Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * (C) 1997 Linus Torvalds
0004  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
0005  */
0006 #include <linux/export.h>
0007 #include <linux/fs.h>
0008 #include <linux/mm.h>
0009 #include <linux/backing-dev.h>
0010 #include <linux/hash.h>
0011 #include <linux/swap.h>
0012 #include <linux/security.h>
0013 #include <linux/cdev.h>
0014 #include <linux/memblock.h>
0015 #include <linux/fsnotify.h>
0016 #include <linux/mount.h>
0017 #include <linux/posix_acl.h>
0018 #include <linux/prefetch.h>
0019 #include <linux/buffer_head.h> /* for inode_has_buffers */
0020 #include <linux/ratelimit.h>
0021 #include <linux/list_lru.h>
0022 #include <linux/iversion.h>
0023 #include <trace/events/writeback.h>
0024 #include "internal.h"
0025 
0026 /*
0027  * Inode locking rules:
0028  *
0029  * inode->i_lock protects:
0030  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
0031  * Inode LRU list locks protect:
0032  *   inode->i_sb->s_inode_lru, inode->i_lru
0033  * inode->i_sb->s_inode_list_lock protects:
0034  *   inode->i_sb->s_inodes, inode->i_sb_list
0035  * bdi->wb.list_lock protects:
0036  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
0037  * inode_hash_lock protects:
0038  *   inode_hashtable, inode->i_hash
0039  *
0040  * Lock ordering:
0041  *
0042  * inode->i_sb->s_inode_list_lock
0043  *   inode->i_lock
0044  *     Inode LRU list locks
0045  *
0046  * bdi->wb.list_lock
0047  *   inode->i_lock
0048  *
0049  * inode_hash_lock
0050  *   inode->i_sb->s_inode_list_lock
0051  *   inode->i_lock
0052  *
0053  * iunique_lock
0054  *   inode_hash_lock
0055  */
0056 
0057 static unsigned int i_hash_mask __read_mostly;
0058 static unsigned int i_hash_shift __read_mostly;
0059 static struct hlist_head *inode_hashtable __read_mostly;
0060 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
0061 
0062 /*
0063  * Empty aops. Can be used for the cases where the user does not
0064  * define any of the address_space operations.
0065  */
0066 const struct address_space_operations empty_aops = {
0067 };
0068 EXPORT_SYMBOL(empty_aops);
0069 
0070 static DEFINE_PER_CPU(unsigned long, nr_inodes);
0071 static DEFINE_PER_CPU(unsigned long, nr_unused);
0072 
0073 static struct kmem_cache *inode_cachep __read_mostly;
0074 
0075 static long get_nr_inodes(void)
0076 {
0077     int i;
0078     long sum = 0;
0079     for_each_possible_cpu(i)
0080         sum += per_cpu(nr_inodes, i);
0081     return sum < 0 ? 0 : sum;
0082 }
0083 
0084 static inline long get_nr_inodes_unused(void)
0085 {
0086     int i;
0087     long sum = 0;
0088     for_each_possible_cpu(i)
0089         sum += per_cpu(nr_unused, i);
0090     return sum < 0 ? 0 : sum;
0091 }
0092 
0093 long get_nr_dirty_inodes(void)
0094 {
0095     /* not actually dirty inodes, but a wild approximation */
0096     long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
0097     return nr_dirty > 0 ? nr_dirty : 0;
0098 }
0099 
0100 /*
0101  * Handle nr_inode sysctl
0102  */
0103 #ifdef CONFIG_SYSCTL
0104 /*
0105  * Statistics gathering..
0106  */
0107 static struct inodes_stat_t inodes_stat;
0108 
0109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
0110               size_t *lenp, loff_t *ppos)
0111 {
0112     inodes_stat.nr_inodes = get_nr_inodes();
0113     inodes_stat.nr_unused = get_nr_inodes_unused();
0114     return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
0115 }
0116 
0117 static struct ctl_table inodes_sysctls[] = {
0118     {
0119         .procname   = "inode-nr",
0120         .data       = &inodes_stat,
0121         .maxlen     = 2*sizeof(long),
0122         .mode       = 0444,
0123         .proc_handler   = proc_nr_inodes,
0124     },
0125     {
0126         .procname   = "inode-state",
0127         .data       = &inodes_stat,
0128         .maxlen     = 7*sizeof(long),
0129         .mode       = 0444,
0130         .proc_handler   = proc_nr_inodes,
0131     },
0132     { }
0133 };
0134 
0135 static int __init init_fs_inode_sysctls(void)
0136 {
0137     register_sysctl_init("fs", inodes_sysctls);
0138     return 0;
0139 }
0140 early_initcall(init_fs_inode_sysctls);
0141 #endif
0142 
0143 static int no_open(struct inode *inode, struct file *file)
0144 {
0145     return -ENXIO;
0146 }
0147 
0148 /**
0149  * inode_init_always - perform inode structure initialisation
0150  * @sb: superblock inode belongs to
0151  * @inode: inode to initialise
0152  *
0153  * These are initializations that need to be done on every inode
0154  * allocation as the fields are not initialised by slab allocation.
0155  */
0156 int inode_init_always(struct super_block *sb, struct inode *inode)
0157 {
0158     static const struct inode_operations empty_iops;
0159     static const struct file_operations no_open_fops = {.open = no_open};
0160     struct address_space *const mapping = &inode->i_data;
0161 
0162     inode->i_sb = sb;
0163     inode->i_blkbits = sb->s_blocksize_bits;
0164     inode->i_flags = 0;
0165     atomic64_set(&inode->i_sequence, 0);
0166     atomic_set(&inode->i_count, 1);
0167     inode->i_op = &empty_iops;
0168     inode->i_fop = &no_open_fops;
0169     inode->i_ino = 0;
0170     inode->__i_nlink = 1;
0171     inode->i_opflags = 0;
0172     if (sb->s_xattr)
0173         inode->i_opflags |= IOP_XATTR;
0174     i_uid_write(inode, 0);
0175     i_gid_write(inode, 0);
0176     atomic_set(&inode->i_writecount, 0);
0177     inode->i_size = 0;
0178     inode->i_write_hint = WRITE_LIFE_NOT_SET;
0179     inode->i_blocks = 0;
0180     inode->i_bytes = 0;
0181     inode->i_generation = 0;
0182     inode->i_pipe = NULL;
0183     inode->i_cdev = NULL;
0184     inode->i_link = NULL;
0185     inode->i_dir_seq = 0;
0186     inode->i_rdev = 0;
0187     inode->dirtied_when = 0;
0188 
0189 #ifdef CONFIG_CGROUP_WRITEBACK
0190     inode->i_wb_frn_winner = 0;
0191     inode->i_wb_frn_avg_time = 0;
0192     inode->i_wb_frn_history = 0;
0193 #endif
0194 
0195     spin_lock_init(&inode->i_lock);
0196     lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
0197 
0198     init_rwsem(&inode->i_rwsem);
0199     lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
0200 
0201     atomic_set(&inode->i_dio_count, 0);
0202 
0203     mapping->a_ops = &empty_aops;
0204     mapping->host = inode;
0205     mapping->flags = 0;
0206     mapping->wb_err = 0;
0207     atomic_set(&mapping->i_mmap_writable, 0);
0208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
0209     atomic_set(&mapping->nr_thps, 0);
0210 #endif
0211     mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
0212     mapping->private_data = NULL;
0213     mapping->writeback_index = 0;
0214     init_rwsem(&mapping->invalidate_lock);
0215     lockdep_set_class_and_name(&mapping->invalidate_lock,
0216                    &sb->s_type->invalidate_lock_key,
0217                    "mapping.invalidate_lock");
0218     inode->i_private = NULL;
0219     inode->i_mapping = mapping;
0220     INIT_HLIST_HEAD(&inode->i_dentry);  /* buggered by rcu freeing */
0221 #ifdef CONFIG_FS_POSIX_ACL
0222     inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
0223 #endif
0224 
0225 #ifdef CONFIG_FSNOTIFY
0226     inode->i_fsnotify_mask = 0;
0227 #endif
0228     inode->i_flctx = NULL;
0229 
0230     if (unlikely(security_inode_alloc(inode)))
0231         return -ENOMEM;
0232     this_cpu_inc(nr_inodes);
0233 
0234     return 0;
0235 }
0236 EXPORT_SYMBOL(inode_init_always);
0237 
0238 void free_inode_nonrcu(struct inode *inode)
0239 {
0240     kmem_cache_free(inode_cachep, inode);
0241 }
0242 EXPORT_SYMBOL(free_inode_nonrcu);
0243 
0244 static void i_callback(struct rcu_head *head)
0245 {
0246     struct inode *inode = container_of(head, struct inode, i_rcu);
0247     if (inode->free_inode)
0248         inode->free_inode(inode);
0249     else
0250         free_inode_nonrcu(inode);
0251 }
0252 
0253 static struct inode *alloc_inode(struct super_block *sb)
0254 {
0255     const struct super_operations *ops = sb->s_op;
0256     struct inode *inode;
0257 
0258     if (ops->alloc_inode)
0259         inode = ops->alloc_inode(sb);
0260     else
0261         inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
0262 
0263     if (!inode)
0264         return NULL;
0265 
0266     if (unlikely(inode_init_always(sb, inode))) {
0267         if (ops->destroy_inode) {
0268             ops->destroy_inode(inode);
0269             if (!ops->free_inode)
0270                 return NULL;
0271         }
0272         inode->free_inode = ops->free_inode;
0273         i_callback(&inode->i_rcu);
0274         return NULL;
0275     }
0276 
0277     return inode;
0278 }
0279 
0280 void __destroy_inode(struct inode *inode)
0281 {
0282     BUG_ON(inode_has_buffers(inode));
0283     inode_detach_wb(inode);
0284     security_inode_free(inode);
0285     fsnotify_inode_delete(inode);
0286     locks_free_lock_context(inode);
0287     if (!inode->i_nlink) {
0288         WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
0289         atomic_long_dec(&inode->i_sb->s_remove_count);
0290     }
0291 
0292 #ifdef CONFIG_FS_POSIX_ACL
0293     if (inode->i_acl && !is_uncached_acl(inode->i_acl))
0294         posix_acl_release(inode->i_acl);
0295     if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
0296         posix_acl_release(inode->i_default_acl);
0297 #endif
0298     this_cpu_dec(nr_inodes);
0299 }
0300 EXPORT_SYMBOL(__destroy_inode);
0301 
0302 static void destroy_inode(struct inode *inode)
0303 {
0304     const struct super_operations *ops = inode->i_sb->s_op;
0305 
0306     BUG_ON(!list_empty(&inode->i_lru));
0307     __destroy_inode(inode);
0308     if (ops->destroy_inode) {
0309         ops->destroy_inode(inode);
0310         if (!ops->free_inode)
0311             return;
0312     }
0313     inode->free_inode = ops->free_inode;
0314     call_rcu(&inode->i_rcu, i_callback);
0315 }
0316 
0317 /**
0318  * drop_nlink - directly drop an inode's link count
0319  * @inode: inode
0320  *
0321  * This is a low-level filesystem helper to replace any
0322  * direct filesystem manipulation of i_nlink.  In cases
0323  * where we are attempting to track writes to the
0324  * filesystem, a decrement to zero means an imminent
0325  * write when the file is truncated and actually unlinked
0326  * on the filesystem.
0327  */
0328 void drop_nlink(struct inode *inode)
0329 {
0330     WARN_ON(inode->i_nlink == 0);
0331     inode->__i_nlink--;
0332     if (!inode->i_nlink)
0333         atomic_long_inc(&inode->i_sb->s_remove_count);
0334 }
0335 EXPORT_SYMBOL(drop_nlink);
0336 
0337 /**
0338  * clear_nlink - directly zero an inode's link count
0339  * @inode: inode
0340  *
0341  * This is a low-level filesystem helper to replace any
0342  * direct filesystem manipulation of i_nlink.  See
0343  * drop_nlink() for why we care about i_nlink hitting zero.
0344  */
0345 void clear_nlink(struct inode *inode)
0346 {
0347     if (inode->i_nlink) {
0348         inode->__i_nlink = 0;
0349         atomic_long_inc(&inode->i_sb->s_remove_count);
0350     }
0351 }
0352 EXPORT_SYMBOL(clear_nlink);
0353 
0354 /**
0355  * set_nlink - directly set an inode's link count
0356  * @inode: inode
0357  * @nlink: new nlink (should be non-zero)
0358  *
0359  * This is a low-level filesystem helper to replace any
0360  * direct filesystem manipulation of i_nlink.
0361  */
0362 void set_nlink(struct inode *inode, unsigned int nlink)
0363 {
0364     if (!nlink) {
0365         clear_nlink(inode);
0366     } else {
0367         /* Yes, some filesystems do change nlink from zero to one */
0368         if (inode->i_nlink == 0)
0369             atomic_long_dec(&inode->i_sb->s_remove_count);
0370 
0371         inode->__i_nlink = nlink;
0372     }
0373 }
0374 EXPORT_SYMBOL(set_nlink);
0375 
0376 /**
0377  * inc_nlink - directly increment an inode's link count
0378  * @inode: inode
0379  *
0380  * This is a low-level filesystem helper to replace any
0381  * direct filesystem manipulation of i_nlink.  Currently,
0382  * it is only here for parity with dec_nlink().
0383  */
0384 void inc_nlink(struct inode *inode)
0385 {
0386     if (unlikely(inode->i_nlink == 0)) {
0387         WARN_ON(!(inode->i_state & I_LINKABLE));
0388         atomic_long_dec(&inode->i_sb->s_remove_count);
0389     }
0390 
0391     inode->__i_nlink++;
0392 }
0393 EXPORT_SYMBOL(inc_nlink);
0394 
0395 static void __address_space_init_once(struct address_space *mapping)
0396 {
0397     xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
0398     init_rwsem(&mapping->i_mmap_rwsem);
0399     INIT_LIST_HEAD(&mapping->private_list);
0400     spin_lock_init(&mapping->private_lock);
0401     mapping->i_mmap = RB_ROOT_CACHED;
0402 }
0403 
0404 void address_space_init_once(struct address_space *mapping)
0405 {
0406     memset(mapping, 0, sizeof(*mapping));
0407     __address_space_init_once(mapping);
0408 }
0409 EXPORT_SYMBOL(address_space_init_once);
0410 
0411 /*
0412  * These are initializations that only need to be done
0413  * once, because the fields are idempotent across use
0414  * of the inode, so let the slab aware of that.
0415  */
0416 void inode_init_once(struct inode *inode)
0417 {
0418     memset(inode, 0, sizeof(*inode));
0419     INIT_HLIST_NODE(&inode->i_hash);
0420     INIT_LIST_HEAD(&inode->i_devices);
0421     INIT_LIST_HEAD(&inode->i_io_list);
0422     INIT_LIST_HEAD(&inode->i_wb_list);
0423     INIT_LIST_HEAD(&inode->i_lru);
0424     INIT_LIST_HEAD(&inode->i_sb_list);
0425     __address_space_init_once(&inode->i_data);
0426     i_size_ordered_init(inode);
0427 }
0428 EXPORT_SYMBOL(inode_init_once);
0429 
0430 static void init_once(void *foo)
0431 {
0432     struct inode *inode = (struct inode *) foo;
0433 
0434     inode_init_once(inode);
0435 }
0436 
0437 /*
0438  * inode->i_lock must be held
0439  */
0440 void __iget(struct inode *inode)
0441 {
0442     atomic_inc(&inode->i_count);
0443 }
0444 
0445 /*
0446  * get additional reference to inode; caller must already hold one.
0447  */
0448 void ihold(struct inode *inode)
0449 {
0450     WARN_ON(atomic_inc_return(&inode->i_count) < 2);
0451 }
0452 EXPORT_SYMBOL(ihold);
0453 
0454 static void __inode_add_lru(struct inode *inode, bool rotate)
0455 {
0456     if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
0457         return;
0458     if (atomic_read(&inode->i_count))
0459         return;
0460     if (!(inode->i_sb->s_flags & SB_ACTIVE))
0461         return;
0462     if (!mapping_shrinkable(&inode->i_data))
0463         return;
0464 
0465     if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
0466         this_cpu_inc(nr_unused);
0467     else if (rotate)
0468         inode->i_state |= I_REFERENCED;
0469 }
0470 
0471 /*
0472  * Add inode to LRU if needed (inode is unused and clean).
0473  *
0474  * Needs inode->i_lock held.
0475  */
0476 void inode_add_lru(struct inode *inode)
0477 {
0478     __inode_add_lru(inode, false);
0479 }
0480 
0481 static void inode_lru_list_del(struct inode *inode)
0482 {
0483     if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
0484         this_cpu_dec(nr_unused);
0485 }
0486 
0487 /**
0488  * inode_sb_list_add - add inode to the superblock list of inodes
0489  * @inode: inode to add
0490  */
0491 void inode_sb_list_add(struct inode *inode)
0492 {
0493     spin_lock(&inode->i_sb->s_inode_list_lock);
0494     list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
0495     spin_unlock(&inode->i_sb->s_inode_list_lock);
0496 }
0497 EXPORT_SYMBOL_GPL(inode_sb_list_add);
0498 
0499 static inline void inode_sb_list_del(struct inode *inode)
0500 {
0501     if (!list_empty(&inode->i_sb_list)) {
0502         spin_lock(&inode->i_sb->s_inode_list_lock);
0503         list_del_init(&inode->i_sb_list);
0504         spin_unlock(&inode->i_sb->s_inode_list_lock);
0505     }
0506 }
0507 
0508 static unsigned long hash(struct super_block *sb, unsigned long hashval)
0509 {
0510     unsigned long tmp;
0511 
0512     tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
0513             L1_CACHE_BYTES;
0514     tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
0515     return tmp & i_hash_mask;
0516 }
0517 
0518 /**
0519  *  __insert_inode_hash - hash an inode
0520  *  @inode: unhashed inode
0521  *  @hashval: unsigned long value used to locate this object in the
0522  *      inode_hashtable.
0523  *
0524  *  Add an inode to the inode hash for this superblock.
0525  */
0526 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
0527 {
0528     struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
0529 
0530     spin_lock(&inode_hash_lock);
0531     spin_lock(&inode->i_lock);
0532     hlist_add_head_rcu(&inode->i_hash, b);
0533     spin_unlock(&inode->i_lock);
0534     spin_unlock(&inode_hash_lock);
0535 }
0536 EXPORT_SYMBOL(__insert_inode_hash);
0537 
0538 /**
0539  *  __remove_inode_hash - remove an inode from the hash
0540  *  @inode: inode to unhash
0541  *
0542  *  Remove an inode from the superblock.
0543  */
0544 void __remove_inode_hash(struct inode *inode)
0545 {
0546     spin_lock(&inode_hash_lock);
0547     spin_lock(&inode->i_lock);
0548     hlist_del_init_rcu(&inode->i_hash);
0549     spin_unlock(&inode->i_lock);
0550     spin_unlock(&inode_hash_lock);
0551 }
0552 EXPORT_SYMBOL(__remove_inode_hash);
0553 
0554 void dump_mapping(const struct address_space *mapping)
0555 {
0556     struct inode *host;
0557     const struct address_space_operations *a_ops;
0558     struct hlist_node *dentry_first;
0559     struct dentry *dentry_ptr;
0560     struct dentry dentry;
0561     unsigned long ino;
0562 
0563     /*
0564      * If mapping is an invalid pointer, we don't want to crash
0565      * accessing it, so probe everything depending on it carefully.
0566      */
0567     if (get_kernel_nofault(host, &mapping->host) ||
0568         get_kernel_nofault(a_ops, &mapping->a_ops)) {
0569         pr_warn("invalid mapping:%px\n", mapping);
0570         return;
0571     }
0572 
0573     if (!host) {
0574         pr_warn("aops:%ps\n", a_ops);
0575         return;
0576     }
0577 
0578     if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
0579         get_kernel_nofault(ino, &host->i_ino)) {
0580         pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
0581         return;
0582     }
0583 
0584     if (!dentry_first) {
0585         pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
0586         return;
0587     }
0588 
0589     dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
0590     if (get_kernel_nofault(dentry, dentry_ptr)) {
0591         pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
0592                 a_ops, ino, dentry_ptr);
0593         return;
0594     }
0595 
0596     /*
0597      * if dentry is corrupted, the %pd handler may still crash,
0598      * but it's unlikely that we reach here with a corrupt mapping
0599      */
0600     pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
0601 }
0602 
0603 void clear_inode(struct inode *inode)
0604 {
0605     /*
0606      * We have to cycle the i_pages lock here because reclaim can be in the
0607      * process of removing the last page (in __filemap_remove_folio())
0608      * and we must not free the mapping under it.
0609      */
0610     xa_lock_irq(&inode->i_data.i_pages);
0611     BUG_ON(inode->i_data.nrpages);
0612     /*
0613      * Almost always, mapping_empty(&inode->i_data) here; but there are
0614      * two known and long-standing ways in which nodes may get left behind
0615      * (when deep radix-tree node allocation failed partway; or when THP
0616      * collapse_file() failed). Until those two known cases are cleaned up,
0617      * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
0618      * nor even WARN_ON(!mapping_empty).
0619      */
0620     xa_unlock_irq(&inode->i_data.i_pages);
0621     BUG_ON(!list_empty(&inode->i_data.private_list));
0622     BUG_ON(!(inode->i_state & I_FREEING));
0623     BUG_ON(inode->i_state & I_CLEAR);
0624     BUG_ON(!list_empty(&inode->i_wb_list));
0625     /* don't need i_lock here, no concurrent mods to i_state */
0626     inode->i_state = I_FREEING | I_CLEAR;
0627 }
0628 EXPORT_SYMBOL(clear_inode);
0629 
0630 /*
0631  * Free the inode passed in, removing it from the lists it is still connected
0632  * to. We remove any pages still attached to the inode and wait for any IO that
0633  * is still in progress before finally destroying the inode.
0634  *
0635  * An inode must already be marked I_FREEING so that we avoid the inode being
0636  * moved back onto lists if we race with other code that manipulates the lists
0637  * (e.g. writeback_single_inode). The caller is responsible for setting this.
0638  *
0639  * An inode must already be removed from the LRU list before being evicted from
0640  * the cache. This should occur atomically with setting the I_FREEING state
0641  * flag, so no inodes here should ever be on the LRU when being evicted.
0642  */
0643 static void evict(struct inode *inode)
0644 {
0645     const struct super_operations *op = inode->i_sb->s_op;
0646 
0647     BUG_ON(!(inode->i_state & I_FREEING));
0648     BUG_ON(!list_empty(&inode->i_lru));
0649 
0650     if (!list_empty(&inode->i_io_list))
0651         inode_io_list_del(inode);
0652 
0653     inode_sb_list_del(inode);
0654 
0655     /*
0656      * Wait for flusher thread to be done with the inode so that filesystem
0657      * does not start destroying it while writeback is still running. Since
0658      * the inode has I_FREEING set, flusher thread won't start new work on
0659      * the inode.  We just have to wait for running writeback to finish.
0660      */
0661     inode_wait_for_writeback(inode);
0662 
0663     if (op->evict_inode) {
0664         op->evict_inode(inode);
0665     } else {
0666         truncate_inode_pages_final(&inode->i_data);
0667         clear_inode(inode);
0668     }
0669     if (S_ISCHR(inode->i_mode) && inode->i_cdev)
0670         cd_forget(inode);
0671 
0672     remove_inode_hash(inode);
0673 
0674     spin_lock(&inode->i_lock);
0675     wake_up_bit(&inode->i_state, __I_NEW);
0676     BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
0677     spin_unlock(&inode->i_lock);
0678 
0679     destroy_inode(inode);
0680 }
0681 
0682 /*
0683  * dispose_list - dispose of the contents of a local list
0684  * @head: the head of the list to free
0685  *
0686  * Dispose-list gets a local list with local inodes in it, so it doesn't
0687  * need to worry about list corruption and SMP locks.
0688  */
0689 static void dispose_list(struct list_head *head)
0690 {
0691     while (!list_empty(head)) {
0692         struct inode *inode;
0693 
0694         inode = list_first_entry(head, struct inode, i_lru);
0695         list_del_init(&inode->i_lru);
0696 
0697         evict(inode);
0698         cond_resched();
0699     }
0700 }
0701 
0702 /**
0703  * evict_inodes - evict all evictable inodes for a superblock
0704  * @sb:     superblock to operate on
0705  *
0706  * Make sure that no inodes with zero refcount are retained.  This is
0707  * called by superblock shutdown after having SB_ACTIVE flag removed,
0708  * so any inode reaching zero refcount during or after that call will
0709  * be immediately evicted.
0710  */
0711 void evict_inodes(struct super_block *sb)
0712 {
0713     struct inode *inode, *next;
0714     LIST_HEAD(dispose);
0715 
0716 again:
0717     spin_lock(&sb->s_inode_list_lock);
0718     list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
0719         if (atomic_read(&inode->i_count))
0720             continue;
0721 
0722         spin_lock(&inode->i_lock);
0723         if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
0724             spin_unlock(&inode->i_lock);
0725             continue;
0726         }
0727 
0728         inode->i_state |= I_FREEING;
0729         inode_lru_list_del(inode);
0730         spin_unlock(&inode->i_lock);
0731         list_add(&inode->i_lru, &dispose);
0732 
0733         /*
0734          * We can have a ton of inodes to evict at unmount time given
0735          * enough memory, check to see if we need to go to sleep for a
0736          * bit so we don't livelock.
0737          */
0738         if (need_resched()) {
0739             spin_unlock(&sb->s_inode_list_lock);
0740             cond_resched();
0741             dispose_list(&dispose);
0742             goto again;
0743         }
0744     }
0745     spin_unlock(&sb->s_inode_list_lock);
0746 
0747     dispose_list(&dispose);
0748 }
0749 EXPORT_SYMBOL_GPL(evict_inodes);
0750 
0751 /**
0752  * invalidate_inodes    - attempt to free all inodes on a superblock
0753  * @sb:     superblock to operate on
0754  * @kill_dirty: flag to guide handling of dirty inodes
0755  *
0756  * Attempts to free all inodes for a given superblock.  If there were any
0757  * busy inodes return a non-zero value, else zero.
0758  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
0759  * them as busy.
0760  */
0761 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
0762 {
0763     int busy = 0;
0764     struct inode *inode, *next;
0765     LIST_HEAD(dispose);
0766 
0767 again:
0768     spin_lock(&sb->s_inode_list_lock);
0769     list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
0770         spin_lock(&inode->i_lock);
0771         if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
0772             spin_unlock(&inode->i_lock);
0773             continue;
0774         }
0775         if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
0776             spin_unlock(&inode->i_lock);
0777             busy = 1;
0778             continue;
0779         }
0780         if (atomic_read(&inode->i_count)) {
0781             spin_unlock(&inode->i_lock);
0782             busy = 1;
0783             continue;
0784         }
0785 
0786         inode->i_state |= I_FREEING;
0787         inode_lru_list_del(inode);
0788         spin_unlock(&inode->i_lock);
0789         list_add(&inode->i_lru, &dispose);
0790         if (need_resched()) {
0791             spin_unlock(&sb->s_inode_list_lock);
0792             cond_resched();
0793             dispose_list(&dispose);
0794             goto again;
0795         }
0796     }
0797     spin_unlock(&sb->s_inode_list_lock);
0798 
0799     dispose_list(&dispose);
0800 
0801     return busy;
0802 }
0803 
0804 /*
0805  * Isolate the inode from the LRU in preparation for freeing it.
0806  *
0807  * If the inode has the I_REFERENCED flag set, then it means that it has been
0808  * used recently - the flag is set in iput_final(). When we encounter such an
0809  * inode, clear the flag and move it to the back of the LRU so it gets another
0810  * pass through the LRU before it gets reclaimed. This is necessary because of
0811  * the fact we are doing lazy LRU updates to minimise lock contention so the
0812  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
0813  * with this flag set because they are the inodes that are out of order.
0814  */
0815 static enum lru_status inode_lru_isolate(struct list_head *item,
0816         struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
0817 {
0818     struct list_head *freeable = arg;
0819     struct inode    *inode = container_of(item, struct inode, i_lru);
0820 
0821     /*
0822      * We are inverting the lru lock/inode->i_lock here, so use a
0823      * trylock. If we fail to get the lock, just skip it.
0824      */
0825     if (!spin_trylock(&inode->i_lock))
0826         return LRU_SKIP;
0827 
0828     /*
0829      * Inodes can get referenced, redirtied, or repopulated while
0830      * they're already on the LRU, and this can make them
0831      * unreclaimable for a while. Remove them lazily here; iput,
0832      * sync, or the last page cache deletion will requeue them.
0833      */
0834     if (atomic_read(&inode->i_count) ||
0835         (inode->i_state & ~I_REFERENCED) ||
0836         !mapping_shrinkable(&inode->i_data)) {
0837         list_lru_isolate(lru, &inode->i_lru);
0838         spin_unlock(&inode->i_lock);
0839         this_cpu_dec(nr_unused);
0840         return LRU_REMOVED;
0841     }
0842 
0843     /* Recently referenced inodes get one more pass */
0844     if (inode->i_state & I_REFERENCED) {
0845         inode->i_state &= ~I_REFERENCED;
0846         spin_unlock(&inode->i_lock);
0847         return LRU_ROTATE;
0848     }
0849 
0850     /*
0851      * On highmem systems, mapping_shrinkable() permits dropping
0852      * page cache in order to free up struct inodes: lowmem might
0853      * be under pressure before the cache inside the highmem zone.
0854      */
0855     if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
0856         __iget(inode);
0857         spin_unlock(&inode->i_lock);
0858         spin_unlock(lru_lock);
0859         if (remove_inode_buffers(inode)) {
0860             unsigned long reap;
0861             reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
0862             if (current_is_kswapd())
0863                 __count_vm_events(KSWAPD_INODESTEAL, reap);
0864             else
0865                 __count_vm_events(PGINODESTEAL, reap);
0866             if (current->reclaim_state)
0867                 current->reclaim_state->reclaimed_slab += reap;
0868         }
0869         iput(inode);
0870         spin_lock(lru_lock);
0871         return LRU_RETRY;
0872     }
0873 
0874     WARN_ON(inode->i_state & I_NEW);
0875     inode->i_state |= I_FREEING;
0876     list_lru_isolate_move(lru, &inode->i_lru, freeable);
0877     spin_unlock(&inode->i_lock);
0878 
0879     this_cpu_dec(nr_unused);
0880     return LRU_REMOVED;
0881 }
0882 
0883 /*
0884  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
0885  * This is called from the superblock shrinker function with a number of inodes
0886  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
0887  * then are freed outside inode_lock by dispose_list().
0888  */
0889 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
0890 {
0891     LIST_HEAD(freeable);
0892     long freed;
0893 
0894     freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
0895                      inode_lru_isolate, &freeable);
0896     dispose_list(&freeable);
0897     return freed;
0898 }
0899 
0900 static void __wait_on_freeing_inode(struct inode *inode);
0901 /*
0902  * Called with the inode lock held.
0903  */
0904 static struct inode *find_inode(struct super_block *sb,
0905                 struct hlist_head *head,
0906                 int (*test)(struct inode *, void *),
0907                 void *data)
0908 {
0909     struct inode *inode = NULL;
0910 
0911 repeat:
0912     hlist_for_each_entry(inode, head, i_hash) {
0913         if (inode->i_sb != sb)
0914             continue;
0915         if (!test(inode, data))
0916             continue;
0917         spin_lock(&inode->i_lock);
0918         if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
0919             __wait_on_freeing_inode(inode);
0920             goto repeat;
0921         }
0922         if (unlikely(inode->i_state & I_CREATING)) {
0923             spin_unlock(&inode->i_lock);
0924             return ERR_PTR(-ESTALE);
0925         }
0926         __iget(inode);
0927         spin_unlock(&inode->i_lock);
0928         return inode;
0929     }
0930     return NULL;
0931 }
0932 
0933 /*
0934  * find_inode_fast is the fast path version of find_inode, see the comment at
0935  * iget_locked for details.
0936  */
0937 static struct inode *find_inode_fast(struct super_block *sb,
0938                 struct hlist_head *head, unsigned long ino)
0939 {
0940     struct inode *inode = NULL;
0941 
0942 repeat:
0943     hlist_for_each_entry(inode, head, i_hash) {
0944         if (inode->i_ino != ino)
0945             continue;
0946         if (inode->i_sb != sb)
0947             continue;
0948         spin_lock(&inode->i_lock);
0949         if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
0950             __wait_on_freeing_inode(inode);
0951             goto repeat;
0952         }
0953         if (unlikely(inode->i_state & I_CREATING)) {
0954             spin_unlock(&inode->i_lock);
0955             return ERR_PTR(-ESTALE);
0956         }
0957         __iget(inode);
0958         spin_unlock(&inode->i_lock);
0959         return inode;
0960     }
0961     return NULL;
0962 }
0963 
0964 /*
0965  * Each cpu owns a range of LAST_INO_BATCH numbers.
0966  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
0967  * to renew the exhausted range.
0968  *
0969  * This does not significantly increase overflow rate because every CPU can
0970  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
0971  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
0972  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
0973  * overflow rate by 2x, which does not seem too significant.
0974  *
0975  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
0976  * error if st_ino won't fit in target struct field. Use 32bit counter
0977  * here to attempt to avoid that.
0978  */
0979 #define LAST_INO_BATCH 1024
0980 static DEFINE_PER_CPU(unsigned int, last_ino);
0981 
0982 unsigned int get_next_ino(void)
0983 {
0984     unsigned int *p = &get_cpu_var(last_ino);
0985     unsigned int res = *p;
0986 
0987 #ifdef CONFIG_SMP
0988     if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
0989         static atomic_t shared_last_ino;
0990         int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
0991 
0992         res = next - LAST_INO_BATCH;
0993     }
0994 #endif
0995 
0996     res++;
0997     /* get_next_ino should not provide a 0 inode number */
0998     if (unlikely(!res))
0999         res++;
1000     *p = res;
1001     put_cpu_var(last_ino);
1002     return res;
1003 }
1004 EXPORT_SYMBOL(get_next_ino);
1005 
1006 /**
1007  *  new_inode_pseudo    - obtain an inode
1008  *  @sb: superblock
1009  *
1010  *  Allocates a new inode for given superblock.
1011  *  Inode wont be chained in superblock s_inodes list
1012  *  This means :
1013  *  - fs can't be unmount
1014  *  - quotas, fsnotify, writeback can't work
1015  */
1016 struct inode *new_inode_pseudo(struct super_block *sb)
1017 {
1018     struct inode *inode = alloc_inode(sb);
1019 
1020     if (inode) {
1021         spin_lock(&inode->i_lock);
1022         inode->i_state = 0;
1023         spin_unlock(&inode->i_lock);
1024     }
1025     return inode;
1026 }
1027 
1028 /**
1029  *  new_inode   - obtain an inode
1030  *  @sb: superblock
1031  *
1032  *  Allocates a new inode for given superblock. The default gfp_mask
1033  *  for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1034  *  If HIGHMEM pages are unsuitable or it is known that pages allocated
1035  *  for the page cache are not reclaimable or migratable,
1036  *  mapping_set_gfp_mask() must be called with suitable flags on the
1037  *  newly created inode's mapping
1038  *
1039  */
1040 struct inode *new_inode(struct super_block *sb)
1041 {
1042     struct inode *inode;
1043 
1044     spin_lock_prefetch(&sb->s_inode_list_lock);
1045 
1046     inode = new_inode_pseudo(sb);
1047     if (inode)
1048         inode_sb_list_add(inode);
1049     return inode;
1050 }
1051 EXPORT_SYMBOL(new_inode);
1052 
1053 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1054 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1055 {
1056     if (S_ISDIR(inode->i_mode)) {
1057         struct file_system_type *type = inode->i_sb->s_type;
1058 
1059         /* Set new key only if filesystem hasn't already changed it */
1060         if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1061             /*
1062              * ensure nobody is actually holding i_mutex
1063              */
1064             // mutex_destroy(&inode->i_mutex);
1065             init_rwsem(&inode->i_rwsem);
1066             lockdep_set_class(&inode->i_rwsem,
1067                       &type->i_mutex_dir_key);
1068         }
1069     }
1070 }
1071 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1072 #endif
1073 
1074 /**
1075  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1076  * @inode:  new inode to unlock
1077  *
1078  * Called when the inode is fully initialised to clear the new state of the
1079  * inode and wake up anyone waiting for the inode to finish initialisation.
1080  */
1081 void unlock_new_inode(struct inode *inode)
1082 {
1083     lockdep_annotate_inode_mutex_key(inode);
1084     spin_lock(&inode->i_lock);
1085     WARN_ON(!(inode->i_state & I_NEW));
1086     inode->i_state &= ~I_NEW & ~I_CREATING;
1087     smp_mb();
1088     wake_up_bit(&inode->i_state, __I_NEW);
1089     spin_unlock(&inode->i_lock);
1090 }
1091 EXPORT_SYMBOL(unlock_new_inode);
1092 
1093 void discard_new_inode(struct inode *inode)
1094 {
1095     lockdep_annotate_inode_mutex_key(inode);
1096     spin_lock(&inode->i_lock);
1097     WARN_ON(!(inode->i_state & I_NEW));
1098     inode->i_state &= ~I_NEW;
1099     smp_mb();
1100     wake_up_bit(&inode->i_state, __I_NEW);
1101     spin_unlock(&inode->i_lock);
1102     iput(inode);
1103 }
1104 EXPORT_SYMBOL(discard_new_inode);
1105 
1106 /**
1107  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1108  *
1109  * Lock any non-NULL argument that is not a directory.
1110  * Zero, one or two objects may be locked by this function.
1111  *
1112  * @inode1: first inode to lock
1113  * @inode2: second inode to lock
1114  */
1115 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1116 {
1117     if (inode1 > inode2)
1118         swap(inode1, inode2);
1119 
1120     if (inode1 && !S_ISDIR(inode1->i_mode))
1121         inode_lock(inode1);
1122     if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1123         inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1124 }
1125 EXPORT_SYMBOL(lock_two_nondirectories);
1126 
1127 /**
1128  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1129  * @inode1: first inode to unlock
1130  * @inode2: second inode to unlock
1131  */
1132 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1133 {
1134     if (inode1 && !S_ISDIR(inode1->i_mode))
1135         inode_unlock(inode1);
1136     if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1137         inode_unlock(inode2);
1138 }
1139 EXPORT_SYMBOL(unlock_two_nondirectories);
1140 
1141 /**
1142  * inode_insert5 - obtain an inode from a mounted file system
1143  * @inode:  pre-allocated inode to use for insert to cache
1144  * @hashval:    hash value (usually inode number) to get
1145  * @test:   callback used for comparisons between inodes
1146  * @set:    callback used to initialize a new struct inode
1147  * @data:   opaque data pointer to pass to @test and @set
1148  *
1149  * Search for the inode specified by @hashval and @data in the inode cache,
1150  * and if present it is return it with an increased reference count. This is
1151  * a variant of iget5_locked() for callers that don't want to fail on memory
1152  * allocation of inode.
1153  *
1154  * If the inode is not in cache, insert the pre-allocated inode to cache and
1155  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1156  * to fill it in before unlocking it via unlock_new_inode().
1157  *
1158  * Note both @test and @set are called with the inode_hash_lock held, so can't
1159  * sleep.
1160  */
1161 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1162                 int (*test)(struct inode *, void *),
1163                 int (*set)(struct inode *, void *), void *data)
1164 {
1165     struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1166     struct inode *old;
1167 
1168 again:
1169     spin_lock(&inode_hash_lock);
1170     old = find_inode(inode->i_sb, head, test, data);
1171     if (unlikely(old)) {
1172         /*
1173          * Uhhuh, somebody else created the same inode under us.
1174          * Use the old inode instead of the preallocated one.
1175          */
1176         spin_unlock(&inode_hash_lock);
1177         if (IS_ERR(old))
1178             return NULL;
1179         wait_on_inode(old);
1180         if (unlikely(inode_unhashed(old))) {
1181             iput(old);
1182             goto again;
1183         }
1184         return old;
1185     }
1186 
1187     if (set && unlikely(set(inode, data))) {
1188         inode = NULL;
1189         goto unlock;
1190     }
1191 
1192     /*
1193      * Return the locked inode with I_NEW set, the
1194      * caller is responsible for filling in the contents
1195      */
1196     spin_lock(&inode->i_lock);
1197     inode->i_state |= I_NEW;
1198     hlist_add_head_rcu(&inode->i_hash, head);
1199     spin_unlock(&inode->i_lock);
1200 
1201     /*
1202      * Add inode to the sb list if it's not already. It has I_NEW at this
1203      * point, so it should be safe to test i_sb_list locklessly.
1204      */
1205     if (list_empty(&inode->i_sb_list))
1206         inode_sb_list_add(inode);
1207 unlock:
1208     spin_unlock(&inode_hash_lock);
1209 
1210     return inode;
1211 }
1212 EXPORT_SYMBOL(inode_insert5);
1213 
1214 /**
1215  * iget5_locked - obtain an inode from a mounted file system
1216  * @sb:     super block of file system
1217  * @hashval:    hash value (usually inode number) to get
1218  * @test:   callback used for comparisons between inodes
1219  * @set:    callback used to initialize a new struct inode
1220  * @data:   opaque data pointer to pass to @test and @set
1221  *
1222  * Search for the inode specified by @hashval and @data in the inode cache,
1223  * and if present it is return it with an increased reference count. This is
1224  * a generalized version of iget_locked() for file systems where the inode
1225  * number is not sufficient for unique identification of an inode.
1226  *
1227  * If the inode is not in cache, allocate a new inode and return it locked,
1228  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1229  * before unlocking it via unlock_new_inode().
1230  *
1231  * Note both @test and @set are called with the inode_hash_lock held, so can't
1232  * sleep.
1233  */
1234 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1235         int (*test)(struct inode *, void *),
1236         int (*set)(struct inode *, void *), void *data)
1237 {
1238     struct inode *inode = ilookup5(sb, hashval, test, data);
1239 
1240     if (!inode) {
1241         struct inode *new = alloc_inode(sb);
1242 
1243         if (new) {
1244             new->i_state = 0;
1245             inode = inode_insert5(new, hashval, test, set, data);
1246             if (unlikely(inode != new))
1247                 destroy_inode(new);
1248         }
1249     }
1250     return inode;
1251 }
1252 EXPORT_SYMBOL(iget5_locked);
1253 
1254 /**
1255  * iget_locked - obtain an inode from a mounted file system
1256  * @sb:     super block of file system
1257  * @ino:    inode number to get
1258  *
1259  * Search for the inode specified by @ino in the inode cache and if present
1260  * return it with an increased reference count. This is for file systems
1261  * where the inode number is sufficient for unique identification of an inode.
1262  *
1263  * If the inode is not in cache, allocate a new inode and return it locked,
1264  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1265  * before unlocking it via unlock_new_inode().
1266  */
1267 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1268 {
1269     struct hlist_head *head = inode_hashtable + hash(sb, ino);
1270     struct inode *inode;
1271 again:
1272     spin_lock(&inode_hash_lock);
1273     inode = find_inode_fast(sb, head, ino);
1274     spin_unlock(&inode_hash_lock);
1275     if (inode) {
1276         if (IS_ERR(inode))
1277             return NULL;
1278         wait_on_inode(inode);
1279         if (unlikely(inode_unhashed(inode))) {
1280             iput(inode);
1281             goto again;
1282         }
1283         return inode;
1284     }
1285 
1286     inode = alloc_inode(sb);
1287     if (inode) {
1288         struct inode *old;
1289 
1290         spin_lock(&inode_hash_lock);
1291         /* We released the lock, so.. */
1292         old = find_inode_fast(sb, head, ino);
1293         if (!old) {
1294             inode->i_ino = ino;
1295             spin_lock(&inode->i_lock);
1296             inode->i_state = I_NEW;
1297             hlist_add_head_rcu(&inode->i_hash, head);
1298             spin_unlock(&inode->i_lock);
1299             inode_sb_list_add(inode);
1300             spin_unlock(&inode_hash_lock);
1301 
1302             /* Return the locked inode with I_NEW set, the
1303              * caller is responsible for filling in the contents
1304              */
1305             return inode;
1306         }
1307 
1308         /*
1309          * Uhhuh, somebody else created the same inode under
1310          * us. Use the old inode instead of the one we just
1311          * allocated.
1312          */
1313         spin_unlock(&inode_hash_lock);
1314         destroy_inode(inode);
1315         if (IS_ERR(old))
1316             return NULL;
1317         inode = old;
1318         wait_on_inode(inode);
1319         if (unlikely(inode_unhashed(inode))) {
1320             iput(inode);
1321             goto again;
1322         }
1323     }
1324     return inode;
1325 }
1326 EXPORT_SYMBOL(iget_locked);
1327 
1328 /*
1329  * search the inode cache for a matching inode number.
1330  * If we find one, then the inode number we are trying to
1331  * allocate is not unique and so we should not use it.
1332  *
1333  * Returns 1 if the inode number is unique, 0 if it is not.
1334  */
1335 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1336 {
1337     struct hlist_head *b = inode_hashtable + hash(sb, ino);
1338     struct inode *inode;
1339 
1340     hlist_for_each_entry_rcu(inode, b, i_hash) {
1341         if (inode->i_ino == ino && inode->i_sb == sb)
1342             return 0;
1343     }
1344     return 1;
1345 }
1346 
1347 /**
1348  *  iunique - get a unique inode number
1349  *  @sb: superblock
1350  *  @max_reserved: highest reserved inode number
1351  *
1352  *  Obtain an inode number that is unique on the system for a given
1353  *  superblock. This is used by file systems that have no natural
1354  *  permanent inode numbering system. An inode number is returned that
1355  *  is higher than the reserved limit but unique.
1356  *
1357  *  BUGS:
1358  *  With a large number of inodes live on the file system this function
1359  *  currently becomes quite slow.
1360  */
1361 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1362 {
1363     /*
1364      * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1365      * error if st_ino won't fit in target struct field. Use 32bit counter
1366      * here to attempt to avoid that.
1367      */
1368     static DEFINE_SPINLOCK(iunique_lock);
1369     static unsigned int counter;
1370     ino_t res;
1371 
1372     rcu_read_lock();
1373     spin_lock(&iunique_lock);
1374     do {
1375         if (counter <= max_reserved)
1376             counter = max_reserved + 1;
1377         res = counter++;
1378     } while (!test_inode_iunique(sb, res));
1379     spin_unlock(&iunique_lock);
1380     rcu_read_unlock();
1381 
1382     return res;
1383 }
1384 EXPORT_SYMBOL(iunique);
1385 
1386 struct inode *igrab(struct inode *inode)
1387 {
1388     spin_lock(&inode->i_lock);
1389     if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1390         __iget(inode);
1391         spin_unlock(&inode->i_lock);
1392     } else {
1393         spin_unlock(&inode->i_lock);
1394         /*
1395          * Handle the case where s_op->clear_inode is not been
1396          * called yet, and somebody is calling igrab
1397          * while the inode is getting freed.
1398          */
1399         inode = NULL;
1400     }
1401     return inode;
1402 }
1403 EXPORT_SYMBOL(igrab);
1404 
1405 /**
1406  * ilookup5_nowait - search for an inode in the inode cache
1407  * @sb:     super block of file system to search
1408  * @hashval:    hash value (usually inode number) to search for
1409  * @test:   callback used for comparisons between inodes
1410  * @data:   opaque data pointer to pass to @test
1411  *
1412  * Search for the inode specified by @hashval and @data in the inode cache.
1413  * If the inode is in the cache, the inode is returned with an incremented
1414  * reference count.
1415  *
1416  * Note: I_NEW is not waited upon so you have to be very careful what you do
1417  * with the returned inode.  You probably should be using ilookup5() instead.
1418  *
1419  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1420  */
1421 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1422         int (*test)(struct inode *, void *), void *data)
1423 {
1424     struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1425     struct inode *inode;
1426 
1427     spin_lock(&inode_hash_lock);
1428     inode = find_inode(sb, head, test, data);
1429     spin_unlock(&inode_hash_lock);
1430 
1431     return IS_ERR(inode) ? NULL : inode;
1432 }
1433 EXPORT_SYMBOL(ilookup5_nowait);
1434 
1435 /**
1436  * ilookup5 - search for an inode in the inode cache
1437  * @sb:     super block of file system to search
1438  * @hashval:    hash value (usually inode number) to search for
1439  * @test:   callback used for comparisons between inodes
1440  * @data:   opaque data pointer to pass to @test
1441  *
1442  * Search for the inode specified by @hashval and @data in the inode cache,
1443  * and if the inode is in the cache, return the inode with an incremented
1444  * reference count.  Waits on I_NEW before returning the inode.
1445  * returned with an incremented reference count.
1446  *
1447  * This is a generalized version of ilookup() for file systems where the
1448  * inode number is not sufficient for unique identification of an inode.
1449  *
1450  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1451  */
1452 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1453         int (*test)(struct inode *, void *), void *data)
1454 {
1455     struct inode *inode;
1456 again:
1457     inode = ilookup5_nowait(sb, hashval, test, data);
1458     if (inode) {
1459         wait_on_inode(inode);
1460         if (unlikely(inode_unhashed(inode))) {
1461             iput(inode);
1462             goto again;
1463         }
1464     }
1465     return inode;
1466 }
1467 EXPORT_SYMBOL(ilookup5);
1468 
1469 /**
1470  * ilookup - search for an inode in the inode cache
1471  * @sb:     super block of file system to search
1472  * @ino:    inode number to search for
1473  *
1474  * Search for the inode @ino in the inode cache, and if the inode is in the
1475  * cache, the inode is returned with an incremented reference count.
1476  */
1477 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1478 {
1479     struct hlist_head *head = inode_hashtable + hash(sb, ino);
1480     struct inode *inode;
1481 again:
1482     spin_lock(&inode_hash_lock);
1483     inode = find_inode_fast(sb, head, ino);
1484     spin_unlock(&inode_hash_lock);
1485 
1486     if (inode) {
1487         if (IS_ERR(inode))
1488             return NULL;
1489         wait_on_inode(inode);
1490         if (unlikely(inode_unhashed(inode))) {
1491             iput(inode);
1492             goto again;
1493         }
1494     }
1495     return inode;
1496 }
1497 EXPORT_SYMBOL(ilookup);
1498 
1499 /**
1500  * find_inode_nowait - find an inode in the inode cache
1501  * @sb:     super block of file system to search
1502  * @hashval:    hash value (usually inode number) to search for
1503  * @match:  callback used for comparisons between inodes
1504  * @data:   opaque data pointer to pass to @match
1505  *
1506  * Search for the inode specified by @hashval and @data in the inode
1507  * cache, where the helper function @match will return 0 if the inode
1508  * does not match, 1 if the inode does match, and -1 if the search
1509  * should be stopped.  The @match function must be responsible for
1510  * taking the i_lock spin_lock and checking i_state for an inode being
1511  * freed or being initialized, and incrementing the reference count
1512  * before returning 1.  It also must not sleep, since it is called with
1513  * the inode_hash_lock spinlock held.
1514  *
1515  * This is a even more generalized version of ilookup5() when the
1516  * function must never block --- find_inode() can block in
1517  * __wait_on_freeing_inode() --- or when the caller can not increment
1518  * the reference count because the resulting iput() might cause an
1519  * inode eviction.  The tradeoff is that the @match funtion must be
1520  * very carefully implemented.
1521  */
1522 struct inode *find_inode_nowait(struct super_block *sb,
1523                 unsigned long hashval,
1524                 int (*match)(struct inode *, unsigned long,
1525                          void *),
1526                 void *data)
1527 {
1528     struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1529     struct inode *inode, *ret_inode = NULL;
1530     int mval;
1531 
1532     spin_lock(&inode_hash_lock);
1533     hlist_for_each_entry(inode, head, i_hash) {
1534         if (inode->i_sb != sb)
1535             continue;
1536         mval = match(inode, hashval, data);
1537         if (mval == 0)
1538             continue;
1539         if (mval == 1)
1540             ret_inode = inode;
1541         goto out;
1542     }
1543 out:
1544     spin_unlock(&inode_hash_lock);
1545     return ret_inode;
1546 }
1547 EXPORT_SYMBOL(find_inode_nowait);
1548 
1549 /**
1550  * find_inode_rcu - find an inode in the inode cache
1551  * @sb:     Super block of file system to search
1552  * @hashval:    Key to hash
1553  * @test:   Function to test match on an inode
1554  * @data:   Data for test function
1555  *
1556  * Search for the inode specified by @hashval and @data in the inode cache,
1557  * where the helper function @test will return 0 if the inode does not match
1558  * and 1 if it does.  The @test function must be responsible for taking the
1559  * i_lock spin_lock and checking i_state for an inode being freed or being
1560  * initialized.
1561  *
1562  * If successful, this will return the inode for which the @test function
1563  * returned 1 and NULL otherwise.
1564  *
1565  * The @test function is not permitted to take a ref on any inode presented.
1566  * It is also not permitted to sleep.
1567  *
1568  * The caller must hold the RCU read lock.
1569  */
1570 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1571                  int (*test)(struct inode *, void *), void *data)
1572 {
1573     struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1574     struct inode *inode;
1575 
1576     RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1577              "suspicious find_inode_rcu() usage");
1578 
1579     hlist_for_each_entry_rcu(inode, head, i_hash) {
1580         if (inode->i_sb == sb &&
1581             !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1582             test(inode, data))
1583             return inode;
1584     }
1585     return NULL;
1586 }
1587 EXPORT_SYMBOL(find_inode_rcu);
1588 
1589 /**
1590  * find_inode_by_ino_rcu - Find an inode in the inode cache
1591  * @sb:     Super block of file system to search
1592  * @ino:    The inode number to match
1593  *
1594  * Search for the inode specified by @hashval and @data in the inode cache,
1595  * where the helper function @test will return 0 if the inode does not match
1596  * and 1 if it does.  The @test function must be responsible for taking the
1597  * i_lock spin_lock and checking i_state for an inode being freed or being
1598  * initialized.
1599  *
1600  * If successful, this will return the inode for which the @test function
1601  * returned 1 and NULL otherwise.
1602  *
1603  * The @test function is not permitted to take a ref on any inode presented.
1604  * It is also not permitted to sleep.
1605  *
1606  * The caller must hold the RCU read lock.
1607  */
1608 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1609                     unsigned long ino)
1610 {
1611     struct hlist_head *head = inode_hashtable + hash(sb, ino);
1612     struct inode *inode;
1613 
1614     RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1615              "suspicious find_inode_by_ino_rcu() usage");
1616 
1617     hlist_for_each_entry_rcu(inode, head, i_hash) {
1618         if (inode->i_ino == ino &&
1619             inode->i_sb == sb &&
1620             !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1621             return inode;
1622     }
1623     return NULL;
1624 }
1625 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1626 
1627 int insert_inode_locked(struct inode *inode)
1628 {
1629     struct super_block *sb = inode->i_sb;
1630     ino_t ino = inode->i_ino;
1631     struct hlist_head *head = inode_hashtable + hash(sb, ino);
1632 
1633     while (1) {
1634         struct inode *old = NULL;
1635         spin_lock(&inode_hash_lock);
1636         hlist_for_each_entry(old, head, i_hash) {
1637             if (old->i_ino != ino)
1638                 continue;
1639             if (old->i_sb != sb)
1640                 continue;
1641             spin_lock(&old->i_lock);
1642             if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1643                 spin_unlock(&old->i_lock);
1644                 continue;
1645             }
1646             break;
1647         }
1648         if (likely(!old)) {
1649             spin_lock(&inode->i_lock);
1650             inode->i_state |= I_NEW | I_CREATING;
1651             hlist_add_head_rcu(&inode->i_hash, head);
1652             spin_unlock(&inode->i_lock);
1653             spin_unlock(&inode_hash_lock);
1654             return 0;
1655         }
1656         if (unlikely(old->i_state & I_CREATING)) {
1657             spin_unlock(&old->i_lock);
1658             spin_unlock(&inode_hash_lock);
1659             return -EBUSY;
1660         }
1661         __iget(old);
1662         spin_unlock(&old->i_lock);
1663         spin_unlock(&inode_hash_lock);
1664         wait_on_inode(old);
1665         if (unlikely(!inode_unhashed(old))) {
1666             iput(old);
1667             return -EBUSY;
1668         }
1669         iput(old);
1670     }
1671 }
1672 EXPORT_SYMBOL(insert_inode_locked);
1673 
1674 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1675         int (*test)(struct inode *, void *), void *data)
1676 {
1677     struct inode *old;
1678 
1679     inode->i_state |= I_CREATING;
1680     old = inode_insert5(inode, hashval, test, NULL, data);
1681 
1682     if (old != inode) {
1683         iput(old);
1684         return -EBUSY;
1685     }
1686     return 0;
1687 }
1688 EXPORT_SYMBOL(insert_inode_locked4);
1689 
1690 
1691 int generic_delete_inode(struct inode *inode)
1692 {
1693     return 1;
1694 }
1695 EXPORT_SYMBOL(generic_delete_inode);
1696 
1697 /*
1698  * Called when we're dropping the last reference
1699  * to an inode.
1700  *
1701  * Call the FS "drop_inode()" function, defaulting to
1702  * the legacy UNIX filesystem behaviour.  If it tells
1703  * us to evict inode, do so.  Otherwise, retain inode
1704  * in cache if fs is alive, sync and evict if fs is
1705  * shutting down.
1706  */
1707 static void iput_final(struct inode *inode)
1708 {
1709     struct super_block *sb = inode->i_sb;
1710     const struct super_operations *op = inode->i_sb->s_op;
1711     unsigned long state;
1712     int drop;
1713 
1714     WARN_ON(inode->i_state & I_NEW);
1715 
1716     if (op->drop_inode)
1717         drop = op->drop_inode(inode);
1718     else
1719         drop = generic_drop_inode(inode);
1720 
1721     if (!drop &&
1722         !(inode->i_state & I_DONTCACHE) &&
1723         (sb->s_flags & SB_ACTIVE)) {
1724         __inode_add_lru(inode, true);
1725         spin_unlock(&inode->i_lock);
1726         return;
1727     }
1728 
1729     state = inode->i_state;
1730     if (!drop) {
1731         WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1732         spin_unlock(&inode->i_lock);
1733 
1734         write_inode_now(inode, 1);
1735 
1736         spin_lock(&inode->i_lock);
1737         state = inode->i_state;
1738         WARN_ON(state & I_NEW);
1739         state &= ~I_WILL_FREE;
1740     }
1741 
1742     WRITE_ONCE(inode->i_state, state | I_FREEING);
1743     if (!list_empty(&inode->i_lru))
1744         inode_lru_list_del(inode);
1745     spin_unlock(&inode->i_lock);
1746 
1747     evict(inode);
1748 }
1749 
1750 /**
1751  *  iput    - put an inode
1752  *  @inode: inode to put
1753  *
1754  *  Puts an inode, dropping its usage count. If the inode use count hits
1755  *  zero, the inode is then freed and may also be destroyed.
1756  *
1757  *  Consequently, iput() can sleep.
1758  */
1759 void iput(struct inode *inode)
1760 {
1761     if (!inode)
1762         return;
1763     BUG_ON(inode->i_state & I_CLEAR);
1764 retry:
1765     if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1766         if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1767             atomic_inc(&inode->i_count);
1768             spin_unlock(&inode->i_lock);
1769             trace_writeback_lazytime_iput(inode);
1770             mark_inode_dirty_sync(inode);
1771             goto retry;
1772         }
1773         iput_final(inode);
1774     }
1775 }
1776 EXPORT_SYMBOL(iput);
1777 
1778 #ifdef CONFIG_BLOCK
1779 /**
1780  *  bmap    - find a block number in a file
1781  *  @inode:  inode owning the block number being requested
1782  *  @block: pointer containing the block to find
1783  *
1784  *  Replaces the value in ``*block`` with the block number on the device holding
1785  *  corresponding to the requested block number in the file.
1786  *  That is, asked for block 4 of inode 1 the function will replace the
1787  *  4 in ``*block``, with disk block relative to the disk start that holds that
1788  *  block of the file.
1789  *
1790  *  Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1791  *  hole, returns 0 and ``*block`` is also set to 0.
1792  */
1793 int bmap(struct inode *inode, sector_t *block)
1794 {
1795     if (!inode->i_mapping->a_ops->bmap)
1796         return -EINVAL;
1797 
1798     *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1799     return 0;
1800 }
1801 EXPORT_SYMBOL(bmap);
1802 #endif
1803 
1804 /*
1805  * With relative atime, only update atime if the previous atime is
1806  * earlier than either the ctime or mtime or if at least a day has
1807  * passed since the last atime update.
1808  */
1809 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1810                  struct timespec64 now)
1811 {
1812 
1813     if (!(mnt->mnt_flags & MNT_RELATIME))
1814         return 1;
1815     /*
1816      * Is mtime younger than atime? If yes, update atime:
1817      */
1818     if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1819         return 1;
1820     /*
1821      * Is ctime younger than atime? If yes, update atime:
1822      */
1823     if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1824         return 1;
1825 
1826     /*
1827      * Is the previous atime value older than a day? If yes,
1828      * update atime:
1829      */
1830     if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1831         return 1;
1832     /*
1833      * Good, we can skip the atime update:
1834      */
1835     return 0;
1836 }
1837 
1838 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1839 {
1840     int dirty_flags = 0;
1841 
1842     if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1843         if (flags & S_ATIME)
1844             inode->i_atime = *time;
1845         if (flags & S_CTIME)
1846             inode->i_ctime = *time;
1847         if (flags & S_MTIME)
1848             inode->i_mtime = *time;
1849 
1850         if (inode->i_sb->s_flags & SB_LAZYTIME)
1851             dirty_flags |= I_DIRTY_TIME;
1852         else
1853             dirty_flags |= I_DIRTY_SYNC;
1854     }
1855 
1856     if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1857         dirty_flags |= I_DIRTY_SYNC;
1858 
1859     __mark_inode_dirty(inode, dirty_flags);
1860     return 0;
1861 }
1862 EXPORT_SYMBOL(generic_update_time);
1863 
1864 /*
1865  * This does the actual work of updating an inodes time or version.  Must have
1866  * had called mnt_want_write() before calling this.
1867  */
1868 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1869 {
1870     if (inode->i_op->update_time)
1871         return inode->i_op->update_time(inode, time, flags);
1872     return generic_update_time(inode, time, flags);
1873 }
1874 EXPORT_SYMBOL(inode_update_time);
1875 
1876 /**
1877  *  atime_needs_update  -   update the access time
1878  *  @path: the &struct path to update
1879  *  @inode: inode to update
1880  *
1881  *  Update the accessed time on an inode and mark it for writeback.
1882  *  This function automatically handles read only file systems and media,
1883  *  as well as the "noatime" flag and inode specific "noatime" markers.
1884  */
1885 bool atime_needs_update(const struct path *path, struct inode *inode)
1886 {
1887     struct vfsmount *mnt = path->mnt;
1888     struct timespec64 now;
1889 
1890     if (inode->i_flags & S_NOATIME)
1891         return false;
1892 
1893     /* Atime updates will likely cause i_uid and i_gid to be written
1894      * back improprely if their true value is unknown to the vfs.
1895      */
1896     if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1897         return false;
1898 
1899     if (IS_NOATIME(inode))
1900         return false;
1901     if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1902         return false;
1903 
1904     if (mnt->mnt_flags & MNT_NOATIME)
1905         return false;
1906     if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1907         return false;
1908 
1909     now = current_time(inode);
1910 
1911     if (!relatime_need_update(mnt, inode, now))
1912         return false;
1913 
1914     if (timespec64_equal(&inode->i_atime, &now))
1915         return false;
1916 
1917     return true;
1918 }
1919 
1920 void touch_atime(const struct path *path)
1921 {
1922     struct vfsmount *mnt = path->mnt;
1923     struct inode *inode = d_inode(path->dentry);
1924     struct timespec64 now;
1925 
1926     if (!atime_needs_update(path, inode))
1927         return;
1928 
1929     if (!sb_start_write_trylock(inode->i_sb))
1930         return;
1931 
1932     if (__mnt_want_write(mnt) != 0)
1933         goto skip_update;
1934     /*
1935      * File systems can error out when updating inodes if they need to
1936      * allocate new space to modify an inode (such is the case for
1937      * Btrfs), but since we touch atime while walking down the path we
1938      * really don't care if we failed to update the atime of the file,
1939      * so just ignore the return value.
1940      * We may also fail on filesystems that have the ability to make parts
1941      * of the fs read only, e.g. subvolumes in Btrfs.
1942      */
1943     now = current_time(inode);
1944     inode_update_time(inode, &now, S_ATIME);
1945     __mnt_drop_write(mnt);
1946 skip_update:
1947     sb_end_write(inode->i_sb);
1948 }
1949 EXPORT_SYMBOL(touch_atime);
1950 
1951 /*
1952  * The logic we want is
1953  *
1954  *  if suid or (sgid and xgrp)
1955  *      remove privs
1956  */
1957 int should_remove_suid(struct dentry *dentry)
1958 {
1959     umode_t mode = d_inode(dentry)->i_mode;
1960     int kill = 0;
1961 
1962     /* suid always must be killed */
1963     if (unlikely(mode & S_ISUID))
1964         kill = ATTR_KILL_SUID;
1965 
1966     /*
1967      * sgid without any exec bits is just a mandatory locking mark; leave
1968      * it alone.  If some exec bits are set, it's a real sgid; kill it.
1969      */
1970     if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1971         kill |= ATTR_KILL_SGID;
1972 
1973     if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1974         return kill;
1975 
1976     return 0;
1977 }
1978 EXPORT_SYMBOL(should_remove_suid);
1979 
1980 /*
1981  * Return mask of changes for notify_change() that need to be done as a
1982  * response to write or truncate. Return 0 if nothing has to be changed.
1983  * Negative value on error (change should be denied).
1984  */
1985 int dentry_needs_remove_privs(struct dentry *dentry)
1986 {
1987     struct inode *inode = d_inode(dentry);
1988     int mask = 0;
1989     int ret;
1990 
1991     if (IS_NOSEC(inode))
1992         return 0;
1993 
1994     mask = should_remove_suid(dentry);
1995     ret = security_inode_need_killpriv(dentry);
1996     if (ret < 0)
1997         return ret;
1998     if (ret)
1999         mask |= ATTR_KILL_PRIV;
2000     return mask;
2001 }
2002 
2003 static int __remove_privs(struct user_namespace *mnt_userns,
2004               struct dentry *dentry, int kill)
2005 {
2006     struct iattr newattrs;
2007 
2008     newattrs.ia_valid = ATTR_FORCE | kill;
2009     /*
2010      * Note we call this on write, so notify_change will not
2011      * encounter any conflicting delegations:
2012      */
2013     return notify_change(mnt_userns, dentry, &newattrs, NULL);
2014 }
2015 
2016 static int __file_remove_privs(struct file *file, unsigned int flags)
2017 {
2018     struct dentry *dentry = file_dentry(file);
2019     struct inode *inode = file_inode(file);
2020     int error = 0;
2021     int kill;
2022 
2023     if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2024         return 0;
2025 
2026     kill = dentry_needs_remove_privs(dentry);
2027     if (kill < 0)
2028         return kill;
2029 
2030     if (kill) {
2031         if (flags & IOCB_NOWAIT)
2032             return -EAGAIN;
2033 
2034         error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2035     }
2036 
2037     if (!error)
2038         inode_has_no_xattr(inode);
2039     return error;
2040 }
2041 
2042 /**
2043  * file_remove_privs - remove special file privileges (suid, capabilities)
2044  * @file: file to remove privileges from
2045  *
2046  * When file is modified by a write or truncation ensure that special
2047  * file privileges are removed.
2048  *
2049  * Return: 0 on success, negative errno on failure.
2050  */
2051 int file_remove_privs(struct file *file)
2052 {
2053     return __file_remove_privs(file, 0);
2054 }
2055 EXPORT_SYMBOL(file_remove_privs);
2056 
2057 static int inode_needs_update_time(struct inode *inode, struct timespec64 *now)
2058 {
2059     int sync_it = 0;
2060 
2061     /* First try to exhaust all avenues to not sync */
2062     if (IS_NOCMTIME(inode))
2063         return 0;
2064 
2065     if (!timespec64_equal(&inode->i_mtime, now))
2066         sync_it = S_MTIME;
2067 
2068     if (!timespec64_equal(&inode->i_ctime, now))
2069         sync_it |= S_CTIME;
2070 
2071     if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2072         sync_it |= S_VERSION;
2073 
2074     if (!sync_it)
2075         return 0;
2076 
2077     return sync_it;
2078 }
2079 
2080 static int __file_update_time(struct file *file, struct timespec64 *now,
2081             int sync_mode)
2082 {
2083     int ret = 0;
2084     struct inode *inode = file_inode(file);
2085 
2086     /* try to update time settings */
2087     if (!__mnt_want_write_file(file)) {
2088         ret = inode_update_time(inode, now, sync_mode);
2089         __mnt_drop_write_file(file);
2090     }
2091 
2092     return ret;
2093 }
2094 
2095 /**
2096  * file_update_time - update mtime and ctime time
2097  * @file: file accessed
2098  *
2099  * Update the mtime and ctime members of an inode and mark the inode for
2100  * writeback. Note that this function is meant exclusively for usage in
2101  * the file write path of filesystems, and filesystems may choose to
2102  * explicitly ignore updates via this function with the _NOCMTIME inode
2103  * flag, e.g. for network filesystem where these imestamps are handled
2104  * by the server. This can return an error for file systems who need to
2105  * allocate space in order to update an inode.
2106  *
2107  * Return: 0 on success, negative errno on failure.
2108  */
2109 int file_update_time(struct file *file)
2110 {
2111     int ret;
2112     struct inode *inode = file_inode(file);
2113     struct timespec64 now = current_time(inode);
2114 
2115     ret = inode_needs_update_time(inode, &now);
2116     if (ret <= 0)
2117         return ret;
2118 
2119     return __file_update_time(file, &now, ret);
2120 }
2121 EXPORT_SYMBOL(file_update_time);
2122 
2123 /**
2124  * file_modified_flags - handle mandated vfs changes when modifying a file
2125  * @file: file that was modified
2126  * @flags: kiocb flags
2127  *
2128  * When file has been modified ensure that special
2129  * file privileges are removed and time settings are updated.
2130  *
2131  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2132  * time settings will not be updated. It will return -EAGAIN.
2133  *
2134  * Context: Caller must hold the file's inode lock.
2135  *
2136  * Return: 0 on success, negative errno on failure.
2137  */
2138 static int file_modified_flags(struct file *file, int flags)
2139 {
2140     int ret;
2141     struct inode *inode = file_inode(file);
2142     struct timespec64 now = current_time(inode);
2143 
2144     /*
2145      * Clear the security bits if the process is not being run by root.
2146      * This keeps people from modifying setuid and setgid binaries.
2147      */
2148     ret = __file_remove_privs(file, flags);
2149     if (ret)
2150         return ret;
2151 
2152     if (unlikely(file->f_mode & FMODE_NOCMTIME))
2153         return 0;
2154 
2155     ret = inode_needs_update_time(inode, &now);
2156     if (ret <= 0)
2157         return ret;
2158     if (flags & IOCB_NOWAIT)
2159         return -EAGAIN;
2160 
2161     return __file_update_time(file, &now, ret);
2162 }
2163 
2164 /**
2165  * file_modified - handle mandated vfs changes when modifying a file
2166  * @file: file that was modified
2167  *
2168  * When file has been modified ensure that special
2169  * file privileges are removed and time settings are updated.
2170  *
2171  * Context: Caller must hold the file's inode lock.
2172  *
2173  * Return: 0 on success, negative errno on failure.
2174  */
2175 int file_modified(struct file *file)
2176 {
2177     return file_modified_flags(file, 0);
2178 }
2179 EXPORT_SYMBOL(file_modified);
2180 
2181 /**
2182  * kiocb_modified - handle mandated vfs changes when modifying a file
2183  * @iocb: iocb that was modified
2184  *
2185  * When file has been modified ensure that special
2186  * file privileges are removed and time settings are updated.
2187  *
2188  * Context: Caller must hold the file's inode lock.
2189  *
2190  * Return: 0 on success, negative errno on failure.
2191  */
2192 int kiocb_modified(struct kiocb *iocb)
2193 {
2194     return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2195 }
2196 EXPORT_SYMBOL_GPL(kiocb_modified);
2197 
2198 int inode_needs_sync(struct inode *inode)
2199 {
2200     if (IS_SYNC(inode))
2201         return 1;
2202     if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2203         return 1;
2204     return 0;
2205 }
2206 EXPORT_SYMBOL(inode_needs_sync);
2207 
2208 /*
2209  * If we try to find an inode in the inode hash while it is being
2210  * deleted, we have to wait until the filesystem completes its
2211  * deletion before reporting that it isn't found.  This function waits
2212  * until the deletion _might_ have completed.  Callers are responsible
2213  * to recheck inode state.
2214  *
2215  * It doesn't matter if I_NEW is not set initially, a call to
2216  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2217  * will DTRT.
2218  */
2219 static void __wait_on_freeing_inode(struct inode *inode)
2220 {
2221     wait_queue_head_t *wq;
2222     DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2223     wq = bit_waitqueue(&inode->i_state, __I_NEW);
2224     prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2225     spin_unlock(&inode->i_lock);
2226     spin_unlock(&inode_hash_lock);
2227     schedule();
2228     finish_wait(wq, &wait.wq_entry);
2229     spin_lock(&inode_hash_lock);
2230 }
2231 
2232 static __initdata unsigned long ihash_entries;
2233 static int __init set_ihash_entries(char *str)
2234 {
2235     if (!str)
2236         return 0;
2237     ihash_entries = simple_strtoul(str, &str, 0);
2238     return 1;
2239 }
2240 __setup("ihash_entries=", set_ihash_entries);
2241 
2242 /*
2243  * Initialize the waitqueues and inode hash table.
2244  */
2245 void __init inode_init_early(void)
2246 {
2247     /* If hashes are distributed across NUMA nodes, defer
2248      * hash allocation until vmalloc space is available.
2249      */
2250     if (hashdist)
2251         return;
2252 
2253     inode_hashtable =
2254         alloc_large_system_hash("Inode-cache",
2255                     sizeof(struct hlist_head),
2256                     ihash_entries,
2257                     14,
2258                     HASH_EARLY | HASH_ZERO,
2259                     &i_hash_shift,
2260                     &i_hash_mask,
2261                     0,
2262                     0);
2263 }
2264 
2265 void __init inode_init(void)
2266 {
2267     /* inode slab cache */
2268     inode_cachep = kmem_cache_create("inode_cache",
2269                      sizeof(struct inode),
2270                      0,
2271                      (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2272                      SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2273                      init_once);
2274 
2275     /* Hash may have been set up in inode_init_early */
2276     if (!hashdist)
2277         return;
2278 
2279     inode_hashtable =
2280         alloc_large_system_hash("Inode-cache",
2281                     sizeof(struct hlist_head),
2282                     ihash_entries,
2283                     14,
2284                     HASH_ZERO,
2285                     &i_hash_shift,
2286                     &i_hash_mask,
2287                     0,
2288                     0);
2289 }
2290 
2291 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2292 {
2293     inode->i_mode = mode;
2294     if (S_ISCHR(mode)) {
2295         inode->i_fop = &def_chr_fops;
2296         inode->i_rdev = rdev;
2297     } else if (S_ISBLK(mode)) {
2298         inode->i_fop = &def_blk_fops;
2299         inode->i_rdev = rdev;
2300     } else if (S_ISFIFO(mode))
2301         inode->i_fop = &pipefifo_fops;
2302     else if (S_ISSOCK(mode))
2303         ;   /* leave it no_open_fops */
2304     else
2305         printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2306                   " inode %s:%lu\n", mode, inode->i_sb->s_id,
2307                   inode->i_ino);
2308 }
2309 EXPORT_SYMBOL(init_special_inode);
2310 
2311 /**
2312  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2313  * @mnt_userns: User namespace of the mount the inode was created from
2314  * @inode: New inode
2315  * @dir: Directory inode
2316  * @mode: mode of the new inode
2317  *
2318  * If the inode has been created through an idmapped mount the user namespace of
2319  * the vfsmount must be passed through @mnt_userns. This function will then take
2320  * care to map the inode according to @mnt_userns before checking permissions
2321  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2322  * checking is to be performed on the raw inode simply passs init_user_ns.
2323  */
2324 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2325               const struct inode *dir, umode_t mode)
2326 {
2327     inode_fsuid_set(inode, mnt_userns);
2328     if (dir && dir->i_mode & S_ISGID) {
2329         inode->i_gid = dir->i_gid;
2330 
2331         /* Directories are special, and always inherit S_ISGID */
2332         if (S_ISDIR(mode))
2333             mode |= S_ISGID;
2334     } else
2335         inode_fsgid_set(inode, mnt_userns);
2336     inode->i_mode = mode;
2337 }
2338 EXPORT_SYMBOL(inode_init_owner);
2339 
2340 /**
2341  * inode_owner_or_capable - check current task permissions to inode
2342  * @mnt_userns: user namespace of the mount the inode was found from
2343  * @inode: inode being checked
2344  *
2345  * Return true if current either has CAP_FOWNER in a namespace with the
2346  * inode owner uid mapped, or owns the file.
2347  *
2348  * If the inode has been found through an idmapped mount the user namespace of
2349  * the vfsmount must be passed through @mnt_userns. This function will then take
2350  * care to map the inode according to @mnt_userns before checking permissions.
2351  * On non-idmapped mounts or if permission checking is to be performed on the
2352  * raw inode simply passs init_user_ns.
2353  */
2354 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2355                 const struct inode *inode)
2356 {
2357     kuid_t i_uid;
2358     struct user_namespace *ns;
2359 
2360     i_uid = i_uid_into_mnt(mnt_userns, inode);
2361     if (uid_eq(current_fsuid(), i_uid))
2362         return true;
2363 
2364     ns = current_user_ns();
2365     if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2366         return true;
2367     return false;
2368 }
2369 EXPORT_SYMBOL(inode_owner_or_capable);
2370 
2371 /*
2372  * Direct i/o helper functions
2373  */
2374 static void __inode_dio_wait(struct inode *inode)
2375 {
2376     wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2377     DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2378 
2379     do {
2380         prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2381         if (atomic_read(&inode->i_dio_count))
2382             schedule();
2383     } while (atomic_read(&inode->i_dio_count));
2384     finish_wait(wq, &q.wq_entry);
2385 }
2386 
2387 /**
2388  * inode_dio_wait - wait for outstanding DIO requests to finish
2389  * @inode: inode to wait for
2390  *
2391  * Waits for all pending direct I/O requests to finish so that we can
2392  * proceed with a truncate or equivalent operation.
2393  *
2394  * Must be called under a lock that serializes taking new references
2395  * to i_dio_count, usually by inode->i_mutex.
2396  */
2397 void inode_dio_wait(struct inode *inode)
2398 {
2399     if (atomic_read(&inode->i_dio_count))
2400         __inode_dio_wait(inode);
2401 }
2402 EXPORT_SYMBOL(inode_dio_wait);
2403 
2404 /*
2405  * inode_set_flags - atomically set some inode flags
2406  *
2407  * Note: the caller should be holding i_mutex, or else be sure that
2408  * they have exclusive access to the inode structure (i.e., while the
2409  * inode is being instantiated).  The reason for the cmpxchg() loop
2410  * --- which wouldn't be necessary if all code paths which modify
2411  * i_flags actually followed this rule, is that there is at least one
2412  * code path which doesn't today so we use cmpxchg() out of an abundance
2413  * of caution.
2414  *
2415  * In the long run, i_mutex is overkill, and we should probably look
2416  * at using the i_lock spinlock to protect i_flags, and then make sure
2417  * it is so documented in include/linux/fs.h and that all code follows
2418  * the locking convention!!
2419  */
2420 void inode_set_flags(struct inode *inode, unsigned int flags,
2421              unsigned int mask)
2422 {
2423     WARN_ON_ONCE(flags & ~mask);
2424     set_mask_bits(&inode->i_flags, mask, flags);
2425 }
2426 EXPORT_SYMBOL(inode_set_flags);
2427 
2428 void inode_nohighmem(struct inode *inode)
2429 {
2430     mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2431 }
2432 EXPORT_SYMBOL(inode_nohighmem);
2433 
2434 /**
2435  * timestamp_truncate - Truncate timespec to a granularity
2436  * @t: Timespec
2437  * @inode: inode being updated
2438  *
2439  * Truncate a timespec to the granularity supported by the fs
2440  * containing the inode. Always rounds down. gran must
2441  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2442  */
2443 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2444 {
2445     struct super_block *sb = inode->i_sb;
2446     unsigned int gran = sb->s_time_gran;
2447 
2448     t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2449     if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2450         t.tv_nsec = 0;
2451 
2452     /* Avoid division in the common cases 1 ns and 1 s. */
2453     if (gran == 1)
2454         ; /* nothing */
2455     else if (gran == NSEC_PER_SEC)
2456         t.tv_nsec = 0;
2457     else if (gran > 1 && gran < NSEC_PER_SEC)
2458         t.tv_nsec -= t.tv_nsec % gran;
2459     else
2460         WARN(1, "invalid file time granularity: %u", gran);
2461     return t;
2462 }
2463 EXPORT_SYMBOL(timestamp_truncate);
2464 
2465 /**
2466  * current_time - Return FS time
2467  * @inode: inode.
2468  *
2469  * Return the current time truncated to the time granularity supported by
2470  * the fs.
2471  *
2472  * Note that inode and inode->sb cannot be NULL.
2473  * Otherwise, the function warns and returns time without truncation.
2474  */
2475 struct timespec64 current_time(struct inode *inode)
2476 {
2477     struct timespec64 now;
2478 
2479     ktime_get_coarse_real_ts64(&now);
2480 
2481     if (unlikely(!inode->i_sb)) {
2482         WARN(1, "current_time() called with uninitialized super_block in the inode");
2483         return now;
2484     }
2485 
2486     return timestamp_truncate(now, inode);
2487 }
2488 EXPORT_SYMBOL(current_time);
2489 
2490 /**
2491  * mode_strip_sgid - handle the sgid bit for non-directories
2492  * @mnt_userns: User namespace of the mount the inode was created from
2493  * @dir: parent directory inode
2494  * @mode: mode of the file to be created in @dir
2495  *
2496  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2497  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2498  * either in the group of the parent directory or they have CAP_FSETID
2499  * in their user namespace and are privileged over the parent directory.
2500  * In all other cases, strip the S_ISGID bit from @mode.
2501  *
2502  * Return: the new mode to use for the file
2503  */
2504 umode_t mode_strip_sgid(struct user_namespace *mnt_userns,
2505             const struct inode *dir, umode_t mode)
2506 {
2507     if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2508         return mode;
2509     if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2510         return mode;
2511     if (in_group_p(i_gid_into_mnt(mnt_userns, dir)))
2512         return mode;
2513     if (capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2514         return mode;
2515 
2516     return mode & ~S_ISGID;
2517 }
2518 EXPORT_SYMBOL(mode_strip_sgid);