char *pathname,
3821                 struct path *path, unsigned int lookup_flags)
3822 {
3823     struct filename *filename = getname_kernel(pathname);
3824     struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3825 
3826     putname(filename);
3827     return res;
3828 }
3829 EXPORT_SYMBOL(kern_path_create);
3830 
3831 void done_path_create(struct path *path, struct dentry *dentry)
3832 {
3833     dput(dentry);
3834     inode_unlock(path->dentry->d_inode);
3835     mnt_drop_write(path->mnt);
3836     path_put(path);
3837 }
3838 EXPORT_SYMBOL(done_path_create);
3839 
3840 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3841                 struct path *path, unsigned int lookup_flags)
3842 {
3843     struct filename *filename = getname(pathname);
3844     struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3845 
3846     putname(filename);
3847     return res;
3848 }
3849 EXPORT_SYMBOL(user_path_create);
3850 
3851 /**
3852  * vfs_mknod - create device node or file
3853  * @mnt_userns: user namespace of the mount the inode was found from
3854  * @dir:    inode of @dentry
3855  * @dentry: pointer to dentry of the base directory
3856  * @mode:   mode of the new device node or file
3857  * @dev:    device number of device to create
3858  *
3859  * Create a device node or file.
3860  *
3861  * If the inode has been found through an idmapped mount the user namespace of
3862  * the vfsmount must be passed through @mnt_userns. This function will then take
3863  * care to map the inode according to @mnt_userns before checking permissions.
3864  * On non-idmapped mounts or if permission checking is to be performed on the
3865  * raw inode simply passs init_user_ns.
3866  */
3867 int vfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
3868           struct dentry *dentry, umode_t mode, dev_t dev)
3869 {
3870     bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3871     int error = may_create(mnt_userns, dir, dentry);
3872 
3873     if (error)
3874         return error;
3875 
3876     if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3877         !capable(CAP_MKNOD))
3878         return -EPERM;
3879 
3880     if (!dir->i_op->mknod)
3881         return -EPERM;
3882 
3883     mode = vfs_prepare_mode(mnt_userns, dir, mode, mode, mode);
3884     error = devcgroup_inode_mknod(mode, dev);
3885     if (error)
3886         return error;
3887 
3888     error = security_inode_mknod(dir, dentry, mode, dev);
3889     if (error)
3890         return error;
3891 
3892     error = dir->i_op->mknod(mnt_userns, dir, dentry, mode, dev);
3893     if (!error)
3894         fsnotify_create(dir, dentry);
3895     return error;
3896 }
3897 EXPORT_SYMBOL(vfs_mknod);
3898 
3899 static int may_mknod(umode_t mode)
3900 {
3901     switch (mode & S_IFMT) {
3902     case S_IFREG:
3903     case S_IFCHR:
3904     case S_IFBLK:
3905     case S_IFIFO:
3906     case S_IFSOCK:
3907     case 0: /* zero mode translates to S_IFREG */
3908         return 0;
3909     case S_IFDIR:
3910         return -EPERM;
3911     default:
3912         return -EINVAL;
3913     }
3914 }
3915 
3916 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
3917         unsigned int dev)
3918 {
3919     struct user_namespace *mnt_userns;
3920     struct dentry *dentry;
3921     struct path path;
3922     int error;
3923     unsigned int lookup_flags = 0;
3924 
3925     error = may_mknod(mode);
3926     if (error)
3927         goto out1;
3928 retry:
3929     dentry = filename_create(dfd, name, &path, lookup_flags);
3930     error = PTR_ERR(dentry);
3931     if (IS_ERR(dentry))
3932         goto out1;
3933 
3934     error = security_path_mknod(&path, dentry,
3935             mode_strip_umask(path.dentry->d_inode, mode), dev);
3936     if (error)
3937         goto out2;
3938 
3939     mnt_userns = mnt_user_ns(path.mnt);
3940     switch (mode & S_IFMT) {
3941         case 0: case S_IFREG:
3942             error = vfs_create(mnt_userns, path.dentry->d_inode,
3943                        dentry, mode, true);
3944             if (!error)
3945                 ima_post_path_mknod(mnt_userns, dentry);
3946             break;
3947         case S_IFCHR: case S_IFBLK:
3948             error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3949                       dentry, mode, new_decode_dev(dev));
3950             break;
3951         case S_IFIFO: case S_IFSOCK:
3952             error = vfs_mknod(mnt_userns, path.dentry->d_inode,
3953                       dentry, mode, 0);
3954             break;
3955     }
3956 out2:
3957     done_path_create(&path, dentry);
3958     if (retry_estale(error, lookup_flags)) {
3959         lookup_flags |= LOOKUP_REVAL;
3960         goto retry;
3961     }
3962 out1:
3963     putname(name);
3964     return error;
3965 }
3966 
3967 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3968         unsigned int, dev)
3969 {
3970     return do_mknodat(dfd, getname(filename), mode, dev);
3971 }
3972 
3973 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3974 {
3975     return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
3976 }
3977 
3978 /**
3979  * vfs_mkdir - create directory
3980  * @mnt_userns: user namespace of the mount the inode was found from
3981  * @dir:    inode of @dentry
3982  * @dentry: pointer to dentry of the base directory
3983  * @mode:   mode of the new directory
3984  *
3985  * Create a directory.
3986  *
3987  * If the inode has been found through an idmapped mount the user namespace of
3988  * the vfsmount must be passed through @mnt_userns. This function will then take
3989  * care to map the inode according to @mnt_userns before checking permissions.
3990  * On non-idmapped mounts or if permission checking is to be performed on the
3991  * raw inode simply passs init_user_ns.
3992  */
3993 int vfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
3994           struct dentry *dentry, umode_t mode)
3995 {
3996     int error = may_create(mnt_userns, dir, dentry);
3997     unsigned max_links = dir->i_sb->s_max_links;
3998 
3999     if (error)
4000         return error;
4001 
4002     if (!dir->i_op->mkdir)
4003         return -EPERM;
4004 
4005     mode = vfs_prepare_mode(mnt_userns, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4006     error = security_inode_mkdir(dir, dentry, mode);
4007     if (error)
4008         return error;
4009 
4010     if (max_links && dir->i_nlink >= max_links)
4011         return -EMLINK;
4012 
4013     error = dir->i_op->mkdir(mnt_userns, dir, dentry, mode);
4014     if (!error)
4015         fsnotify_mkdir(dir, dentry);
4016     return error;
4017 }
4018 EXPORT_SYMBOL(vfs_mkdir);
4019 
4020 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4021 {
4022     struct dentry *dentry;
4023     struct path path;
4024     int error;
4025     unsigned int lookup_flags = LOOKUP_DIRECTORY;
4026 
4027 retry:
4028     dentry = filename_create(dfd, name, &path, lookup_flags);
4029     error = PTR_ERR(dentry);
4030     if (IS_ERR(dentry))
4031         goto out_putname;
4032 
4033     error = security_path_mkdir(&path, dentry,
4034             mode_strip_umask(path.dentry->d_inode, mode));
4035     if (!error) {
4036         struct user_namespace *mnt_userns;
4037         mnt_userns = mnt_user_ns(path.mnt);
4038         error = vfs_mkdir(mnt_userns, path.dentry->d_inode, dentry,
4039                   mode);
4040     }
4041     done_path_create(&path, dentry);
4042     if (retry_estale(error, lookup_flags)) {
4043         lookup_flags |= LOOKUP_REVAL;
4044         goto retry;
4045     }
4046 out_putname:
4047     putname(name);
4048     return error;
4049 }
4050 
4051 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4052 {
4053     return do_mkdirat(dfd, getname(pathname), mode);
4054 }
4055 
4056 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4057 {
4058     return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4059 }
4060 
4061 /**
4062  * vfs_rmdir - remove directory
4063  * @mnt_userns: user namespace of the mount the inode was found from
4064  * @dir:    inode of @dentry
4065  * @dentry: pointer to dentry of the base directory
4066  *
4067  * Remove a directory.
4068  *
4069  * If the inode has been found through an idmapped mount the user namespace of
4070  * the vfsmount must be passed through @mnt_userns. This function will then take
4071  * care to map the inode according to @mnt_userns before checking permissions.
4072  * On non-idmapped mounts or if permission checking is to be performed on the
4073  * raw inode simply passs init_user_ns.
4074  */
4075 int vfs_rmdir(struct user_namespace *mnt_userns, struct inode *dir,
4076              struct dentry *dentry)
4077 {
4078     int error = may_delete(mnt_userns, dir, dentry, 1);
4079 
4080     if (error)
4081         return error;
4082 
4083     if (!dir->i_op->rmdir)
4084         return -EPERM;
4085 
4086     dget(dentry);
4087     inode_lock(dentry->d_inode);
4088 
4089     error = -EBUSY;
4090     if (is_local_mountpoint(dentry) ||
4091         (dentry->d_inode->i_flags & S_KERNEL_FILE))
4092         goto out;
4093 
4094     error = security_inode_rmdir(dir, dentry);
4095     if (error)
4096         goto out;
4097 
4098     error = dir->i_op->rmdir(dir, dentry);
4099     if (error)
4100         goto out;
4101 
4102     shrink_dcache_parent(dentry);
4103     dentry->d_inode->i_flags |= S_DEAD;
4104     dont_mount(dentry);
4105     detach_mounts(dentry);
4106 
4107 out:
4108     inode_unlock(dentry->d_inode);
4109     dput(dentry);
4110     if (!error)
4111         d_delete_notify(dir, dentry);
4112     return error;
4113 }
4114 EXPORT_SYMBOL(vfs_rmdir);
4115 
4116 int do_rmdir(int dfd, struct filename *name)
4117 {
4118     struct user_namespace *mnt_userns;
4119     int error;
4120     struct dentry *dentry;
4121     struct path path;
4122     struct qstr last;
4123     int type;
4124     unsigned int lookup_flags = 0;
4125 retry:
4126     error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4127     if (error)
4128         goto exit1;
4129 
4130     switch (type) {
4131     case LAST_DOTDOT:
4132         error = -ENOTEMPTY;
4133         goto exit2;
4134     case LAST_DOT:
4135         error = -EINVAL;
4136         goto exit2;
4137     case LAST_ROOT:
4138         error = -EBUSY;
4139         goto exit2;
4140     }
4141 
4142     error = mnt_want_write(path.mnt);
4143     if (error)
4144         goto exit2;
4145 
4146     inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4147     dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4148     error = PTR_ERR(dentry);
4149     if (IS_ERR(dentry))
4150         goto exit3;
4151     if (!dentry->d_inode) {
4152         error = -ENOENT;
4153         goto exit4;
4154     }
4155     error = security_path_rmdir(&path, dentry);
4156     if (error)
4157         goto exit4;
4158     mnt_userns = mnt_user_ns(path.mnt);
4159     error = vfs_rmdir(mnt_userns, path.dentry->d_inode, dentry);
4160 exit4:
4161     dput(dentry);
4162 exit3:
4163     inode_unlock(path.dentry->d_inode);
4164     mnt_drop_write(path.mnt);
4165 exit2:
4166     path_put(&path);
4167     if (retry_estale(error, lookup_flags)) {
4168         lookup_flags |= LOOKUP_REVAL;
4169         goto retry;
4170     }
4171 exit1:
4172     putname(name);
4173     return error;
4174 }
4175 
4176 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4177 {
4178     return do_rmdir(AT_FDCWD, getname(pathname));
4179 }
4180 
4181 /**
4182  * vfs_unlink - unlink a filesystem object
4183  * @mnt_userns: user namespace of the mount the inode was found from
4184  * @dir:    parent directory
4185  * @dentry: victim
4186  * @delegated_inode: returns victim inode, if the inode is delegated.
4187  *
4188  * The caller must hold dir->i_mutex.
4189  *
4190  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4191  * return a reference to the inode in delegated_inode.  The caller
4192  * should then break the delegation on that inode and retry.  Because
4193  * breaking a delegation may take a long time, the caller should drop
4194  * dir->i_mutex before doing so.
4195  *
4196  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4197  * be appropriate for callers that expect the underlying filesystem not
4198  * to be NFS exported.
4199  *
4200  * If the inode has been found through an idmapped mount the user namespace of
4201  * the vfsmount must be passed through @mnt_userns. This function will then take
4202  * care to map the inode according to @mnt_userns before checking permissions.
4203  * On non-idmapped mounts or if permission checking is to be performed on the
4204  * raw inode simply passs init_user_ns.
4205  */
4206 int vfs_unlink(struct user_namespace *mnt_userns, struct inode *dir,
4207            struct dentry *dentry, struct inode **delegated_inode)
4208 {
4209     struct inode *target = dentry->d_inode;
4210     int error = may_delete(mnt_userns, dir, dentry, 0);
4211 
4212     if (error)
4213         return error;
4214 
4215     if (!dir->i_op->unlink)
4216         return -EPERM;
4217 
4218     inode_lock(target);
4219     if (IS_SWAPFILE(target))
4220         error = -EPERM;
4221     else if (is_local_mountpoint(dentry))
4222         error = -EBUSY;
4223     else {
4224         error = security_inode_unlink(dir, dentry);
4225         if (!error) {
4226             error = try_break_deleg(target, delegated_inode);
4227             if (error)
4228                 goto out;
4229             error = dir->i_op->unlink(dir, dentry);
4230             if (!error) {
4231                 dont_mount(dentry);
4232                 detach_mounts(dentry);
4233             }
4234         }
4235     }
4236 out:
4237     inode_unlock(target);
4238 
4239     /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4240     if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4241         fsnotify_unlink(dir, dentry);
4242     } else if (!error) {
4243         fsnotify_link_count(target);
4244         d_delete_notify(dir, dentry);
4245     }
4246 
4247     return error;
4248 }
4249 EXPORT_SYMBOL(vfs_unlink);
4250 
4251 /*
4252  * Make sure that the actual truncation of the file will occur outside its
4253  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4254  * writeout happening, and we don't want to prevent access to the directory
4255  * while waiting on the I/O.
4256  */
4257 int do_unlinkat(int dfd, struct filename *name)
4258 {
4259     int error;
4260     struct dentry *dentry;
4261     struct path path;
4262     struct qstr last;
4263     int type;
4264     struct inode *inode = NULL;
4265     struct inode *delegated_inode = NULL;
4266     unsigned int lookup_flags = 0;
4267 retry:
4268     error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4269     if (error)
4270         goto exit1;
4271 
4272     error = -EISDIR;
4273     if (type != LAST_NORM)
4274         goto exit2;
4275 
4276     error = mnt_want_write(path.mnt);
4277     if (error)
4278         goto exit2;
4279 retry_deleg:
4280     inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4281     dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4282     error = PTR_ERR(dentry);
4283     if (!IS_ERR(dentry)) {
4284         struct user_namespace *mnt_userns;
4285 
4286         /* Why not before? Because we want correct error value */
4287         if (last.name[last.len])
4288             goto slashes;
4289         inode = dentry->d_inode;
4290         if (d_is_negative(dentry))
4291             goto slashes;
4292         ihold(inode);
4293         error = security_path_unlink(&path, dentry);
4294         if (error)
4295             goto exit3;
4296         mnt_userns = mnt_user_ns(path.mnt);
4297         error = vfs_unlink(mnt_userns, path.dentry->d_inode, dentry,
4298                    &delegated_inode);
4299 exit3:
4300         dput(dentry);
4301     }
4302     inode_unlock(path.dentry->d_inode);
4303     if (inode)
4304         iput(inode);    /* truncate the inode here */
4305     inode = NULL;
4306     if (delegated_inode) {
4307         error = break_deleg_wait(&delegated_inode);
4308         if (!error)
4309             goto retry_deleg;
4310     }
4311     mnt_drop_write(path.mnt);
4312 exit2:
4313     path_put(&path);
4314     if (retry_estale(error, lookup_flags)) {
4315         lookup_flags |= LOOKUP_REVAL;
4316         inode = NULL;
4317         goto retry;
4318     }
4319 exit1:
4320     putname(name);
4321     return error;
4322 
4323 slashes:
4324     if (d_is_negative(dentry))
4325         error = -ENOENT;
4326     else if (d_is_dir(dentry))
4327         error = -EISDIR;
4328     else
4329         error = -ENOTDIR;
4330     goto exit3;
4331 }
4332 
4333 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4334 {
4335     if ((flag & ~AT_REMOVEDIR) != 0)
4336         return -EINVAL;
4337 
4338     if (flag & AT_REMOVEDIR)
4339         return do_rmdir(dfd, getname(pathname));
4340     return do_unlinkat(dfd, getname(pathname));
4341 }
4342 
4343 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4344 {
4345     return do_unlinkat(AT_FDCWD, getname(pathname));
4346 }
4347 
4348 /**
4349  * vfs_symlink - create symlink
4350  * @mnt_userns: user namespace of the mount the inode was found from
4351  * @dir:    inode of @dentry
4352  * @dentry: pointer to dentry of the base directory
4353  * @oldname:    name of the file to link to
4354  *
4355  * Create a symlink.
4356  *
4357  * If the inode has been found through an idmapped mount the user namespace of
4358  * the vfsmount must be passed through @mnt_userns. This function will then take
4359  * care to map the inode according to @mnt_userns before checking permissions.
4360  * On non-idmapped mounts or if permission checking is to be performed on the
4361  * raw inode simply passs init_user_ns.
4362  */
4363 int vfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
4364         struct dentry *dentry, const char *oldname)
4365 {
4366     int error = may_create(mnt_userns, dir, dentry);
4367 
4368     if (error)
4369         return error;
4370 
4371     if (!dir->i_op->symlink)
4372         return -EPERM;
4373 
4374     error = security_inode_symlink(dir, dentry, oldname);
4375     if (error)
4376         return error;
4377 
4378     error = dir->i_op->symlink(mnt_userns, dir, dentry, oldname);
4379     if (!error)
4380         fsnotify_create(dir, dentry);
4381     return error;
4382 }
4383 EXPORT_SYMBOL(vfs_symlink);
4384 
4385 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4386 {
4387     int error;
4388     struct dentry *dentry;
4389     struct path path;
4390     unsigned int lookup_flags = 0;
4391 
4392     if (IS_ERR(from)) {
4393         error = PTR_ERR(from);
4394         goto out_putnames;
4395     }
4396 retry:
4397     dentry = filename_create(newdfd, to, &path, lookup_flags);
4398     error = PTR_ERR(dentry);
4399     if (IS_ERR(dentry))
4400         goto out_putnames;
4401 
4402     error = security_path_symlink(&path, dentry, from->name);
4403     if (!error) {
4404         struct user_namespace *mnt_userns;
4405 
4406         mnt_userns = mnt_user_ns(path.mnt);
4407         error = vfs_symlink(mnt_userns, path.dentry->d_inode, dentry,
4408                     from->name);
4409     }
4410     done_path_create(&path, dentry);
4411     if (retry_estale(error, lookup_flags)) {
4412         lookup_flags |= LOOKUP_REVAL;
4413         goto retry;
4414     }
4415 out_putnames:
4416     putname(to);
4417     putname(from);
4418     return error;
4419 }
4420 
4421 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4422         int, newdfd, const char __user *, newname)
4423 {
4424     return do_symlinkat(getname(oldname), newdfd, getname(newname));
4425 }
4426 
4427 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4428 {
4429     return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4430 }
4431 
4432 /**
4433  * vfs_link - create a new link
4434  * @old_dentry: object to be linked
4435  * @mnt_userns: the user namespace of the mount
4436  * @dir:    new parent
4437  * @new_dentry: where to create the new link
4438  * @delegated_inode: returns inode needing a delegation break
4439  *
4440  * The caller must hold dir->i_mutex
4441  *
4442  * If vfs_link discovers a delegation on the to-be-linked file in need
4443  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4444  * inode in delegated_inode.  The caller should then break the delegation
4445  * and retry.  Because breaking a delegation may take a long time, the
4446  * caller should drop the i_mutex before doing so.
4447  *
4448  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4449  * be appropriate for callers that expect the underlying filesystem not
4450  * to be NFS exported.
4451  *
4452  * If the inode has been found through an idmapped mount the user namespace of
4453  * the vfsmount must be passed through @mnt_userns. This function will then take
4454  * care to map the inode according to @mnt_userns before checking permissions.
4455  * On non-idmapped mounts or if permission checking is to be performed on the
4456  * raw inode simply passs init_user_ns.
4457  */
4458 int vfs_link(struct dentry *old_dentry, struct user_namespace *mnt_userns,
4459          struct inode *dir, struct dentry *new_dentry,
4460          struct inode **delegated_inode)
4461 {
4462     struct inode *inode = old_dentry->d_inode;
4463     unsigned max_links = dir->i_sb->s_max_links;
4464     int error;
4465 
4466     if (!inode)
4467         return -ENOENT;
4468 
4469     error = may_create(mnt_userns, dir, new_dentry);
4470     if (error)
4471         return error;
4472 
4473     if (dir->i_sb != inode->i_sb)
4474         return -EXDEV;
4475 
4476     /*
4477      * A link to an append-only or immutable file cannot be created.
4478      */
4479     if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4480         return -EPERM;
4481     /*
4482      * Updating the link count will likely cause i_uid and i_gid to
4483      * be writen back improperly if their true value is unknown to
4484      * the vfs.
4485      */
4486     if (HAS_UNMAPPED_ID(mnt_userns, inode))
4487         return -EPERM;
4488     if (!dir->i_op->link)
4489         return -EPERM;
4490     if (S_ISDIR(inode->i_mode))
4491         return -EPERM;
4492 
4493     error = security_inode_link(old_dentry, dir, new_dentry);
4494     if (error)
4495         return error;
4496 
4497     inode_lock(inode);
4498     /* Make sure we don't allow creating hardlink to an unlinked file */
4499     if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4500         error =  -ENOENT;
4501     else if (max_links && inode->i_nlink >= max_links)
4502         error = -EMLINK;
4503     else {
4504         error = try_break_deleg(inode, delegated_inode);
4505         if (!error)
4506             error = dir->i_op->link(old_dentry, dir, new_dentry);
4507     }
4508 
4509     if (!error && (inode->i_state & I_LINKABLE)) {
4510         spin_lock(&inode->i_lock);
4511         inode->i_state &= ~I_LINKABLE;
4512         spin_unlock(&inode->i_lock);
4513     }
4514     inode_unlock(inode);
4515     if (!error)
4516         fsnotify_link(dir, inode, new_dentry);
4517     return error;
4518 }
4519 EXPORT_SYMBOL(vfs_link);
4520 
4521 /*
4522  * Hardlinks are often used in delicate situations.  We avoid
4523  * security-related surprises by not following symlinks on the
4524  * newname.  --KAB
4525  *
4526  * We don't follow them on the oldname either to be compatible
4527  * with linux 2.0, and to avoid hard-linking to directories
4528  * and other special files.  --ADM
4529  */
4530 int do_linkat(int olddfd, struct filename *old, int newdfd,
4531           struct filename *new, int flags)
4532 {
4533     struct user_namespace *mnt_userns;
4534     struct dentry *new_dentry;
4535     struct path old_path, new_path;
4536     struct inode *delegated_inode = NULL;
4537     int how = 0;
4538     int error;
4539 
4540     if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4541         error = -EINVAL;
4542         goto out_putnames;
4543     }
4544     /*
4545      * To use null names we require CAP_DAC_READ_SEARCH
4546      * This ensures that not everyone will be able to create
4547      * handlink using the passed filedescriptor.
4548      */
4549     if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4550         error = -ENOENT;
4551         goto out_putnames;
4552     }
4553 
4554     if (flags & AT_SYMLINK_FOLLOW)
4555         how |= LOOKUP_FOLLOW;
4556 retry:
4557     error = filename_lookup(olddfd, old, how, &old_path, NULL);
4558     if (error)
4559         goto out_putnames;
4560 
4561     new_dentry = filename_create(newdfd, new, &new_path,
4562                     (how & LOOKUP_REVAL));
4563     error = PTR_ERR(new_dentry);
4564     if (IS_ERR(new_dentry))
4565         goto out_putpath;
4566 
4567     error = -EXDEV;
4568     if (old_path.mnt != new_path.mnt)
4569         goto out_dput;
4570     mnt_userns = mnt_user_ns(new_path.mnt);
4571     error = may_linkat(mnt_userns, &old_path);
4572     if (unlikely(error))
4573         goto out_dput;
4574     error = security_path_link(old_path.dentry, &new_path, new_dentry);
4575     if (error)
4576         goto out_dput;
4577     error = vfs_link(old_path.dentry, mnt_userns, new_path.dentry->d_inode,
4578              new_dentry, &delegated_inode);
4579 out_dput:
4580     done_path_create(&new_path, new_dentry);
4581     if (delegated_inode) {
4582         error = break_deleg_wait(&delegated_inode);
4583         if (!error) {
4584             path_put(&old_path);
4585             goto retry;
4586         }
4587     }
4588     if (retry_estale(error, how)) {
4589         path_put(&old_path);
4590         how |= LOOKUP_REVAL;
4591         goto retry;
4592     }
4593 out_putpath:
4594     path_put(&old_path);
4595 out_putnames:
4596     putname(old);
4597     putname(new);
4598 
4599     return error;
4600 }
4601 
4602 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4603         int, newdfd, const char __user *, newname, int, flags)
4604 {
4605     return do_linkat(olddfd, getname_uflags(oldname, flags),
4606         newdfd, getname(newname), flags);
4607 }
4608 
4609 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4610 {
4611     return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4612 }
4613 
4614 /**
4615  * vfs_rename - rename a filesystem object
4616  * @rd:     pointer to &struct renamedata info
4617  *
4618  * The caller must hold multiple mutexes--see lock_rename()).
4619  *
4620  * If vfs_rename discovers a delegation in need of breaking at either
4621  * the source or destination, it will return -EWOULDBLOCK and return a
4622  * reference to the inode in delegated_inode.  The caller should then
4623  * break the delegation and retry.  Because breaking a delegation may
4624  * take a long time, the caller should drop all locks before doing
4625  * so.
4626  *
4627  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4628  * be appropriate for callers that expect the underlying filesystem not
4629  * to be NFS exported.
4630  *
4631  * The worst of all namespace operations - renaming directory. "Perverted"
4632  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4633  * Problems:
4634  *
4635  *  a) we can get into loop creation.
4636  *  b) race potential - two innocent renames can create a loop together.
4637  *     That's where 4.4 screws up. Current fix: serialization on
4638  *     sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4639  *     story.
4640  *  c) we have to lock _four_ objects - parents and victim (if it exists),
4641  *     and source (if it is not a directory).
4642  *     And that - after we got ->i_mutex on parents (until then we don't know
4643  *     whether the target exists).  Solution: try to be smart with locking
4644  *     order for inodes.  We rely on the fact that tree topology may change
4645  *     only under ->s_vfs_rename_mutex _and_ that parent of the object we
4646  *     move will be locked.  Thus we can rank directories by the tree
4647  *     (ancestors first) and rank all non-directories after them.
4648  *     That works since everybody except rename does "lock parent, lookup,
4649  *     lock child" and rename is under ->s_vfs_rename_mutex.
4650  *     HOWEVER, it relies on the assumption that any object with ->lookup()
4651  *     has no more than 1 dentry.  If "hybrid" objects will ever appear,
4652  *     we'd better make sure that there's no link(2) for them.
4653  *  d) conversion from fhandle to dentry may come in the wrong moment - when
4654  *     we are removing the target. Solution: we will have to grab ->i_mutex
4655  *     in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4656  *     ->i_mutex on parents, which works but leads to some truly excessive
4657  *     locking].
4658  */
4659 int vfs_rename(struct renamedata *rd)
4660 {
4661     int error;
4662     struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4663     struct dentry *old_dentry = rd->old_dentry;
4664     struct dentry *new_dentry = rd->new_dentry;
4665     struct inode **delegated_inode = rd->delegated_inode;
4666     unsigned int flags = rd->flags;
4667     bool is_dir = d_is_dir(old_dentry);
4668     struct inode *source = old_dentry->d_inode;
4669     struct inode *target = new_dentry->d_inode;
4670     bool new_is_dir = false;
4671     unsigned max_links = new_dir->i_sb->s_max_links;
4672     struct name_snapshot old_name;
4673 
4674     if (source == target)
4675         return 0;
4676 
4677     error = may_delete(rd->old_mnt_userns, old_dir, old_dentry, is_dir);
4678     if (error)
4679         return error;
4680 
4681     if (!target) {
4682         error = may_create(rd->new_mnt_userns, new_dir, new_dentry);
4683     } else {
4684         new_is_dir = d_is_dir(new_dentry);
4685 
4686         if (!(flags & RENAME_EXCHANGE))
4687             error = may_delete(rd->new_mnt_userns, new_dir,
4688                        new_dentry, is_dir);
4689         else
4690             error = may_delete(rd->new_mnt_userns, new_dir,
4691                        new_dentry, new_is_dir);
4692     }
4693     if (error)
4694         return error;
4695 
4696     if (!old_dir->i_op->rename)
4697         return -EPERM;
4698 
4699     /*
4700      * If we are going to change the parent - check write permissions,
4701      * we'll need to flip '..'.
4702      */
4703     if (new_dir != old_dir) {
4704         if (is_dir) {
4705             error = inode_permission(rd->old_mnt_userns, source,
4706                          MAY_WRITE);
4707             if (error)
4708                 return error;
4709         }
4710         if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4711             error = inode_permission(rd->new_mnt_userns, target,
4712                          MAY_WRITE);
4713             if (error)
4714                 return error;
4715         }
4716     }
4717 
4718     error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4719                       flags);
4720     if (error)
4721         return error;
4722 
4723     take_dentry_name_snapshot(&old_name, old_dentry);
4724     dget(new_dentry);
4725     if (!is_dir || (flags & RENAME_EXCHANGE))
4726         lock_two_nondirectories(source, target);
4727     else if (target)
4728         inode_lock(target);
4729 
4730     error = -EPERM;
4731     if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4732         goto out;
4733 
4734     error = -EBUSY;
4735     if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4736         goto out;
4737 
4738     if (max_links && new_dir != old_dir) {
4739         error = -EMLINK;
4740         if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4741             goto out;
4742         if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4743             old_dir->i_nlink >= max_links)
4744             goto out;
4745     }
4746     if (!is_dir) {
4747         error = try_break_deleg(source, delegated_inode);
4748         if (error)
4749             goto out;
4750     }
4751     if (target && !new_is_dir) {
4752         error = try_break_deleg(target, delegated_inode);
4753         if (error)
4754             goto out;
4755     }
4756     error = old_dir->i_op->rename(rd->new_mnt_userns, old_dir, old_dentry,
4757                       new_dir, new_dentry, flags);
4758     if (error)
4759         goto out;
4760 
4761     if (!(flags & RENAME_EXCHANGE) && target) {
4762         if (is_dir) {
4763             shrink_dcache_parent(new_dentry);
4764             target->i_flags |= S_DEAD;
4765         }
4766         dont_mount(new_dentry);
4767         detach_mounts(new_dentry);
4768     }
4769     if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4770         if (!(flags & RENAME_EXCHANGE))
4771             d_move(old_dentry, new_dentry);
4772         else
4773             d_exchange(old_dentry, new_dentry);
4774     }
4775 out:
4776     if (!is_dir || (flags & RENAME_EXCHANGE))
4777         unlock_two_nondirectories(source, target);
4778     else if (target)
4779         inode_unlock(target);
4780     dput(new_dentry);
4781     if (!error) {
4782         fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4783                   !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4784         if (flags & RENAME_EXCHANGE) {
4785             fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4786                       new_is_dir, NULL, new_dentry);
4787         }
4788     }
4789     release_dentry_name_snapshot(&old_name);
4790 
4791     return error;
4792 }
4793 EXPORT_SYMBOL(vfs_rename);
4794 
4795 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4796          struct filename *to, unsigned int flags)
4797 {
4798     struct renamedata rd;
4799     struct dentry *old_dentry, *new_dentry;
4800     struct dentry *trap;
4801     struct path old_path, new_path;
4802     struct qstr old_last, new_last;
4803     int old_type, new_type;
4804     struct inode *delegated_inode = NULL;
4805     unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4806     bool should_retry = false;
4807     int error = -EINVAL;
4808 
4809     if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4810         goto put_names;
4811 
4812     if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4813         (flags & RENAME_EXCHANGE))
4814         goto put_names;
4815 
4816     if (flags & RENAME_EXCHANGE)
4817         target_flags = 0;
4818 
4819 retry:
4820     error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4821                   &old_last, &old_type);
4822     if (error)
4823         goto put_names;
4824 
4825     error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4826                   &new_type);
4827     if (error)
4828         goto exit1;
4829 
4830     error = -EXDEV;
4831     if (old_path.mnt != new_path.mnt)
4832         goto exit2;
4833 
4834     error = -EBUSY;
4835     if (old_type != LAST_NORM)
4836         goto exit2;
4837 
4838     if (flags & RENAME_NOREPLACE)
4839         error = -EEXIST;
4840     if (new_type != LAST_NORM)
4841         goto exit2;
4842 
4843     error = mnt_want_write(old_path.mnt);
4844     if (error)
4845         goto exit2;
4846 
4847 retry_deleg:
4848     trap = lock_rename(new_path.dentry, old_path.dentry);
4849 
4850     old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4851     error = PTR_ERR(old_dentry);
4852     if (IS_ERR(old_dentry))
4853         goto exit3;
4854     /* source must exist */
4855     error = -ENOENT;
4856     if (d_is_negative(old_dentry))
4857         goto exit4;
4858     new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4859     error = PTR_ERR(new_dentry);
4860     if (IS_ERR(new_dentry))
4861         goto exit4;
4862     error = -EEXIST;
4863     if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4864         goto exit5;
4865     if (flags & RENAME_EXCHANGE) {
4866         error = -ENOENT;
4867         if (d_is_negative(new_dentry))
4868             goto exit5;
4869 
4870         if (!d_is_dir(new_dentry)) {
4871             error = -ENOTDIR;
4872             if (new_last.name[new_last.len])
4873                 goto exit5;
4874         }
4875     }
4876     /* unless the source is a directory trailing slashes give -ENOTDIR */
4877     if (!d_is_dir(old_dentry)) {
4878         error = -ENOTDIR;
4879         if (old_last.name[old_last.len])
4880             goto exit5;
4881         if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4882             goto exit5;
4883     }
4884     /* source should not be ancestor of target */
4885     error = -EINVAL;
4886     if (old_dentry == trap)
4887         goto exit5;
4888     /* target should not be an ancestor of source */
4889     if (!(flags & RENAME_EXCHANGE))
4890         error = -ENOTEMPTY;
4891     if (new_dentry == trap)
4892         goto exit5;
4893 
4894     error = security_path_rename(&old_path, old_dentry,
4895                      &new_path, new_dentry, flags);
4896     if (error)
4897         goto exit5;
4898 
4899     rd.old_dir     = old_path.dentry->d_inode;
4900     rd.old_dentry      = old_dentry;
4901     rd.old_mnt_userns  = mnt_user_ns(old_path.mnt);
4902     rd.new_dir     = new_path.dentry->d_inode;
4903     rd.new_dentry      = new_dentry;
4904     rd.new_mnt_userns  = mnt_user_ns(new_path.mnt);
4905     rd.delegated_inode = &delegated_inode;
4906     rd.flags       = flags;
4907     error = vfs_rename(&rd);
4908 exit5:
4909     dput(new_dentry);
4910 exit4:
4911     dput(old_dentry);
4912 exit3:
4913     unlock_rename(new_path.dentry, old_path.dentry);
4914     if (delegated_inode) {
4915         error = break_deleg_wait(&delegated_inode);
4916         if (!error)
4917             goto retry_deleg;
4918     }
4919     mnt_drop_write(old_path.mnt);
4920 exit2:
4921     if (retry_estale(error, lookup_flags))
4922         should_retry = true;
4923     path_put(&new_path);
4924 exit1:
4925     path_put(&old_path);
4926     if (should_retry) {
4927         should_retry = false;
4928         lookup_flags |= LOOKUP_REVAL;
4929         goto retry;
4930     }
4931 put_names:
4932     putname(from);
4933     putname(to);
4934     return error;
4935 }
4936 
4937 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4938         int, newdfd, const char __user *, newname, unsigned int, flags)
4939 {
4940     return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4941                 flags);
4942 }
4943 
4944 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4945         int, newdfd, const char __user *, newname)
4946 {
4947     return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
4948                 0);
4949 }
4950 
4951 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4952 {
4953     return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
4954                 getname(newname), 0);
4955 }
4956 
4957 int readlink_copy(char __user *buffer, int buflen, const char *link)
4958 {
4959     int len = PTR_ERR(link);
4960     if (IS_ERR(link))
4961         goto out;
4962 
4963     len = strlen(link);
4964     if (len > (unsigned) buflen)
4965         len = buflen;
4966     if (copy_to_user(buffer, link, len))
4967         len = -EFAULT;
4968 out:
4969     return len;
4970 }
4971 
4972 /**
4973  * vfs_readlink - copy symlink body into userspace buffer
4974  * @dentry: dentry on which to get symbolic link
4975  * @buffer: user memory pointer
4976  * @buflen: size of buffer
4977  *
4978  * Does not touch atime.  That's up to the caller if necessary
4979  *
4980  * Does not call security hook.
4981  */
4982 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4983 {
4984     struct inode *inode = d_inode(dentry);
4985     DEFINE_DELAYED_CALL(done);
4986     const char *link;
4987     int res;
4988 
4989     if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4990         if (unlikely(inode->i_op->readlink))
4991             return inode->i_op->readlink(dentry, buffer, buflen);
4992 
4993         if (!d_is_symlink(dentry))
4994             return -EINVAL;
4995 
4996         spin_lock(&inode->i_lock);
4997         inode->i_opflags |= IOP_DEFAULT_READLINK;
4998         spin_unlock(&inode->i_lock);
4999     }
5000 
5001     link = READ_ONCE(inode->i_link);
5002     if (!link) {
5003         link = inode->i_op->get_link(dentry, inode, &done);
5004         if (IS_ERR(link))
5005             return PTR_ERR(link);
5006     }
5007     res = readlink_copy(buffer, buflen, link);
5008     do_delayed_call(&done);
5009     return res;
5010 }
5011 EXPORT_SYMBOL(vfs_readlink);
5012 
5013 /**
5014  * vfs_get_link - get symlink body
5015  * @dentry: dentry on which to get symbolic link
5016  * @done: caller needs to free returned data with this
5017  *
5018  * Calls security hook and i_op->get_link() on the supplied inode.
5019  *
5020  * It does not touch atime.  That's up to the caller if necessary.
5021  *
5022  * Does not work on "special" symlinks like /proc/$$/fd/N
5023  */
5024 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5025 {
5026     const char *res = ERR_PTR(-EINVAL);
5027     struct inode *inode = d_inode(dentry);
5028 
5029     if (d_is_symlink(dentry)) {
5030         res = ERR_PTR(security_inode_readlink(dentry));
5031         if (!res)
5032             res = inode->i_op->get_link(dentry, inode, done);
5033     }
5034     return res;
5035 }
5036 EXPORT_SYMBOL(vfs_get_link);
5037 
5038 /* get the link contents into pagecache */
5039 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5040               struct delayed_call *callback)
5041 {
5042     char *kaddr;
5043     struct page *page;
5044     struct address_space *mapping = inode->i_mapping;
5045 
5046     if (!dentry) {
5047         page = find_get_page(mapping, 0);
5048         if (!page)
5049             return ERR_PTR(-ECHILD);
5050         if (!PageUptodate(page)) {
5051             put_page(page);
5052             return ERR_PTR(-ECHILD);
5053         }
5054     } else {
5055         page = read_mapping_page(mapping, 0, NULL);
5056         if (IS_ERR(page))
5057             return (char*)page;
5058     }
5059     set_delayed_call(callback, page_put_link, page);
5060     BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5061     kaddr = page_address(page);
5062     nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5063     return kaddr;
5064 }
5065 
5066 EXPORT_SYMBOL(page_get_link);
5067 
5068 void page_put_link(void *arg)
5069 {
5070     put_page(arg);
5071 }
5072 EXPORT_SYMBOL(page_put_link);
5073 
5074 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5075 {
5076     DEFINE_DELAYED_CALL(done);
5077     int res = readlink_copy(buffer, buflen,
5078                 page_get_link(dentry, d_inode(dentry),
5079                           &done));
5080     do_delayed_call(&done);
5081     return res;
5082 }
5083 EXPORT_SYMBOL(page_readlink);
5084 
5085 int page_symlink(struct inode *inode, const char *symname, int len)
5086 {
5087     struct address_space *mapping = inode->i_mapping;
5088     const struct address_space_operations *aops = mapping->a_ops;
5089     bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5090     struct page *page;
5091     void *fsdata;
5092     int err;
5093     unsigned int flags;
5094 
5095 retry:
5096     if (nofs)
5097         flags = memalloc_nofs_save();
5098     err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5099     if (nofs)
5100         memalloc_nofs_restore(flags);
5101     if (err)
5102         goto fail;
5103 
5104     memcpy(page_address(page), symname, len-1);
5105 
5106     err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5107                             page, fsdata);
5108     if (err < 0)
5109         goto fail;
5110     if (err < len-1)
5111         goto retry;
5112 
5113     mark_inode_dirty(inode);
5114     return 0;
5115 fail:
5116     return err;
5117 }
5118 EXPORT_SYMBOL(page_symlink);
5119 
5120 const struct inode_operations page_symlink_inode_operations = {
5121     .get_link   = page_get_link,
5122 };
5123 EXPORT_SYMBOL(page_symlink_inode_operations);