Back to home page

OSCL-LXR

 
 

    


0001 /*
0002   FUSE: Filesystem in Userspace
0003   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
0004 
0005   This program can be distributed under the terms of the GNU GPL.
0006   See the file COPYING.
0007 */
0008 
0009 #include "fuse_i.h"
0010 
0011 #include <linux/pagemap.h>
0012 #include <linux/slab.h>
0013 #include <linux/kernel.h>
0014 #include <linux/sched.h>
0015 #include <linux/sched/signal.h>
0016 #include <linux/module.h>
0017 #include <linux/swap.h>
0018 #include <linux/falloc.h>
0019 #include <linux/uio.h>
0020 #include <linux/fs.h>
0021 
0022 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid,
0023               unsigned int open_flags, int opcode,
0024               struct fuse_open_out *outargp)
0025 {
0026     struct fuse_open_in inarg;
0027     FUSE_ARGS(args);
0028 
0029     memset(&inarg, 0, sizeof(inarg));
0030     inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
0031     if (!fm->fc->atomic_o_trunc)
0032         inarg.flags &= ~O_TRUNC;
0033 
0034     if (fm->fc->handle_killpriv_v2 &&
0035         (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) {
0036         inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID;
0037     }
0038 
0039     args.opcode = opcode;
0040     args.nodeid = nodeid;
0041     args.in_numargs = 1;
0042     args.in_args[0].size = sizeof(inarg);
0043     args.in_args[0].value = &inarg;
0044     args.out_numargs = 1;
0045     args.out_args[0].size = sizeof(*outargp);
0046     args.out_args[0].value = outargp;
0047 
0048     return fuse_simple_request(fm, &args);
0049 }
0050 
0051 struct fuse_release_args {
0052     struct fuse_args args;
0053     struct fuse_release_in inarg;
0054     struct inode *inode;
0055 };
0056 
0057 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm)
0058 {
0059     struct fuse_file *ff;
0060 
0061     ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
0062     if (unlikely(!ff))
0063         return NULL;
0064 
0065     ff->fm = fm;
0066     ff->release_args = kzalloc(sizeof(*ff->release_args),
0067                    GFP_KERNEL_ACCOUNT);
0068     if (!ff->release_args) {
0069         kfree(ff);
0070         return NULL;
0071     }
0072 
0073     INIT_LIST_HEAD(&ff->write_entry);
0074     mutex_init(&ff->readdir.lock);
0075     refcount_set(&ff->count, 1);
0076     RB_CLEAR_NODE(&ff->polled_node);
0077     init_waitqueue_head(&ff->poll_wait);
0078 
0079     ff->kh = atomic64_inc_return(&fm->fc->khctr);
0080 
0081     return ff;
0082 }
0083 
0084 void fuse_file_free(struct fuse_file *ff)
0085 {
0086     kfree(ff->release_args);
0087     mutex_destroy(&ff->readdir.lock);
0088     kfree(ff);
0089 }
0090 
0091 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
0092 {
0093     refcount_inc(&ff->count);
0094     return ff;
0095 }
0096 
0097 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
0098                  int error)
0099 {
0100     struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
0101 
0102     iput(ra->inode);
0103     kfree(ra);
0104 }
0105 
0106 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
0107 {
0108     if (refcount_dec_and_test(&ff->count)) {
0109         struct fuse_args *args = &ff->release_args->args;
0110 
0111         if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) {
0112             /* Do nothing when client does not implement 'open' */
0113             fuse_release_end(ff->fm, args, 0);
0114         } else if (sync) {
0115             fuse_simple_request(ff->fm, args);
0116             fuse_release_end(ff->fm, args, 0);
0117         } else {
0118             args->end = fuse_release_end;
0119             if (fuse_simple_background(ff->fm, args,
0120                            GFP_KERNEL | __GFP_NOFAIL))
0121                 fuse_release_end(ff->fm, args, -ENOTCONN);
0122         }
0123         kfree(ff);
0124     }
0125 }
0126 
0127 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid,
0128                  unsigned int open_flags, bool isdir)
0129 {
0130     struct fuse_conn *fc = fm->fc;
0131     struct fuse_file *ff;
0132     int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
0133 
0134     ff = fuse_file_alloc(fm);
0135     if (!ff)
0136         return ERR_PTR(-ENOMEM);
0137 
0138     ff->fh = 0;
0139     /* Default for no-open */
0140     ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
0141     if (isdir ? !fc->no_opendir : !fc->no_open) {
0142         struct fuse_open_out outarg;
0143         int err;
0144 
0145         err = fuse_send_open(fm, nodeid, open_flags, opcode, &outarg);
0146         if (!err) {
0147             ff->fh = outarg.fh;
0148             ff->open_flags = outarg.open_flags;
0149 
0150         } else if (err != -ENOSYS) {
0151             fuse_file_free(ff);
0152             return ERR_PTR(err);
0153         } else {
0154             if (isdir)
0155                 fc->no_opendir = 1;
0156             else
0157                 fc->no_open = 1;
0158         }
0159     }
0160 
0161     if (isdir)
0162         ff->open_flags &= ~FOPEN_DIRECT_IO;
0163 
0164     ff->nodeid = nodeid;
0165 
0166     return ff;
0167 }
0168 
0169 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
0170          bool isdir)
0171 {
0172     struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir);
0173 
0174     if (!IS_ERR(ff))
0175         file->private_data = ff;
0176 
0177     return PTR_ERR_OR_ZERO(ff);
0178 }
0179 EXPORT_SYMBOL_GPL(fuse_do_open);
0180 
0181 static void fuse_link_write_file(struct file *file)
0182 {
0183     struct inode *inode = file_inode(file);
0184     struct fuse_inode *fi = get_fuse_inode(inode);
0185     struct fuse_file *ff = file->private_data;
0186     /*
0187      * file may be written through mmap, so chain it onto the
0188      * inodes's write_file list
0189      */
0190     spin_lock(&fi->lock);
0191     if (list_empty(&ff->write_entry))
0192         list_add(&ff->write_entry, &fi->write_files);
0193     spin_unlock(&fi->lock);
0194 }
0195 
0196 void fuse_finish_open(struct inode *inode, struct file *file)
0197 {
0198     struct fuse_file *ff = file->private_data;
0199     struct fuse_conn *fc = get_fuse_conn(inode);
0200 
0201     if (ff->open_flags & FOPEN_STREAM)
0202         stream_open(inode, file);
0203     else if (ff->open_flags & FOPEN_NONSEEKABLE)
0204         nonseekable_open(inode, file);
0205 
0206     if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
0207         struct fuse_inode *fi = get_fuse_inode(inode);
0208 
0209         spin_lock(&fi->lock);
0210         fi->attr_version = atomic64_inc_return(&fc->attr_version);
0211         i_size_write(inode, 0);
0212         spin_unlock(&fi->lock);
0213         file_update_time(file);
0214         fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
0215     }
0216     if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
0217         fuse_link_write_file(file);
0218 }
0219 
0220 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
0221 {
0222     struct fuse_mount *fm = get_fuse_mount(inode);
0223     struct fuse_conn *fc = fm->fc;
0224     int err;
0225     bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
0226               fc->atomic_o_trunc &&
0227               fc->writeback_cache;
0228     bool dax_truncate = (file->f_flags & O_TRUNC) &&
0229               fc->atomic_o_trunc && FUSE_IS_DAX(inode);
0230 
0231     if (fuse_is_bad(inode))
0232         return -EIO;
0233 
0234     err = generic_file_open(inode, file);
0235     if (err)
0236         return err;
0237 
0238     if (is_wb_truncate || dax_truncate)
0239         inode_lock(inode);
0240 
0241     if (dax_truncate) {
0242         filemap_invalidate_lock(inode->i_mapping);
0243         err = fuse_dax_break_layouts(inode, 0, 0);
0244         if (err)
0245             goto out_inode_unlock;
0246     }
0247 
0248     if (is_wb_truncate || dax_truncate)
0249         fuse_set_nowrite(inode);
0250 
0251     err = fuse_do_open(fm, get_node_id(inode), file, isdir);
0252     if (!err)
0253         fuse_finish_open(inode, file);
0254 
0255     if (is_wb_truncate || dax_truncate)
0256         fuse_release_nowrite(inode);
0257     if (!err) {
0258         struct fuse_file *ff = file->private_data;
0259 
0260         if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC))
0261             truncate_pagecache(inode, 0);
0262         else if (!(ff->open_flags & FOPEN_KEEP_CACHE))
0263             invalidate_inode_pages2(inode->i_mapping);
0264     }
0265     if (dax_truncate)
0266         filemap_invalidate_unlock(inode->i_mapping);
0267 out_inode_unlock:
0268     if (is_wb_truncate || dax_truncate)
0269         inode_unlock(inode);
0270 
0271     return err;
0272 }
0273 
0274 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
0275                  unsigned int flags, int opcode)
0276 {
0277     struct fuse_conn *fc = ff->fm->fc;
0278     struct fuse_release_args *ra = ff->release_args;
0279 
0280     /* Inode is NULL on error path of fuse_create_open() */
0281     if (likely(fi)) {
0282         spin_lock(&fi->lock);
0283         list_del(&ff->write_entry);
0284         spin_unlock(&fi->lock);
0285     }
0286     spin_lock(&fc->lock);
0287     if (!RB_EMPTY_NODE(&ff->polled_node))
0288         rb_erase(&ff->polled_node, &fc->polled_files);
0289     spin_unlock(&fc->lock);
0290 
0291     wake_up_interruptible_all(&ff->poll_wait);
0292 
0293     ra->inarg.fh = ff->fh;
0294     ra->inarg.flags = flags;
0295     ra->args.in_numargs = 1;
0296     ra->args.in_args[0].size = sizeof(struct fuse_release_in);
0297     ra->args.in_args[0].value = &ra->inarg;
0298     ra->args.opcode = opcode;
0299     ra->args.nodeid = ff->nodeid;
0300     ra->args.force = true;
0301     ra->args.nocreds = true;
0302 }
0303 
0304 void fuse_file_release(struct inode *inode, struct fuse_file *ff,
0305                unsigned int open_flags, fl_owner_t id, bool isdir)
0306 {
0307     struct fuse_inode *fi = get_fuse_inode(inode);
0308     struct fuse_release_args *ra = ff->release_args;
0309     int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
0310 
0311     fuse_prepare_release(fi, ff, open_flags, opcode);
0312 
0313     if (ff->flock) {
0314         ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
0315         ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id);
0316     }
0317     /* Hold inode until release is finished */
0318     ra->inode = igrab(inode);
0319 
0320     /*
0321      * Normally this will send the RELEASE request, however if
0322      * some asynchronous READ or WRITE requests are outstanding,
0323      * the sending will be delayed.
0324      *
0325      * Make the release synchronous if this is a fuseblk mount,
0326      * synchronous RELEASE is allowed (and desirable) in this case
0327      * because the server can be trusted not to screw up.
0328      */
0329     fuse_file_put(ff, ff->fm->fc->destroy, isdir);
0330 }
0331 
0332 void fuse_release_common(struct file *file, bool isdir)
0333 {
0334     fuse_file_release(file_inode(file), file->private_data, file->f_flags,
0335               (fl_owner_t) file, isdir);
0336 }
0337 
0338 static int fuse_open(struct inode *inode, struct file *file)
0339 {
0340     return fuse_open_common(inode, file, false);
0341 }
0342 
0343 static int fuse_release(struct inode *inode, struct file *file)
0344 {
0345     struct fuse_conn *fc = get_fuse_conn(inode);
0346 
0347     /*
0348      * Dirty pages might remain despite write_inode_now() call from
0349      * fuse_flush() due to writes racing with the close.
0350      */
0351     if (fc->writeback_cache)
0352         write_inode_now(inode, 1);
0353 
0354     fuse_release_common(file, false);
0355 
0356     /* return value is ignored by VFS */
0357     return 0;
0358 }
0359 
0360 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff,
0361                unsigned int flags)
0362 {
0363     WARN_ON(refcount_read(&ff->count) > 1);
0364     fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
0365     /*
0366      * iput(NULL) is a no-op and since the refcount is 1 and everything's
0367      * synchronous, we are fine with not doing igrab() here"
0368      */
0369     fuse_file_put(ff, true, false);
0370 }
0371 EXPORT_SYMBOL_GPL(fuse_sync_release);
0372 
0373 /*
0374  * Scramble the ID space with XTEA, so that the value of the files_struct
0375  * pointer is not exposed to userspace.
0376  */
0377 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
0378 {
0379     u32 *k = fc->scramble_key;
0380     u64 v = (unsigned long) id;
0381     u32 v0 = v;
0382     u32 v1 = v >> 32;
0383     u32 sum = 0;
0384     int i;
0385 
0386     for (i = 0; i < 32; i++) {
0387         v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
0388         sum += 0x9E3779B9;
0389         v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
0390     }
0391 
0392     return (u64) v0 + ((u64) v1 << 32);
0393 }
0394 
0395 struct fuse_writepage_args {
0396     struct fuse_io_args ia;
0397     struct rb_node writepages_entry;
0398     struct list_head queue_entry;
0399     struct fuse_writepage_args *next;
0400     struct inode *inode;
0401     struct fuse_sync_bucket *bucket;
0402 };
0403 
0404 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
0405                         pgoff_t idx_from, pgoff_t idx_to)
0406 {
0407     struct rb_node *n;
0408 
0409     n = fi->writepages.rb_node;
0410 
0411     while (n) {
0412         struct fuse_writepage_args *wpa;
0413         pgoff_t curr_index;
0414 
0415         wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
0416         WARN_ON(get_fuse_inode(wpa->inode) != fi);
0417         curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
0418         if (idx_from >= curr_index + wpa->ia.ap.num_pages)
0419             n = n->rb_right;
0420         else if (idx_to < curr_index)
0421             n = n->rb_left;
0422         else
0423             return wpa;
0424     }
0425     return NULL;
0426 }
0427 
0428 /*
0429  * Check if any page in a range is under writeback
0430  *
0431  * This is currently done by walking the list of writepage requests
0432  * for the inode, which can be pretty inefficient.
0433  */
0434 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
0435                    pgoff_t idx_to)
0436 {
0437     struct fuse_inode *fi = get_fuse_inode(inode);
0438     bool found;
0439 
0440     spin_lock(&fi->lock);
0441     found = fuse_find_writeback(fi, idx_from, idx_to);
0442     spin_unlock(&fi->lock);
0443 
0444     return found;
0445 }
0446 
0447 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
0448 {
0449     return fuse_range_is_writeback(inode, index, index);
0450 }
0451 
0452 /*
0453  * Wait for page writeback to be completed.
0454  *
0455  * Since fuse doesn't rely on the VM writeback tracking, this has to
0456  * use some other means.
0457  */
0458 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
0459 {
0460     struct fuse_inode *fi = get_fuse_inode(inode);
0461 
0462     wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
0463 }
0464 
0465 /*
0466  * Wait for all pending writepages on the inode to finish.
0467  *
0468  * This is currently done by blocking further writes with FUSE_NOWRITE
0469  * and waiting for all sent writes to complete.
0470  *
0471  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
0472  * could conflict with truncation.
0473  */
0474 static void fuse_sync_writes(struct inode *inode)
0475 {
0476     fuse_set_nowrite(inode);
0477     fuse_release_nowrite(inode);
0478 }
0479 
0480 static int fuse_flush(struct file *file, fl_owner_t id)
0481 {
0482     struct inode *inode = file_inode(file);
0483     struct fuse_mount *fm = get_fuse_mount(inode);
0484     struct fuse_file *ff = file->private_data;
0485     struct fuse_flush_in inarg;
0486     FUSE_ARGS(args);
0487     int err;
0488 
0489     if (fuse_is_bad(inode))
0490         return -EIO;
0491 
0492     if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache)
0493         return 0;
0494 
0495     err = write_inode_now(inode, 1);
0496     if (err)
0497         return err;
0498 
0499     inode_lock(inode);
0500     fuse_sync_writes(inode);
0501     inode_unlock(inode);
0502 
0503     err = filemap_check_errors(file->f_mapping);
0504     if (err)
0505         return err;
0506 
0507     err = 0;
0508     if (fm->fc->no_flush)
0509         goto inval_attr_out;
0510 
0511     memset(&inarg, 0, sizeof(inarg));
0512     inarg.fh = ff->fh;
0513     inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
0514     args.opcode = FUSE_FLUSH;
0515     args.nodeid = get_node_id(inode);
0516     args.in_numargs = 1;
0517     args.in_args[0].size = sizeof(inarg);
0518     args.in_args[0].value = &inarg;
0519     args.force = true;
0520 
0521     err = fuse_simple_request(fm, &args);
0522     if (err == -ENOSYS) {
0523         fm->fc->no_flush = 1;
0524         err = 0;
0525     }
0526 
0527 inval_attr_out:
0528     /*
0529      * In memory i_blocks is not maintained by fuse, if writeback cache is
0530      * enabled, i_blocks from cached attr may not be accurate.
0531      */
0532     if (!err && fm->fc->writeback_cache)
0533         fuse_invalidate_attr_mask(inode, STATX_BLOCKS);
0534     return err;
0535 }
0536 
0537 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
0538               int datasync, int opcode)
0539 {
0540     struct inode *inode = file->f_mapping->host;
0541     struct fuse_mount *fm = get_fuse_mount(inode);
0542     struct fuse_file *ff = file->private_data;
0543     FUSE_ARGS(args);
0544     struct fuse_fsync_in inarg;
0545 
0546     memset(&inarg, 0, sizeof(inarg));
0547     inarg.fh = ff->fh;
0548     inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
0549     args.opcode = opcode;
0550     args.nodeid = get_node_id(inode);
0551     args.in_numargs = 1;
0552     args.in_args[0].size = sizeof(inarg);
0553     args.in_args[0].value = &inarg;
0554     return fuse_simple_request(fm, &args);
0555 }
0556 
0557 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
0558               int datasync)
0559 {
0560     struct inode *inode = file->f_mapping->host;
0561     struct fuse_conn *fc = get_fuse_conn(inode);
0562     int err;
0563 
0564     if (fuse_is_bad(inode))
0565         return -EIO;
0566 
0567     inode_lock(inode);
0568 
0569     /*
0570      * Start writeback against all dirty pages of the inode, then
0571      * wait for all outstanding writes, before sending the FSYNC
0572      * request.
0573      */
0574     err = file_write_and_wait_range(file, start, end);
0575     if (err)
0576         goto out;
0577 
0578     fuse_sync_writes(inode);
0579 
0580     /*
0581      * Due to implementation of fuse writeback
0582      * file_write_and_wait_range() does not catch errors.
0583      * We have to do this directly after fuse_sync_writes()
0584      */
0585     err = file_check_and_advance_wb_err(file);
0586     if (err)
0587         goto out;
0588 
0589     err = sync_inode_metadata(inode, 1);
0590     if (err)
0591         goto out;
0592 
0593     if (fc->no_fsync)
0594         goto out;
0595 
0596     err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
0597     if (err == -ENOSYS) {
0598         fc->no_fsync = 1;
0599         err = 0;
0600     }
0601 out:
0602     inode_unlock(inode);
0603 
0604     return err;
0605 }
0606 
0607 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
0608              size_t count, int opcode)
0609 {
0610     struct fuse_file *ff = file->private_data;
0611     struct fuse_args *args = &ia->ap.args;
0612 
0613     ia->read.in.fh = ff->fh;
0614     ia->read.in.offset = pos;
0615     ia->read.in.size = count;
0616     ia->read.in.flags = file->f_flags;
0617     args->opcode = opcode;
0618     args->nodeid = ff->nodeid;
0619     args->in_numargs = 1;
0620     args->in_args[0].size = sizeof(ia->read.in);
0621     args->in_args[0].value = &ia->read.in;
0622     args->out_argvar = true;
0623     args->out_numargs = 1;
0624     args->out_args[0].size = count;
0625 }
0626 
0627 static void fuse_release_user_pages(struct fuse_args_pages *ap,
0628                     bool should_dirty)
0629 {
0630     unsigned int i;
0631 
0632     for (i = 0; i < ap->num_pages; i++) {
0633         if (should_dirty)
0634             set_page_dirty_lock(ap->pages[i]);
0635         put_page(ap->pages[i]);
0636     }
0637 }
0638 
0639 static void fuse_io_release(struct kref *kref)
0640 {
0641     kfree(container_of(kref, struct fuse_io_priv, refcnt));
0642 }
0643 
0644 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
0645 {
0646     if (io->err)
0647         return io->err;
0648 
0649     if (io->bytes >= 0 && io->write)
0650         return -EIO;
0651 
0652     return io->bytes < 0 ? io->size : io->bytes;
0653 }
0654 
0655 /**
0656  * In case of short read, the caller sets 'pos' to the position of
0657  * actual end of fuse request in IO request. Otherwise, if bytes_requested
0658  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
0659  *
0660  * An example:
0661  * User requested DIO read of 64K. It was split into two 32K fuse requests,
0662  * both submitted asynchronously. The first of them was ACKed by userspace as
0663  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
0664  * second request was ACKed as short, e.g. only 1K was read, resulting in
0665  * pos == 33K.
0666  *
0667  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
0668  * will be equal to the length of the longest contiguous fragment of
0669  * transferred data starting from the beginning of IO request.
0670  */
0671 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
0672 {
0673     int left;
0674 
0675     spin_lock(&io->lock);
0676     if (err)
0677         io->err = io->err ? : err;
0678     else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
0679         io->bytes = pos;
0680 
0681     left = --io->reqs;
0682     if (!left && io->blocking)
0683         complete(io->done);
0684     spin_unlock(&io->lock);
0685 
0686     if (!left && !io->blocking) {
0687         ssize_t res = fuse_get_res_by_io(io);
0688 
0689         if (res >= 0) {
0690             struct inode *inode = file_inode(io->iocb->ki_filp);
0691             struct fuse_conn *fc = get_fuse_conn(inode);
0692             struct fuse_inode *fi = get_fuse_inode(inode);
0693 
0694             spin_lock(&fi->lock);
0695             fi->attr_version = atomic64_inc_return(&fc->attr_version);
0696             spin_unlock(&fi->lock);
0697         }
0698 
0699         io->iocb->ki_complete(io->iocb, res);
0700     }
0701 
0702     kref_put(&io->refcnt, fuse_io_release);
0703 }
0704 
0705 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
0706                       unsigned int npages)
0707 {
0708     struct fuse_io_args *ia;
0709 
0710     ia = kzalloc(sizeof(*ia), GFP_KERNEL);
0711     if (ia) {
0712         ia->io = io;
0713         ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
0714                         &ia->ap.descs);
0715         if (!ia->ap.pages) {
0716             kfree(ia);
0717             ia = NULL;
0718         }
0719     }
0720     return ia;
0721 }
0722 
0723 static void fuse_io_free(struct fuse_io_args *ia)
0724 {
0725     kfree(ia->ap.pages);
0726     kfree(ia);
0727 }
0728 
0729 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
0730                   int err)
0731 {
0732     struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
0733     struct fuse_io_priv *io = ia->io;
0734     ssize_t pos = -1;
0735 
0736     fuse_release_user_pages(&ia->ap, io->should_dirty);
0737 
0738     if (err) {
0739         /* Nothing */
0740     } else if (io->write) {
0741         if (ia->write.out.size > ia->write.in.size) {
0742             err = -EIO;
0743         } else if (ia->write.in.size != ia->write.out.size) {
0744             pos = ia->write.in.offset - io->offset +
0745                 ia->write.out.size;
0746         }
0747     } else {
0748         u32 outsize = args->out_args[0].size;
0749 
0750         if (ia->read.in.size != outsize)
0751             pos = ia->read.in.offset - io->offset + outsize;
0752     }
0753 
0754     fuse_aio_complete(io, err, pos);
0755     fuse_io_free(ia);
0756 }
0757 
0758 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
0759                    struct fuse_io_args *ia, size_t num_bytes)
0760 {
0761     ssize_t err;
0762     struct fuse_io_priv *io = ia->io;
0763 
0764     spin_lock(&io->lock);
0765     kref_get(&io->refcnt);
0766     io->size += num_bytes;
0767     io->reqs++;
0768     spin_unlock(&io->lock);
0769 
0770     ia->ap.args.end = fuse_aio_complete_req;
0771     ia->ap.args.may_block = io->should_dirty;
0772     err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
0773     if (err)
0774         fuse_aio_complete_req(fm, &ia->ap.args, err);
0775 
0776     return num_bytes;
0777 }
0778 
0779 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
0780                   fl_owner_t owner)
0781 {
0782     struct file *file = ia->io->iocb->ki_filp;
0783     struct fuse_file *ff = file->private_data;
0784     struct fuse_mount *fm = ff->fm;
0785 
0786     fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
0787     if (owner != NULL) {
0788         ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
0789         ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
0790     }
0791 
0792     if (ia->io->async)
0793         return fuse_async_req_send(fm, ia, count);
0794 
0795     return fuse_simple_request(fm, &ia->ap.args);
0796 }
0797 
0798 static void fuse_read_update_size(struct inode *inode, loff_t size,
0799                   u64 attr_ver)
0800 {
0801     struct fuse_conn *fc = get_fuse_conn(inode);
0802     struct fuse_inode *fi = get_fuse_inode(inode);
0803 
0804     spin_lock(&fi->lock);
0805     if (attr_ver >= fi->attr_version && size < inode->i_size &&
0806         !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
0807         fi->attr_version = atomic64_inc_return(&fc->attr_version);
0808         i_size_write(inode, size);
0809     }
0810     spin_unlock(&fi->lock);
0811 }
0812 
0813 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
0814                 struct fuse_args_pages *ap)
0815 {
0816     struct fuse_conn *fc = get_fuse_conn(inode);
0817 
0818     /*
0819      * If writeback_cache is enabled, a short read means there's a hole in
0820      * the file.  Some data after the hole is in page cache, but has not
0821      * reached the client fs yet.  So the hole is not present there.
0822      */
0823     if (!fc->writeback_cache) {
0824         loff_t pos = page_offset(ap->pages[0]) + num_read;
0825         fuse_read_update_size(inode, pos, attr_ver);
0826     }
0827 }
0828 
0829 static int fuse_do_readpage(struct file *file, struct page *page)
0830 {
0831     struct inode *inode = page->mapping->host;
0832     struct fuse_mount *fm = get_fuse_mount(inode);
0833     loff_t pos = page_offset(page);
0834     struct fuse_page_desc desc = { .length = PAGE_SIZE };
0835     struct fuse_io_args ia = {
0836         .ap.args.page_zeroing = true,
0837         .ap.args.out_pages = true,
0838         .ap.num_pages = 1,
0839         .ap.pages = &page,
0840         .ap.descs = &desc,
0841     };
0842     ssize_t res;
0843     u64 attr_ver;
0844 
0845     /*
0846      * Page writeback can extend beyond the lifetime of the
0847      * page-cache page, so make sure we read a properly synced
0848      * page.
0849      */
0850     fuse_wait_on_page_writeback(inode, page->index);
0851 
0852     attr_ver = fuse_get_attr_version(fm->fc);
0853 
0854     /* Don't overflow end offset */
0855     if (pos + (desc.length - 1) == LLONG_MAX)
0856         desc.length--;
0857 
0858     fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
0859     res = fuse_simple_request(fm, &ia.ap.args);
0860     if (res < 0)
0861         return res;
0862     /*
0863      * Short read means EOF.  If file size is larger, truncate it
0864      */
0865     if (res < desc.length)
0866         fuse_short_read(inode, attr_ver, res, &ia.ap);
0867 
0868     SetPageUptodate(page);
0869 
0870     return 0;
0871 }
0872 
0873 static int fuse_read_folio(struct file *file, struct folio *folio)
0874 {
0875     struct page *page = &folio->page;
0876     struct inode *inode = page->mapping->host;
0877     int err;
0878 
0879     err = -EIO;
0880     if (fuse_is_bad(inode))
0881         goto out;
0882 
0883     err = fuse_do_readpage(file, page);
0884     fuse_invalidate_atime(inode);
0885  out:
0886     unlock_page(page);
0887     return err;
0888 }
0889 
0890 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
0891                    int err)
0892 {
0893     int i;
0894     struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
0895     struct fuse_args_pages *ap = &ia->ap;
0896     size_t count = ia->read.in.size;
0897     size_t num_read = args->out_args[0].size;
0898     struct address_space *mapping = NULL;
0899 
0900     for (i = 0; mapping == NULL && i < ap->num_pages; i++)
0901         mapping = ap->pages[i]->mapping;
0902 
0903     if (mapping) {
0904         struct inode *inode = mapping->host;
0905 
0906         /*
0907          * Short read means EOF. If file size is larger, truncate it
0908          */
0909         if (!err && num_read < count)
0910             fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
0911 
0912         fuse_invalidate_atime(inode);
0913     }
0914 
0915     for (i = 0; i < ap->num_pages; i++) {
0916         struct page *page = ap->pages[i];
0917 
0918         if (!err)
0919             SetPageUptodate(page);
0920         else
0921             SetPageError(page);
0922         unlock_page(page);
0923         put_page(page);
0924     }
0925     if (ia->ff)
0926         fuse_file_put(ia->ff, false, false);
0927 
0928     fuse_io_free(ia);
0929 }
0930 
0931 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
0932 {
0933     struct fuse_file *ff = file->private_data;
0934     struct fuse_mount *fm = ff->fm;
0935     struct fuse_args_pages *ap = &ia->ap;
0936     loff_t pos = page_offset(ap->pages[0]);
0937     size_t count = ap->num_pages << PAGE_SHIFT;
0938     ssize_t res;
0939     int err;
0940 
0941     ap->args.out_pages = true;
0942     ap->args.page_zeroing = true;
0943     ap->args.page_replace = true;
0944 
0945     /* Don't overflow end offset */
0946     if (pos + (count - 1) == LLONG_MAX) {
0947         count--;
0948         ap->descs[ap->num_pages - 1].length--;
0949     }
0950     WARN_ON((loff_t) (pos + count) < 0);
0951 
0952     fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
0953     ia->read.attr_ver = fuse_get_attr_version(fm->fc);
0954     if (fm->fc->async_read) {
0955         ia->ff = fuse_file_get(ff);
0956         ap->args.end = fuse_readpages_end;
0957         err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
0958         if (!err)
0959             return;
0960     } else {
0961         res = fuse_simple_request(fm, &ap->args);
0962         err = res < 0 ? res : 0;
0963     }
0964     fuse_readpages_end(fm, &ap->args, err);
0965 }
0966 
0967 static void fuse_readahead(struct readahead_control *rac)
0968 {
0969     struct inode *inode = rac->mapping->host;
0970     struct fuse_conn *fc = get_fuse_conn(inode);
0971     unsigned int i, max_pages, nr_pages = 0;
0972 
0973     if (fuse_is_bad(inode))
0974         return;
0975 
0976     max_pages = min_t(unsigned int, fc->max_pages,
0977             fc->max_read / PAGE_SIZE);
0978 
0979     for (;;) {
0980         struct fuse_io_args *ia;
0981         struct fuse_args_pages *ap;
0982 
0983         if (fc->num_background >= fc->congestion_threshold &&
0984             rac->ra->async_size >= readahead_count(rac))
0985             /*
0986              * Congested and only async pages left, so skip the
0987              * rest.
0988              */
0989             break;
0990 
0991         nr_pages = readahead_count(rac) - nr_pages;
0992         if (nr_pages > max_pages)
0993             nr_pages = max_pages;
0994         if (nr_pages == 0)
0995             break;
0996         ia = fuse_io_alloc(NULL, nr_pages);
0997         if (!ia)
0998             return;
0999         ap = &ia->ap;
1000         nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
1001         for (i = 0; i < nr_pages; i++) {
1002             fuse_wait_on_page_writeback(inode,
1003                             readahead_index(rac) + i);
1004             ap->descs[i].length = PAGE_SIZE;
1005         }
1006         ap->num_pages = nr_pages;
1007         fuse_send_readpages(ia, rac->file);
1008     }
1009 }
1010 
1011 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1012 {
1013     struct inode *inode = iocb->ki_filp->f_mapping->host;
1014     struct fuse_conn *fc = get_fuse_conn(inode);
1015 
1016     /*
1017      * In auto invalidate mode, always update attributes on read.
1018      * Otherwise, only update if we attempt to read past EOF (to ensure
1019      * i_size is up to date).
1020      */
1021     if (fc->auto_inval_data ||
1022         (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1023         int err;
1024         err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE);
1025         if (err)
1026             return err;
1027     }
1028 
1029     return generic_file_read_iter(iocb, to);
1030 }
1031 
1032 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1033                  loff_t pos, size_t count)
1034 {
1035     struct fuse_args *args = &ia->ap.args;
1036 
1037     ia->write.in.fh = ff->fh;
1038     ia->write.in.offset = pos;
1039     ia->write.in.size = count;
1040     args->opcode = FUSE_WRITE;
1041     args->nodeid = ff->nodeid;
1042     args->in_numargs = 2;
1043     if (ff->fm->fc->minor < 9)
1044         args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1045     else
1046         args->in_args[0].size = sizeof(ia->write.in);
1047     args->in_args[0].value = &ia->write.in;
1048     args->in_args[1].size = count;
1049     args->out_numargs = 1;
1050     args->out_args[0].size = sizeof(ia->write.out);
1051     args->out_args[0].value = &ia->write.out;
1052 }
1053 
1054 static unsigned int fuse_write_flags(struct kiocb *iocb)
1055 {
1056     unsigned int flags = iocb->ki_filp->f_flags;
1057 
1058     if (iocb_is_dsync(iocb))
1059         flags |= O_DSYNC;
1060     if (iocb->ki_flags & IOCB_SYNC)
1061         flags |= O_SYNC;
1062 
1063     return flags;
1064 }
1065 
1066 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1067                    size_t count, fl_owner_t owner)
1068 {
1069     struct kiocb *iocb = ia->io->iocb;
1070     struct file *file = iocb->ki_filp;
1071     struct fuse_file *ff = file->private_data;
1072     struct fuse_mount *fm = ff->fm;
1073     struct fuse_write_in *inarg = &ia->write.in;
1074     ssize_t err;
1075 
1076     fuse_write_args_fill(ia, ff, pos, count);
1077     inarg->flags = fuse_write_flags(iocb);
1078     if (owner != NULL) {
1079         inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1080         inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1081     }
1082 
1083     if (ia->io->async)
1084         return fuse_async_req_send(fm, ia, count);
1085 
1086     err = fuse_simple_request(fm, &ia->ap.args);
1087     if (!err && ia->write.out.size > count)
1088         err = -EIO;
1089 
1090     return err ?: ia->write.out.size;
1091 }
1092 
1093 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written)
1094 {
1095     struct fuse_conn *fc = get_fuse_conn(inode);
1096     struct fuse_inode *fi = get_fuse_inode(inode);
1097     bool ret = false;
1098 
1099     spin_lock(&fi->lock);
1100     fi->attr_version = atomic64_inc_return(&fc->attr_version);
1101     if (written > 0 && pos > inode->i_size) {
1102         i_size_write(inode, pos);
1103         ret = true;
1104     }
1105     spin_unlock(&fi->lock);
1106 
1107     fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
1108 
1109     return ret;
1110 }
1111 
1112 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1113                      struct kiocb *iocb, struct inode *inode,
1114                      loff_t pos, size_t count)
1115 {
1116     struct fuse_args_pages *ap = &ia->ap;
1117     struct file *file = iocb->ki_filp;
1118     struct fuse_file *ff = file->private_data;
1119     struct fuse_mount *fm = ff->fm;
1120     unsigned int offset, i;
1121     bool short_write;
1122     int err;
1123 
1124     for (i = 0; i < ap->num_pages; i++)
1125         fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1126 
1127     fuse_write_args_fill(ia, ff, pos, count);
1128     ia->write.in.flags = fuse_write_flags(iocb);
1129     if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID))
1130         ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1131 
1132     err = fuse_simple_request(fm, &ap->args);
1133     if (!err && ia->write.out.size > count)
1134         err = -EIO;
1135 
1136     short_write = ia->write.out.size < count;
1137     offset = ap->descs[0].offset;
1138     count = ia->write.out.size;
1139     for (i = 0; i < ap->num_pages; i++) {
1140         struct page *page = ap->pages[i];
1141 
1142         if (err) {
1143             ClearPageUptodate(page);
1144         } else {
1145             if (count >= PAGE_SIZE - offset)
1146                 count -= PAGE_SIZE - offset;
1147             else {
1148                 if (short_write)
1149                     ClearPageUptodate(page);
1150                 count = 0;
1151             }
1152             offset = 0;
1153         }
1154         if (ia->write.page_locked && (i == ap->num_pages - 1))
1155             unlock_page(page);
1156         put_page(page);
1157     }
1158 
1159     return err;
1160 }
1161 
1162 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1163                      struct address_space *mapping,
1164                      struct iov_iter *ii, loff_t pos,
1165                      unsigned int max_pages)
1166 {
1167     struct fuse_args_pages *ap = &ia->ap;
1168     struct fuse_conn *fc = get_fuse_conn(mapping->host);
1169     unsigned offset = pos & (PAGE_SIZE - 1);
1170     size_t count = 0;
1171     int err;
1172 
1173     ap->args.in_pages = true;
1174     ap->descs[0].offset = offset;
1175 
1176     do {
1177         size_t tmp;
1178         struct page *page;
1179         pgoff_t index = pos >> PAGE_SHIFT;
1180         size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1181                      iov_iter_count(ii));
1182 
1183         bytes = min_t(size_t, bytes, fc->max_write - count);
1184 
1185  again:
1186         err = -EFAULT;
1187         if (fault_in_iov_iter_readable(ii, bytes))
1188             break;
1189 
1190         err = -ENOMEM;
1191         page = grab_cache_page_write_begin(mapping, index);
1192         if (!page)
1193             break;
1194 
1195         if (mapping_writably_mapped(mapping))
1196             flush_dcache_page(page);
1197 
1198         tmp = copy_page_from_iter_atomic(page, offset, bytes, ii);
1199         flush_dcache_page(page);
1200 
1201         if (!tmp) {
1202             unlock_page(page);
1203             put_page(page);
1204             goto again;
1205         }
1206 
1207         err = 0;
1208         ap->pages[ap->num_pages] = page;
1209         ap->descs[ap->num_pages].length = tmp;
1210         ap->num_pages++;
1211 
1212         count += tmp;
1213         pos += tmp;
1214         offset += tmp;
1215         if (offset == PAGE_SIZE)
1216             offset = 0;
1217 
1218         /* If we copied full page, mark it uptodate */
1219         if (tmp == PAGE_SIZE)
1220             SetPageUptodate(page);
1221 
1222         if (PageUptodate(page)) {
1223             unlock_page(page);
1224         } else {
1225             ia->write.page_locked = true;
1226             break;
1227         }
1228         if (!fc->big_writes)
1229             break;
1230     } while (iov_iter_count(ii) && count < fc->max_write &&
1231          ap->num_pages < max_pages && offset == 0);
1232 
1233     return count > 0 ? count : err;
1234 }
1235 
1236 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1237                      unsigned int max_pages)
1238 {
1239     return min_t(unsigned int,
1240              ((pos + len - 1) >> PAGE_SHIFT) -
1241              (pos >> PAGE_SHIFT) + 1,
1242              max_pages);
1243 }
1244 
1245 static ssize_t fuse_perform_write(struct kiocb *iocb,
1246                   struct address_space *mapping,
1247                   struct iov_iter *ii, loff_t pos)
1248 {
1249     struct inode *inode = mapping->host;
1250     struct fuse_conn *fc = get_fuse_conn(inode);
1251     struct fuse_inode *fi = get_fuse_inode(inode);
1252     int err = 0;
1253     ssize_t res = 0;
1254 
1255     if (inode->i_size < pos + iov_iter_count(ii))
1256         set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1257 
1258     do {
1259         ssize_t count;
1260         struct fuse_io_args ia = {};
1261         struct fuse_args_pages *ap = &ia.ap;
1262         unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1263                               fc->max_pages);
1264 
1265         ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1266         if (!ap->pages) {
1267             err = -ENOMEM;
1268             break;
1269         }
1270 
1271         count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1272         if (count <= 0) {
1273             err = count;
1274         } else {
1275             err = fuse_send_write_pages(&ia, iocb, inode,
1276                             pos, count);
1277             if (!err) {
1278                 size_t num_written = ia.write.out.size;
1279 
1280                 res += num_written;
1281                 pos += num_written;
1282 
1283                 /* break out of the loop on short write */
1284                 if (num_written != count)
1285                     err = -EIO;
1286             }
1287         }
1288         kfree(ap->pages);
1289     } while (!err && iov_iter_count(ii));
1290 
1291     fuse_write_update_attr(inode, pos, res);
1292     clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1293 
1294     return res > 0 ? res : err;
1295 }
1296 
1297 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1298 {
1299     struct file *file = iocb->ki_filp;
1300     struct address_space *mapping = file->f_mapping;
1301     ssize_t written = 0;
1302     ssize_t written_buffered = 0;
1303     struct inode *inode = mapping->host;
1304     ssize_t err;
1305     struct fuse_conn *fc = get_fuse_conn(inode);
1306     loff_t endbyte = 0;
1307 
1308     if (fc->writeback_cache) {
1309         /* Update size (EOF optimization) and mode (SUID clearing) */
1310         err = fuse_update_attributes(mapping->host, file,
1311                          STATX_SIZE | STATX_MODE);
1312         if (err)
1313             return err;
1314 
1315         if (fc->handle_killpriv_v2 &&
1316             should_remove_suid(file_dentry(file))) {
1317             goto writethrough;
1318         }
1319 
1320         return generic_file_write_iter(iocb, from);
1321     }
1322 
1323 writethrough:
1324     inode_lock(inode);
1325 
1326     /* We can write back this queue in page reclaim */
1327     current->backing_dev_info = inode_to_bdi(inode);
1328 
1329     err = generic_write_checks(iocb, from);
1330     if (err <= 0)
1331         goto out;
1332 
1333     err = file_remove_privs(file);
1334     if (err)
1335         goto out;
1336 
1337     err = file_update_time(file);
1338     if (err)
1339         goto out;
1340 
1341     if (iocb->ki_flags & IOCB_DIRECT) {
1342         loff_t pos = iocb->ki_pos;
1343         written = generic_file_direct_write(iocb, from);
1344         if (written < 0 || !iov_iter_count(from))
1345             goto out;
1346 
1347         pos += written;
1348 
1349         written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1350         if (written_buffered < 0) {
1351             err = written_buffered;
1352             goto out;
1353         }
1354         endbyte = pos + written_buffered - 1;
1355 
1356         err = filemap_write_and_wait_range(file->f_mapping, pos,
1357                            endbyte);
1358         if (err)
1359             goto out;
1360 
1361         invalidate_mapping_pages(file->f_mapping,
1362                      pos >> PAGE_SHIFT,
1363                      endbyte >> PAGE_SHIFT);
1364 
1365         written += written_buffered;
1366         iocb->ki_pos = pos + written_buffered;
1367     } else {
1368         written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1369         if (written >= 0)
1370             iocb->ki_pos += written;
1371     }
1372 out:
1373     current->backing_dev_info = NULL;
1374     inode_unlock(inode);
1375     if (written > 0)
1376         written = generic_write_sync(iocb, written);
1377 
1378     return written ? written : err;
1379 }
1380 
1381 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1382 {
1383     return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1384 }
1385 
1386 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1387                     size_t max_size)
1388 {
1389     return min(iov_iter_single_seg_count(ii), max_size);
1390 }
1391 
1392 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1393                    size_t *nbytesp, int write,
1394                    unsigned int max_pages)
1395 {
1396     size_t nbytes = 0;  /* # bytes already packed in req */
1397     ssize_t ret = 0;
1398 
1399     /* Special case for kernel I/O: can copy directly into the buffer */
1400     if (iov_iter_is_kvec(ii)) {
1401         unsigned long user_addr = fuse_get_user_addr(ii);
1402         size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1403 
1404         if (write)
1405             ap->args.in_args[1].value = (void *) user_addr;
1406         else
1407             ap->args.out_args[0].value = (void *) user_addr;
1408 
1409         iov_iter_advance(ii, frag_size);
1410         *nbytesp = frag_size;
1411         return 0;
1412     }
1413 
1414     while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1415         unsigned npages;
1416         size_t start;
1417         ret = iov_iter_get_pages2(ii, &ap->pages[ap->num_pages],
1418                     *nbytesp - nbytes,
1419                     max_pages - ap->num_pages,
1420                     &start);
1421         if (ret < 0)
1422             break;
1423 
1424         nbytes += ret;
1425 
1426         ret += start;
1427         npages = DIV_ROUND_UP(ret, PAGE_SIZE);
1428 
1429         ap->descs[ap->num_pages].offset = start;
1430         fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1431 
1432         ap->num_pages += npages;
1433         ap->descs[ap->num_pages - 1].length -=
1434             (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1435     }
1436 
1437     ap->args.user_pages = true;
1438     if (write)
1439         ap->args.in_pages = true;
1440     else
1441         ap->args.out_pages = true;
1442 
1443     *nbytesp = nbytes;
1444 
1445     return ret < 0 ? ret : 0;
1446 }
1447 
1448 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1449                loff_t *ppos, int flags)
1450 {
1451     int write = flags & FUSE_DIO_WRITE;
1452     int cuse = flags & FUSE_DIO_CUSE;
1453     struct file *file = io->iocb->ki_filp;
1454     struct inode *inode = file->f_mapping->host;
1455     struct fuse_file *ff = file->private_data;
1456     struct fuse_conn *fc = ff->fm->fc;
1457     size_t nmax = write ? fc->max_write : fc->max_read;
1458     loff_t pos = *ppos;
1459     size_t count = iov_iter_count(iter);
1460     pgoff_t idx_from = pos >> PAGE_SHIFT;
1461     pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1462     ssize_t res = 0;
1463     int err = 0;
1464     struct fuse_io_args *ia;
1465     unsigned int max_pages;
1466 
1467     max_pages = iov_iter_npages(iter, fc->max_pages);
1468     ia = fuse_io_alloc(io, max_pages);
1469     if (!ia)
1470         return -ENOMEM;
1471 
1472     if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1473         if (!write)
1474             inode_lock(inode);
1475         fuse_sync_writes(inode);
1476         if (!write)
1477             inode_unlock(inode);
1478     }
1479 
1480     io->should_dirty = !write && user_backed_iter(iter);
1481     while (count) {
1482         ssize_t nres;
1483         fl_owner_t owner = current->files;
1484         size_t nbytes = min(count, nmax);
1485 
1486         err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1487                       max_pages);
1488         if (err && !nbytes)
1489             break;
1490 
1491         if (write) {
1492             if (!capable(CAP_FSETID))
1493                 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1494 
1495             nres = fuse_send_write(ia, pos, nbytes, owner);
1496         } else {
1497             nres = fuse_send_read(ia, pos, nbytes, owner);
1498         }
1499 
1500         if (!io->async || nres < 0) {
1501             fuse_release_user_pages(&ia->ap, io->should_dirty);
1502             fuse_io_free(ia);
1503         }
1504         ia = NULL;
1505         if (nres < 0) {
1506             iov_iter_revert(iter, nbytes);
1507             err = nres;
1508             break;
1509         }
1510         WARN_ON(nres > nbytes);
1511 
1512         count -= nres;
1513         res += nres;
1514         pos += nres;
1515         if (nres != nbytes) {
1516             iov_iter_revert(iter, nbytes - nres);
1517             break;
1518         }
1519         if (count) {
1520             max_pages = iov_iter_npages(iter, fc->max_pages);
1521             ia = fuse_io_alloc(io, max_pages);
1522             if (!ia)
1523                 break;
1524         }
1525     }
1526     if (ia)
1527         fuse_io_free(ia);
1528     if (res > 0)
1529         *ppos = pos;
1530 
1531     return res > 0 ? res : err;
1532 }
1533 EXPORT_SYMBOL_GPL(fuse_direct_io);
1534 
1535 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1536                   struct iov_iter *iter,
1537                   loff_t *ppos)
1538 {
1539     ssize_t res;
1540     struct inode *inode = file_inode(io->iocb->ki_filp);
1541 
1542     res = fuse_direct_io(io, iter, ppos, 0);
1543 
1544     fuse_invalidate_atime(inode);
1545 
1546     return res;
1547 }
1548 
1549 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1550 
1551 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1552 {
1553     ssize_t res;
1554 
1555     if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1556         res = fuse_direct_IO(iocb, to);
1557     } else {
1558         struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1559 
1560         res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1561     }
1562 
1563     return res;
1564 }
1565 
1566 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1567 {
1568     struct inode *inode = file_inode(iocb->ki_filp);
1569     struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1570     ssize_t res;
1571 
1572     /* Don't allow parallel writes to the same file */
1573     inode_lock(inode);
1574     res = generic_write_checks(iocb, from);
1575     if (res > 0) {
1576         if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1577             res = fuse_direct_IO(iocb, from);
1578         } else {
1579             res = fuse_direct_io(&io, from, &iocb->ki_pos,
1580                          FUSE_DIO_WRITE);
1581             fuse_write_update_attr(inode, iocb->ki_pos, res);
1582         }
1583     }
1584     inode_unlock(inode);
1585 
1586     return res;
1587 }
1588 
1589 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1590 {
1591     struct file *file = iocb->ki_filp;
1592     struct fuse_file *ff = file->private_data;
1593     struct inode *inode = file_inode(file);
1594 
1595     if (fuse_is_bad(inode))
1596         return -EIO;
1597 
1598     if (FUSE_IS_DAX(inode))
1599         return fuse_dax_read_iter(iocb, to);
1600 
1601     if (!(ff->open_flags & FOPEN_DIRECT_IO))
1602         return fuse_cache_read_iter(iocb, to);
1603     else
1604         return fuse_direct_read_iter(iocb, to);
1605 }
1606 
1607 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1608 {
1609     struct file *file = iocb->ki_filp;
1610     struct fuse_file *ff = file->private_data;
1611     struct inode *inode = file_inode(file);
1612 
1613     if (fuse_is_bad(inode))
1614         return -EIO;
1615 
1616     if (FUSE_IS_DAX(inode))
1617         return fuse_dax_write_iter(iocb, from);
1618 
1619     if (!(ff->open_flags & FOPEN_DIRECT_IO))
1620         return fuse_cache_write_iter(iocb, from);
1621     else
1622         return fuse_direct_write_iter(iocb, from);
1623 }
1624 
1625 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1626 {
1627     struct fuse_args_pages *ap = &wpa->ia.ap;
1628     int i;
1629 
1630     if (wpa->bucket)
1631         fuse_sync_bucket_dec(wpa->bucket);
1632 
1633     for (i = 0; i < ap->num_pages; i++)
1634         __free_page(ap->pages[i]);
1635 
1636     if (wpa->ia.ff)
1637         fuse_file_put(wpa->ia.ff, false, false);
1638 
1639     kfree(ap->pages);
1640     kfree(wpa);
1641 }
1642 
1643 static void fuse_writepage_finish(struct fuse_mount *fm,
1644                   struct fuse_writepage_args *wpa)
1645 {
1646     struct fuse_args_pages *ap = &wpa->ia.ap;
1647     struct inode *inode = wpa->inode;
1648     struct fuse_inode *fi = get_fuse_inode(inode);
1649     struct backing_dev_info *bdi = inode_to_bdi(inode);
1650     int i;
1651 
1652     for (i = 0; i < ap->num_pages; i++) {
1653         dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1654         dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1655         wb_writeout_inc(&bdi->wb);
1656     }
1657     wake_up(&fi->page_waitq);
1658 }
1659 
1660 /* Called under fi->lock, may release and reacquire it */
1661 static void fuse_send_writepage(struct fuse_mount *fm,
1662                 struct fuse_writepage_args *wpa, loff_t size)
1663 __releases(fi->lock)
1664 __acquires(fi->lock)
1665 {
1666     struct fuse_writepage_args *aux, *next;
1667     struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1668     struct fuse_write_in *inarg = &wpa->ia.write.in;
1669     struct fuse_args *args = &wpa->ia.ap.args;
1670     __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1671     int err;
1672 
1673     fi->writectr++;
1674     if (inarg->offset + data_size <= size) {
1675         inarg->size = data_size;
1676     } else if (inarg->offset < size) {
1677         inarg->size = size - inarg->offset;
1678     } else {
1679         /* Got truncated off completely */
1680         goto out_free;
1681     }
1682 
1683     args->in_args[1].size = inarg->size;
1684     args->force = true;
1685     args->nocreds = true;
1686 
1687     err = fuse_simple_background(fm, args, GFP_ATOMIC);
1688     if (err == -ENOMEM) {
1689         spin_unlock(&fi->lock);
1690         err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1691         spin_lock(&fi->lock);
1692     }
1693 
1694     /* Fails on broken connection only */
1695     if (unlikely(err))
1696         goto out_free;
1697 
1698     return;
1699 
1700  out_free:
1701     fi->writectr--;
1702     rb_erase(&wpa->writepages_entry, &fi->writepages);
1703     fuse_writepage_finish(fm, wpa);
1704     spin_unlock(&fi->lock);
1705 
1706     /* After fuse_writepage_finish() aux request list is private */
1707     for (aux = wpa->next; aux; aux = next) {
1708         next = aux->next;
1709         aux->next = NULL;
1710         fuse_writepage_free(aux);
1711     }
1712 
1713     fuse_writepage_free(wpa);
1714     spin_lock(&fi->lock);
1715 }
1716 
1717 /*
1718  * If fi->writectr is positive (no truncate or fsync going on) send
1719  * all queued writepage requests.
1720  *
1721  * Called with fi->lock
1722  */
1723 void fuse_flush_writepages(struct inode *inode)
1724 __releases(fi->lock)
1725 __acquires(fi->lock)
1726 {
1727     struct fuse_mount *fm = get_fuse_mount(inode);
1728     struct fuse_inode *fi = get_fuse_inode(inode);
1729     loff_t crop = i_size_read(inode);
1730     struct fuse_writepage_args *wpa;
1731 
1732     while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1733         wpa = list_entry(fi->queued_writes.next,
1734                  struct fuse_writepage_args, queue_entry);
1735         list_del_init(&wpa->queue_entry);
1736         fuse_send_writepage(fm, wpa, crop);
1737     }
1738 }
1739 
1740 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1741                         struct fuse_writepage_args *wpa)
1742 {
1743     pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1744     pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1745     struct rb_node **p = &root->rb_node;
1746     struct rb_node  *parent = NULL;
1747 
1748     WARN_ON(!wpa->ia.ap.num_pages);
1749     while (*p) {
1750         struct fuse_writepage_args *curr;
1751         pgoff_t curr_index;
1752 
1753         parent = *p;
1754         curr = rb_entry(parent, struct fuse_writepage_args,
1755                 writepages_entry);
1756         WARN_ON(curr->inode != wpa->inode);
1757         curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1758 
1759         if (idx_from >= curr_index + curr->ia.ap.num_pages)
1760             p = &(*p)->rb_right;
1761         else if (idx_to < curr_index)
1762             p = &(*p)->rb_left;
1763         else
1764             return curr;
1765     }
1766 
1767     rb_link_node(&wpa->writepages_entry, parent, p);
1768     rb_insert_color(&wpa->writepages_entry, root);
1769     return NULL;
1770 }
1771 
1772 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1773 {
1774     WARN_ON(fuse_insert_writeback(root, wpa));
1775 }
1776 
1777 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1778                    int error)
1779 {
1780     struct fuse_writepage_args *wpa =
1781         container_of(args, typeof(*wpa), ia.ap.args);
1782     struct inode *inode = wpa->inode;
1783     struct fuse_inode *fi = get_fuse_inode(inode);
1784     struct fuse_conn *fc = get_fuse_conn(inode);
1785 
1786     mapping_set_error(inode->i_mapping, error);
1787     /*
1788      * A writeback finished and this might have updated mtime/ctime on
1789      * server making local mtime/ctime stale.  Hence invalidate attrs.
1790      * Do this only if writeback_cache is not enabled.  If writeback_cache
1791      * is enabled, we trust local ctime/mtime.
1792      */
1793     if (!fc->writeback_cache)
1794         fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY);
1795     spin_lock(&fi->lock);
1796     rb_erase(&wpa->writepages_entry, &fi->writepages);
1797     while (wpa->next) {
1798         struct fuse_mount *fm = get_fuse_mount(inode);
1799         struct fuse_write_in *inarg = &wpa->ia.write.in;
1800         struct fuse_writepage_args *next = wpa->next;
1801 
1802         wpa->next = next->next;
1803         next->next = NULL;
1804         next->ia.ff = fuse_file_get(wpa->ia.ff);
1805         tree_insert(&fi->writepages, next);
1806 
1807         /*
1808          * Skip fuse_flush_writepages() to make it easy to crop requests
1809          * based on primary request size.
1810          *
1811          * 1st case (trivial): there are no concurrent activities using
1812          * fuse_set/release_nowrite.  Then we're on safe side because
1813          * fuse_flush_writepages() would call fuse_send_writepage()
1814          * anyway.
1815          *
1816          * 2nd case: someone called fuse_set_nowrite and it is waiting
1817          * now for completion of all in-flight requests.  This happens
1818          * rarely and no more than once per page, so this should be
1819          * okay.
1820          *
1821          * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1822          * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1823          * that fuse_set_nowrite returned implies that all in-flight
1824          * requests were completed along with all of their secondary
1825          * requests.  Further primary requests are blocked by negative
1826          * writectr.  Hence there cannot be any in-flight requests and
1827          * no invocations of fuse_writepage_end() while we're in
1828          * fuse_set_nowrite..fuse_release_nowrite section.
1829          */
1830         fuse_send_writepage(fm, next, inarg->offset + inarg->size);
1831     }
1832     fi->writectr--;
1833     fuse_writepage_finish(fm, wpa);
1834     spin_unlock(&fi->lock);
1835     fuse_writepage_free(wpa);
1836 }
1837 
1838 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi)
1839 {
1840     struct fuse_file *ff;
1841 
1842     spin_lock(&fi->lock);
1843     ff = list_first_entry_or_null(&fi->write_files, struct fuse_file,
1844                       write_entry);
1845     if (ff)
1846         fuse_file_get(ff);
1847     spin_unlock(&fi->lock);
1848 
1849     return ff;
1850 }
1851 
1852 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi)
1853 {
1854     struct fuse_file *ff = __fuse_write_file_get(fi);
1855     WARN_ON(!ff);
1856     return ff;
1857 }
1858 
1859 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1860 {
1861     struct fuse_inode *fi = get_fuse_inode(inode);
1862     struct fuse_file *ff;
1863     int err;
1864 
1865     /*
1866      * Inode is always written before the last reference is dropped and
1867      * hence this should not be reached from reclaim.
1868      *
1869      * Writing back the inode from reclaim can deadlock if the request
1870      * processing itself needs an allocation.  Allocations triggering
1871      * reclaim while serving a request can't be prevented, because it can
1872      * involve any number of unrelated userspace processes.
1873      */
1874     WARN_ON(wbc->for_reclaim);
1875 
1876     ff = __fuse_write_file_get(fi);
1877     err = fuse_flush_times(inode, ff);
1878     if (ff)
1879         fuse_file_put(ff, false, false);
1880 
1881     return err;
1882 }
1883 
1884 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1885 {
1886     struct fuse_writepage_args *wpa;
1887     struct fuse_args_pages *ap;
1888 
1889     wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1890     if (wpa) {
1891         ap = &wpa->ia.ap;
1892         ap->num_pages = 0;
1893         ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1894         if (!ap->pages) {
1895             kfree(wpa);
1896             wpa = NULL;
1897         }
1898     }
1899     return wpa;
1900 
1901 }
1902 
1903 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc,
1904                      struct fuse_writepage_args *wpa)
1905 {
1906     if (!fc->sync_fs)
1907         return;
1908 
1909     rcu_read_lock();
1910     /* Prevent resurrection of dead bucket in unlikely race with syncfs */
1911     do {
1912         wpa->bucket = rcu_dereference(fc->curr_bucket);
1913     } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count)));
1914     rcu_read_unlock();
1915 }
1916 
1917 static int fuse_writepage_locked(struct page *page)
1918 {
1919     struct address_space *mapping = page->mapping;
1920     struct inode *inode = mapping->host;
1921     struct fuse_conn *fc = get_fuse_conn(inode);
1922     struct fuse_inode *fi = get_fuse_inode(inode);
1923     struct fuse_writepage_args *wpa;
1924     struct fuse_args_pages *ap;
1925     struct page *tmp_page;
1926     int error = -ENOMEM;
1927 
1928     set_page_writeback(page);
1929 
1930     wpa = fuse_writepage_args_alloc();
1931     if (!wpa)
1932         goto err;
1933     ap = &wpa->ia.ap;
1934 
1935     tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1936     if (!tmp_page)
1937         goto err_free;
1938 
1939     error = -EIO;
1940     wpa->ia.ff = fuse_write_file_get(fi);
1941     if (!wpa->ia.ff)
1942         goto err_nofile;
1943 
1944     fuse_writepage_add_to_bucket(fc, wpa);
1945     fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1946 
1947     copy_highpage(tmp_page, page);
1948     wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1949     wpa->next = NULL;
1950     ap->args.in_pages = true;
1951     ap->num_pages = 1;
1952     ap->pages[0] = tmp_page;
1953     ap->descs[0].offset = 0;
1954     ap->descs[0].length = PAGE_SIZE;
1955     ap->args.end = fuse_writepage_end;
1956     wpa->inode = inode;
1957 
1958     inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1959     inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1960 
1961     spin_lock(&fi->lock);
1962     tree_insert(&fi->writepages, wpa);
1963     list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1964     fuse_flush_writepages(inode);
1965     spin_unlock(&fi->lock);
1966 
1967     end_page_writeback(page);
1968 
1969     return 0;
1970 
1971 err_nofile:
1972     __free_page(tmp_page);
1973 err_free:
1974     kfree(wpa);
1975 err:
1976     mapping_set_error(page->mapping, error);
1977     end_page_writeback(page);
1978     return error;
1979 }
1980 
1981 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1982 {
1983     struct fuse_conn *fc = get_fuse_conn(page->mapping->host);
1984     int err;
1985 
1986     if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1987         /*
1988          * ->writepages() should be called for sync() and friends.  We
1989          * should only get here on direct reclaim and then we are
1990          * allowed to skip a page which is already in flight
1991          */
1992         WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1993 
1994         redirty_page_for_writepage(wbc, page);
1995         unlock_page(page);
1996         return 0;
1997     }
1998 
1999     if (wbc->sync_mode == WB_SYNC_NONE &&
2000         fc->num_background >= fc->congestion_threshold)
2001         return AOP_WRITEPAGE_ACTIVATE;
2002 
2003     err = fuse_writepage_locked(page);
2004     unlock_page(page);
2005 
2006     return err;
2007 }
2008 
2009 struct fuse_fill_wb_data {
2010     struct fuse_writepage_args *wpa;
2011     struct fuse_file *ff;
2012     struct inode *inode;
2013     struct page **orig_pages;
2014     unsigned int max_pages;
2015 };
2016 
2017 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
2018 {
2019     struct fuse_args_pages *ap = &data->wpa->ia.ap;
2020     struct fuse_conn *fc = get_fuse_conn(data->inode);
2021     struct page **pages;
2022     struct fuse_page_desc *descs;
2023     unsigned int npages = min_t(unsigned int,
2024                     max_t(unsigned int, data->max_pages * 2,
2025                       FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2026                     fc->max_pages);
2027     WARN_ON(npages <= data->max_pages);
2028 
2029     pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
2030     if (!pages)
2031         return false;
2032 
2033     memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
2034     memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
2035     kfree(ap->pages);
2036     ap->pages = pages;
2037     ap->descs = descs;
2038     data->max_pages = npages;
2039 
2040     return true;
2041 }
2042 
2043 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2044 {
2045     struct fuse_writepage_args *wpa = data->wpa;
2046     struct inode *inode = data->inode;
2047     struct fuse_inode *fi = get_fuse_inode(inode);
2048     int num_pages = wpa->ia.ap.num_pages;
2049     int i;
2050 
2051     wpa->ia.ff = fuse_file_get(data->ff);
2052     spin_lock(&fi->lock);
2053     list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2054     fuse_flush_writepages(inode);
2055     spin_unlock(&fi->lock);
2056 
2057     for (i = 0; i < num_pages; i++)
2058         end_page_writeback(data->orig_pages[i]);
2059 }
2060 
2061 /*
2062  * Check under fi->lock if the page is under writeback, and insert it onto the
2063  * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2064  * one already added for a page at this offset.  If there's none, then insert
2065  * this new request onto the auxiliary list, otherwise reuse the existing one by
2066  * swapping the new temp page with the old one.
2067  */
2068 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2069                    struct page *page)
2070 {
2071     struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2072     struct fuse_writepage_args *tmp;
2073     struct fuse_writepage_args *old_wpa;
2074     struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2075 
2076     WARN_ON(new_ap->num_pages != 0);
2077     new_ap->num_pages = 1;
2078 
2079     spin_lock(&fi->lock);
2080     old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2081     if (!old_wpa) {
2082         spin_unlock(&fi->lock);
2083         return true;
2084     }
2085 
2086     for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2087         pgoff_t curr_index;
2088 
2089         WARN_ON(tmp->inode != new_wpa->inode);
2090         curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2091         if (curr_index == page->index) {
2092             WARN_ON(tmp->ia.ap.num_pages != 1);
2093             swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
2094             break;
2095         }
2096     }
2097 
2098     if (!tmp) {
2099         new_wpa->next = old_wpa->next;
2100         old_wpa->next = new_wpa;
2101     }
2102 
2103     spin_unlock(&fi->lock);
2104 
2105     if (tmp) {
2106         struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2107 
2108         dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2109         dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2110         wb_writeout_inc(&bdi->wb);
2111         fuse_writepage_free(new_wpa);
2112     }
2113 
2114     return false;
2115 }
2116 
2117 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2118                      struct fuse_args_pages *ap,
2119                      struct fuse_fill_wb_data *data)
2120 {
2121     WARN_ON(!ap->num_pages);
2122 
2123     /*
2124      * Being under writeback is unlikely but possible.  For example direct
2125      * read to an mmaped fuse file will set the page dirty twice; once when
2126      * the pages are faulted with get_user_pages(), and then after the read
2127      * completed.
2128      */
2129     if (fuse_page_is_writeback(data->inode, page->index))
2130         return true;
2131 
2132     /* Reached max pages */
2133     if (ap->num_pages == fc->max_pages)
2134         return true;
2135 
2136     /* Reached max write bytes */
2137     if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2138         return true;
2139 
2140     /* Discontinuity */
2141     if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2142         return true;
2143 
2144     /* Need to grow the pages array?  If so, did the expansion fail? */
2145     if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2146         return true;
2147 
2148     return false;
2149 }
2150 
2151 static int fuse_writepages_fill(struct page *page,
2152         struct writeback_control *wbc, void *_data)
2153 {
2154     struct fuse_fill_wb_data *data = _data;
2155     struct fuse_writepage_args *wpa = data->wpa;
2156     struct fuse_args_pages *ap = &wpa->ia.ap;
2157     struct inode *inode = data->inode;
2158     struct fuse_inode *fi = get_fuse_inode(inode);
2159     struct fuse_conn *fc = get_fuse_conn(inode);
2160     struct page *tmp_page;
2161     int err;
2162 
2163     if (!data->ff) {
2164         err = -EIO;
2165         data->ff = fuse_write_file_get(fi);
2166         if (!data->ff)
2167             goto out_unlock;
2168     }
2169 
2170     if (wpa && fuse_writepage_need_send(fc, page, ap, data)) {
2171         fuse_writepages_send(data);
2172         data->wpa = NULL;
2173     }
2174 
2175     err = -ENOMEM;
2176     tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2177     if (!tmp_page)
2178         goto out_unlock;
2179 
2180     /*
2181      * The page must not be redirtied until the writeout is completed
2182      * (i.e. userspace has sent a reply to the write request).  Otherwise
2183      * there could be more than one temporary page instance for each real
2184      * page.
2185      *
2186      * This is ensured by holding the page lock in page_mkwrite() while
2187      * checking fuse_page_is_writeback().  We already hold the page lock
2188      * since clear_page_dirty_for_io() and keep it held until we add the
2189      * request to the fi->writepages list and increment ap->num_pages.
2190      * After this fuse_page_is_writeback() will indicate that the page is
2191      * under writeback, so we can release the page lock.
2192      */
2193     if (data->wpa == NULL) {
2194         err = -ENOMEM;
2195         wpa = fuse_writepage_args_alloc();
2196         if (!wpa) {
2197             __free_page(tmp_page);
2198             goto out_unlock;
2199         }
2200         fuse_writepage_add_to_bucket(fc, wpa);
2201 
2202         data->max_pages = 1;
2203 
2204         ap = &wpa->ia.ap;
2205         fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2206         wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2207         wpa->next = NULL;
2208         ap->args.in_pages = true;
2209         ap->args.end = fuse_writepage_end;
2210         ap->num_pages = 0;
2211         wpa->inode = inode;
2212     }
2213     set_page_writeback(page);
2214 
2215     copy_highpage(tmp_page, page);
2216     ap->pages[ap->num_pages] = tmp_page;
2217     ap->descs[ap->num_pages].offset = 0;
2218     ap->descs[ap->num_pages].length = PAGE_SIZE;
2219     data->orig_pages[ap->num_pages] = page;
2220 
2221     inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2222     inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2223 
2224     err = 0;
2225     if (data->wpa) {
2226         /*
2227          * Protected by fi->lock against concurrent access by
2228          * fuse_page_is_writeback().
2229          */
2230         spin_lock(&fi->lock);
2231         ap->num_pages++;
2232         spin_unlock(&fi->lock);
2233     } else if (fuse_writepage_add(wpa, page)) {
2234         data->wpa = wpa;
2235     } else {
2236         end_page_writeback(page);
2237     }
2238 out_unlock:
2239     unlock_page(page);
2240 
2241     return err;
2242 }
2243 
2244 static int fuse_writepages(struct address_space *mapping,
2245                struct writeback_control *wbc)
2246 {
2247     struct inode *inode = mapping->host;
2248     struct fuse_conn *fc = get_fuse_conn(inode);
2249     struct fuse_fill_wb_data data;
2250     int err;
2251 
2252     err = -EIO;
2253     if (fuse_is_bad(inode))
2254         goto out;
2255 
2256     if (wbc->sync_mode == WB_SYNC_NONE &&
2257         fc->num_background >= fc->congestion_threshold)
2258         return 0;
2259 
2260     data.inode = inode;
2261     data.wpa = NULL;
2262     data.ff = NULL;
2263 
2264     err = -ENOMEM;
2265     data.orig_pages = kcalloc(fc->max_pages,
2266                   sizeof(struct page *),
2267                   GFP_NOFS);
2268     if (!data.orig_pages)
2269         goto out;
2270 
2271     err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2272     if (data.wpa) {
2273         WARN_ON(!data.wpa->ia.ap.num_pages);
2274         fuse_writepages_send(&data);
2275     }
2276     if (data.ff)
2277         fuse_file_put(data.ff, false, false);
2278 
2279     kfree(data.orig_pages);
2280 out:
2281     return err;
2282 }
2283 
2284 /*
2285  * It's worthy to make sure that space is reserved on disk for the write,
2286  * but how to implement it without killing performance need more thinking.
2287  */
2288 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2289         loff_t pos, unsigned len, struct page **pagep, void **fsdata)
2290 {
2291     pgoff_t index = pos >> PAGE_SHIFT;
2292     struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2293     struct page *page;
2294     loff_t fsize;
2295     int err = -ENOMEM;
2296 
2297     WARN_ON(!fc->writeback_cache);
2298 
2299     page = grab_cache_page_write_begin(mapping, index);
2300     if (!page)
2301         goto error;
2302 
2303     fuse_wait_on_page_writeback(mapping->host, page->index);
2304 
2305     if (PageUptodate(page) || len == PAGE_SIZE)
2306         goto success;
2307     /*
2308      * Check if the start this page comes after the end of file, in which
2309      * case the readpage can be optimized away.
2310      */
2311     fsize = i_size_read(mapping->host);
2312     if (fsize <= (pos & PAGE_MASK)) {
2313         size_t off = pos & ~PAGE_MASK;
2314         if (off)
2315             zero_user_segment(page, 0, off);
2316         goto success;
2317     }
2318     err = fuse_do_readpage(file, page);
2319     if (err)
2320         goto cleanup;
2321 success:
2322     *pagep = page;
2323     return 0;
2324 
2325 cleanup:
2326     unlock_page(page);
2327     put_page(page);
2328 error:
2329     return err;
2330 }
2331 
2332 static int fuse_write_end(struct file *file, struct address_space *mapping,
2333         loff_t pos, unsigned len, unsigned copied,
2334         struct page *page, void *fsdata)
2335 {
2336     struct inode *inode = page->mapping->host;
2337 
2338     /* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2339     if (!copied)
2340         goto unlock;
2341 
2342     pos += copied;
2343     if (!PageUptodate(page)) {
2344         /* Zero any unwritten bytes at the end of the page */
2345         size_t endoff = pos & ~PAGE_MASK;
2346         if (endoff)
2347             zero_user_segment(page, endoff, PAGE_SIZE);
2348         SetPageUptodate(page);
2349     }
2350 
2351     if (pos > inode->i_size)
2352         i_size_write(inode, pos);
2353 
2354     set_page_dirty(page);
2355 
2356 unlock:
2357     unlock_page(page);
2358     put_page(page);
2359 
2360     return copied;
2361 }
2362 
2363 static int fuse_launder_folio(struct folio *folio)
2364 {
2365     int err = 0;
2366     if (folio_clear_dirty_for_io(folio)) {
2367         struct inode *inode = folio->mapping->host;
2368 
2369         /* Serialize with pending writeback for the same page */
2370         fuse_wait_on_page_writeback(inode, folio->index);
2371         err = fuse_writepage_locked(&folio->page);
2372         if (!err)
2373             fuse_wait_on_page_writeback(inode, folio->index);
2374     }
2375     return err;
2376 }
2377 
2378 /*
2379  * Write back dirty data/metadata now (there may not be any suitable
2380  * open files later for data)
2381  */
2382 static void fuse_vma_close(struct vm_area_struct *vma)
2383 {
2384     int err;
2385 
2386     err = write_inode_now(vma->vm_file->f_mapping->host, 1);
2387     mapping_set_error(vma->vm_file->f_mapping, err);
2388 }
2389 
2390 /*
2391  * Wait for writeback against this page to complete before allowing it
2392  * to be marked dirty again, and hence written back again, possibly
2393  * before the previous writepage completed.
2394  *
2395  * Block here, instead of in ->writepage(), so that the userspace fs
2396  * can only block processes actually operating on the filesystem.
2397  *
2398  * Otherwise unprivileged userspace fs would be able to block
2399  * unrelated:
2400  *
2401  * - page migration
2402  * - sync(2)
2403  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2404  */
2405 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2406 {
2407     struct page *page = vmf->page;
2408     struct inode *inode = file_inode(vmf->vma->vm_file);
2409 
2410     file_update_time(vmf->vma->vm_file);
2411     lock_page(page);
2412     if (page->mapping != inode->i_mapping) {
2413         unlock_page(page);
2414         return VM_FAULT_NOPAGE;
2415     }
2416 
2417     fuse_wait_on_page_writeback(inode, page->index);
2418     return VM_FAULT_LOCKED;
2419 }
2420 
2421 static const struct vm_operations_struct fuse_file_vm_ops = {
2422     .close      = fuse_vma_close,
2423     .fault      = filemap_fault,
2424     .map_pages  = filemap_map_pages,
2425     .page_mkwrite   = fuse_page_mkwrite,
2426 };
2427 
2428 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2429 {
2430     struct fuse_file *ff = file->private_data;
2431 
2432     /* DAX mmap is superior to direct_io mmap */
2433     if (FUSE_IS_DAX(file_inode(file)))
2434         return fuse_dax_mmap(file, vma);
2435 
2436     if (ff->open_flags & FOPEN_DIRECT_IO) {
2437         /* Can't provide the coherency needed for MAP_SHARED */
2438         if (vma->vm_flags & VM_MAYSHARE)
2439             return -ENODEV;
2440 
2441         invalidate_inode_pages2(file->f_mapping);
2442 
2443         return generic_file_mmap(file, vma);
2444     }
2445 
2446     if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2447         fuse_link_write_file(file);
2448 
2449     file_accessed(file);
2450     vma->vm_ops = &fuse_file_vm_ops;
2451     return 0;
2452 }
2453 
2454 static int convert_fuse_file_lock(struct fuse_conn *fc,
2455                   const struct fuse_file_lock *ffl,
2456                   struct file_lock *fl)
2457 {
2458     switch (ffl->type) {
2459     case F_UNLCK:
2460         break;
2461 
2462     case F_RDLCK:
2463     case F_WRLCK:
2464         if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2465             ffl->end < ffl->start)
2466             return -EIO;
2467 
2468         fl->fl_start = ffl->start;
2469         fl->fl_end = ffl->end;
2470 
2471         /*
2472          * Convert pid into init's pid namespace.  The locks API will
2473          * translate it into the caller's pid namespace.
2474          */
2475         rcu_read_lock();
2476         fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2477         rcu_read_unlock();
2478         break;
2479 
2480     default:
2481         return -EIO;
2482     }
2483     fl->fl_type = ffl->type;
2484     return 0;
2485 }
2486 
2487 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2488              const struct file_lock *fl, int opcode, pid_t pid,
2489              int flock, struct fuse_lk_in *inarg)
2490 {
2491     struct inode *inode = file_inode(file);
2492     struct fuse_conn *fc = get_fuse_conn(inode);
2493     struct fuse_file *ff = file->private_data;
2494 
2495     memset(inarg, 0, sizeof(*inarg));
2496     inarg->fh = ff->fh;
2497     inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2498     inarg->lk.start = fl->fl_start;
2499     inarg->lk.end = fl->fl_end;
2500     inarg->lk.type = fl->fl_type;
2501     inarg->lk.pid = pid;
2502     if (flock)
2503         inarg->lk_flags |= FUSE_LK_FLOCK;
2504     args->opcode = opcode;
2505     args->nodeid = get_node_id(inode);
2506     args->in_numargs = 1;
2507     args->in_args[0].size = sizeof(*inarg);
2508     args->in_args[0].value = inarg;
2509 }
2510 
2511 static int fuse_getlk(struct file *file, struct file_lock *fl)
2512 {
2513     struct inode *inode = file_inode(file);
2514     struct fuse_mount *fm = get_fuse_mount(inode);
2515     FUSE_ARGS(args);
2516     struct fuse_lk_in inarg;
2517     struct fuse_lk_out outarg;
2518     int err;
2519 
2520     fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2521     args.out_numargs = 1;
2522     args.out_args[0].size = sizeof(outarg);
2523     args.out_args[0].value = &outarg;
2524     err = fuse_simple_request(fm, &args);
2525     if (!err)
2526         err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2527 
2528     return err;
2529 }
2530 
2531 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2532 {
2533     struct inode *inode = file_inode(file);
2534     struct fuse_mount *fm = get_fuse_mount(inode);
2535     FUSE_ARGS(args);
2536     struct fuse_lk_in inarg;
2537     int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2538     struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2539     pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2540     int err;
2541 
2542     if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2543         /* NLM needs asynchronous locks, which we don't support yet */
2544         return -ENOLCK;
2545     }
2546 
2547     /* Unlock on close is handled by the flush method */
2548     if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2549         return 0;
2550 
2551     fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2552     err = fuse_simple_request(fm, &args);
2553 
2554     /* locking is restartable */
2555     if (err == -EINTR)
2556         err = -ERESTARTSYS;
2557 
2558     return err;
2559 }
2560 
2561 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2562 {
2563     struct inode *inode = file_inode(file);
2564     struct fuse_conn *fc = get_fuse_conn(inode);
2565     int err;
2566 
2567     if (cmd == F_CANCELLK) {
2568         err = 0;
2569     } else if (cmd == F_GETLK) {
2570         if (fc->no_lock) {
2571             posix_test_lock(file, fl);
2572             err = 0;
2573         } else
2574             err = fuse_getlk(file, fl);
2575     } else {
2576         if (fc->no_lock)
2577             err = posix_lock_file(file, fl, NULL);
2578         else
2579             err = fuse_setlk(file, fl, 0);
2580     }
2581     return err;
2582 }
2583 
2584 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2585 {
2586     struct inode *inode = file_inode(file);
2587     struct fuse_conn *fc = get_fuse_conn(inode);
2588     int err;
2589 
2590     if (fc->no_flock) {
2591         err = locks_lock_file_wait(file, fl);
2592     } else {
2593         struct fuse_file *ff = file->private_data;
2594 
2595         /* emulate flock with POSIX locks */
2596         ff->flock = true;
2597         err = fuse_setlk(file, fl, 1);
2598     }
2599 
2600     return err;
2601 }
2602 
2603 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2604 {
2605     struct inode *inode = mapping->host;
2606     struct fuse_mount *fm = get_fuse_mount(inode);
2607     FUSE_ARGS(args);
2608     struct fuse_bmap_in inarg;
2609     struct fuse_bmap_out outarg;
2610     int err;
2611 
2612     if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2613         return 0;
2614 
2615     memset(&inarg, 0, sizeof(inarg));
2616     inarg.block = block;
2617     inarg.blocksize = inode->i_sb->s_blocksize;
2618     args.opcode = FUSE_BMAP;
2619     args.nodeid = get_node_id(inode);
2620     args.in_numargs = 1;
2621     args.in_args[0].size = sizeof(inarg);
2622     args.in_args[0].value = &inarg;
2623     args.out_numargs = 1;
2624     args.out_args[0].size = sizeof(outarg);
2625     args.out_args[0].value = &outarg;
2626     err = fuse_simple_request(fm, &args);
2627     if (err == -ENOSYS)
2628         fm->fc->no_bmap = 1;
2629 
2630     return err ? 0 : outarg.block;
2631 }
2632 
2633 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2634 {
2635     struct inode *inode = file->f_mapping->host;
2636     struct fuse_mount *fm = get_fuse_mount(inode);
2637     struct fuse_file *ff = file->private_data;
2638     FUSE_ARGS(args);
2639     struct fuse_lseek_in inarg = {
2640         .fh = ff->fh,
2641         .offset = offset,
2642         .whence = whence
2643     };
2644     struct fuse_lseek_out outarg;
2645     int err;
2646 
2647     if (fm->fc->no_lseek)
2648         goto fallback;
2649 
2650     args.opcode = FUSE_LSEEK;
2651     args.nodeid = ff->nodeid;
2652     args.in_numargs = 1;
2653     args.in_args[0].size = sizeof(inarg);
2654     args.in_args[0].value = &inarg;
2655     args.out_numargs = 1;
2656     args.out_args[0].size = sizeof(outarg);
2657     args.out_args[0].value = &outarg;
2658     err = fuse_simple_request(fm, &args);
2659     if (err) {
2660         if (err == -ENOSYS) {
2661             fm->fc->no_lseek = 1;
2662             goto fallback;
2663         }
2664         return err;
2665     }
2666 
2667     return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2668 
2669 fallback:
2670     err = fuse_update_attributes(inode, file, STATX_SIZE);
2671     if (!err)
2672         return generic_file_llseek(file, offset, whence);
2673     else
2674         return err;
2675 }
2676 
2677 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2678 {
2679     loff_t retval;
2680     struct inode *inode = file_inode(file);
2681 
2682     switch (whence) {
2683     case SEEK_SET:
2684     case SEEK_CUR:
2685          /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2686         retval = generic_file_llseek(file, offset, whence);
2687         break;
2688     case SEEK_END:
2689         inode_lock(inode);
2690         retval = fuse_update_attributes(inode, file, STATX_SIZE);
2691         if (!retval)
2692             retval = generic_file_llseek(file, offset, whence);
2693         inode_unlock(inode);
2694         break;
2695     case SEEK_HOLE:
2696     case SEEK_DATA:
2697         inode_lock(inode);
2698         retval = fuse_lseek(file, offset, whence);
2699         inode_unlock(inode);
2700         break;
2701     default:
2702         retval = -EINVAL;
2703     }
2704 
2705     return retval;
2706 }
2707 
2708 /*
2709  * All files which have been polled are linked to RB tree
2710  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2711  * find the matching one.
2712  */
2713 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2714                           struct rb_node **parent_out)
2715 {
2716     struct rb_node **link = &fc->polled_files.rb_node;
2717     struct rb_node *last = NULL;
2718 
2719     while (*link) {
2720         struct fuse_file *ff;
2721 
2722         last = *link;
2723         ff = rb_entry(last, struct fuse_file, polled_node);
2724 
2725         if (kh < ff->kh)
2726             link = &last->rb_left;
2727         else if (kh > ff->kh)
2728             link = &last->rb_right;
2729         else
2730             return link;
2731     }
2732 
2733     if (parent_out)
2734         *parent_out = last;
2735     return link;
2736 }
2737 
2738 /*
2739  * The file is about to be polled.  Make sure it's on the polled_files
2740  * RB tree.  Note that files once added to the polled_files tree are
2741  * not removed before the file is released.  This is because a file
2742  * polled once is likely to be polled again.
2743  */
2744 static void fuse_register_polled_file(struct fuse_conn *fc,
2745                       struct fuse_file *ff)
2746 {
2747     spin_lock(&fc->lock);
2748     if (RB_EMPTY_NODE(&ff->polled_node)) {
2749         struct rb_node **link, *parent;
2750 
2751         link = fuse_find_polled_node(fc, ff->kh, &parent);
2752         BUG_ON(*link);
2753         rb_link_node(&ff->polled_node, parent, link);
2754         rb_insert_color(&ff->polled_node, &fc->polled_files);
2755     }
2756     spin_unlock(&fc->lock);
2757 }
2758 
2759 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2760 {
2761     struct fuse_file *ff = file->private_data;
2762     struct fuse_mount *fm = ff->fm;
2763     struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2764     struct fuse_poll_out outarg;
2765     FUSE_ARGS(args);
2766     int err;
2767 
2768     if (fm->fc->no_poll)
2769         return DEFAULT_POLLMASK;
2770 
2771     poll_wait(file, &ff->poll_wait, wait);
2772     inarg.events = mangle_poll(poll_requested_events(wait));
2773 
2774     /*
2775      * Ask for notification iff there's someone waiting for it.
2776      * The client may ignore the flag and always notify.
2777      */
2778     if (waitqueue_active(&ff->poll_wait)) {
2779         inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2780         fuse_register_polled_file(fm->fc, ff);
2781     }
2782 
2783     args.opcode = FUSE_POLL;
2784     args.nodeid = ff->nodeid;
2785     args.in_numargs = 1;
2786     args.in_args[0].size = sizeof(inarg);
2787     args.in_args[0].value = &inarg;
2788     args.out_numargs = 1;
2789     args.out_args[0].size = sizeof(outarg);
2790     args.out_args[0].value = &outarg;
2791     err = fuse_simple_request(fm, &args);
2792 
2793     if (!err)
2794         return demangle_poll(outarg.revents);
2795     if (err == -ENOSYS) {
2796         fm->fc->no_poll = 1;
2797         return DEFAULT_POLLMASK;
2798     }
2799     return EPOLLERR;
2800 }
2801 EXPORT_SYMBOL_GPL(fuse_file_poll);
2802 
2803 /*
2804  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2805  * wakes up the poll waiters.
2806  */
2807 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2808                 struct fuse_notify_poll_wakeup_out *outarg)
2809 {
2810     u64 kh = outarg->kh;
2811     struct rb_node **link;
2812 
2813     spin_lock(&fc->lock);
2814 
2815     link = fuse_find_polled_node(fc, kh, NULL);
2816     if (*link) {
2817         struct fuse_file *ff;
2818 
2819         ff = rb_entry(*link, struct fuse_file, polled_node);
2820         wake_up_interruptible_sync(&ff->poll_wait);
2821     }
2822 
2823     spin_unlock(&fc->lock);
2824     return 0;
2825 }
2826 
2827 static void fuse_do_truncate(struct file *file)
2828 {
2829     struct inode *inode = file->f_mapping->host;
2830     struct iattr attr;
2831 
2832     attr.ia_valid = ATTR_SIZE;
2833     attr.ia_size = i_size_read(inode);
2834 
2835     attr.ia_file = file;
2836     attr.ia_valid |= ATTR_FILE;
2837 
2838     fuse_do_setattr(file_dentry(file), &attr, file);
2839 }
2840 
2841 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2842 {
2843     return round_up(off, fc->max_pages << PAGE_SHIFT);
2844 }
2845 
2846 static ssize_t
2847 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2848 {
2849     DECLARE_COMPLETION_ONSTACK(wait);
2850     ssize_t ret = 0;
2851     struct file *file = iocb->ki_filp;
2852     struct fuse_file *ff = file->private_data;
2853     loff_t pos = 0;
2854     struct inode *inode;
2855     loff_t i_size;
2856     size_t count = iov_iter_count(iter), shortened = 0;
2857     loff_t offset = iocb->ki_pos;
2858     struct fuse_io_priv *io;
2859 
2860     pos = offset;
2861     inode = file->f_mapping->host;
2862     i_size = i_size_read(inode);
2863 
2864     if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
2865         return 0;
2866 
2867     io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2868     if (!io)
2869         return -ENOMEM;
2870     spin_lock_init(&io->lock);
2871     kref_init(&io->refcnt);
2872     io->reqs = 1;
2873     io->bytes = -1;
2874     io->size = 0;
2875     io->offset = offset;
2876     io->write = (iov_iter_rw(iter) == WRITE);
2877     io->err = 0;
2878     /*
2879      * By default, we want to optimize all I/Os with async request
2880      * submission to the client filesystem if supported.
2881      */
2882     io->async = ff->fm->fc->async_dio;
2883     io->iocb = iocb;
2884     io->blocking = is_sync_kiocb(iocb);
2885 
2886     /* optimization for short read */
2887     if (io->async && !io->write && offset + count > i_size) {
2888         iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
2889         shortened = count - iov_iter_count(iter);
2890         count -= shortened;
2891     }
2892 
2893     /*
2894      * We cannot asynchronously extend the size of a file.
2895      * In such case the aio will behave exactly like sync io.
2896      */
2897     if ((offset + count > i_size) && io->write)
2898         io->blocking = true;
2899 
2900     if (io->async && io->blocking) {
2901         /*
2902          * Additional reference to keep io around after
2903          * calling fuse_aio_complete()
2904          */
2905         kref_get(&io->refcnt);
2906         io->done = &wait;
2907     }
2908 
2909     if (iov_iter_rw(iter) == WRITE) {
2910         ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2911         fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
2912     } else {
2913         ret = __fuse_direct_read(io, iter, &pos);
2914     }
2915     iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
2916 
2917     if (io->async) {
2918         bool blocking = io->blocking;
2919 
2920         fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2921 
2922         /* we have a non-extending, async request, so return */
2923         if (!blocking)
2924             return -EIOCBQUEUED;
2925 
2926         wait_for_completion(&wait);
2927         ret = fuse_get_res_by_io(io);
2928     }
2929 
2930     kref_put(&io->refcnt, fuse_io_release);
2931 
2932     if (iov_iter_rw(iter) == WRITE) {
2933         fuse_write_update_attr(inode, pos, ret);
2934         if (ret < 0 && offset + count > i_size)
2935             fuse_do_truncate(file);
2936     }
2937 
2938     return ret;
2939 }
2940 
2941 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
2942 {
2943     int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
2944 
2945     if (!err)
2946         fuse_sync_writes(inode);
2947 
2948     return err;
2949 }
2950 
2951 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2952                 loff_t length)
2953 {
2954     struct fuse_file *ff = file->private_data;
2955     struct inode *inode = file_inode(file);
2956     struct fuse_inode *fi = get_fuse_inode(inode);
2957     struct fuse_mount *fm = ff->fm;
2958     FUSE_ARGS(args);
2959     struct fuse_fallocate_in inarg = {
2960         .fh = ff->fh,
2961         .offset = offset,
2962         .length = length,
2963         .mode = mode
2964     };
2965     int err;
2966     bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2967                (mode & (FALLOC_FL_PUNCH_HOLE |
2968                     FALLOC_FL_ZERO_RANGE));
2969 
2970     bool block_faults = FUSE_IS_DAX(inode) && lock_inode;
2971 
2972     if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2973              FALLOC_FL_ZERO_RANGE))
2974         return -EOPNOTSUPP;
2975 
2976     if (fm->fc->no_fallocate)
2977         return -EOPNOTSUPP;
2978 
2979     if (lock_inode) {
2980         inode_lock(inode);
2981         if (block_faults) {
2982             filemap_invalidate_lock(inode->i_mapping);
2983             err = fuse_dax_break_layouts(inode, 0, 0);
2984             if (err)
2985                 goto out;
2986         }
2987 
2988         if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) {
2989             loff_t endbyte = offset + length - 1;
2990 
2991             err = fuse_writeback_range(inode, offset, endbyte);
2992             if (err)
2993                 goto out;
2994         }
2995     }
2996 
2997     if (!(mode & FALLOC_FL_KEEP_SIZE) &&
2998         offset + length > i_size_read(inode)) {
2999         err = inode_newsize_ok(inode, offset + length);
3000         if (err)
3001             goto out;
3002     }
3003 
3004     if (!(mode & FALLOC_FL_KEEP_SIZE))
3005         set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3006 
3007     args.opcode = FUSE_FALLOCATE;
3008     args.nodeid = ff->nodeid;
3009     args.in_numargs = 1;
3010     args.in_args[0].size = sizeof(inarg);
3011     args.in_args[0].value = &inarg;
3012     err = fuse_simple_request(fm, &args);
3013     if (err == -ENOSYS) {
3014         fm->fc->no_fallocate = 1;
3015         err = -EOPNOTSUPP;
3016     }
3017     if (err)
3018         goto out;
3019 
3020     /* we could have extended the file */
3021     if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3022         if (fuse_write_update_attr(inode, offset + length, length))
3023             file_update_time(file);
3024     }
3025 
3026     if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))
3027         truncate_pagecache_range(inode, offset, offset + length - 1);
3028 
3029     fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3030 
3031 out:
3032     if (!(mode & FALLOC_FL_KEEP_SIZE))
3033         clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3034 
3035     if (block_faults)
3036         filemap_invalidate_unlock(inode->i_mapping);
3037 
3038     if (lock_inode)
3039         inode_unlock(inode);
3040 
3041     fuse_flush_time_update(inode);
3042 
3043     return err;
3044 }
3045 
3046 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3047                       struct file *file_out, loff_t pos_out,
3048                       size_t len, unsigned int flags)
3049 {
3050     struct fuse_file *ff_in = file_in->private_data;
3051     struct fuse_file *ff_out = file_out->private_data;
3052     struct inode *inode_in = file_inode(file_in);
3053     struct inode *inode_out = file_inode(file_out);
3054     struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3055     struct fuse_mount *fm = ff_in->fm;
3056     struct fuse_conn *fc = fm->fc;
3057     FUSE_ARGS(args);
3058     struct fuse_copy_file_range_in inarg = {
3059         .fh_in = ff_in->fh,
3060         .off_in = pos_in,
3061         .nodeid_out = ff_out->nodeid,
3062         .fh_out = ff_out->fh,
3063         .off_out = pos_out,
3064         .len = len,
3065         .flags = flags
3066     };
3067     struct fuse_write_out outarg;
3068     ssize_t err;
3069     /* mark unstable when write-back is not used, and file_out gets
3070      * extended */
3071     bool is_unstable = (!fc->writeback_cache) &&
3072                ((pos_out + len) > inode_out->i_size);
3073 
3074     if (fc->no_copy_file_range)
3075         return -EOPNOTSUPP;
3076 
3077     if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3078         return -EXDEV;
3079 
3080     inode_lock(inode_in);
3081     err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3082     inode_unlock(inode_in);
3083     if (err)
3084         return err;
3085 
3086     inode_lock(inode_out);
3087 
3088     err = file_modified(file_out);
3089     if (err)
3090         goto out;
3091 
3092     /*
3093      * Write out dirty pages in the destination file before sending the COPY
3094      * request to userspace.  After the request is completed, truncate off
3095      * pages (including partial ones) from the cache that have been copied,
3096      * since these contain stale data at that point.
3097      *
3098      * This should be mostly correct, but if the COPY writes to partial
3099      * pages (at the start or end) and the parts not covered by the COPY are
3100      * written through a memory map after calling fuse_writeback_range(),
3101      * then these partial page modifications will be lost on truncation.
3102      *
3103      * It is unlikely that someone would rely on such mixed style
3104      * modifications.  Yet this does give less guarantees than if the
3105      * copying was performed with write(2).
3106      *
3107      * To fix this a mapping->invalidate_lock could be used to prevent new
3108      * faults while the copy is ongoing.
3109      */
3110     err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3111     if (err)
3112         goto out;
3113 
3114     if (is_unstable)
3115         set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3116 
3117     args.opcode = FUSE_COPY_FILE_RANGE;
3118     args.nodeid = ff_in->nodeid;
3119     args.in_numargs = 1;
3120     args.in_args[0].size = sizeof(inarg);
3121     args.in_args[0].value = &inarg;
3122     args.out_numargs = 1;
3123     args.out_args[0].size = sizeof(outarg);
3124     args.out_args[0].value = &outarg;
3125     err = fuse_simple_request(fm, &args);
3126     if (err == -ENOSYS) {
3127         fc->no_copy_file_range = 1;
3128         err = -EOPNOTSUPP;
3129     }
3130     if (err)
3131         goto out;
3132 
3133     truncate_inode_pages_range(inode_out->i_mapping,
3134                    ALIGN_DOWN(pos_out, PAGE_SIZE),
3135                    ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3136 
3137     file_update_time(file_out);
3138     fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size);
3139 
3140     err = outarg.size;
3141 out:
3142     if (is_unstable)
3143         clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3144 
3145     inode_unlock(inode_out);
3146     file_accessed(file_in);
3147 
3148     fuse_flush_time_update(inode_out);
3149 
3150     return err;
3151 }
3152 
3153 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3154                     struct file *dst_file, loff_t dst_off,
3155                     size_t len, unsigned int flags)
3156 {
3157     ssize_t ret;
3158 
3159     ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3160                      len, flags);
3161 
3162     if (ret == -EOPNOTSUPP || ret == -EXDEV)
3163         ret = generic_copy_file_range(src_file, src_off, dst_file,
3164                           dst_off, len, flags);
3165     return ret;
3166 }
3167 
3168 static const struct file_operations fuse_file_operations = {
3169     .llseek     = fuse_file_llseek,
3170     .read_iter  = fuse_file_read_iter,
3171     .write_iter = fuse_file_write_iter,
3172     .mmap       = fuse_file_mmap,
3173     .open       = fuse_open,
3174     .flush      = fuse_flush,
3175     .release    = fuse_release,
3176     .fsync      = fuse_fsync,
3177     .lock       = fuse_file_lock,
3178     .get_unmapped_area = thp_get_unmapped_area,
3179     .flock      = fuse_file_flock,
3180     .splice_read    = generic_file_splice_read,
3181     .splice_write   = iter_file_splice_write,
3182     .unlocked_ioctl = fuse_file_ioctl,
3183     .compat_ioctl   = fuse_file_compat_ioctl,
3184     .poll       = fuse_file_poll,
3185     .fallocate  = fuse_file_fallocate,
3186     .copy_file_range = fuse_copy_file_range,
3187 };
3188 
3189 static const struct address_space_operations fuse_file_aops  = {
3190     .read_folio = fuse_read_folio,
3191     .readahead  = fuse_readahead,
3192     .writepage  = fuse_writepage,
3193     .writepages = fuse_writepages,
3194     .launder_folio  = fuse_launder_folio,
3195     .dirty_folio    = filemap_dirty_folio,
3196     .bmap       = fuse_bmap,
3197     .direct_IO  = fuse_direct_IO,
3198     .write_begin    = fuse_write_begin,
3199     .write_end  = fuse_write_end,
3200 };
3201 
3202 void fuse_init_file_inode(struct inode *inode, unsigned int flags)
3203 {
3204     struct fuse_inode *fi = get_fuse_inode(inode);
3205 
3206     inode->i_fop = &fuse_file_operations;
3207     inode->i_data.a_ops = &fuse_file_aops;
3208 
3209     INIT_LIST_HEAD(&fi->write_files);
3210     INIT_LIST_HEAD(&fi->queued_writes);
3211     fi->writectr = 0;
3212     init_waitqueue_head(&fi->page_waitq);
3213     fi->writepages = RB_ROOT;
3214 
3215     if (IS_ENABLED(CONFIG_FUSE_DAX))
3216         fuse_dax_inode_init(inode, flags);
3217 }