Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-or-later
0002 /*
0003  *   Copyright (C) International Business Machines Corp., 2000-2004
0004  *   Portions Copyright (C) Tino Reichardt, 2012
0005  */
0006 
0007 #include <linux/fs.h>
0008 #include <linux/slab.h>
0009 #include "jfs_incore.h"
0010 #include "jfs_superblock.h"
0011 #include "jfs_dmap.h"
0012 #include "jfs_imap.h"
0013 #include "jfs_lock.h"
0014 #include "jfs_metapage.h"
0015 #include "jfs_debug.h"
0016 #include "jfs_discard.h"
0017 
0018 /*
0019  *  SERIALIZATION of the Block Allocation Map.
0020  *
0021  *  the working state of the block allocation map is accessed in
0022  *  two directions:
0023  *
0024  *  1) allocation and free requests that start at the dmap
0025  *     level and move up through the dmap control pages (i.e.
0026  *     the vast majority of requests).
0027  *
0028  *  2) allocation requests that start at dmap control page
0029  *     level and work down towards the dmaps.
0030  *
0031  *  the serialization scheme used here is as follows.
0032  *
0033  *  requests which start at the bottom are serialized against each
0034  *  other through buffers and each requests holds onto its buffers
0035  *  as it works it way up from a single dmap to the required level
0036  *  of dmap control page.
0037  *  requests that start at the top are serialized against each other
0038  *  and request that start from the bottom by the multiple read/single
0039  *  write inode lock of the bmap inode. requests starting at the top
0040  *  take this lock in write mode while request starting at the bottom
0041  *  take the lock in read mode.  a single top-down request may proceed
0042  *  exclusively while multiple bottoms-up requests may proceed
0043  *  simultaneously (under the protection of busy buffers).
0044  *
0045  *  in addition to information found in dmaps and dmap control pages,
0046  *  the working state of the block allocation map also includes read/
0047  *  write information maintained in the bmap descriptor (i.e. total
0048  *  free block count, allocation group level free block counts).
0049  *  a single exclusive lock (BMAP_LOCK) is used to guard this information
0050  *  in the face of multiple-bottoms up requests.
0051  *  (lock ordering: IREAD_LOCK, BMAP_LOCK);
0052  *
0053  *  accesses to the persistent state of the block allocation map (limited
0054  *  to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
0055  */
0056 
0057 #define BMAP_LOCK_INIT(bmp) mutex_init(&bmp->db_bmaplock)
0058 #define BMAP_LOCK(bmp)      mutex_lock(&bmp->db_bmaplock)
0059 #define BMAP_UNLOCK(bmp)    mutex_unlock(&bmp->db_bmaplock)
0060 
0061 /*
0062  * forward references
0063  */
0064 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
0065             int nblocks);
0066 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
0067 static int dbBackSplit(dmtree_t * tp, int leafno);
0068 static int dbJoin(dmtree_t * tp, int leafno, int newval);
0069 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
0070 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
0071             int level);
0072 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
0073 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
0074                int nblocks);
0075 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
0076                int nblocks,
0077                int l2nb, s64 * results);
0078 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
0079                int nblocks);
0080 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
0081               int l2nb,
0082               s64 * results);
0083 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
0084              s64 * results);
0085 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
0086               s64 * results);
0087 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
0088 static int dbFindBits(u32 word, int l2nb);
0089 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
0090 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
0091 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
0092               int nblocks);
0093 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
0094               int nblocks);
0095 static int dbMaxBud(u8 * cp);
0096 static int blkstol2(s64 nb);
0097 
0098 static int cntlz(u32 value);
0099 static int cnttz(u32 word);
0100 
0101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
0102              int nblocks);
0103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
0104 static int dbInitDmapTree(struct dmap * dp);
0105 static int dbInitTree(struct dmaptree * dtp);
0106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
0107 static int dbGetL2AGSize(s64 nblocks);
0108 
0109 /*
0110  *  buddy table
0111  *
0112  * table used for determining buddy sizes within characters of
0113  * dmap bitmap words.  the characters themselves serve as indexes
0114  * into the table, with the table elements yielding the maximum
0115  * binary buddy of free bits within the character.
0116  */
0117 static const s8 budtab[256] = {
0118     3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
0119     2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0120     2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0121     2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0122     2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0123     2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0124     2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0125     2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0126     2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0127     2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0128     2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0129     2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0130     2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0131     2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0132     2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
0133     2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
0134 };
0135 
0136 /*
0137  * NAME:    dbMount()
0138  *
0139  * FUNCTION:    initializate the block allocation map.
0140  *
0141  *      memory is allocated for the in-core bmap descriptor and
0142  *      the in-core descriptor is initialized from disk.
0143  *
0144  * PARAMETERS:
0145  *  ipbmap  - pointer to in-core inode for the block map.
0146  *
0147  * RETURN VALUES:
0148  *  0   - success
0149  *  -ENOMEM - insufficient memory
0150  *  -EIO    - i/o error
0151  *  -EINVAL - wrong bmap data
0152  */
0153 int dbMount(struct inode *ipbmap)
0154 {
0155     struct bmap *bmp;
0156     struct dbmap_disk *dbmp_le;
0157     struct metapage *mp;
0158     int i;
0159 
0160     /*
0161      * allocate/initialize the in-memory bmap descriptor
0162      */
0163     /* allocate memory for the in-memory bmap descriptor */
0164     bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
0165     if (bmp == NULL)
0166         return -ENOMEM;
0167 
0168     /* read the on-disk bmap descriptor. */
0169     mp = read_metapage(ipbmap,
0170                BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
0171                PSIZE, 0);
0172     if (mp == NULL) {
0173         kfree(bmp);
0174         return -EIO;
0175     }
0176 
0177     /* copy the on-disk bmap descriptor to its in-memory version. */
0178     dbmp_le = (struct dbmap_disk *) mp->data;
0179     bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
0180     bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
0181     bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
0182     bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
0183     if (!bmp->db_numag) {
0184         release_metapage(mp);
0185         kfree(bmp);
0186         return -EINVAL;
0187     }
0188 
0189     bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
0190     bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
0191     bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
0192     bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
0193     bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
0194     bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
0195     bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
0196     bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
0197     for (i = 0; i < MAXAG; i++)
0198         bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
0199     bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
0200     bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
0201 
0202     /* release the buffer. */
0203     release_metapage(mp);
0204 
0205     /* bind the bmap inode and the bmap descriptor to each other. */
0206     bmp->db_ipbmap = ipbmap;
0207     JFS_SBI(ipbmap->i_sb)->bmap = bmp;
0208 
0209     memset(bmp->db_active, 0, sizeof(bmp->db_active));
0210 
0211     /*
0212      * allocate/initialize the bmap lock
0213      */
0214     BMAP_LOCK_INIT(bmp);
0215 
0216     return (0);
0217 }
0218 
0219 
0220 /*
0221  * NAME:    dbUnmount()
0222  *
0223  * FUNCTION:    terminate the block allocation map in preparation for
0224  *      file system unmount.
0225  *
0226  *      the in-core bmap descriptor is written to disk and
0227  *      the memory for this descriptor is freed.
0228  *
0229  * PARAMETERS:
0230  *  ipbmap  - pointer to in-core inode for the block map.
0231  *
0232  * RETURN VALUES:
0233  *  0   - success
0234  *  -EIO    - i/o error
0235  */
0236 int dbUnmount(struct inode *ipbmap, int mounterror)
0237 {
0238     struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
0239 
0240     if (!(mounterror || isReadOnly(ipbmap)))
0241         dbSync(ipbmap);
0242 
0243     /*
0244      * Invalidate the page cache buffers
0245      */
0246     truncate_inode_pages(ipbmap->i_mapping, 0);
0247 
0248     /* free the memory for the in-memory bmap. */
0249     kfree(bmp);
0250 
0251     return (0);
0252 }
0253 
0254 /*
0255  *  dbSync()
0256  */
0257 int dbSync(struct inode *ipbmap)
0258 {
0259     struct dbmap_disk *dbmp_le;
0260     struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
0261     struct metapage *mp;
0262     int i;
0263 
0264     /*
0265      * write bmap global control page
0266      */
0267     /* get the buffer for the on-disk bmap descriptor. */
0268     mp = read_metapage(ipbmap,
0269                BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
0270                PSIZE, 0);
0271     if (mp == NULL) {
0272         jfs_err("dbSync: read_metapage failed!");
0273         return -EIO;
0274     }
0275     /* copy the in-memory version of the bmap to the on-disk version */
0276     dbmp_le = (struct dbmap_disk *) mp->data;
0277     dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
0278     dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
0279     dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
0280     dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
0281     dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
0282     dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
0283     dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
0284     dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
0285     dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
0286     dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
0287     dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
0288     dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
0289     for (i = 0; i < MAXAG; i++)
0290         dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
0291     dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
0292     dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
0293 
0294     /* write the buffer */
0295     write_metapage(mp);
0296 
0297     /*
0298      * write out dirty pages of bmap
0299      */
0300     filemap_write_and_wait(ipbmap->i_mapping);
0301 
0302     diWriteSpecial(ipbmap, 0);
0303 
0304     return (0);
0305 }
0306 
0307 /*
0308  * NAME:    dbFree()
0309  *
0310  * FUNCTION:    free the specified block range from the working block
0311  *      allocation map.
0312  *
0313  *      the blocks will be free from the working map one dmap
0314  *      at a time.
0315  *
0316  * PARAMETERS:
0317  *  ip  - pointer to in-core inode;
0318  *  blkno   - starting block number to be freed.
0319  *  nblocks - number of blocks to be freed.
0320  *
0321  * RETURN VALUES:
0322  *  0   - success
0323  *  -EIO    - i/o error
0324  */
0325 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
0326 {
0327     struct metapage *mp;
0328     struct dmap *dp;
0329     int nb, rc;
0330     s64 lblkno, rem;
0331     struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
0332     struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
0333     struct super_block *sb = ipbmap->i_sb;
0334 
0335     IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
0336 
0337     /* block to be freed better be within the mapsize. */
0338     if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
0339         IREAD_UNLOCK(ipbmap);
0340         printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
0341                (unsigned long long) blkno,
0342                (unsigned long long) nblocks);
0343         jfs_error(ip->i_sb, "block to be freed is outside the map\n");
0344         return -EIO;
0345     }
0346 
0347     /**
0348      * TRIM the blocks, when mounted with discard option
0349      */
0350     if (JFS_SBI(sb)->flag & JFS_DISCARD)
0351         if (JFS_SBI(sb)->minblks_trim <= nblocks)
0352             jfs_issue_discard(ipbmap, blkno, nblocks);
0353 
0354     /*
0355      * free the blocks a dmap at a time.
0356      */
0357     mp = NULL;
0358     for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
0359         /* release previous dmap if any */
0360         if (mp) {
0361             write_metapage(mp);
0362         }
0363 
0364         /* get the buffer for the current dmap. */
0365         lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
0366         mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
0367         if (mp == NULL) {
0368             IREAD_UNLOCK(ipbmap);
0369             return -EIO;
0370         }
0371         dp = (struct dmap *) mp->data;
0372 
0373         /* determine the number of blocks to be freed from
0374          * this dmap.
0375          */
0376         nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
0377 
0378         /* free the blocks. */
0379         if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
0380             jfs_error(ip->i_sb, "error in block map\n");
0381             release_metapage(mp);
0382             IREAD_UNLOCK(ipbmap);
0383             return (rc);
0384         }
0385     }
0386 
0387     /* write the last buffer. */
0388     if (mp)
0389         write_metapage(mp);
0390 
0391     IREAD_UNLOCK(ipbmap);
0392 
0393     return (0);
0394 }
0395 
0396 
0397 /*
0398  * NAME:    dbUpdatePMap()
0399  *
0400  * FUNCTION:    update the allocation state (free or allocate) of the
0401  *      specified block range in the persistent block allocation map.
0402  *
0403  *      the blocks will be updated in the persistent map one
0404  *      dmap at a time.
0405  *
0406  * PARAMETERS:
0407  *  ipbmap  - pointer to in-core inode for the block map.
0408  *  free    - 'true' if block range is to be freed from the persistent
0409  *        map; 'false' if it is to be allocated.
0410  *  blkno   - starting block number of the range.
0411  *  nblocks - number of contiguous blocks in the range.
0412  *  tblk    - transaction block;
0413  *
0414  * RETURN VALUES:
0415  *  0   - success
0416  *  -EIO    - i/o error
0417  */
0418 int
0419 dbUpdatePMap(struct inode *ipbmap,
0420          int free, s64 blkno, s64 nblocks, struct tblock * tblk)
0421 {
0422     int nblks, dbitno, wbitno, rbits;
0423     int word, nbits, nwords;
0424     struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
0425     s64 lblkno, rem, lastlblkno;
0426     u32 mask;
0427     struct dmap *dp;
0428     struct metapage *mp;
0429     struct jfs_log *log;
0430     int lsn, difft, diffp;
0431     unsigned long flags;
0432 
0433     /* the blocks better be within the mapsize. */
0434     if (blkno + nblocks > bmp->db_mapsize) {
0435         printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
0436                (unsigned long long) blkno,
0437                (unsigned long long) nblocks);
0438         jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
0439         return -EIO;
0440     }
0441 
0442     /* compute delta of transaction lsn from log syncpt */
0443     lsn = tblk->lsn;
0444     log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
0445     logdiff(difft, lsn, log);
0446 
0447     /*
0448      * update the block state a dmap at a time.
0449      */
0450     mp = NULL;
0451     lastlblkno = 0;
0452     for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
0453         /* get the buffer for the current dmap. */
0454         lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
0455         if (lblkno != lastlblkno) {
0456             if (mp) {
0457                 write_metapage(mp);
0458             }
0459 
0460             mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
0461                        0);
0462             if (mp == NULL)
0463                 return -EIO;
0464             metapage_wait_for_io(mp);
0465         }
0466         dp = (struct dmap *) mp->data;
0467 
0468         /* determine the bit number and word within the dmap of
0469          * the starting block.  also determine how many blocks
0470          * are to be updated within this dmap.
0471          */
0472         dbitno = blkno & (BPERDMAP - 1);
0473         word = dbitno >> L2DBWORD;
0474         nblks = min(rem, (s64)BPERDMAP - dbitno);
0475 
0476         /* update the bits of the dmap words. the first and last
0477          * words may only have a subset of their bits updated. if
0478          * this is the case, we'll work against that word (i.e.
0479          * partial first and/or last) only in a single pass.  a
0480          * single pass will also be used to update all words that
0481          * are to have all their bits updated.
0482          */
0483         for (rbits = nblks; rbits > 0;
0484              rbits -= nbits, dbitno += nbits) {
0485             /* determine the bit number within the word and
0486              * the number of bits within the word.
0487              */
0488             wbitno = dbitno & (DBWORD - 1);
0489             nbits = min(rbits, DBWORD - wbitno);
0490 
0491             /* check if only part of the word is to be updated. */
0492             if (nbits < DBWORD) {
0493                 /* update (free or allocate) the bits
0494                  * in this word.
0495                  */
0496                 mask =
0497                     (ONES << (DBWORD - nbits) >> wbitno);
0498                 if (free)
0499                     dp->pmap[word] &=
0500                         cpu_to_le32(~mask);
0501                 else
0502                     dp->pmap[word] |=
0503                         cpu_to_le32(mask);
0504 
0505                 word += 1;
0506             } else {
0507                 /* one or more words are to have all
0508                  * their bits updated.  determine how
0509                  * many words and how many bits.
0510                  */
0511                 nwords = rbits >> L2DBWORD;
0512                 nbits = nwords << L2DBWORD;
0513 
0514                 /* update (free or allocate) the bits
0515                  * in these words.
0516                  */
0517                 if (free)
0518                     memset(&dp->pmap[word], 0,
0519                            nwords * 4);
0520                 else
0521                     memset(&dp->pmap[word], (int) ONES,
0522                            nwords * 4);
0523 
0524                 word += nwords;
0525             }
0526         }
0527 
0528         /*
0529          * update dmap lsn
0530          */
0531         if (lblkno == lastlblkno)
0532             continue;
0533 
0534         lastlblkno = lblkno;
0535 
0536         LOGSYNC_LOCK(log, flags);
0537         if (mp->lsn != 0) {
0538             /* inherit older/smaller lsn */
0539             logdiff(diffp, mp->lsn, log);
0540             if (difft < diffp) {
0541                 mp->lsn = lsn;
0542 
0543                 /* move bp after tblock in logsync list */
0544                 list_move(&mp->synclist, &tblk->synclist);
0545             }
0546 
0547             /* inherit younger/larger clsn */
0548             logdiff(difft, tblk->clsn, log);
0549             logdiff(diffp, mp->clsn, log);
0550             if (difft > diffp)
0551                 mp->clsn = tblk->clsn;
0552         } else {
0553             mp->log = log;
0554             mp->lsn = lsn;
0555 
0556             /* insert bp after tblock in logsync list */
0557             log->count++;
0558             list_add(&mp->synclist, &tblk->synclist);
0559 
0560             mp->clsn = tblk->clsn;
0561         }
0562         LOGSYNC_UNLOCK(log, flags);
0563     }
0564 
0565     /* write the last buffer. */
0566     if (mp) {
0567         write_metapage(mp);
0568     }
0569 
0570     return (0);
0571 }
0572 
0573 
0574 /*
0575  * NAME:    dbNextAG()
0576  *
0577  * FUNCTION:    find the preferred allocation group for new allocations.
0578  *
0579  *      Within the allocation groups, we maintain a preferred
0580  *      allocation group which consists of a group with at least
0581  *      average free space.  It is the preferred group that we target
0582  *      new inode allocation towards.  The tie-in between inode
0583  *      allocation and block allocation occurs as we allocate the
0584  *      first (data) block of an inode and specify the inode (block)
0585  *      as the allocation hint for this block.
0586  *
0587  *      We try to avoid having more than one open file growing in
0588  *      an allocation group, as this will lead to fragmentation.
0589  *      This differs from the old OS/2 method of trying to keep
0590  *      empty ags around for large allocations.
0591  *
0592  * PARAMETERS:
0593  *  ipbmap  - pointer to in-core inode for the block map.
0594  *
0595  * RETURN VALUES:
0596  *  the preferred allocation group number.
0597  */
0598 int dbNextAG(struct inode *ipbmap)
0599 {
0600     s64 avgfree;
0601     int agpref;
0602     s64 hwm = 0;
0603     int i;
0604     int next_best = -1;
0605     struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
0606 
0607     BMAP_LOCK(bmp);
0608 
0609     /* determine the average number of free blocks within the ags. */
0610     avgfree = (u32)bmp->db_nfree / bmp->db_numag;
0611 
0612     /*
0613      * if the current preferred ag does not have an active allocator
0614      * and has at least average freespace, return it
0615      */
0616     agpref = bmp->db_agpref;
0617     if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
0618         (bmp->db_agfree[agpref] >= avgfree))
0619         goto unlock;
0620 
0621     /* From the last preferred ag, find the next one with at least
0622      * average free space.
0623      */
0624     for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
0625         if (agpref == bmp->db_numag)
0626             agpref = 0;
0627 
0628         if (atomic_read(&bmp->db_active[agpref]))
0629             /* open file is currently growing in this ag */
0630             continue;
0631         if (bmp->db_agfree[agpref] >= avgfree) {
0632             /* Return this one */
0633             bmp->db_agpref = agpref;
0634             goto unlock;
0635         } else if (bmp->db_agfree[agpref] > hwm) {
0636             /* Less than avg. freespace, but best so far */
0637             hwm = bmp->db_agfree[agpref];
0638             next_best = agpref;
0639         }
0640     }
0641 
0642     /*
0643      * If no inactive ag was found with average freespace, use the
0644      * next best
0645      */
0646     if (next_best != -1)
0647         bmp->db_agpref = next_best;
0648     /* else leave db_agpref unchanged */
0649 unlock:
0650     BMAP_UNLOCK(bmp);
0651 
0652     /* return the preferred group.
0653      */
0654     return (bmp->db_agpref);
0655 }
0656 
0657 /*
0658  * NAME:    dbAlloc()
0659  *
0660  * FUNCTION:    attempt to allocate a specified number of contiguous free
0661  *      blocks from the working allocation block map.
0662  *
0663  *      the block allocation policy uses hints and a multi-step
0664  *      approach.
0665  *
0666  *      for allocation requests smaller than the number of blocks
0667  *      per dmap, we first try to allocate the new blocks
0668  *      immediately following the hint.  if these blocks are not
0669  *      available, we try to allocate blocks near the hint.  if
0670  *      no blocks near the hint are available, we next try to
0671  *      allocate within the same dmap as contains the hint.
0672  *
0673  *      if no blocks are available in the dmap or the allocation
0674  *      request is larger than the dmap size, we try to allocate
0675  *      within the same allocation group as contains the hint. if
0676  *      this does not succeed, we finally try to allocate anywhere
0677  *      within the aggregate.
0678  *
0679  *      we also try to allocate anywhere within the aggregate
0680  *      for allocation requests larger than the allocation group
0681  *      size or requests that specify no hint value.
0682  *
0683  * PARAMETERS:
0684  *  ip  - pointer to in-core inode;
0685  *  hint    - allocation hint.
0686  *  nblocks - number of contiguous blocks in the range.
0687  *  results - on successful return, set to the starting block number
0688  *        of the newly allocated contiguous range.
0689  *
0690  * RETURN VALUES:
0691  *  0   - success
0692  *  -ENOSPC - insufficient disk resources
0693  *  -EIO    - i/o error
0694  */
0695 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
0696 {
0697     int rc, agno;
0698     struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
0699     struct bmap *bmp;
0700     struct metapage *mp;
0701     s64 lblkno, blkno;
0702     struct dmap *dp;
0703     int l2nb;
0704     s64 mapSize;
0705     int writers;
0706 
0707     /* assert that nblocks is valid */
0708     assert(nblocks > 0);
0709 
0710     /* get the log2 number of blocks to be allocated.
0711      * if the number of blocks is not a log2 multiple,
0712      * it will be rounded up to the next log2 multiple.
0713      */
0714     l2nb = BLKSTOL2(nblocks);
0715 
0716     bmp = JFS_SBI(ip->i_sb)->bmap;
0717 
0718     mapSize = bmp->db_mapsize;
0719 
0720     /* the hint should be within the map */
0721     if (hint >= mapSize) {
0722         jfs_error(ip->i_sb, "the hint is outside the map\n");
0723         return -EIO;
0724     }
0725 
0726     /* if the number of blocks to be allocated is greater than the
0727      * allocation group size, try to allocate anywhere.
0728      */
0729     if (l2nb > bmp->db_agl2size) {
0730         IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
0731 
0732         rc = dbAllocAny(bmp, nblocks, l2nb, results);
0733 
0734         goto write_unlock;
0735     }
0736 
0737     /*
0738      * If no hint, let dbNextAG recommend an allocation group
0739      */
0740     if (hint == 0)
0741         goto pref_ag;
0742 
0743     /* we would like to allocate close to the hint.  adjust the
0744      * hint to the block following the hint since the allocators
0745      * will start looking for free space starting at this point.
0746      */
0747     blkno = hint + 1;
0748 
0749     if (blkno >= bmp->db_mapsize)
0750         goto pref_ag;
0751 
0752     agno = blkno >> bmp->db_agl2size;
0753 
0754     /* check if blkno crosses over into a new allocation group.
0755      * if so, check if we should allow allocations within this
0756      * allocation group.
0757      */
0758     if ((blkno & (bmp->db_agsize - 1)) == 0)
0759         /* check if the AG is currently being written to.
0760          * if so, call dbNextAG() to find a non-busy
0761          * AG with sufficient free space.
0762          */
0763         if (atomic_read(&bmp->db_active[agno]))
0764             goto pref_ag;
0765 
0766     /* check if the allocation request size can be satisfied from a
0767      * single dmap.  if so, try to allocate from the dmap containing
0768      * the hint using a tiered strategy.
0769      */
0770     if (nblocks <= BPERDMAP) {
0771         IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
0772 
0773         /* get the buffer for the dmap containing the hint.
0774          */
0775         rc = -EIO;
0776         lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
0777         mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
0778         if (mp == NULL)
0779             goto read_unlock;
0780 
0781         dp = (struct dmap *) mp->data;
0782 
0783         /* first, try to satisfy the allocation request with the
0784          * blocks beginning at the hint.
0785          */
0786         if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
0787             != -ENOSPC) {
0788             if (rc == 0) {
0789                 *results = blkno;
0790                 mark_metapage_dirty(mp);
0791             }
0792 
0793             release_metapage(mp);
0794             goto read_unlock;
0795         }
0796 
0797         writers = atomic_read(&bmp->db_active[agno]);
0798         if ((writers > 1) ||
0799             ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
0800             /*
0801              * Someone else is writing in this allocation
0802              * group.  To avoid fragmenting, try another ag
0803              */
0804             release_metapage(mp);
0805             IREAD_UNLOCK(ipbmap);
0806             goto pref_ag;
0807         }
0808 
0809         /* next, try to satisfy the allocation request with blocks
0810          * near the hint.
0811          */
0812         if ((rc =
0813              dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
0814             != -ENOSPC) {
0815             if (rc == 0)
0816                 mark_metapage_dirty(mp);
0817 
0818             release_metapage(mp);
0819             goto read_unlock;
0820         }
0821 
0822         /* try to satisfy the allocation request with blocks within
0823          * the same dmap as the hint.
0824          */
0825         if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
0826             != -ENOSPC) {
0827             if (rc == 0)
0828                 mark_metapage_dirty(mp);
0829 
0830             release_metapage(mp);
0831             goto read_unlock;
0832         }
0833 
0834         release_metapage(mp);
0835         IREAD_UNLOCK(ipbmap);
0836     }
0837 
0838     /* try to satisfy the allocation request with blocks within
0839      * the same allocation group as the hint.
0840      */
0841     IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
0842     if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
0843         goto write_unlock;
0844 
0845     IWRITE_UNLOCK(ipbmap);
0846 
0847 
0848       pref_ag:
0849     /*
0850      * Let dbNextAG recommend a preferred allocation group
0851      */
0852     agno = dbNextAG(ipbmap);
0853     IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
0854 
0855     /* Try to allocate within this allocation group.  if that fails, try to
0856      * allocate anywhere in the map.
0857      */
0858     if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
0859         rc = dbAllocAny(bmp, nblocks, l2nb, results);
0860 
0861       write_unlock:
0862     IWRITE_UNLOCK(ipbmap);
0863 
0864     return (rc);
0865 
0866       read_unlock:
0867     IREAD_UNLOCK(ipbmap);
0868 
0869     return (rc);
0870 }
0871 
0872 /*
0873  * NAME:    dbReAlloc()
0874  *
0875  * FUNCTION:    attempt to extend a current allocation by a specified
0876  *      number of blocks.
0877  *
0878  *      this routine attempts to satisfy the allocation request
0879  *      by first trying to extend the existing allocation in
0880  *      place by allocating the additional blocks as the blocks
0881  *      immediately following the current allocation.  if these
0882  *      blocks are not available, this routine will attempt to
0883  *      allocate a new set of contiguous blocks large enough
0884  *      to cover the existing allocation plus the additional
0885  *      number of blocks required.
0886  *
0887  * PARAMETERS:
0888  *  ip      -  pointer to in-core inode requiring allocation.
0889  *  blkno       -  starting block of the current allocation.
0890  *  nblocks     -  number of contiguous blocks within the current
0891  *             allocation.
0892  *  addnblocks  -  number of blocks to add to the allocation.
0893  *  results -      on successful return, set to the starting block number
0894  *             of the existing allocation if the existing allocation
0895  *             was extended in place or to a newly allocated contiguous
0896  *             range if the existing allocation could not be extended
0897  *             in place.
0898  *
0899  * RETURN VALUES:
0900  *  0   - success
0901  *  -ENOSPC - insufficient disk resources
0902  *  -EIO    - i/o error
0903  */
0904 int
0905 dbReAlloc(struct inode *ip,
0906       s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
0907 {
0908     int rc;
0909 
0910     /* try to extend the allocation in place.
0911      */
0912     if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
0913         *results = blkno;
0914         return (0);
0915     } else {
0916         if (rc != -ENOSPC)
0917             return (rc);
0918     }
0919 
0920     /* could not extend the allocation in place, so allocate a
0921      * new set of blocks for the entire request (i.e. try to get
0922      * a range of contiguous blocks large enough to cover the
0923      * existing allocation plus the additional blocks.)
0924      */
0925     return (dbAlloc
0926         (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
0927 }
0928 
0929 
0930 /*
0931  * NAME:    dbExtend()
0932  *
0933  * FUNCTION:    attempt to extend a current allocation by a specified
0934  *      number of blocks.
0935  *
0936  *      this routine attempts to satisfy the allocation request
0937  *      by first trying to extend the existing allocation in
0938  *      place by allocating the additional blocks as the blocks
0939  *      immediately following the current allocation.
0940  *
0941  * PARAMETERS:
0942  *  ip      -  pointer to in-core inode requiring allocation.
0943  *  blkno       -  starting block of the current allocation.
0944  *  nblocks     -  number of contiguous blocks within the current
0945  *             allocation.
0946  *  addnblocks  -  number of blocks to add to the allocation.
0947  *
0948  * RETURN VALUES:
0949  *  0   - success
0950  *  -ENOSPC - insufficient disk resources
0951  *  -EIO    - i/o error
0952  */
0953 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
0954 {
0955     struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
0956     s64 lblkno, lastblkno, extblkno;
0957     uint rel_block;
0958     struct metapage *mp;
0959     struct dmap *dp;
0960     int rc;
0961     struct inode *ipbmap = sbi->ipbmap;
0962     struct bmap *bmp;
0963 
0964     /*
0965      * We don't want a non-aligned extent to cross a page boundary
0966      */
0967     if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
0968         (rel_block + nblocks + addnblocks > sbi->nbperpage))
0969         return -ENOSPC;
0970 
0971     /* get the last block of the current allocation */
0972     lastblkno = blkno + nblocks - 1;
0973 
0974     /* determine the block number of the block following
0975      * the existing allocation.
0976      */
0977     extblkno = lastblkno + 1;
0978 
0979     IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
0980 
0981     /* better be within the file system */
0982     bmp = sbi->bmap;
0983     if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
0984         IREAD_UNLOCK(ipbmap);
0985         jfs_error(ip->i_sb, "the block is outside the filesystem\n");
0986         return -EIO;
0987     }
0988 
0989     /* we'll attempt to extend the current allocation in place by
0990      * allocating the additional blocks as the blocks immediately
0991      * following the current allocation.  we only try to extend the
0992      * current allocation in place if the number of additional blocks
0993      * can fit into a dmap, the last block of the current allocation
0994      * is not the last block of the file system, and the start of the
0995      * inplace extension is not on an allocation group boundary.
0996      */
0997     if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
0998         (extblkno & (bmp->db_agsize - 1)) == 0) {
0999         IREAD_UNLOCK(ipbmap);
1000         return -ENOSPC;
1001     }
1002 
1003     /* get the buffer for the dmap containing the first block
1004      * of the extension.
1005      */
1006     lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1007     mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1008     if (mp == NULL) {
1009         IREAD_UNLOCK(ipbmap);
1010         return -EIO;
1011     }
1012 
1013     dp = (struct dmap *) mp->data;
1014 
1015     /* try to allocate the blocks immediately following the
1016      * current allocation.
1017      */
1018     rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1019 
1020     IREAD_UNLOCK(ipbmap);
1021 
1022     /* were we successful ? */
1023     if (rc == 0)
1024         write_metapage(mp);
1025     else
1026         /* we were not successful */
1027         release_metapage(mp);
1028 
1029     return (rc);
1030 }
1031 
1032 
1033 /*
1034  * NAME:    dbAllocNext()
1035  *
1036  * FUNCTION:    attempt to allocate the blocks of the specified block
1037  *      range within a dmap.
1038  *
1039  * PARAMETERS:
1040  *  bmp -  pointer to bmap descriptor
1041  *  dp  -  pointer to dmap.
1042  *  blkno   -  starting block number of the range.
1043  *  nblocks -  number of contiguous free blocks of the range.
1044  *
1045  * RETURN VALUES:
1046  *  0   - success
1047  *  -ENOSPC - insufficient disk resources
1048  *  -EIO    - i/o error
1049  *
1050  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1051  */
1052 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1053                int nblocks)
1054 {
1055     int dbitno, word, rembits, nb, nwords, wbitno, nw;
1056     int l2size;
1057     s8 *leaf;
1058     u32 mask;
1059 
1060     if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1061         jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1062         return -EIO;
1063     }
1064 
1065     /* pick up a pointer to the leaves of the dmap tree.
1066      */
1067     leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1068 
1069     /* determine the bit number and word within the dmap of the
1070      * starting block.
1071      */
1072     dbitno = blkno & (BPERDMAP - 1);
1073     word = dbitno >> L2DBWORD;
1074 
1075     /* check if the specified block range is contained within
1076      * this dmap.
1077      */
1078     if (dbitno + nblocks > BPERDMAP)
1079         return -ENOSPC;
1080 
1081     /* check if the starting leaf indicates that anything
1082      * is free.
1083      */
1084     if (leaf[word] == NOFREE)
1085         return -ENOSPC;
1086 
1087     /* check the dmaps words corresponding to block range to see
1088      * if the block range is free.  not all bits of the first and
1089      * last words may be contained within the block range.  if this
1090      * is the case, we'll work against those words (i.e. partial first
1091      * and/or last) on an individual basis (a single pass) and examine
1092      * the actual bits to determine if they are free.  a single pass
1093      * will be used for all dmap words fully contained within the
1094      * specified range.  within this pass, the leaves of the dmap
1095      * tree will be examined to determine if the blocks are free. a
1096      * single leaf may describe the free space of multiple dmap
1097      * words, so we may visit only a subset of the actual leaves
1098      * corresponding to the dmap words of the block range.
1099      */
1100     for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1101         /* determine the bit number within the word and
1102          * the number of bits within the word.
1103          */
1104         wbitno = dbitno & (DBWORD - 1);
1105         nb = min(rembits, DBWORD - wbitno);
1106 
1107         /* check if only part of the word is to be examined.
1108          */
1109         if (nb < DBWORD) {
1110             /* check if the bits are free.
1111              */
1112             mask = (ONES << (DBWORD - nb) >> wbitno);
1113             if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1114                 return -ENOSPC;
1115 
1116             word += 1;
1117         } else {
1118             /* one or more dmap words are fully contained
1119              * within the block range.  determine how many
1120              * words and how many bits.
1121              */
1122             nwords = rembits >> L2DBWORD;
1123             nb = nwords << L2DBWORD;
1124 
1125             /* now examine the appropriate leaves to determine
1126              * if the blocks are free.
1127              */
1128             while (nwords > 0) {
1129                 /* does the leaf describe any free space ?
1130                  */
1131                 if (leaf[word] < BUDMIN)
1132                     return -ENOSPC;
1133 
1134                 /* determine the l2 number of bits provided
1135                  * by this leaf.
1136                  */
1137                 l2size =
1138                     min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1139 
1140                 /* determine how many words were handled.
1141                  */
1142                 nw = BUDSIZE(l2size, BUDMIN);
1143 
1144                 nwords -= nw;
1145                 word += nw;
1146             }
1147         }
1148     }
1149 
1150     /* allocate the blocks.
1151      */
1152     return (dbAllocDmap(bmp, dp, blkno, nblocks));
1153 }
1154 
1155 
1156 /*
1157  * NAME:    dbAllocNear()
1158  *
1159  * FUNCTION:    attempt to allocate a number of contiguous free blocks near
1160  *      a specified block (hint) within a dmap.
1161  *
1162  *      starting with the dmap leaf that covers the hint, we'll
1163  *      check the next four contiguous leaves for sufficient free
1164  *      space.  if sufficient free space is found, we'll allocate
1165  *      the desired free space.
1166  *
1167  * PARAMETERS:
1168  *  bmp -  pointer to bmap descriptor
1169  *  dp  -  pointer to dmap.
1170  *  blkno   -  block number to allocate near.
1171  *  nblocks -  actual number of contiguous free blocks desired.
1172  *  l2nb    -  log2 number of contiguous free blocks desired.
1173  *  results -  on successful return, set to the starting block number
1174  *         of the newly allocated range.
1175  *
1176  * RETURN VALUES:
1177  *  0   - success
1178  *  -ENOSPC - insufficient disk resources
1179  *  -EIO    - i/o error
1180  *
1181  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1182  */
1183 static int
1184 dbAllocNear(struct bmap * bmp,
1185         struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1186 {
1187     int word, lword, rc;
1188     s8 *leaf;
1189 
1190     if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1191         jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1192         return -EIO;
1193     }
1194 
1195     leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1196 
1197     /* determine the word within the dmap that holds the hint
1198      * (i.e. blkno).  also, determine the last word in the dmap
1199      * that we'll include in our examination.
1200      */
1201     word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1202     lword = min(word + 4, LPERDMAP);
1203 
1204     /* examine the leaves for sufficient free space.
1205      */
1206     for (; word < lword; word++) {
1207         /* does the leaf describe sufficient free space ?
1208          */
1209         if (leaf[word] < l2nb)
1210             continue;
1211 
1212         /* determine the block number within the file system
1213          * of the first block described by this dmap word.
1214          */
1215         blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1216 
1217         /* if not all bits of the dmap word are free, get the
1218          * starting bit number within the dmap word of the required
1219          * string of free bits and adjust the block number with the
1220          * value.
1221          */
1222         if (leaf[word] < BUDMIN)
1223             blkno +=
1224                 dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1225 
1226         /* allocate the blocks.
1227          */
1228         if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1229             *results = blkno;
1230 
1231         return (rc);
1232     }
1233 
1234     return -ENOSPC;
1235 }
1236 
1237 
1238 /*
1239  * NAME:    dbAllocAG()
1240  *
1241  * FUNCTION:    attempt to allocate the specified number of contiguous
1242  *      free blocks within the specified allocation group.
1243  *
1244  *      unless the allocation group size is equal to the number
1245  *      of blocks per dmap, the dmap control pages will be used to
1246  *      find the required free space, if available.  we start the
1247  *      search at the highest dmap control page level which
1248  *      distinctly describes the allocation group's free space
1249  *      (i.e. the highest level at which the allocation group's
1250  *      free space is not mixed in with that of any other group).
1251  *      in addition, we start the search within this level at a
1252  *      height of the dmapctl dmtree at which the nodes distinctly
1253  *      describe the allocation group's free space.  at this height,
1254  *      the allocation group's free space may be represented by 1
1255  *      or two sub-trees, depending on the allocation group size.
1256  *      we search the top nodes of these subtrees left to right for
1257  *      sufficient free space.  if sufficient free space is found,
1258  *      the subtree is searched to find the leftmost leaf that
1259  *      has free space.  once we have made it to the leaf, we
1260  *      move the search to the next lower level dmap control page
1261  *      corresponding to this leaf.  we continue down the dmap control
1262  *      pages until we find the dmap that contains or starts the
1263  *      sufficient free space and we allocate at this dmap.
1264  *
1265  *      if the allocation group size is equal to the dmap size,
1266  *      we'll start at the dmap corresponding to the allocation
1267  *      group and attempt the allocation at this level.
1268  *
1269  *      the dmap control page search is also not performed if the
1270  *      allocation group is completely free and we go to the first
1271  *      dmap of the allocation group to do the allocation.  this is
1272  *      done because the allocation group may be part (not the first
1273  *      part) of a larger binary buddy system, causing the dmap
1274  *      control pages to indicate no free space (NOFREE) within
1275  *      the allocation group.
1276  *
1277  * PARAMETERS:
1278  *  bmp -  pointer to bmap descriptor
1279  *  agno    - allocation group number.
1280  *  nblocks -  actual number of contiguous free blocks desired.
1281  *  l2nb    -  log2 number of contiguous free blocks desired.
1282  *  results -  on successful return, set to the starting block number
1283  *         of the newly allocated range.
1284  *
1285  * RETURN VALUES:
1286  *  0   - success
1287  *  -ENOSPC - insufficient disk resources
1288  *  -EIO    - i/o error
1289  *
1290  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1291  */
1292 static int
1293 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1294 {
1295     struct metapage *mp;
1296     struct dmapctl *dcp;
1297     int rc, ti, i, k, m, n, agperlev;
1298     s64 blkno, lblkno;
1299     int budmin;
1300 
1301     /* allocation request should not be for more than the
1302      * allocation group size.
1303      */
1304     if (l2nb > bmp->db_agl2size) {
1305         jfs_error(bmp->db_ipbmap->i_sb,
1306               "allocation request is larger than the allocation group size\n");
1307         return -EIO;
1308     }
1309 
1310     /* determine the starting block number of the allocation
1311      * group.
1312      */
1313     blkno = (s64) agno << bmp->db_agl2size;
1314 
1315     /* check if the allocation group size is the minimum allocation
1316      * group size or if the allocation group is completely free. if
1317      * the allocation group size is the minimum size of BPERDMAP (i.e.
1318      * 1 dmap), there is no need to search the dmap control page (below)
1319      * that fully describes the allocation group since the allocation
1320      * group is already fully described by a dmap.  in this case, we
1321      * just call dbAllocCtl() to search the dmap tree and allocate the
1322      * required space if available.
1323      *
1324      * if the allocation group is completely free, dbAllocCtl() is
1325      * also called to allocate the required space.  this is done for
1326      * two reasons.  first, it makes no sense searching the dmap control
1327      * pages for free space when we know that free space exists.  second,
1328      * the dmap control pages may indicate that the allocation group
1329      * has no free space if the allocation group is part (not the first
1330      * part) of a larger binary buddy system.
1331      */
1332     if (bmp->db_agsize == BPERDMAP
1333         || bmp->db_agfree[agno] == bmp->db_agsize) {
1334         rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1335         if ((rc == -ENOSPC) &&
1336             (bmp->db_agfree[agno] == bmp->db_agsize)) {
1337             printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1338                    (unsigned long long) blkno,
1339                    (unsigned long long) nblocks);
1340             jfs_error(bmp->db_ipbmap->i_sb,
1341                   "dbAllocCtl failed in free AG\n");
1342         }
1343         return (rc);
1344     }
1345 
1346     /* the buffer for the dmap control page that fully describes the
1347      * allocation group.
1348      */
1349     lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1350     mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1351     if (mp == NULL)
1352         return -EIO;
1353     dcp = (struct dmapctl *) mp->data;
1354     budmin = dcp->budmin;
1355 
1356     if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1357         jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1358         release_metapage(mp);
1359         return -EIO;
1360     }
1361 
1362     /* search the subtree(s) of the dmap control page that describes
1363      * the allocation group, looking for sufficient free space.  to begin,
1364      * determine how many allocation groups are represented in a dmap
1365      * control page at the control page level (i.e. L0, L1, L2) that
1366      * fully describes an allocation group. next, determine the starting
1367      * tree index of this allocation group within the control page.
1368      */
1369     agperlev =
1370         (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1371     ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1372 
1373     /* dmap control page trees fan-out by 4 and a single allocation
1374      * group may be described by 1 or 2 subtrees within the ag level
1375      * dmap control page, depending upon the ag size. examine the ag's
1376      * subtrees for sufficient free space, starting with the leftmost
1377      * subtree.
1378      */
1379     for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1380         /* is there sufficient free space ?
1381          */
1382         if (l2nb > dcp->stree[ti])
1383             continue;
1384 
1385         /* sufficient free space found in a subtree. now search down
1386          * the subtree to find the leftmost leaf that describes this
1387          * free space.
1388          */
1389         for (k = bmp->db_agheight; k > 0; k--) {
1390             for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1391                 if (l2nb <= dcp->stree[m + n]) {
1392                     ti = m + n;
1393                     break;
1394                 }
1395             }
1396             if (n == 4) {
1397                 jfs_error(bmp->db_ipbmap->i_sb,
1398                       "failed descending stree\n");
1399                 release_metapage(mp);
1400                 return -EIO;
1401             }
1402         }
1403 
1404         /* determine the block number within the file system
1405          * that corresponds to this leaf.
1406          */
1407         if (bmp->db_aglevel == 2)
1408             blkno = 0;
1409         else if (bmp->db_aglevel == 1)
1410             blkno &= ~(MAXL1SIZE - 1);
1411         else        /* bmp->db_aglevel == 0 */
1412             blkno &= ~(MAXL0SIZE - 1);
1413 
1414         blkno +=
1415             ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1416 
1417         /* release the buffer in preparation for going down
1418          * the next level of dmap control pages.
1419          */
1420         release_metapage(mp);
1421 
1422         /* check if we need to continue to search down the lower
1423          * level dmap control pages.  we need to if the number of
1424          * blocks required is less than maximum number of blocks
1425          * described at the next lower level.
1426          */
1427         if (l2nb < budmin) {
1428 
1429             /* search the lower level dmap control pages to get
1430              * the starting block number of the dmap that
1431              * contains or starts off the free space.
1432              */
1433             if ((rc =
1434                  dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1435                        &blkno))) {
1436                 if (rc == -ENOSPC) {
1437                     jfs_error(bmp->db_ipbmap->i_sb,
1438                           "control page inconsistent\n");
1439                     return -EIO;
1440                 }
1441                 return (rc);
1442             }
1443         }
1444 
1445         /* allocate the blocks.
1446          */
1447         rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1448         if (rc == -ENOSPC) {
1449             jfs_error(bmp->db_ipbmap->i_sb,
1450                   "unable to allocate blocks\n");
1451             rc = -EIO;
1452         }
1453         return (rc);
1454     }
1455 
1456     /* no space in the allocation group.  release the buffer and
1457      * return -ENOSPC.
1458      */
1459     release_metapage(mp);
1460 
1461     return -ENOSPC;
1462 }
1463 
1464 
1465 /*
1466  * NAME:    dbAllocAny()
1467  *
1468  * FUNCTION:    attempt to allocate the specified number of contiguous
1469  *      free blocks anywhere in the file system.
1470  *
1471  *      dbAllocAny() attempts to find the sufficient free space by
1472  *      searching down the dmap control pages, starting with the
1473  *      highest level (i.e. L0, L1, L2) control page.  if free space
1474  *      large enough to satisfy the desired free space is found, the
1475  *      desired free space is allocated.
1476  *
1477  * PARAMETERS:
1478  *  bmp -  pointer to bmap descriptor
1479  *  nblocks  -  actual number of contiguous free blocks desired.
1480  *  l2nb     -  log2 number of contiguous free blocks desired.
1481  *  results -  on successful return, set to the starting block number
1482  *         of the newly allocated range.
1483  *
1484  * RETURN VALUES:
1485  *  0   - success
1486  *  -ENOSPC - insufficient disk resources
1487  *  -EIO    - i/o error
1488  *
1489  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1490  */
1491 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1492 {
1493     int rc;
1494     s64 blkno = 0;
1495 
1496     /* starting with the top level dmap control page, search
1497      * down the dmap control levels for sufficient free space.
1498      * if free space is found, dbFindCtl() returns the starting
1499      * block number of the dmap that contains or starts off the
1500      * range of free space.
1501      */
1502     if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1503         return (rc);
1504 
1505     /* allocate the blocks.
1506      */
1507     rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1508     if (rc == -ENOSPC) {
1509         jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1510         return -EIO;
1511     }
1512     return (rc);
1513 }
1514 
1515 
1516 /*
1517  * NAME:    dbDiscardAG()
1518  *
1519  * FUNCTION:    attempt to discard (TRIM) all free blocks of specific AG
1520  *
1521  *      algorithm:
1522  *      1) allocate blocks, as large as possible and save them
1523  *         while holding IWRITE_LOCK on ipbmap
1524  *      2) trim all these saved block/length values
1525  *      3) mark the blocks free again
1526  *
1527  *      benefit:
1528  *      - we work only on one ag at some time, minimizing how long we
1529  *        need to lock ipbmap
1530  *      - reading / writing the fs is possible most time, even on
1531  *        trimming
1532  *
1533  *      downside:
1534  *      - we write two times to the dmapctl and dmap pages
1535  *      - but for me, this seems the best way, better ideas?
1536  *      /TR 2012
1537  *
1538  * PARAMETERS:
1539  *  ip  - pointer to in-core inode
1540  *  agno    - ag to trim
1541  *  minlen  - minimum value of contiguous blocks
1542  *
1543  * RETURN VALUES:
1544  *  s64 - actual number of blocks trimmed
1545  */
1546 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1547 {
1548     struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1549     struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1550     s64 nblocks, blkno;
1551     u64 trimmed = 0;
1552     int rc, l2nb;
1553     struct super_block *sb = ipbmap->i_sb;
1554 
1555     struct range2trim {
1556         u64 blkno;
1557         u64 nblocks;
1558     } *totrim, *tt;
1559 
1560     /* max blkno / nblocks pairs to trim */
1561     int count = 0, range_cnt;
1562     u64 max_ranges;
1563 
1564     /* prevent others from writing new stuff here, while trimming */
1565     IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1566 
1567     nblocks = bmp->db_agfree[agno];
1568     max_ranges = nblocks;
1569     do_div(max_ranges, minlen);
1570     range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1571     totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1572     if (totrim == NULL) {
1573         jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1574         IWRITE_UNLOCK(ipbmap);
1575         return 0;
1576     }
1577 
1578     tt = totrim;
1579     while (nblocks >= minlen) {
1580         l2nb = BLKSTOL2(nblocks);
1581 
1582         /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1583         rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1584         if (rc == 0) {
1585             tt->blkno = blkno;
1586             tt->nblocks = nblocks;
1587             tt++; count++;
1588 
1589             /* the whole ag is free, trim now */
1590             if (bmp->db_agfree[agno] == 0)
1591                 break;
1592 
1593             /* give a hint for the next while */
1594             nblocks = bmp->db_agfree[agno];
1595             continue;
1596         } else if (rc == -ENOSPC) {
1597             /* search for next smaller log2 block */
1598             l2nb = BLKSTOL2(nblocks) - 1;
1599             nblocks = 1LL << l2nb;
1600         } else {
1601             /* Trim any already allocated blocks */
1602             jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1603             break;
1604         }
1605 
1606         /* check, if our trim array is full */
1607         if (unlikely(count >= range_cnt - 1))
1608             break;
1609     }
1610     IWRITE_UNLOCK(ipbmap);
1611 
1612     tt->nblocks = 0; /* mark the current end */
1613     for (tt = totrim; tt->nblocks != 0; tt++) {
1614         /* when mounted with online discard, dbFree() will
1615          * call jfs_issue_discard() itself */
1616         if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1617             jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1618         dbFree(ip, tt->blkno, tt->nblocks);
1619         trimmed += tt->nblocks;
1620     }
1621     kfree(totrim);
1622 
1623     return trimmed;
1624 }
1625 
1626 /*
1627  * NAME:    dbFindCtl()
1628  *
1629  * FUNCTION:    starting at a specified dmap control page level and block
1630  *      number, search down the dmap control levels for a range of
1631  *      contiguous free blocks large enough to satisfy an allocation
1632  *      request for the specified number of free blocks.
1633  *
1634  *      if sufficient contiguous free blocks are found, this routine
1635  *      returns the starting block number within a dmap page that
1636  *      contains or starts a range of contiqious free blocks that
1637  *      is sufficient in size.
1638  *
1639  * PARAMETERS:
1640  *  bmp -  pointer to bmap descriptor
1641  *  level   -  starting dmap control page level.
1642  *  l2nb    -  log2 number of contiguous free blocks desired.
1643  *  *blkno  -  on entry, starting block number for conducting the search.
1644  *         on successful return, the first block within a dmap page
1645  *         that contains or starts a range of contiguous free blocks.
1646  *
1647  * RETURN VALUES:
1648  *  0   - success
1649  *  -ENOSPC - insufficient disk resources
1650  *  -EIO    - i/o error
1651  *
1652  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1653  */
1654 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1655 {
1656     int rc, leafidx, lev;
1657     s64 b, lblkno;
1658     struct dmapctl *dcp;
1659     int budmin;
1660     struct metapage *mp;
1661 
1662     /* starting at the specified dmap control page level and block
1663      * number, search down the dmap control levels for the starting
1664      * block number of a dmap page that contains or starts off
1665      * sufficient free blocks.
1666      */
1667     for (lev = level, b = *blkno; lev >= 0; lev--) {
1668         /* get the buffer of the dmap control page for the block
1669          * number and level (i.e. L0, L1, L2).
1670          */
1671         lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1672         mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1673         if (mp == NULL)
1674             return -EIO;
1675         dcp = (struct dmapctl *) mp->data;
1676         budmin = dcp->budmin;
1677 
1678         if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1679             jfs_error(bmp->db_ipbmap->i_sb,
1680                   "Corrupt dmapctl page\n");
1681             release_metapage(mp);
1682             return -EIO;
1683         }
1684 
1685         /* search the tree within the dmap control page for
1686          * sufficient free space.  if sufficient free space is found,
1687          * dbFindLeaf() returns the index of the leaf at which
1688          * free space was found.
1689          */
1690         rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1691 
1692         /* release the buffer.
1693          */
1694         release_metapage(mp);
1695 
1696         /* space found ?
1697          */
1698         if (rc) {
1699             if (lev != level) {
1700                 jfs_error(bmp->db_ipbmap->i_sb,
1701                       "dmap inconsistent\n");
1702                 return -EIO;
1703             }
1704             return -ENOSPC;
1705         }
1706 
1707         /* adjust the block number to reflect the location within
1708          * the dmap control page (i.e. the leaf) at which free
1709          * space was found.
1710          */
1711         b += (((s64) leafidx) << budmin);
1712 
1713         /* we stop the search at this dmap control page level if
1714          * the number of blocks required is greater than or equal
1715          * to the maximum number of blocks described at the next
1716          * (lower) level.
1717          */
1718         if (l2nb >= budmin)
1719             break;
1720     }
1721 
1722     *blkno = b;
1723     return (0);
1724 }
1725 
1726 
1727 /*
1728  * NAME:    dbAllocCtl()
1729  *
1730  * FUNCTION:    attempt to allocate a specified number of contiguous
1731  *      blocks starting within a specific dmap.
1732  *
1733  *      this routine is called by higher level routines that search
1734  *      the dmap control pages above the actual dmaps for contiguous
1735  *      free space.  the result of successful searches by these
1736  *      routines are the starting block numbers within dmaps, with
1737  *      the dmaps themselves containing the desired contiguous free
1738  *      space or starting a contiguous free space of desired size
1739  *      that is made up of the blocks of one or more dmaps. these
1740  *      calls should not fail due to insufficent resources.
1741  *
1742  *      this routine is called in some cases where it is not known
1743  *      whether it will fail due to insufficient resources.  more
1744  *      specifically, this occurs when allocating from an allocation
1745  *      group whose size is equal to the number of blocks per dmap.
1746  *      in this case, the dmap control pages are not examined prior
1747  *      to calling this routine (to save pathlength) and the call
1748  *      might fail.
1749  *
1750  *      for a request size that fits within a dmap, this routine relies
1751  *      upon the dmap's dmtree to find the requested contiguous free
1752  *      space.  for request sizes that are larger than a dmap, the
1753  *      requested free space will start at the first block of the
1754  *      first dmap (i.e. blkno).
1755  *
1756  * PARAMETERS:
1757  *  bmp -  pointer to bmap descriptor
1758  *  nblocks  -  actual number of contiguous free blocks to allocate.
1759  *  l2nb     -  log2 number of contiguous free blocks to allocate.
1760  *  blkno    -  starting block number of the dmap to start the allocation
1761  *          from.
1762  *  results -  on successful return, set to the starting block number
1763  *         of the newly allocated range.
1764  *
1765  * RETURN VALUES:
1766  *  0   - success
1767  *  -ENOSPC - insufficient disk resources
1768  *  -EIO    - i/o error
1769  *
1770  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1771  */
1772 static int
1773 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1774 {
1775     int rc, nb;
1776     s64 b, lblkno, n;
1777     struct metapage *mp;
1778     struct dmap *dp;
1779 
1780     /* check if the allocation request is confined to a single dmap.
1781      */
1782     if (l2nb <= L2BPERDMAP) {
1783         /* get the buffer for the dmap.
1784          */
1785         lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1786         mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1787         if (mp == NULL)
1788             return -EIO;
1789         dp = (struct dmap *) mp->data;
1790 
1791         /* try to allocate the blocks.
1792          */
1793         rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1794         if (rc == 0)
1795             mark_metapage_dirty(mp);
1796 
1797         release_metapage(mp);
1798 
1799         return (rc);
1800     }
1801 
1802     /* allocation request involving multiple dmaps. it must start on
1803      * a dmap boundary.
1804      */
1805     assert((blkno & (BPERDMAP - 1)) == 0);
1806 
1807     /* allocate the blocks dmap by dmap.
1808      */
1809     for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1810         /* get the buffer for the dmap.
1811          */
1812         lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1813         mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1814         if (mp == NULL) {
1815             rc = -EIO;
1816             goto backout;
1817         }
1818         dp = (struct dmap *) mp->data;
1819 
1820         /* the dmap better be all free.
1821          */
1822         if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1823             release_metapage(mp);
1824             jfs_error(bmp->db_ipbmap->i_sb,
1825                   "the dmap is not all free\n");
1826             rc = -EIO;
1827             goto backout;
1828         }
1829 
1830         /* determine how many blocks to allocate from this dmap.
1831          */
1832         nb = min_t(s64, n, BPERDMAP);
1833 
1834         /* allocate the blocks from the dmap.
1835          */
1836         if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1837             release_metapage(mp);
1838             goto backout;
1839         }
1840 
1841         /* write the buffer.
1842          */
1843         write_metapage(mp);
1844     }
1845 
1846     /* set the results (starting block number) and return.
1847      */
1848     *results = blkno;
1849     return (0);
1850 
1851     /* something failed in handling an allocation request involving
1852      * multiple dmaps.  we'll try to clean up by backing out any
1853      * allocation that has already happened for this request.  if
1854      * we fail in backing out the allocation, we'll mark the file
1855      * system to indicate that blocks have been leaked.
1856      */
1857       backout:
1858 
1859     /* try to backout the allocations dmap by dmap.
1860      */
1861     for (n = nblocks - n, b = blkno; n > 0;
1862          n -= BPERDMAP, b += BPERDMAP) {
1863         /* get the buffer for this dmap.
1864          */
1865         lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1866         mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1867         if (mp == NULL) {
1868             /* could not back out.  mark the file system
1869              * to indicate that we have leaked blocks.
1870              */
1871             jfs_error(bmp->db_ipbmap->i_sb,
1872                   "I/O Error: Block Leakage\n");
1873             continue;
1874         }
1875         dp = (struct dmap *) mp->data;
1876 
1877         /* free the blocks is this dmap.
1878          */
1879         if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1880             /* could not back out.  mark the file system
1881              * to indicate that we have leaked blocks.
1882              */
1883             release_metapage(mp);
1884             jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1885             continue;
1886         }
1887 
1888         /* write the buffer.
1889          */
1890         write_metapage(mp);
1891     }
1892 
1893     return (rc);
1894 }
1895 
1896 
1897 /*
1898  * NAME:    dbAllocDmapLev()
1899  *
1900  * FUNCTION:    attempt to allocate a specified number of contiguous blocks
1901  *      from a specified dmap.
1902  *
1903  *      this routine checks if the contiguous blocks are available.
1904  *      if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1905  *      returned.
1906  *
1907  * PARAMETERS:
1908  *  mp  -  pointer to bmap descriptor
1909  *  dp  -  pointer to dmap to attempt to allocate blocks from.
1910  *  l2nb    -  log2 number of contiguous block desired.
1911  *  nblocks -  actual number of contiguous block desired.
1912  *  results -  on successful return, set to the starting block number
1913  *         of the newly allocated range.
1914  *
1915  * RETURN VALUES:
1916  *  0   - success
1917  *  -ENOSPC - insufficient disk resources
1918  *  -EIO    - i/o error
1919  *
1920  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1921  *  IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1922  */
1923 static int
1924 dbAllocDmapLev(struct bmap * bmp,
1925            struct dmap * dp, int nblocks, int l2nb, s64 * results)
1926 {
1927     s64 blkno;
1928     int leafidx, rc;
1929 
1930     /* can't be more than a dmaps worth of blocks */
1931     assert(l2nb <= L2BPERDMAP);
1932 
1933     /* search the tree within the dmap page for sufficient
1934      * free space.  if sufficient free space is found, dbFindLeaf()
1935      * returns the index of the leaf at which free space was found.
1936      */
1937     if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1938         return -ENOSPC;
1939 
1940     /* determine the block number within the file system corresponding
1941      * to the leaf at which free space was found.
1942      */
1943     blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1944 
1945     /* if not all bits of the dmap word are free, get the starting
1946      * bit number within the dmap word of the required string of free
1947      * bits and adjust the block number with this value.
1948      */
1949     if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1950         blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1951 
1952     /* allocate the blocks */
1953     if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1954         *results = blkno;
1955 
1956     return (rc);
1957 }
1958 
1959 
1960 /*
1961  * NAME:    dbAllocDmap()
1962  *
1963  * FUNCTION:    adjust the disk allocation map to reflect the allocation
1964  *      of a specified block range within a dmap.
1965  *
1966  *      this routine allocates the specified blocks from the dmap
1967  *      through a call to dbAllocBits(). if the allocation of the
1968  *      block range causes the maximum string of free blocks within
1969  *      the dmap to change (i.e. the value of the root of the dmap's
1970  *      dmtree), this routine will cause this change to be reflected
1971  *      up through the appropriate levels of the dmap control pages
1972  *      by a call to dbAdjCtl() for the L0 dmap control page that
1973  *      covers this dmap.
1974  *
1975  * PARAMETERS:
1976  *  bmp -  pointer to bmap descriptor
1977  *  dp  -  pointer to dmap to allocate the block range from.
1978  *  blkno   -  starting block number of the block to be allocated.
1979  *  nblocks -  number of blocks to be allocated.
1980  *
1981  * RETURN VALUES:
1982  *  0   - success
1983  *  -EIO    - i/o error
1984  *
1985  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
1986  */
1987 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
1988                int nblocks)
1989 {
1990     s8 oldroot;
1991     int rc;
1992 
1993     /* save the current value of the root (i.e. maximum free string)
1994      * of the dmap tree.
1995      */
1996     oldroot = dp->tree.stree[ROOT];
1997 
1998     /* allocate the specified (blocks) bits */
1999     dbAllocBits(bmp, dp, blkno, nblocks);
2000 
2001     /* if the root has not changed, done. */
2002     if (dp->tree.stree[ROOT] == oldroot)
2003         return (0);
2004 
2005     /* root changed. bubble the change up to the dmap control pages.
2006      * if the adjustment of the upper level control pages fails,
2007      * backout the bit allocation (thus making everything consistent).
2008      */
2009     if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2010         dbFreeBits(bmp, dp, blkno, nblocks);
2011 
2012     return (rc);
2013 }
2014 
2015 
2016 /*
2017  * NAME:    dbFreeDmap()
2018  *
2019  * FUNCTION:    adjust the disk allocation map to reflect the allocation
2020  *      of a specified block range within a dmap.
2021  *
2022  *      this routine frees the specified blocks from the dmap through
2023  *      a call to dbFreeBits(). if the deallocation of the block range
2024  *      causes the maximum string of free blocks within the dmap to
2025  *      change (i.e. the value of the root of the dmap's dmtree), this
2026  *      routine will cause this change to be reflected up through the
2027  *      appropriate levels of the dmap control pages by a call to
2028  *      dbAdjCtl() for the L0 dmap control page that covers this dmap.
2029  *
2030  * PARAMETERS:
2031  *  bmp -  pointer to bmap descriptor
2032  *  dp  -  pointer to dmap to free the block range from.
2033  *  blkno   -  starting block number of the block to be freed.
2034  *  nblocks -  number of blocks to be freed.
2035  *
2036  * RETURN VALUES:
2037  *  0   - success
2038  *  -EIO    - i/o error
2039  *
2040  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2041  */
2042 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2043               int nblocks)
2044 {
2045     s8 oldroot;
2046     int rc = 0, word;
2047 
2048     /* save the current value of the root (i.e. maximum free string)
2049      * of the dmap tree.
2050      */
2051     oldroot = dp->tree.stree[ROOT];
2052 
2053     /* free the specified (blocks) bits */
2054     rc = dbFreeBits(bmp, dp, blkno, nblocks);
2055 
2056     /* if error or the root has not changed, done. */
2057     if (rc || (dp->tree.stree[ROOT] == oldroot))
2058         return (rc);
2059 
2060     /* root changed. bubble the change up to the dmap control pages.
2061      * if the adjustment of the upper level control pages fails,
2062      * backout the deallocation.
2063      */
2064     if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2065         word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2066 
2067         /* as part of backing out the deallocation, we will have
2068          * to back split the dmap tree if the deallocation caused
2069          * the freed blocks to become part of a larger binary buddy
2070          * system.
2071          */
2072         if (dp->tree.stree[word] == NOFREE)
2073             dbBackSplit((dmtree_t *) & dp->tree, word);
2074 
2075         dbAllocBits(bmp, dp, blkno, nblocks);
2076     }
2077 
2078     return (rc);
2079 }
2080 
2081 
2082 /*
2083  * NAME:    dbAllocBits()
2084  *
2085  * FUNCTION:    allocate a specified block range from a dmap.
2086  *
2087  *      this routine updates the dmap to reflect the working
2088  *      state allocation of the specified block range. it directly
2089  *      updates the bits of the working map and causes the adjustment
2090  *      of the binary buddy system described by the dmap's dmtree
2091  *      leaves to reflect the bits allocated.  it also causes the
2092  *      dmap's dmtree, as a whole, to reflect the allocated range.
2093  *
2094  * PARAMETERS:
2095  *  bmp -  pointer to bmap descriptor
2096  *  dp  -  pointer to dmap to allocate bits from.
2097  *  blkno   -  starting block number of the bits to be allocated.
2098  *  nblocks -  number of bits to be allocated.
2099  *
2100  * RETURN VALUES: none
2101  *
2102  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2103  */
2104 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2105             int nblocks)
2106 {
2107     int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2108     dmtree_t *tp = (dmtree_t *) & dp->tree;
2109     int size;
2110     s8 *leaf;
2111 
2112     /* pick up a pointer to the leaves of the dmap tree */
2113     leaf = dp->tree.stree + LEAFIND;
2114 
2115     /* determine the bit number and word within the dmap of the
2116      * starting block.
2117      */
2118     dbitno = blkno & (BPERDMAP - 1);
2119     word = dbitno >> L2DBWORD;
2120 
2121     /* block range better be within the dmap */
2122     assert(dbitno + nblocks <= BPERDMAP);
2123 
2124     /* allocate the bits of the dmap's words corresponding to the block
2125      * range. not all bits of the first and last words may be contained
2126      * within the block range.  if this is the case, we'll work against
2127      * those words (i.e. partial first and/or last) on an individual basis
2128      * (a single pass), allocating the bits of interest by hand and
2129      * updating the leaf corresponding to the dmap word. a single pass
2130      * will be used for all dmap words fully contained within the
2131      * specified range.  within this pass, the bits of all fully contained
2132      * dmap words will be marked as free in a single shot and the leaves
2133      * will be updated. a single leaf may describe the free space of
2134      * multiple dmap words, so we may update only a subset of the actual
2135      * leaves corresponding to the dmap words of the block range.
2136      */
2137     for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2138         /* determine the bit number within the word and
2139          * the number of bits within the word.
2140          */
2141         wbitno = dbitno & (DBWORD - 1);
2142         nb = min(rembits, DBWORD - wbitno);
2143 
2144         /* check if only part of a word is to be allocated.
2145          */
2146         if (nb < DBWORD) {
2147             /* allocate (set to 1) the appropriate bits within
2148              * this dmap word.
2149              */
2150             dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2151                               >> wbitno);
2152 
2153             /* update the leaf for this dmap word. in addition
2154              * to setting the leaf value to the binary buddy max
2155              * of the updated dmap word, dbSplit() will split
2156              * the binary system of the leaves if need be.
2157              */
2158             dbSplit(tp, word, BUDMIN,
2159                 dbMaxBud((u8 *) & dp->wmap[word]));
2160 
2161             word += 1;
2162         } else {
2163             /* one or more dmap words are fully contained
2164              * within the block range.  determine how many
2165              * words and allocate (set to 1) the bits of these
2166              * words.
2167              */
2168             nwords = rembits >> L2DBWORD;
2169             memset(&dp->wmap[word], (int) ONES, nwords * 4);
2170 
2171             /* determine how many bits.
2172              */
2173             nb = nwords << L2DBWORD;
2174 
2175             /* now update the appropriate leaves to reflect
2176              * the allocated words.
2177              */
2178             for (; nwords > 0; nwords -= nw) {
2179                 if (leaf[word] < BUDMIN) {
2180                     jfs_error(bmp->db_ipbmap->i_sb,
2181                           "leaf page corrupt\n");
2182                     break;
2183                 }
2184 
2185                 /* determine what the leaf value should be
2186                  * updated to as the minimum of the l2 number
2187                  * of bits being allocated and the l2 number
2188                  * of bits currently described by this leaf.
2189                  */
2190                 size = min_t(int, leaf[word],
2191                          NLSTOL2BSZ(nwords));
2192 
2193                 /* update the leaf to reflect the allocation.
2194                  * in addition to setting the leaf value to
2195                  * NOFREE, dbSplit() will split the binary
2196                  * system of the leaves to reflect the current
2197                  * allocation (size).
2198                  */
2199                 dbSplit(tp, word, size, NOFREE);
2200 
2201                 /* get the number of dmap words handled */
2202                 nw = BUDSIZE(size, BUDMIN);
2203                 word += nw;
2204             }
2205         }
2206     }
2207 
2208     /* update the free count for this dmap */
2209     le32_add_cpu(&dp->nfree, -nblocks);
2210 
2211     BMAP_LOCK(bmp);
2212 
2213     /* if this allocation group is completely free,
2214      * update the maximum allocation group number if this allocation
2215      * group is the new max.
2216      */
2217     agno = blkno >> bmp->db_agl2size;
2218     if (agno > bmp->db_maxag)
2219         bmp->db_maxag = agno;
2220 
2221     /* update the free count for the allocation group and map */
2222     bmp->db_agfree[agno] -= nblocks;
2223     bmp->db_nfree -= nblocks;
2224 
2225     BMAP_UNLOCK(bmp);
2226 }
2227 
2228 
2229 /*
2230  * NAME:    dbFreeBits()
2231  *
2232  * FUNCTION:    free a specified block range from a dmap.
2233  *
2234  *      this routine updates the dmap to reflect the working
2235  *      state allocation of the specified block range. it directly
2236  *      updates the bits of the working map and causes the adjustment
2237  *      of the binary buddy system described by the dmap's dmtree
2238  *      leaves to reflect the bits freed.  it also causes the dmap's
2239  *      dmtree, as a whole, to reflect the deallocated range.
2240  *
2241  * PARAMETERS:
2242  *  bmp -  pointer to bmap descriptor
2243  *  dp  -  pointer to dmap to free bits from.
2244  *  blkno   -  starting block number of the bits to be freed.
2245  *  nblocks -  number of bits to be freed.
2246  *
2247  * RETURN VALUES: 0 for success
2248  *
2249  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2250  */
2251 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2252                int nblocks)
2253 {
2254     int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2255     dmtree_t *tp = (dmtree_t *) & dp->tree;
2256     int rc = 0;
2257     int size;
2258 
2259     /* determine the bit number and word within the dmap of the
2260      * starting block.
2261      */
2262     dbitno = blkno & (BPERDMAP - 1);
2263     word = dbitno >> L2DBWORD;
2264 
2265     /* block range better be within the dmap.
2266      */
2267     assert(dbitno + nblocks <= BPERDMAP);
2268 
2269     /* free the bits of the dmaps words corresponding to the block range.
2270      * not all bits of the first and last words may be contained within
2271      * the block range.  if this is the case, we'll work against those
2272      * words (i.e. partial first and/or last) on an individual basis
2273      * (a single pass), freeing the bits of interest by hand and updating
2274      * the leaf corresponding to the dmap word. a single pass will be used
2275      * for all dmap words fully contained within the specified range.
2276      * within this pass, the bits of all fully contained dmap words will
2277      * be marked as free in a single shot and the leaves will be updated. a
2278      * single leaf may describe the free space of multiple dmap words,
2279      * so we may update only a subset of the actual leaves corresponding
2280      * to the dmap words of the block range.
2281      *
2282      * dbJoin() is used to update leaf values and will join the binary
2283      * buddy system of the leaves if the new leaf values indicate this
2284      * should be done.
2285      */
2286     for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2287         /* determine the bit number within the word and
2288          * the number of bits within the word.
2289          */
2290         wbitno = dbitno & (DBWORD - 1);
2291         nb = min(rembits, DBWORD - wbitno);
2292 
2293         /* check if only part of a word is to be freed.
2294          */
2295         if (nb < DBWORD) {
2296             /* free (zero) the appropriate bits within this
2297              * dmap word.
2298              */
2299             dp->wmap[word] &=
2300                 cpu_to_le32(~(ONES << (DBWORD - nb)
2301                       >> wbitno));
2302 
2303             /* update the leaf for this dmap word.
2304              */
2305             rc = dbJoin(tp, word,
2306                     dbMaxBud((u8 *) & dp->wmap[word]));
2307             if (rc)
2308                 return rc;
2309 
2310             word += 1;
2311         } else {
2312             /* one or more dmap words are fully contained
2313              * within the block range.  determine how many
2314              * words and free (zero) the bits of these words.
2315              */
2316             nwords = rembits >> L2DBWORD;
2317             memset(&dp->wmap[word], 0, nwords * 4);
2318 
2319             /* determine how many bits.
2320              */
2321             nb = nwords << L2DBWORD;
2322 
2323             /* now update the appropriate leaves to reflect
2324              * the freed words.
2325              */
2326             for (; nwords > 0; nwords -= nw) {
2327                 /* determine what the leaf value should be
2328                  * updated to as the minimum of the l2 number
2329                  * of bits being freed and the l2 (max) number
2330                  * of bits that can be described by this leaf.
2331                  */
2332                 size =
2333                     min(LITOL2BSZ
2334                     (word, L2LPERDMAP, BUDMIN),
2335                     NLSTOL2BSZ(nwords));
2336 
2337                 /* update the leaf.
2338                  */
2339                 rc = dbJoin(tp, word, size);
2340                 if (rc)
2341                     return rc;
2342 
2343                 /* get the number of dmap words handled.
2344                  */
2345                 nw = BUDSIZE(size, BUDMIN);
2346                 word += nw;
2347             }
2348         }
2349     }
2350 
2351     /* update the free count for this dmap.
2352      */
2353     le32_add_cpu(&dp->nfree, nblocks);
2354 
2355     BMAP_LOCK(bmp);
2356 
2357     /* update the free count for the allocation group and
2358      * map.
2359      */
2360     agno = blkno >> bmp->db_agl2size;
2361     bmp->db_nfree += nblocks;
2362     bmp->db_agfree[agno] += nblocks;
2363 
2364     /* check if this allocation group is not completely free and
2365      * if it is currently the maximum (rightmost) allocation group.
2366      * if so, establish the new maximum allocation group number by
2367      * searching left for the first allocation group with allocation.
2368      */
2369     if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2370         (agno == bmp->db_numag - 1 &&
2371          bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2372         while (bmp->db_maxag > 0) {
2373             bmp->db_maxag -= 1;
2374             if (bmp->db_agfree[bmp->db_maxag] !=
2375                 bmp->db_agsize)
2376                 break;
2377         }
2378 
2379         /* re-establish the allocation group preference if the
2380          * current preference is right of the maximum allocation
2381          * group.
2382          */
2383         if (bmp->db_agpref > bmp->db_maxag)
2384             bmp->db_agpref = bmp->db_maxag;
2385     }
2386 
2387     BMAP_UNLOCK(bmp);
2388 
2389     return 0;
2390 }
2391 
2392 
2393 /*
2394  * NAME:    dbAdjCtl()
2395  *
2396  * FUNCTION:    adjust a dmap control page at a specified level to reflect
2397  *      the change in a lower level dmap or dmap control page's
2398  *      maximum string of free blocks (i.e. a change in the root
2399  *      of the lower level object's dmtree) due to the allocation
2400  *      or deallocation of a range of blocks with a single dmap.
2401  *
2402  *      on entry, this routine is provided with the new value of
2403  *      the lower level dmap or dmap control page root and the
2404  *      starting block number of the block range whose allocation
2405  *      or deallocation resulted in the root change.  this range
2406  *      is respresented by a single leaf of the current dmapctl
2407  *      and the leaf will be updated with this value, possibly
2408  *      causing a binary buddy system within the leaves to be
2409  *      split or joined.  the update may also cause the dmapctl's
2410  *      dmtree to be updated.
2411  *
2412  *      if the adjustment of the dmap control page, itself, causes its
2413  *      root to change, this change will be bubbled up to the next dmap
2414  *      control level by a recursive call to this routine, specifying
2415  *      the new root value and the next dmap control page level to
2416  *      be adjusted.
2417  * PARAMETERS:
2418  *  bmp -  pointer to bmap descriptor
2419  *  blkno   -  the first block of a block range within a dmap.  it is
2420  *         the allocation or deallocation of this block range that
2421  *         requires the dmap control page to be adjusted.
2422  *  newval  -  the new value of the lower level dmap or dmap control
2423  *         page root.
2424  *  alloc   -  'true' if adjustment is due to an allocation.
2425  *  level   -  current level of dmap control page (i.e. L0, L1, L2) to
2426  *         be adjusted.
2427  *
2428  * RETURN VALUES:
2429  *  0   - success
2430  *  -EIO    - i/o error
2431  *
2432  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2433  */
2434 static int
2435 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2436 {
2437     struct metapage *mp;
2438     s8 oldroot;
2439     int oldval;
2440     s64 lblkno;
2441     struct dmapctl *dcp;
2442     int rc, leafno, ti;
2443 
2444     /* get the buffer for the dmap control page for the specified
2445      * block number and control page level.
2446      */
2447     lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2448     mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2449     if (mp == NULL)
2450         return -EIO;
2451     dcp = (struct dmapctl *) mp->data;
2452 
2453     if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2454         jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2455         release_metapage(mp);
2456         return -EIO;
2457     }
2458 
2459     /* determine the leaf number corresponding to the block and
2460      * the index within the dmap control tree.
2461      */
2462     leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2463     ti = leafno + le32_to_cpu(dcp->leafidx);
2464 
2465     /* save the current leaf value and the current root level (i.e.
2466      * maximum l2 free string described by this dmapctl).
2467      */
2468     oldval = dcp->stree[ti];
2469     oldroot = dcp->stree[ROOT];
2470 
2471     /* check if this is a control page update for an allocation.
2472      * if so, update the leaf to reflect the new leaf value using
2473      * dbSplit(); otherwise (deallocation), use dbJoin() to update
2474      * the leaf with the new value.  in addition to updating the
2475      * leaf, dbSplit() will also split the binary buddy system of
2476      * the leaves, if required, and bubble new values within the
2477      * dmapctl tree, if required.  similarly, dbJoin() will join
2478      * the binary buddy system of leaves and bubble new values up
2479      * the dmapctl tree as required by the new leaf value.
2480      */
2481     if (alloc) {
2482         /* check if we are in the middle of a binary buddy
2483          * system.  this happens when we are performing the
2484          * first allocation out of an allocation group that
2485          * is part (not the first part) of a larger binary
2486          * buddy system.  if we are in the middle, back split
2487          * the system prior to calling dbSplit() which assumes
2488          * that it is at the front of a binary buddy system.
2489          */
2490         if (oldval == NOFREE) {
2491             rc = dbBackSplit((dmtree_t *) dcp, leafno);
2492             if (rc) {
2493                 release_metapage(mp);
2494                 return rc;
2495             }
2496             oldval = dcp->stree[ti];
2497         }
2498         dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2499     } else {
2500         rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2501         if (rc) {
2502             release_metapage(mp);
2503             return rc;
2504         }
2505     }
2506 
2507     /* check if the root of the current dmap control page changed due
2508      * to the update and if the current dmap control page is not at
2509      * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2510      * root changed and this is not the top level), call this routine
2511      * again (recursion) for the next higher level of the mapping to
2512      * reflect the change in root for the current dmap control page.
2513      */
2514     if (dcp->stree[ROOT] != oldroot) {
2515         /* are we below the top level of the map.  if so,
2516          * bubble the root up to the next higher level.
2517          */
2518         if (level < bmp->db_maxlevel) {
2519             /* bubble up the new root of this dmap control page to
2520              * the next level.
2521              */
2522             if ((rc =
2523                  dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2524                       level + 1))) {
2525                 /* something went wrong in bubbling up the new
2526                  * root value, so backout the changes to the
2527                  * current dmap control page.
2528                  */
2529                 if (alloc) {
2530                     dbJoin((dmtree_t *) dcp, leafno,
2531                            oldval);
2532                 } else {
2533                     /* the dbJoin() above might have
2534                      * caused a larger binary buddy system
2535                      * to form and we may now be in the
2536                      * middle of it.  if this is the case,
2537                      * back split the buddies.
2538                      */
2539                     if (dcp->stree[ti] == NOFREE)
2540                         dbBackSplit((dmtree_t *)
2541                                 dcp, leafno);
2542                     dbSplit((dmtree_t *) dcp, leafno,
2543                         dcp->budmin, oldval);
2544                 }
2545 
2546                 /* release the buffer and return the error.
2547                  */
2548                 release_metapage(mp);
2549                 return (rc);
2550             }
2551         } else {
2552             /* we're at the top level of the map. update
2553              * the bmap control page to reflect the size
2554              * of the maximum free buddy system.
2555              */
2556             assert(level == bmp->db_maxlevel);
2557             if (bmp->db_maxfreebud != oldroot) {
2558                 jfs_error(bmp->db_ipbmap->i_sb,
2559                       "the maximum free buddy is not the old root\n");
2560             }
2561             bmp->db_maxfreebud = dcp->stree[ROOT];
2562         }
2563     }
2564 
2565     /* write the buffer.
2566      */
2567     write_metapage(mp);
2568 
2569     return (0);
2570 }
2571 
2572 
2573 /*
2574  * NAME:    dbSplit()
2575  *
2576  * FUNCTION:    update the leaf of a dmtree with a new value, splitting
2577  *      the leaf from the binary buddy system of the dmtree's
2578  *      leaves, as required.
2579  *
2580  * PARAMETERS:
2581  *  tp  - pointer to the tree containing the leaf.
2582  *  leafno  - the number of the leaf to be updated.
2583  *  splitsz - the size the binary buddy system starting at the leaf
2584  *        must be split to, specified as the log2 number of blocks.
2585  *  newval  - the new value for the leaf.
2586  *
2587  * RETURN VALUES: none
2588  *
2589  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2590  */
2591 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2592 {
2593     int budsz;
2594     int cursz;
2595     s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2596 
2597     /* check if the leaf needs to be split.
2598      */
2599     if (leaf[leafno] > tp->dmt_budmin) {
2600         /* the split occurs by cutting the buddy system in half
2601          * at the specified leaf until we reach the specified
2602          * size.  pick up the starting split size (current size
2603          * - 1 in l2) and the corresponding buddy size.
2604          */
2605         cursz = leaf[leafno] - 1;
2606         budsz = BUDSIZE(cursz, tp->dmt_budmin);
2607 
2608         /* split until we reach the specified size.
2609          */
2610         while (cursz >= splitsz) {
2611             /* update the buddy's leaf with its new value.
2612              */
2613             dbAdjTree(tp, leafno ^ budsz, cursz);
2614 
2615             /* on to the next size and buddy.
2616              */
2617             cursz -= 1;
2618             budsz >>= 1;
2619         }
2620     }
2621 
2622     /* adjust the dmap tree to reflect the specified leaf's new
2623      * value.
2624      */
2625     dbAdjTree(tp, leafno, newval);
2626 }
2627 
2628 
2629 /*
2630  * NAME:    dbBackSplit()
2631  *
2632  * FUNCTION:    back split the binary buddy system of dmtree leaves
2633  *      that hold a specified leaf until the specified leaf
2634  *      starts its own binary buddy system.
2635  *
2636  *      the allocators typically perform allocations at the start
2637  *      of binary buddy systems and dbSplit() is used to accomplish
2638  *      any required splits.  in some cases, however, allocation
2639  *      may occur in the middle of a binary system and requires a
2640  *      back split, with the split proceeding out from the middle of
2641  *      the system (less efficient) rather than the start of the
2642  *      system (more efficient).  the cases in which a back split
2643  *      is required are rare and are limited to the first allocation
2644  *      within an allocation group which is a part (not first part)
2645  *      of a larger binary buddy system and a few exception cases
2646  *      in which a previous join operation must be backed out.
2647  *
2648  * PARAMETERS:
2649  *  tp  - pointer to the tree containing the leaf.
2650  *  leafno  - the number of the leaf to be updated.
2651  *
2652  * RETURN VALUES: none
2653  *
2654  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2655  */
2656 static int dbBackSplit(dmtree_t * tp, int leafno)
2657 {
2658     int budsz, bud, w, bsz, size;
2659     int cursz;
2660     s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2661 
2662     /* leaf should be part (not first part) of a binary
2663      * buddy system.
2664      */
2665     assert(leaf[leafno] == NOFREE);
2666 
2667     /* the back split is accomplished by iteratively finding the leaf
2668      * that starts the buddy system that contains the specified leaf and
2669      * splitting that system in two.  this iteration continues until
2670      * the specified leaf becomes the start of a buddy system.
2671      *
2672      * determine maximum possible l2 size for the specified leaf.
2673      */
2674     size =
2675         LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2676               tp->dmt_budmin);
2677 
2678     /* determine the number of leaves covered by this size.  this
2679      * is the buddy size that we will start with as we search for
2680      * the buddy system that contains the specified leaf.
2681      */
2682     budsz = BUDSIZE(size, tp->dmt_budmin);
2683 
2684     /* back split.
2685      */
2686     while (leaf[leafno] == NOFREE) {
2687         /* find the leftmost buddy leaf.
2688          */
2689         for (w = leafno, bsz = budsz;; bsz <<= 1,
2690              w = (w < bud) ? w : bud) {
2691             if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2692                 jfs_err("JFS: block map error in dbBackSplit");
2693                 return -EIO;
2694             }
2695 
2696             /* determine the buddy.
2697              */
2698             bud = w ^ bsz;
2699 
2700             /* check if this buddy is the start of the system.
2701              */
2702             if (leaf[bud] != NOFREE) {
2703                 /* split the leaf at the start of the
2704                  * system in two.
2705                  */
2706                 cursz = leaf[bud] - 1;
2707                 dbSplit(tp, bud, cursz, cursz);
2708                 break;
2709             }
2710         }
2711     }
2712 
2713     if (leaf[leafno] != size) {
2714         jfs_err("JFS: wrong leaf value in dbBackSplit");
2715         return -EIO;
2716     }
2717     return 0;
2718 }
2719 
2720 
2721 /*
2722  * NAME:    dbJoin()
2723  *
2724  * FUNCTION:    update the leaf of a dmtree with a new value, joining
2725  *      the leaf with other leaves of the dmtree into a multi-leaf
2726  *      binary buddy system, as required.
2727  *
2728  * PARAMETERS:
2729  *  tp  - pointer to the tree containing the leaf.
2730  *  leafno  - the number of the leaf to be updated.
2731  *  newval  - the new value for the leaf.
2732  *
2733  * RETURN VALUES: none
2734  */
2735 static int dbJoin(dmtree_t * tp, int leafno, int newval)
2736 {
2737     int budsz, buddy;
2738     s8 *leaf;
2739 
2740     /* can the new leaf value require a join with other leaves ?
2741      */
2742     if (newval >= tp->dmt_budmin) {
2743         /* pickup a pointer to the leaves of the tree.
2744          */
2745         leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2746 
2747         /* try to join the specified leaf into a large binary
2748          * buddy system.  the join proceeds by attempting to join
2749          * the specified leafno with its buddy (leaf) at new value.
2750          * if the join occurs, we attempt to join the left leaf
2751          * of the joined buddies with its buddy at new value + 1.
2752          * we continue to join until we find a buddy that cannot be
2753          * joined (does not have a value equal to the size of the
2754          * last join) or until all leaves have been joined into a
2755          * single system.
2756          *
2757          * get the buddy size (number of words covered) of
2758          * the new value.
2759          */
2760         budsz = BUDSIZE(newval, tp->dmt_budmin);
2761 
2762         /* try to join.
2763          */
2764         while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2765             /* get the buddy leaf.
2766              */
2767             buddy = leafno ^ budsz;
2768 
2769             /* if the leaf's new value is greater than its
2770              * buddy's value, we join no more.
2771              */
2772             if (newval > leaf[buddy])
2773                 break;
2774 
2775             /* It shouldn't be less */
2776             if (newval < leaf[buddy])
2777                 return -EIO;
2778 
2779             /* check which (leafno or buddy) is the left buddy.
2780              * the left buddy gets to claim the blocks resulting
2781              * from the join while the right gets to claim none.
2782              * the left buddy is also eligible to participate in
2783              * a join at the next higher level while the right
2784              * is not.
2785              *
2786              */
2787             if (leafno < buddy) {
2788                 /* leafno is the left buddy.
2789                  */
2790                 dbAdjTree(tp, buddy, NOFREE);
2791             } else {
2792                 /* buddy is the left buddy and becomes
2793                  * leafno.
2794                  */
2795                 dbAdjTree(tp, leafno, NOFREE);
2796                 leafno = buddy;
2797             }
2798 
2799             /* on to try the next join.
2800              */
2801             newval += 1;
2802             budsz <<= 1;
2803         }
2804     }
2805 
2806     /* update the leaf value.
2807      */
2808     dbAdjTree(tp, leafno, newval);
2809 
2810     return 0;
2811 }
2812 
2813 
2814 /*
2815  * NAME:    dbAdjTree()
2816  *
2817  * FUNCTION:    update a leaf of a dmtree with a new value, adjusting
2818  *      the dmtree, as required, to reflect the new leaf value.
2819  *      the combination of any buddies must already be done before
2820  *      this is called.
2821  *
2822  * PARAMETERS:
2823  *  tp  - pointer to the tree to be adjusted.
2824  *  leafno  - the number of the leaf to be updated.
2825  *  newval  - the new value for the leaf.
2826  *
2827  * RETURN VALUES: none
2828  */
2829 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2830 {
2831     int lp, pp, k;
2832     int max;
2833 
2834     /* pick up the index of the leaf for this leafno.
2835      */
2836     lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2837 
2838     /* is the current value the same as the old value ?  if so,
2839      * there is nothing to do.
2840      */
2841     if (tp->dmt_stree[lp] == newval)
2842         return;
2843 
2844     /* set the new value.
2845      */
2846     tp->dmt_stree[lp] = newval;
2847 
2848     /* bubble the new value up the tree as required.
2849      */
2850     for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2851         /* get the index of the first leaf of the 4 leaf
2852          * group containing the specified leaf (leafno).
2853          */
2854         lp = ((lp - 1) & ~0x03) + 1;
2855 
2856         /* get the index of the parent of this 4 leaf group.
2857          */
2858         pp = (lp - 1) >> 2;
2859 
2860         /* determine the maximum of the 4 leaves.
2861          */
2862         max = TREEMAX(&tp->dmt_stree[lp]);
2863 
2864         /* if the maximum of the 4 is the same as the
2865          * parent's value, we're done.
2866          */
2867         if (tp->dmt_stree[pp] == max)
2868             break;
2869 
2870         /* parent gets new value.
2871          */
2872         tp->dmt_stree[pp] = max;
2873 
2874         /* parent becomes leaf for next go-round.
2875          */
2876         lp = pp;
2877     }
2878 }
2879 
2880 
2881 /*
2882  * NAME:    dbFindLeaf()
2883  *
2884  * FUNCTION:    search a dmtree_t for sufficient free blocks, returning
2885  *      the index of a leaf describing the free blocks if
2886  *      sufficient free blocks are found.
2887  *
2888  *      the search starts at the top of the dmtree_t tree and
2889  *      proceeds down the tree to the leftmost leaf with sufficient
2890  *      free space.
2891  *
2892  * PARAMETERS:
2893  *  tp  - pointer to the tree to be searched.
2894  *  l2nb    - log2 number of free blocks to search for.
2895  *  leafidx - return pointer to be set to the index of the leaf
2896  *        describing at least l2nb free blocks if sufficient
2897  *        free blocks are found.
2898  *
2899  * RETURN VALUES:
2900  *  0   - success
2901  *  -ENOSPC - insufficient free blocks.
2902  */
2903 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2904 {
2905     int ti, n = 0, k, x = 0;
2906 
2907     /* first check the root of the tree to see if there is
2908      * sufficient free space.
2909      */
2910     if (l2nb > tp->dmt_stree[ROOT])
2911         return -ENOSPC;
2912 
2913     /* sufficient free space available. now search down the tree
2914      * starting at the next level for the leftmost leaf that
2915      * describes sufficient free space.
2916      */
2917     for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2918          k > 0; k--, ti = ((ti + n) << 2) + 1) {
2919         /* search the four nodes at this level, starting from
2920          * the left.
2921          */
2922         for (x = ti, n = 0; n < 4; n++) {
2923             /* sufficient free space found.  move to the next
2924              * level (or quit if this is the last level).
2925              */
2926             if (l2nb <= tp->dmt_stree[x + n])
2927                 break;
2928         }
2929 
2930         /* better have found something since the higher
2931          * levels of the tree said it was here.
2932          */
2933         assert(n < 4);
2934     }
2935 
2936     /* set the return to the leftmost leaf describing sufficient
2937      * free space.
2938      */
2939     *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2940 
2941     return (0);
2942 }
2943 
2944 
2945 /*
2946  * NAME:    dbFindBits()
2947  *
2948  * FUNCTION:    find a specified number of binary buddy free bits within a
2949  *      dmap bitmap word value.
2950  *
2951  *      this routine searches the bitmap value for (1 << l2nb) free
2952  *      bits at (1 << l2nb) alignments within the value.
2953  *
2954  * PARAMETERS:
2955  *  word    -  dmap bitmap word value.
2956  *  l2nb    -  number of free bits specified as a log2 number.
2957  *
2958  * RETURN VALUES:
2959  *  starting bit number of free bits.
2960  */
2961 static int dbFindBits(u32 word, int l2nb)
2962 {
2963     int bitno, nb;
2964     u32 mask;
2965 
2966     /* get the number of bits.
2967      */
2968     nb = 1 << l2nb;
2969     assert(nb <= DBWORD);
2970 
2971     /* complement the word so we can use a mask (i.e. 0s represent
2972      * free bits) and compute the mask.
2973      */
2974     word = ~word;
2975     mask = ONES << (DBWORD - nb);
2976 
2977     /* scan the word for nb free bits at nb alignments.
2978      */
2979     for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
2980         if ((mask & word) == mask)
2981             break;
2982     }
2983 
2984     ASSERT(bitno < 32);
2985 
2986     /* return the bit number.
2987      */
2988     return (bitno);
2989 }
2990 
2991 
2992 /*
2993  * NAME:    dbMaxBud(u8 *cp)
2994  *
2995  * FUNCTION:    determine the largest binary buddy string of free
2996  *      bits within 32-bits of the map.
2997  *
2998  * PARAMETERS:
2999  *  cp  -  pointer to the 32-bit value.
3000  *
3001  * RETURN VALUES:
3002  *  largest binary buddy of free bits within a dmap word.
3003  */
3004 static int dbMaxBud(u8 * cp)
3005 {
3006     signed char tmp1, tmp2;
3007 
3008     /* check if the wmap word is all free. if so, the
3009      * free buddy size is BUDMIN.
3010      */
3011     if (*((uint *) cp) == 0)
3012         return (BUDMIN);
3013 
3014     /* check if the wmap word is half free. if so, the
3015      * free buddy size is BUDMIN-1.
3016      */
3017     if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3018         return (BUDMIN - 1);
3019 
3020     /* not all free or half free. determine the free buddy
3021      * size thru table lookup using quarters of the wmap word.
3022      */
3023     tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3024     tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3025     return (max(tmp1, tmp2));
3026 }
3027 
3028 
3029 /*
3030  * NAME:    cnttz(uint word)
3031  *
3032  * FUNCTION:    determine the number of trailing zeros within a 32-bit
3033  *      value.
3034  *
3035  * PARAMETERS:
3036  *  value   -  32-bit value to be examined.
3037  *
3038  * RETURN VALUES:
3039  *  count of trailing zeros
3040  */
3041 static int cnttz(u32 word)
3042 {
3043     int n;
3044 
3045     for (n = 0; n < 32; n++, word >>= 1) {
3046         if (word & 0x01)
3047             break;
3048     }
3049 
3050     return (n);
3051 }
3052 
3053 
3054 /*
3055  * NAME:    cntlz(u32 value)
3056  *
3057  * FUNCTION:    determine the number of leading zeros within a 32-bit
3058  *      value.
3059  *
3060  * PARAMETERS:
3061  *  value   -  32-bit value to be examined.
3062  *
3063  * RETURN VALUES:
3064  *  count of leading zeros
3065  */
3066 static int cntlz(u32 value)
3067 {
3068     int n;
3069 
3070     for (n = 0; n < 32; n++, value <<= 1) {
3071         if (value & HIGHORDER)
3072             break;
3073     }
3074     return (n);
3075 }
3076 
3077 
3078 /*
3079  * NAME:    blkstol2(s64 nb)
3080  *
3081  * FUNCTION:    convert a block count to its log2 value. if the block
3082  *      count is not a l2 multiple, it is rounded up to the next
3083  *      larger l2 multiple.
3084  *
3085  * PARAMETERS:
3086  *  nb  -  number of blocks
3087  *
3088  * RETURN VALUES:
3089  *  log2 number of blocks
3090  */
3091 static int blkstol2(s64 nb)
3092 {
3093     int l2nb;
3094     s64 mask;       /* meant to be signed */
3095 
3096     mask = (s64) 1 << (64 - 1);
3097 
3098     /* count the leading bits.
3099      */
3100     for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3101         /* leading bit found.
3102          */
3103         if (nb & mask) {
3104             /* determine the l2 value.
3105              */
3106             l2nb = (64 - 1) - l2nb;
3107 
3108             /* check if we need to round up.
3109              */
3110             if (~mask & nb)
3111                 l2nb++;
3112 
3113             return (l2nb);
3114         }
3115     }
3116     assert(0);
3117     return 0;       /* fix compiler warning */
3118 }
3119 
3120 
3121 /*
3122  * NAME:    dbAllocBottomUp()
3123  *
3124  * FUNCTION:    alloc the specified block range from the working block
3125  *      allocation map.
3126  *
3127  *      the blocks will be alloc from the working map one dmap
3128  *      at a time.
3129  *
3130  * PARAMETERS:
3131  *  ip  -  pointer to in-core inode;
3132  *  blkno   -  starting block number to be freed.
3133  *  nblocks -  number of blocks to be freed.
3134  *
3135  * RETURN VALUES:
3136  *  0   - success
3137  *  -EIO    - i/o error
3138  */
3139 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3140 {
3141     struct metapage *mp;
3142     struct dmap *dp;
3143     int nb, rc;
3144     s64 lblkno, rem;
3145     struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3146     struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3147 
3148     IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3149 
3150     /* block to be allocated better be within the mapsize. */
3151     ASSERT(nblocks <= bmp->db_mapsize - blkno);
3152 
3153     /*
3154      * allocate the blocks a dmap at a time.
3155      */
3156     mp = NULL;
3157     for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3158         /* release previous dmap if any */
3159         if (mp) {
3160             write_metapage(mp);
3161         }
3162 
3163         /* get the buffer for the current dmap. */
3164         lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3165         mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3166         if (mp == NULL) {
3167             IREAD_UNLOCK(ipbmap);
3168             return -EIO;
3169         }
3170         dp = (struct dmap *) mp->data;
3171 
3172         /* determine the number of blocks to be allocated from
3173          * this dmap.
3174          */
3175         nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3176 
3177         /* allocate the blocks. */
3178         if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3179             release_metapage(mp);
3180             IREAD_UNLOCK(ipbmap);
3181             return (rc);
3182         }
3183     }
3184 
3185     /* write the last buffer. */
3186     write_metapage(mp);
3187 
3188     IREAD_UNLOCK(ipbmap);
3189 
3190     return (0);
3191 }
3192 
3193 
3194 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3195              int nblocks)
3196 {
3197     int rc;
3198     int dbitno, word, rembits, nb, nwords, wbitno, agno;
3199     s8 oldroot;
3200     struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3201 
3202     /* save the current value of the root (i.e. maximum free string)
3203      * of the dmap tree.
3204      */
3205     oldroot = tp->stree[ROOT];
3206 
3207     /* determine the bit number and word within the dmap of the
3208      * starting block.
3209      */
3210     dbitno = blkno & (BPERDMAP - 1);
3211     word = dbitno >> L2DBWORD;
3212 
3213     /* block range better be within the dmap */
3214     assert(dbitno + nblocks <= BPERDMAP);
3215 
3216     /* allocate the bits of the dmap's words corresponding to the block
3217      * range. not all bits of the first and last words may be contained
3218      * within the block range.  if this is the case, we'll work against
3219      * those words (i.e. partial first and/or last) on an individual basis
3220      * (a single pass), allocating the bits of interest by hand and
3221      * updating the leaf corresponding to the dmap word. a single pass
3222      * will be used for all dmap words fully contained within the
3223      * specified range.  within this pass, the bits of all fully contained
3224      * dmap words will be marked as free in a single shot and the leaves
3225      * will be updated. a single leaf may describe the free space of
3226      * multiple dmap words, so we may update only a subset of the actual
3227      * leaves corresponding to the dmap words of the block range.
3228      */
3229     for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3230         /* determine the bit number within the word and
3231          * the number of bits within the word.
3232          */
3233         wbitno = dbitno & (DBWORD - 1);
3234         nb = min(rembits, DBWORD - wbitno);
3235 
3236         /* check if only part of a word is to be allocated.
3237          */
3238         if (nb < DBWORD) {
3239             /* allocate (set to 1) the appropriate bits within
3240              * this dmap word.
3241              */
3242             dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3243                               >> wbitno);
3244 
3245             word++;
3246         } else {
3247             /* one or more dmap words are fully contained
3248              * within the block range.  determine how many
3249              * words and allocate (set to 1) the bits of these
3250              * words.
3251              */
3252             nwords = rembits >> L2DBWORD;
3253             memset(&dp->wmap[word], (int) ONES, nwords * 4);
3254 
3255             /* determine how many bits */
3256             nb = nwords << L2DBWORD;
3257             word += nwords;
3258         }
3259     }
3260 
3261     /* update the free count for this dmap */
3262     le32_add_cpu(&dp->nfree, -nblocks);
3263 
3264     /* reconstruct summary tree */
3265     dbInitDmapTree(dp);
3266 
3267     BMAP_LOCK(bmp);
3268 
3269     /* if this allocation group is completely free,
3270      * update the highest active allocation group number
3271      * if this allocation group is the new max.
3272      */
3273     agno = blkno >> bmp->db_agl2size;
3274     if (agno > bmp->db_maxag)
3275         bmp->db_maxag = agno;
3276 
3277     /* update the free count for the allocation group and map */
3278     bmp->db_agfree[agno] -= nblocks;
3279     bmp->db_nfree -= nblocks;
3280 
3281     BMAP_UNLOCK(bmp);
3282 
3283     /* if the root has not changed, done. */
3284     if (tp->stree[ROOT] == oldroot)
3285         return (0);
3286 
3287     /* root changed. bubble the change up to the dmap control pages.
3288      * if the adjustment of the upper level control pages fails,
3289      * backout the bit allocation (thus making everything consistent).
3290      */
3291     if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3292         dbFreeBits(bmp, dp, blkno, nblocks);
3293 
3294     return (rc);
3295 }
3296 
3297 
3298 /*
3299  * NAME:    dbExtendFS()
3300  *
3301  * FUNCTION:    extend bmap from blkno for nblocks;
3302  *      dbExtendFS() updates bmap ready for dbAllocBottomUp();
3303  *
3304  * L2
3305  *  |
3306  *   L1---------------------------------L1
3307  *    |                  |
3308  *     L0---------L0---------L0       L0---------L0---------L0
3309  *      |      |          |        |          |      |
3310  *   d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3311  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3312  *
3313  * <---old---><----------------------------extend----------------------->
3314  */
3315 int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3316 {
3317     struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3318     int nbperpage = sbi->nbperpage;
3319     int i, i0 = true, j, j0 = true, k, n;
3320     s64 newsize;
3321     s64 p;
3322     struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3323     struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3324     struct dmap *dp;
3325     s8 *l0leaf, *l1leaf, *l2leaf;
3326     struct bmap *bmp = sbi->bmap;
3327     int agno, l2agsize, oldl2agsize;
3328     s64 ag_rem;
3329 
3330     newsize = blkno + nblocks;
3331 
3332     jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3333          (long long) blkno, (long long) nblocks, (long long) newsize);
3334 
3335     /*
3336      *  initialize bmap control page.
3337      *
3338      * all the data in bmap control page should exclude
3339      * the mkfs hidden dmap page.
3340      */
3341 
3342     /* update mapsize */
3343     bmp->db_mapsize = newsize;
3344     bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3345 
3346     /* compute new AG size */
3347     l2agsize = dbGetL2AGSize(newsize);
3348     oldl2agsize = bmp->db_agl2size;
3349 
3350     bmp->db_agl2size = l2agsize;
3351     bmp->db_agsize = 1 << l2agsize;
3352 
3353     /* compute new number of AG */
3354     agno = bmp->db_numag;
3355     bmp->db_numag = newsize >> l2agsize;
3356     bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3357 
3358     /*
3359      *  reconfigure db_agfree[]
3360      * from old AG configuration to new AG configuration;
3361      *
3362      * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3363      * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3364      * note: new AG size = old AG size * (2**x).
3365      */
3366     if (l2agsize == oldl2agsize)
3367         goto extend;
3368     k = 1 << (l2agsize - oldl2agsize);
3369     ag_rem = bmp->db_agfree[0]; /* save agfree[0] */
3370     for (i = 0, n = 0; i < agno; n++) {
3371         bmp->db_agfree[n] = 0;  /* init collection point */
3372 
3373         /* coalesce contiguous k AGs; */
3374         for (j = 0; j < k && i < agno; j++, i++) {
3375             /* merge AGi to AGn */
3376             bmp->db_agfree[n] += bmp->db_agfree[i];
3377         }
3378     }
3379     bmp->db_agfree[0] += ag_rem;    /* restore agfree[0] */
3380 
3381     for (; n < MAXAG; n++)
3382         bmp->db_agfree[n] = 0;
3383 
3384     /*
3385      * update highest active ag number
3386      */
3387 
3388     bmp->db_maxag = bmp->db_maxag / k;
3389 
3390     /*
3391      *  extend bmap
3392      *
3393      * update bit maps and corresponding level control pages;
3394      * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3395      */
3396       extend:
3397     /* get L2 page */
3398     p = BMAPBLKNO + nbperpage;  /* L2 page */
3399     l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3400     if (!l2mp) {
3401         jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3402         return -EIO;
3403     }
3404     l2dcp = (struct dmapctl *) l2mp->data;
3405 
3406     /* compute start L1 */
3407     k = blkno >> L2MAXL1SIZE;
3408     l2leaf = l2dcp->stree + CTLLEAFIND + k;
3409     p = BLKTOL1(blkno, sbi->l2nbperpage);   /* L1 page */
3410 
3411     /*
3412      * extend each L1 in L2
3413      */
3414     for (; k < LPERCTL; k++, p += nbperpage) {
3415         /* get L1 page */
3416         if (j0) {
3417             /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3418             l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3419             if (l1mp == NULL)
3420                 goto errout;
3421             l1dcp = (struct dmapctl *) l1mp->data;
3422 
3423             /* compute start L0 */
3424             j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3425             l1leaf = l1dcp->stree + CTLLEAFIND + j;
3426             p = BLKTOL0(blkno, sbi->l2nbperpage);
3427             j0 = false;
3428         } else {
3429             /* assign/init L1 page */
3430             l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3431             if (l1mp == NULL)
3432                 goto errout;
3433 
3434             l1dcp = (struct dmapctl *) l1mp->data;
3435 
3436             /* compute start L0 */
3437             j = 0;
3438             l1leaf = l1dcp->stree + CTLLEAFIND;
3439             p += nbperpage; /* 1st L0 of L1.k */
3440         }
3441 
3442         /*
3443          * extend each L0 in L1
3444          */
3445         for (; j < LPERCTL; j++) {
3446             /* get L0 page */
3447             if (i0) {
3448                 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3449 
3450                 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3451                 if (l0mp == NULL)
3452                     goto errout;
3453                 l0dcp = (struct dmapctl *) l0mp->data;
3454 
3455                 /* compute start dmap */
3456                 i = (blkno & (MAXL0SIZE - 1)) >>
3457                     L2BPERDMAP;
3458                 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3459                 p = BLKTODMAP(blkno,
3460                           sbi->l2nbperpage);
3461                 i0 = false;
3462             } else {
3463                 /* assign/init L0 page */
3464                 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3465                 if (l0mp == NULL)
3466                     goto errout;
3467 
3468                 l0dcp = (struct dmapctl *) l0mp->data;
3469 
3470                 /* compute start dmap */
3471                 i = 0;
3472                 l0leaf = l0dcp->stree + CTLLEAFIND;
3473                 p += nbperpage; /* 1st dmap of L0.j */
3474             }
3475 
3476             /*
3477              * extend each dmap in L0
3478              */
3479             for (; i < LPERCTL; i++) {
3480                 /*
3481                  * reconstruct the dmap page, and
3482                  * initialize corresponding parent L0 leaf
3483                  */
3484                 if ((n = blkno & (BPERDMAP - 1))) {
3485                     /* read in dmap page: */
3486                     mp = read_metapage(ipbmap, p,
3487                                PSIZE, 0);
3488                     if (mp == NULL)
3489                         goto errout;
3490                     n = min(nblocks, (s64)BPERDMAP - n);
3491                 } else {
3492                     /* assign/init dmap page */
3493                     mp = read_metapage(ipbmap, p,
3494                                PSIZE, 0);
3495                     if (mp == NULL)
3496                         goto errout;
3497 
3498                     n = min_t(s64, nblocks, BPERDMAP);
3499                 }
3500 
3501                 dp = (struct dmap *) mp->data;
3502                 *l0leaf = dbInitDmap(dp, blkno, n);
3503 
3504                 bmp->db_nfree += n;
3505                 agno = le64_to_cpu(dp->start) >> l2agsize;
3506                 bmp->db_agfree[agno] += n;
3507 
3508                 write_metapage(mp);
3509 
3510                 l0leaf++;
3511                 p += nbperpage;
3512 
3513                 blkno += n;
3514                 nblocks -= n;
3515                 if (nblocks == 0)
3516                     break;
3517             }   /* for each dmap in a L0 */
3518 
3519             /*
3520              * build current L0 page from its leaves, and
3521              * initialize corresponding parent L1 leaf
3522              */
3523             *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3524             write_metapage(l0mp);
3525             l0mp = NULL;
3526 
3527             if (nblocks)
3528                 l1leaf++;   /* continue for next L0 */
3529             else {
3530                 /* more than 1 L0 ? */
3531                 if (j > 0)
3532                     break;  /* build L1 page */
3533                 else {
3534                     /* summarize in global bmap page */
3535                     bmp->db_maxfreebud = *l1leaf;
3536                     release_metapage(l1mp);
3537                     release_metapage(l2mp);
3538                     goto finalize;
3539                 }
3540             }
3541         }       /* for each L0 in a L1 */
3542 
3543         /*
3544          * build current L1 page from its leaves, and
3545          * initialize corresponding parent L2 leaf
3546          */
3547         *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3548         write_metapage(l1mp);
3549         l1mp = NULL;
3550 
3551         if (nblocks)
3552             l2leaf++;   /* continue for next L1 */
3553         else {
3554             /* more than 1 L1 ? */
3555             if (k > 0)
3556                 break;  /* build L2 page */
3557             else {
3558                 /* summarize in global bmap page */
3559                 bmp->db_maxfreebud = *l2leaf;
3560                 release_metapage(l2mp);
3561                 goto finalize;
3562             }
3563         }
3564     }           /* for each L1 in a L2 */
3565 
3566     jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3567 errout:
3568     if (l0mp)
3569         release_metapage(l0mp);
3570     if (l1mp)
3571         release_metapage(l1mp);
3572     release_metapage(l2mp);
3573     return -EIO;
3574 
3575     /*
3576      *  finalize bmap control page
3577      */
3578 finalize:
3579 
3580     return 0;
3581 }
3582 
3583 
3584 /*
3585  *  dbFinalizeBmap()
3586  */
3587 void dbFinalizeBmap(struct inode *ipbmap)
3588 {
3589     struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3590     int actags, inactags, l2nl;
3591     s64 ag_rem, actfree, inactfree, avgfree;
3592     int i, n;
3593 
3594     /*
3595      *  finalize bmap control page
3596      */
3597 //finalize:
3598     /*
3599      * compute db_agpref: preferred ag to allocate from
3600      * (the leftmost ag with average free space in it);
3601      */
3602 //agpref:
3603     /* get the number of active ags and inactive ags */
3604     actags = bmp->db_maxag + 1;
3605     inactags = bmp->db_numag - actags;
3606     ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);    /* ??? */
3607 
3608     /* determine how many blocks are in the inactive allocation
3609      * groups. in doing this, we must account for the fact that
3610      * the rightmost group might be a partial group (i.e. file
3611      * system size is not a multiple of the group size).
3612      */
3613     inactfree = (inactags && ag_rem) ?
3614         ((inactags - 1) << bmp->db_agl2size) + ag_rem
3615         : inactags << bmp->db_agl2size;
3616 
3617     /* determine how many free blocks are in the active
3618      * allocation groups plus the average number of free blocks
3619      * within the active ags.
3620      */
3621     actfree = bmp->db_nfree - inactfree;
3622     avgfree = (u32) actfree / (u32) actags;
3623 
3624     /* if the preferred allocation group has not average free space.
3625      * re-establish the preferred group as the leftmost
3626      * group with average free space.
3627      */
3628     if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3629         for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3630              bmp->db_agpref++) {
3631             if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3632                 break;
3633         }
3634         if (bmp->db_agpref >= bmp->db_numag) {
3635             jfs_error(ipbmap->i_sb,
3636                   "cannot find ag with average freespace\n");
3637         }
3638     }
3639 
3640     /*
3641      * compute db_aglevel, db_agheight, db_width, db_agstart:
3642      * an ag is covered in aglevel dmapctl summary tree,
3643      * at agheight level height (from leaf) with agwidth number of nodes
3644      * each, which starts at agstart index node of the smmary tree node
3645      * array;
3646      */
3647     bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3648     l2nl =
3649         bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3650     bmp->db_agheight = l2nl >> 1;
3651     bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3652     for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3653          i--) {
3654         bmp->db_agstart += n;
3655         n <<= 2;
3656     }
3657 
3658 }
3659 
3660 
3661 /*
3662  * NAME:    dbInitDmap()/ujfs_idmap_page()
3663  *
3664  * FUNCTION:    initialize working/persistent bitmap of the dmap page
3665  *      for the specified number of blocks:
3666  *
3667  *      at entry, the bitmaps had been initialized as free (ZEROS);
3668  *      The number of blocks will only account for the actually
3669  *      existing blocks. Blocks which don't actually exist in
3670  *      the aggregate will be marked as allocated (ONES);
3671  *
3672  * PARAMETERS:
3673  *  dp  - pointer to page of map
3674  *  nblocks - number of blocks this page
3675  *
3676  * RETURNS: NONE
3677  */
3678 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3679 {
3680     int blkno, w, b, r, nw, nb, i;
3681 
3682     /* starting block number within the dmap */
3683     blkno = Blkno & (BPERDMAP - 1);
3684 
3685     if (blkno == 0) {
3686         dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3687         dp->start = cpu_to_le64(Blkno);
3688 
3689         if (nblocks == BPERDMAP) {
3690             memset(&dp->wmap[0], 0, LPERDMAP * 4);
3691             memset(&dp->pmap[0], 0, LPERDMAP * 4);
3692             goto initTree;
3693         }
3694     } else {
3695         le32_add_cpu(&dp->nblocks, nblocks);
3696         le32_add_cpu(&dp->nfree, nblocks);
3697     }
3698 
3699     /* word number containing start block number */
3700     w = blkno >> L2DBWORD;
3701 
3702     /*
3703      * free the bits corresponding to the block range (ZEROS):
3704      * note: not all bits of the first and last words may be contained
3705      * within the block range.
3706      */
3707     for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3708         /* number of bits preceding range to be freed in the word */
3709         b = blkno & (DBWORD - 1);
3710         /* number of bits to free in the word */
3711         nb = min(r, DBWORD - b);
3712 
3713         /* is partial word to be freed ? */
3714         if (nb < DBWORD) {
3715             /* free (set to 0) from the bitmap word */
3716             dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3717                              >> b));
3718             dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3719                              >> b));
3720 
3721             /* skip the word freed */
3722             w++;
3723         } else {
3724             /* free (set to 0) contiguous bitmap words */
3725             nw = r >> L2DBWORD;
3726             memset(&dp->wmap[w], 0, nw * 4);
3727             memset(&dp->pmap[w], 0, nw * 4);
3728 
3729             /* skip the words freed */
3730             nb = nw << L2DBWORD;
3731             w += nw;
3732         }
3733     }
3734 
3735     /*
3736      * mark bits following the range to be freed (non-existing
3737      * blocks) as allocated (ONES)
3738      */
3739 
3740     if (blkno == BPERDMAP)
3741         goto initTree;
3742 
3743     /* the first word beyond the end of existing blocks */
3744     w = blkno >> L2DBWORD;
3745 
3746     /* does nblocks fall on a 32-bit boundary ? */
3747     b = blkno & (DBWORD - 1);
3748     if (b) {
3749         /* mark a partial word allocated */
3750         dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3751         w++;
3752     }
3753 
3754     /* set the rest of the words in the page to allocated (ONES) */
3755     for (i = w; i < LPERDMAP; i++)
3756         dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3757 
3758     /*
3759      * init tree
3760      */
3761       initTree:
3762     return (dbInitDmapTree(dp));
3763 }
3764 
3765 
3766 /*
3767  * NAME:    dbInitDmapTree()/ujfs_complete_dmap()
3768  *
3769  * FUNCTION:    initialize summary tree of the specified dmap:
3770  *
3771  *      at entry, bitmap of the dmap has been initialized;
3772  *
3773  * PARAMETERS:
3774  *  dp  - dmap to complete
3775  *  blkno   - starting block number for this dmap
3776  *  treemax - will be filled in with max free for this dmap
3777  *
3778  * RETURNS: max free string at the root of the tree
3779  */
3780 static int dbInitDmapTree(struct dmap * dp)
3781 {
3782     struct dmaptree *tp;
3783     s8 *cp;
3784     int i;
3785 
3786     /* init fixed info of tree */
3787     tp = &dp->tree;
3788     tp->nleafs = cpu_to_le32(LPERDMAP);
3789     tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3790     tp->leafidx = cpu_to_le32(LEAFIND);
3791     tp->height = cpu_to_le32(4);
3792     tp->budmin = BUDMIN;
3793 
3794     /* init each leaf from corresponding wmap word:
3795      * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3796      * bitmap word are allocated.
3797      */
3798     cp = tp->stree + le32_to_cpu(tp->leafidx);
3799     for (i = 0; i < LPERDMAP; i++)
3800         *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3801 
3802     /* build the dmap's binary buddy summary tree */
3803     return (dbInitTree(tp));
3804 }
3805 
3806 
3807 /*
3808  * NAME:    dbInitTree()/ujfs_adjtree()
3809  *
3810  * FUNCTION:    initialize binary buddy summary tree of a dmap or dmapctl.
3811  *
3812  *      at entry, the leaves of the tree has been initialized
3813  *      from corresponding bitmap word or root of summary tree
3814  *      of the child control page;
3815  *      configure binary buddy system at the leaf level, then
3816  *      bubble up the values of the leaf nodes up the tree.
3817  *
3818  * PARAMETERS:
3819  *  cp  - Pointer to the root of the tree
3820  *  l2leaves- Number of leaf nodes as a power of 2
3821  *  l2min   - Number of blocks that can be covered by a leaf
3822  *        as a power of 2
3823  *
3824  * RETURNS: max free string at the root of the tree
3825  */
3826 static int dbInitTree(struct dmaptree * dtp)
3827 {
3828     int l2max, l2free, bsize, nextb, i;
3829     int child, parent, nparent;
3830     s8 *tp, *cp, *cp1;
3831 
3832     tp = dtp->stree;
3833 
3834     /* Determine the maximum free string possible for the leaves */
3835     l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3836 
3837     /*
3838      * configure the leaf levevl into binary buddy system
3839      *
3840      * Try to combine buddies starting with a buddy size of 1
3841      * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3842      * can be combined if both buddies have a maximum free of l2min;
3843      * the combination will result in the left-most buddy leaf having
3844      * a maximum free of l2min+1.
3845      * After processing all buddies for a given size, process buddies
3846      * at the next higher buddy size (i.e. current size * 2) and
3847      * the next maximum free (current free + 1).
3848      * This continues until the maximum possible buddy combination
3849      * yields maximum free.
3850      */
3851     for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3852          l2free++, bsize = nextb) {
3853         /* get next buddy size == current buddy pair size */
3854         nextb = bsize << 1;
3855 
3856         /* scan each adjacent buddy pair at current buddy size */
3857         for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3858              i < le32_to_cpu(dtp->nleafs);
3859              i += nextb, cp += nextb) {
3860             /* coalesce if both adjacent buddies are max free */
3861             if (*cp == l2free && *(cp + bsize) == l2free) {
3862                 *cp = l2free + 1;   /* left take right */
3863                 *(cp + bsize) = -1; /* right give left */
3864             }
3865         }
3866     }
3867 
3868     /*
3869      * bubble summary information of leaves up the tree.
3870      *
3871      * Starting at the leaf node level, the four nodes described by
3872      * the higher level parent node are compared for a maximum free and
3873      * this maximum becomes the value of the parent node.
3874      * when all lower level nodes are processed in this fashion then
3875      * move up to the next level (parent becomes a lower level node) and
3876      * continue the process for that level.
3877      */
3878     for (child = le32_to_cpu(dtp->leafidx),
3879          nparent = le32_to_cpu(dtp->nleafs) >> 2;
3880          nparent > 0; nparent >>= 2, child = parent) {
3881         /* get index of 1st node of parent level */
3882         parent = (child - 1) >> 2;
3883 
3884         /* set the value of the parent node as the maximum
3885          * of the four nodes of the current level.
3886          */
3887         for (i = 0, cp = tp + child, cp1 = tp + parent;
3888              i < nparent; i++, cp += 4, cp1++)
3889             *cp1 = TREEMAX(cp);
3890     }
3891 
3892     return (*tp);
3893 }
3894 
3895 
3896 /*
3897  *  dbInitDmapCtl()
3898  *
3899  * function: initialize dmapctl page
3900  */
3901 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3902 {               /* start leaf index not covered by range */
3903     s8 *cp;
3904 
3905     dcp->nleafs = cpu_to_le32(LPERCTL);
3906     dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3907     dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3908     dcp->height = cpu_to_le32(5);
3909     dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3910 
3911     /*
3912      * initialize the leaves of current level that were not covered
3913      * by the specified input block range (i.e. the leaves have no
3914      * low level dmapctl or dmap).
3915      */
3916     cp = &dcp->stree[CTLLEAFIND + i];
3917     for (; i < LPERCTL; i++)
3918         *cp++ = NOFREE;
3919 
3920     /* build the dmap's binary buddy summary tree */
3921     return (dbInitTree((struct dmaptree *) dcp));
3922 }
3923 
3924 
3925 /*
3926  * NAME:    dbGetL2AGSize()/ujfs_getagl2size()
3927  *
3928  * FUNCTION:    Determine log2(allocation group size) from aggregate size
3929  *
3930  * PARAMETERS:
3931  *  nblocks - Number of blocks in aggregate
3932  *
3933  * RETURNS: log2(allocation group size) in aggregate blocks
3934  */
3935 static int dbGetL2AGSize(s64 nblocks)
3936 {
3937     s64 sz;
3938     s64 m;
3939     int l2sz;
3940 
3941     if (nblocks < BPERDMAP * MAXAG)
3942         return (L2BPERDMAP);
3943 
3944     /* round up aggregate size to power of 2 */
3945     m = ((u64) 1 << (64 - 1));
3946     for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3947         if (m & nblocks)
3948             break;
3949     }
3950 
3951     sz = (s64) 1 << l2sz;
3952     if (sz < nblocks)
3953         l2sz += 1;
3954 
3955     /* agsize = roundupSize/max_number_of_ag */
3956     return (l2sz - L2MAXAG);
3957 }
3958 
3959 
3960 /*
3961  * NAME:    dbMapFileSizeToMapSize()
3962  *
3963  * FUNCTION:    compute number of blocks the block allocation map file
3964  *      can cover from the map file size;
3965  *
3966  * RETURNS: Number of blocks which can be covered by this block map file;
3967  */
3968 
3969 /*
3970  * maximum number of map pages at each level including control pages
3971  */
3972 #define MAXL0PAGES  (1 + LPERCTL)
3973 #define MAXL1PAGES  (1 + LPERCTL * MAXL0PAGES)
3974 
3975 /*
3976  * convert number of map pages to the zero origin top dmapctl level
3977  */
3978 #define BMAPPGTOLEV(npages) \
3979     (((npages) <= 3 + MAXL0PAGES) ? 0 : \
3980      ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
3981 
3982 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
3983 {
3984     struct super_block *sb = ipbmap->i_sb;
3985     s64 nblocks;
3986     s64 npages, ndmaps;
3987     int level, i;
3988     int complete, factor;
3989 
3990     nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
3991     npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
3992     level = BMAPPGTOLEV(npages);
3993 
3994     /* At each level, accumulate the number of dmap pages covered by
3995      * the number of full child levels below it;
3996      * repeat for the last incomplete child level.
3997      */
3998     ndmaps = 0;
3999     npages--;       /* skip the first global control page */
4000     /* skip higher level control pages above top level covered by map */
4001     npages -= (2 - level);
4002     npages--;       /* skip top level's control page */
4003     for (i = level; i >= 0; i--) {
4004         factor =
4005             (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4006         complete = (u32) npages / factor;
4007         ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4008                       ((i == 1) ? LPERCTL : 1));
4009 
4010         /* pages in last/incomplete child */
4011         npages = (u32) npages % factor;
4012         /* skip incomplete child's level control page */
4013         npages--;
4014     }
4015 
4016     /* convert the number of dmaps into the number of blocks
4017      * which can be covered by the dmaps;
4018      */
4019     nblocks = ndmaps << L2BPERDMAP;
4020 
4021     return (nblocks);
4022 }