0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015 #include "minix.h"
0016 #include <linux/buffer_head.h>
0017 #include <linux/bitops.h>
0018 #include <linux/sched.h>
0019
0020 static DEFINE_SPINLOCK(bitmap_lock);
0021
0022
0023
0024
0025
0026
0027 static __u32 count_free(struct buffer_head *map[], unsigned blocksize, __u32 numbits)
0028 {
0029 __u32 sum = 0;
0030 unsigned blocks = DIV_ROUND_UP(numbits, blocksize * 8);
0031
0032 while (blocks--) {
0033 unsigned words = blocksize / 2;
0034 __u16 *p = (__u16 *)(*map++)->b_data;
0035 while (words--)
0036 sum += 16 - hweight16(*p++);
0037 }
0038
0039 return sum;
0040 }
0041
0042 void minix_free_block(struct inode *inode, unsigned long block)
0043 {
0044 struct super_block *sb = inode->i_sb;
0045 struct minix_sb_info *sbi = minix_sb(sb);
0046 struct buffer_head *bh;
0047 int k = sb->s_blocksize_bits + 3;
0048 unsigned long bit, zone;
0049
0050 if (block < sbi->s_firstdatazone || block >= sbi->s_nzones) {
0051 printk("Trying to free block not in datazone\n");
0052 return;
0053 }
0054 zone = block - sbi->s_firstdatazone + 1;
0055 bit = zone & ((1<<k) - 1);
0056 zone >>= k;
0057 if (zone >= sbi->s_zmap_blocks) {
0058 printk("minix_free_block: nonexistent bitmap buffer\n");
0059 return;
0060 }
0061 bh = sbi->s_zmap[zone];
0062 spin_lock(&bitmap_lock);
0063 if (!minix_test_and_clear_bit(bit, bh->b_data))
0064 printk("minix_free_block (%s:%lu): bit already cleared\n",
0065 sb->s_id, block);
0066 spin_unlock(&bitmap_lock);
0067 mark_buffer_dirty(bh);
0068 return;
0069 }
0070
0071 int minix_new_block(struct inode * inode)
0072 {
0073 struct minix_sb_info *sbi = minix_sb(inode->i_sb);
0074 int bits_per_zone = 8 * inode->i_sb->s_blocksize;
0075 int i;
0076
0077 for (i = 0; i < sbi->s_zmap_blocks; i++) {
0078 struct buffer_head *bh = sbi->s_zmap[i];
0079 int j;
0080
0081 spin_lock(&bitmap_lock);
0082 j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
0083 if (j < bits_per_zone) {
0084 minix_set_bit(j, bh->b_data);
0085 spin_unlock(&bitmap_lock);
0086 mark_buffer_dirty(bh);
0087 j += i * bits_per_zone + sbi->s_firstdatazone-1;
0088 if (j < sbi->s_firstdatazone || j >= sbi->s_nzones)
0089 break;
0090 return j;
0091 }
0092 spin_unlock(&bitmap_lock);
0093 }
0094 return 0;
0095 }
0096
0097 unsigned long minix_count_free_blocks(struct super_block *sb)
0098 {
0099 struct minix_sb_info *sbi = minix_sb(sb);
0100 u32 bits = sbi->s_nzones - sbi->s_firstdatazone + 1;
0101
0102 return (count_free(sbi->s_zmap, sb->s_blocksize, bits)
0103 << sbi->s_log_zone_size);
0104 }
0105
0106 struct minix_inode *
0107 minix_V1_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
0108 {
0109 int block;
0110 struct minix_sb_info *sbi = minix_sb(sb);
0111 struct minix_inode *p;
0112
0113 if (!ino || ino > sbi->s_ninodes) {
0114 printk("Bad inode number on dev %s: %ld is out of range\n",
0115 sb->s_id, (long)ino);
0116 return NULL;
0117 }
0118 ino--;
0119 block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
0120 ino / MINIX_INODES_PER_BLOCK;
0121 *bh = sb_bread(sb, block);
0122 if (!*bh) {
0123 printk("Unable to read inode block\n");
0124 return NULL;
0125 }
0126 p = (void *)(*bh)->b_data;
0127 return p + ino % MINIX_INODES_PER_BLOCK;
0128 }
0129
0130 struct minix2_inode *
0131 minix_V2_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
0132 {
0133 int block;
0134 struct minix_sb_info *sbi = minix_sb(sb);
0135 struct minix2_inode *p;
0136 int minix2_inodes_per_block = sb->s_blocksize / sizeof(struct minix2_inode);
0137
0138 *bh = NULL;
0139 if (!ino || ino > sbi->s_ninodes) {
0140 printk("Bad inode number on dev %s: %ld is out of range\n",
0141 sb->s_id, (long)ino);
0142 return NULL;
0143 }
0144 ino--;
0145 block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
0146 ino / minix2_inodes_per_block;
0147 *bh = sb_bread(sb, block);
0148 if (!*bh) {
0149 printk("Unable to read inode block\n");
0150 return NULL;
0151 }
0152 p = (void *)(*bh)->b_data;
0153 return p + ino % minix2_inodes_per_block;
0154 }
0155
0156
0157
0158 static void minix_clear_inode(struct inode *inode)
0159 {
0160 struct buffer_head *bh = NULL;
0161
0162 if (INODE_VERSION(inode) == MINIX_V1) {
0163 struct minix_inode *raw_inode;
0164 raw_inode = minix_V1_raw_inode(inode->i_sb, inode->i_ino, &bh);
0165 if (raw_inode) {
0166 raw_inode->i_nlinks = 0;
0167 raw_inode->i_mode = 0;
0168 }
0169 } else {
0170 struct minix2_inode *raw_inode;
0171 raw_inode = minix_V2_raw_inode(inode->i_sb, inode->i_ino, &bh);
0172 if (raw_inode) {
0173 raw_inode->i_nlinks = 0;
0174 raw_inode->i_mode = 0;
0175 }
0176 }
0177 if (bh) {
0178 mark_buffer_dirty(bh);
0179 brelse (bh);
0180 }
0181 }
0182
0183 void minix_free_inode(struct inode * inode)
0184 {
0185 struct super_block *sb = inode->i_sb;
0186 struct minix_sb_info *sbi = minix_sb(inode->i_sb);
0187 struct buffer_head *bh;
0188 int k = sb->s_blocksize_bits + 3;
0189 unsigned long ino, bit;
0190
0191 ino = inode->i_ino;
0192 if (ino < 1 || ino > sbi->s_ninodes) {
0193 printk("minix_free_inode: inode 0 or nonexistent inode\n");
0194 return;
0195 }
0196 bit = ino & ((1<<k) - 1);
0197 ino >>= k;
0198 if (ino >= sbi->s_imap_blocks) {
0199 printk("minix_free_inode: nonexistent imap in superblock\n");
0200 return;
0201 }
0202
0203 minix_clear_inode(inode);
0204
0205 bh = sbi->s_imap[ino];
0206 spin_lock(&bitmap_lock);
0207 if (!minix_test_and_clear_bit(bit, bh->b_data))
0208 printk("minix_free_inode: bit %lu already cleared\n", bit);
0209 spin_unlock(&bitmap_lock);
0210 mark_buffer_dirty(bh);
0211 }
0212
0213 struct inode *minix_new_inode(const struct inode *dir, umode_t mode, int *error)
0214 {
0215 struct super_block *sb = dir->i_sb;
0216 struct minix_sb_info *sbi = minix_sb(sb);
0217 struct inode *inode = new_inode(sb);
0218 struct buffer_head * bh;
0219 int bits_per_zone = 8 * sb->s_blocksize;
0220 unsigned long j;
0221 int i;
0222
0223 if (!inode) {
0224 *error = -ENOMEM;
0225 return NULL;
0226 }
0227 j = bits_per_zone;
0228 bh = NULL;
0229 *error = -ENOSPC;
0230 spin_lock(&bitmap_lock);
0231 for (i = 0; i < sbi->s_imap_blocks; i++) {
0232 bh = sbi->s_imap[i];
0233 j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
0234 if (j < bits_per_zone)
0235 break;
0236 }
0237 if (!bh || j >= bits_per_zone) {
0238 spin_unlock(&bitmap_lock);
0239 iput(inode);
0240 return NULL;
0241 }
0242 if (minix_test_and_set_bit(j, bh->b_data)) {
0243 spin_unlock(&bitmap_lock);
0244 printk("minix_new_inode: bit already set\n");
0245 iput(inode);
0246 return NULL;
0247 }
0248 spin_unlock(&bitmap_lock);
0249 mark_buffer_dirty(bh);
0250 j += i * bits_per_zone;
0251 if (!j || j > sbi->s_ninodes) {
0252 iput(inode);
0253 return NULL;
0254 }
0255 inode_init_owner(&init_user_ns, inode, dir, mode);
0256 inode->i_ino = j;
0257 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
0258 inode->i_blocks = 0;
0259 memset(&minix_i(inode)->u, 0, sizeof(minix_i(inode)->u));
0260 insert_inode_hash(inode);
0261 mark_inode_dirty(inode);
0262
0263 *error = 0;
0264 return inode;
0265 }
0266
0267 unsigned long minix_count_free_inodes(struct super_block *sb)
0268 {
0269 struct minix_sb_info *sbi = minix_sb(sb);
0270 u32 bits = sbi->s_ninodes + 1;
0271
0272 return count_free(sbi->s_imap, sb->s_blocksize, bits);
0273 }