Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * dax: direct host memory access
0004  * Copyright (C) 2020 Red Hat, Inc.
0005  */
0006 
0007 #include "fuse_i.h"
0008 
0009 #include <linux/delay.h>
0010 #include <linux/dax.h>
0011 #include <linux/uio.h>
0012 #include <linux/pagemap.h>
0013 #include <linux/pfn_t.h>
0014 #include <linux/iomap.h>
0015 #include <linux/interval_tree.h>
0016 
0017 /*
0018  * Default memory range size.  A power of 2 so it agrees with common FUSE_INIT
0019  * map_alignment values 4KB and 64KB.
0020  */
0021 #define FUSE_DAX_SHIFT  21
0022 #define FUSE_DAX_SZ (1 << FUSE_DAX_SHIFT)
0023 #define FUSE_DAX_PAGES  (FUSE_DAX_SZ / PAGE_SIZE)
0024 
0025 /* Number of ranges reclaimer will try to free in one invocation */
0026 #define FUSE_DAX_RECLAIM_CHUNK      (10)
0027 
0028 /*
0029  * Dax memory reclaim threshold in percetage of total ranges. When free
0030  * number of free ranges drops below this threshold, reclaim can trigger
0031  * Default is 20%
0032  */
0033 #define FUSE_DAX_RECLAIM_THRESHOLD  (20)
0034 
0035 /** Translation information for file offsets to DAX window offsets */
0036 struct fuse_dax_mapping {
0037     /* Pointer to inode where this memory range is mapped */
0038     struct inode *inode;
0039 
0040     /* Will connect in fcd->free_ranges to keep track of free memory */
0041     struct list_head list;
0042 
0043     /* For interval tree in file/inode */
0044     struct interval_tree_node itn;
0045 
0046     /* Will connect in fc->busy_ranges to keep track busy memory */
0047     struct list_head busy_list;
0048 
0049     /** Position in DAX window */
0050     u64 window_offset;
0051 
0052     /** Length of mapping, in bytes */
0053     loff_t length;
0054 
0055     /* Is this mapping read-only or read-write */
0056     bool writable;
0057 
0058     /* reference count when the mapping is used by dax iomap. */
0059     refcount_t refcnt;
0060 };
0061 
0062 /* Per-inode dax map */
0063 struct fuse_inode_dax {
0064     /* Semaphore to protect modifications to the dmap tree */
0065     struct rw_semaphore sem;
0066 
0067     /* Sorted rb tree of struct fuse_dax_mapping elements */
0068     struct rb_root_cached tree;
0069     unsigned long nr;
0070 };
0071 
0072 struct fuse_conn_dax {
0073     /* DAX device */
0074     struct dax_device *dev;
0075 
0076     /* Lock protecting accessess to  members of this structure */
0077     spinlock_t lock;
0078 
0079     /* List of memory ranges which are busy */
0080     unsigned long nr_busy_ranges;
0081     struct list_head busy_ranges;
0082 
0083     /* Worker to free up memory ranges */
0084     struct delayed_work free_work;
0085 
0086     /* Wait queue for a dax range to become free */
0087     wait_queue_head_t range_waitq;
0088 
0089     /* DAX Window Free Ranges */
0090     long nr_free_ranges;
0091     struct list_head free_ranges;
0092 
0093     unsigned long nr_ranges;
0094 };
0095 
0096 static inline struct fuse_dax_mapping *
0097 node_to_dmap(struct interval_tree_node *node)
0098 {
0099     if (!node)
0100         return NULL;
0101 
0102     return container_of(node, struct fuse_dax_mapping, itn);
0103 }
0104 
0105 static struct fuse_dax_mapping *
0106 alloc_dax_mapping_reclaim(struct fuse_conn_dax *fcd, struct inode *inode);
0107 
0108 static void
0109 __kick_dmap_free_worker(struct fuse_conn_dax *fcd, unsigned long delay_ms)
0110 {
0111     unsigned long free_threshold;
0112 
0113     /* If number of free ranges are below threshold, start reclaim */
0114     free_threshold = max_t(unsigned long, fcd->nr_ranges * FUSE_DAX_RECLAIM_THRESHOLD / 100,
0115                  1);
0116     if (fcd->nr_free_ranges < free_threshold)
0117         queue_delayed_work(system_long_wq, &fcd->free_work,
0118                    msecs_to_jiffies(delay_ms));
0119 }
0120 
0121 static void kick_dmap_free_worker(struct fuse_conn_dax *fcd,
0122                   unsigned long delay_ms)
0123 {
0124     spin_lock(&fcd->lock);
0125     __kick_dmap_free_worker(fcd, delay_ms);
0126     spin_unlock(&fcd->lock);
0127 }
0128 
0129 static struct fuse_dax_mapping *alloc_dax_mapping(struct fuse_conn_dax *fcd)
0130 {
0131     struct fuse_dax_mapping *dmap;
0132 
0133     spin_lock(&fcd->lock);
0134     dmap = list_first_entry_or_null(&fcd->free_ranges,
0135                     struct fuse_dax_mapping, list);
0136     if (dmap) {
0137         list_del_init(&dmap->list);
0138         WARN_ON(fcd->nr_free_ranges <= 0);
0139         fcd->nr_free_ranges--;
0140     }
0141     __kick_dmap_free_worker(fcd, 0);
0142     spin_unlock(&fcd->lock);
0143 
0144     return dmap;
0145 }
0146 
0147 /* This assumes fcd->lock is held */
0148 static void __dmap_remove_busy_list(struct fuse_conn_dax *fcd,
0149                     struct fuse_dax_mapping *dmap)
0150 {
0151     list_del_init(&dmap->busy_list);
0152     WARN_ON(fcd->nr_busy_ranges == 0);
0153     fcd->nr_busy_ranges--;
0154 }
0155 
0156 static void dmap_remove_busy_list(struct fuse_conn_dax *fcd,
0157                   struct fuse_dax_mapping *dmap)
0158 {
0159     spin_lock(&fcd->lock);
0160     __dmap_remove_busy_list(fcd, dmap);
0161     spin_unlock(&fcd->lock);
0162 }
0163 
0164 /* This assumes fcd->lock is held */
0165 static void __dmap_add_to_free_pool(struct fuse_conn_dax *fcd,
0166                 struct fuse_dax_mapping *dmap)
0167 {
0168     list_add_tail(&dmap->list, &fcd->free_ranges);
0169     fcd->nr_free_ranges++;
0170     wake_up(&fcd->range_waitq);
0171 }
0172 
0173 static void dmap_add_to_free_pool(struct fuse_conn_dax *fcd,
0174                 struct fuse_dax_mapping *dmap)
0175 {
0176     /* Return fuse_dax_mapping to free list */
0177     spin_lock(&fcd->lock);
0178     __dmap_add_to_free_pool(fcd, dmap);
0179     spin_unlock(&fcd->lock);
0180 }
0181 
0182 static int fuse_setup_one_mapping(struct inode *inode, unsigned long start_idx,
0183                   struct fuse_dax_mapping *dmap, bool writable,
0184                   bool upgrade)
0185 {
0186     struct fuse_mount *fm = get_fuse_mount(inode);
0187     struct fuse_conn_dax *fcd = fm->fc->dax;
0188     struct fuse_inode *fi = get_fuse_inode(inode);
0189     struct fuse_setupmapping_in inarg;
0190     loff_t offset = start_idx << FUSE_DAX_SHIFT;
0191     FUSE_ARGS(args);
0192     ssize_t err;
0193 
0194     WARN_ON(fcd->nr_free_ranges < 0);
0195 
0196     /* Ask fuse daemon to setup mapping */
0197     memset(&inarg, 0, sizeof(inarg));
0198     inarg.foffset = offset;
0199     inarg.fh = -1;
0200     inarg.moffset = dmap->window_offset;
0201     inarg.len = FUSE_DAX_SZ;
0202     inarg.flags |= FUSE_SETUPMAPPING_FLAG_READ;
0203     if (writable)
0204         inarg.flags |= FUSE_SETUPMAPPING_FLAG_WRITE;
0205     args.opcode = FUSE_SETUPMAPPING;
0206     args.nodeid = fi->nodeid;
0207     args.in_numargs = 1;
0208     args.in_args[0].size = sizeof(inarg);
0209     args.in_args[0].value = &inarg;
0210     err = fuse_simple_request(fm, &args);
0211     if (err < 0)
0212         return err;
0213     dmap->writable = writable;
0214     if (!upgrade) {
0215         /*
0216          * We don't take a reference on inode. inode is valid right now
0217          * and when inode is going away, cleanup logic should first
0218          * cleanup dmap entries.
0219          */
0220         dmap->inode = inode;
0221         dmap->itn.start = dmap->itn.last = start_idx;
0222         /* Protected by fi->dax->sem */
0223         interval_tree_insert(&dmap->itn, &fi->dax->tree);
0224         fi->dax->nr++;
0225         spin_lock(&fcd->lock);
0226         list_add_tail(&dmap->busy_list, &fcd->busy_ranges);
0227         fcd->nr_busy_ranges++;
0228         spin_unlock(&fcd->lock);
0229     }
0230     return 0;
0231 }
0232 
0233 static int fuse_send_removemapping(struct inode *inode,
0234                    struct fuse_removemapping_in *inargp,
0235                    struct fuse_removemapping_one *remove_one)
0236 {
0237     struct fuse_inode *fi = get_fuse_inode(inode);
0238     struct fuse_mount *fm = get_fuse_mount(inode);
0239     FUSE_ARGS(args);
0240 
0241     args.opcode = FUSE_REMOVEMAPPING;
0242     args.nodeid = fi->nodeid;
0243     args.in_numargs = 2;
0244     args.in_args[0].size = sizeof(*inargp);
0245     args.in_args[0].value = inargp;
0246     args.in_args[1].size = inargp->count * sizeof(*remove_one);
0247     args.in_args[1].value = remove_one;
0248     return fuse_simple_request(fm, &args);
0249 }
0250 
0251 static int dmap_removemapping_list(struct inode *inode, unsigned int num,
0252                    struct list_head *to_remove)
0253 {
0254     struct fuse_removemapping_one *remove_one, *ptr;
0255     struct fuse_removemapping_in inarg;
0256     struct fuse_dax_mapping *dmap;
0257     int ret, i = 0, nr_alloc;
0258 
0259     nr_alloc = min_t(unsigned int, num, FUSE_REMOVEMAPPING_MAX_ENTRY);
0260     remove_one = kmalloc_array(nr_alloc, sizeof(*remove_one), GFP_NOFS);
0261     if (!remove_one)
0262         return -ENOMEM;
0263 
0264     ptr = remove_one;
0265     list_for_each_entry(dmap, to_remove, list) {
0266         ptr->moffset = dmap->window_offset;
0267         ptr->len = dmap->length;
0268         ptr++;
0269         i++;
0270         num--;
0271         if (i >= nr_alloc || num == 0) {
0272             memset(&inarg, 0, sizeof(inarg));
0273             inarg.count = i;
0274             ret = fuse_send_removemapping(inode, &inarg,
0275                               remove_one);
0276             if (ret)
0277                 goto out;
0278             ptr = remove_one;
0279             i = 0;
0280         }
0281     }
0282 out:
0283     kfree(remove_one);
0284     return ret;
0285 }
0286 
0287 /*
0288  * Cleanup dmap entry and add back to free list. This should be called with
0289  * fcd->lock held.
0290  */
0291 static void dmap_reinit_add_to_free_pool(struct fuse_conn_dax *fcd,
0292                         struct fuse_dax_mapping *dmap)
0293 {
0294     pr_debug("fuse: freeing memory range start_idx=0x%lx end_idx=0x%lx window_offset=0x%llx length=0x%llx\n",
0295          dmap->itn.start, dmap->itn.last, dmap->window_offset,
0296          dmap->length);
0297     __dmap_remove_busy_list(fcd, dmap);
0298     dmap->inode = NULL;
0299     dmap->itn.start = dmap->itn.last = 0;
0300     __dmap_add_to_free_pool(fcd, dmap);
0301 }
0302 
0303 /*
0304  * Free inode dmap entries whose range falls inside [start, end].
0305  * Does not take any locks. At this point of time it should only be
0306  * called from evict_inode() path where we know all dmap entries can be
0307  * reclaimed.
0308  */
0309 static void inode_reclaim_dmap_range(struct fuse_conn_dax *fcd,
0310                      struct inode *inode,
0311                      loff_t start, loff_t end)
0312 {
0313     struct fuse_inode *fi = get_fuse_inode(inode);
0314     struct fuse_dax_mapping *dmap, *n;
0315     int err, num = 0;
0316     LIST_HEAD(to_remove);
0317     unsigned long start_idx = start >> FUSE_DAX_SHIFT;
0318     unsigned long end_idx = end >> FUSE_DAX_SHIFT;
0319     struct interval_tree_node *node;
0320 
0321     while (1) {
0322         node = interval_tree_iter_first(&fi->dax->tree, start_idx,
0323                         end_idx);
0324         if (!node)
0325             break;
0326         dmap = node_to_dmap(node);
0327         /* inode is going away. There should not be any users of dmap */
0328         WARN_ON(refcount_read(&dmap->refcnt) > 1);
0329         interval_tree_remove(&dmap->itn, &fi->dax->tree);
0330         num++;
0331         list_add(&dmap->list, &to_remove);
0332     }
0333 
0334     /* Nothing to remove */
0335     if (list_empty(&to_remove))
0336         return;
0337 
0338     WARN_ON(fi->dax->nr < num);
0339     fi->dax->nr -= num;
0340     err = dmap_removemapping_list(inode, num, &to_remove);
0341     if (err && err != -ENOTCONN) {
0342         pr_warn("Failed to removemappings. start=0x%llx end=0x%llx\n",
0343             start, end);
0344     }
0345     spin_lock(&fcd->lock);
0346     list_for_each_entry_safe(dmap, n, &to_remove, list) {
0347         list_del_init(&dmap->list);
0348         dmap_reinit_add_to_free_pool(fcd, dmap);
0349     }
0350     spin_unlock(&fcd->lock);
0351 }
0352 
0353 static int dmap_removemapping_one(struct inode *inode,
0354                   struct fuse_dax_mapping *dmap)
0355 {
0356     struct fuse_removemapping_one forget_one;
0357     struct fuse_removemapping_in inarg;
0358 
0359     memset(&inarg, 0, sizeof(inarg));
0360     inarg.count = 1;
0361     memset(&forget_one, 0, sizeof(forget_one));
0362     forget_one.moffset = dmap->window_offset;
0363     forget_one.len = dmap->length;
0364 
0365     return fuse_send_removemapping(inode, &inarg, &forget_one);
0366 }
0367 
0368 /*
0369  * It is called from evict_inode() and by that time inode is going away. So
0370  * this function does not take any locks like fi->dax->sem for traversing
0371  * that fuse inode interval tree. If that lock is taken then lock validator
0372  * complains of deadlock situation w.r.t fs_reclaim lock.
0373  */
0374 void fuse_dax_inode_cleanup(struct inode *inode)
0375 {
0376     struct fuse_conn *fc = get_fuse_conn(inode);
0377     struct fuse_inode *fi = get_fuse_inode(inode);
0378 
0379     /*
0380      * fuse_evict_inode() has already called truncate_inode_pages_final()
0381      * before we arrive here. So we should not have to worry about any
0382      * pages/exception entries still associated with inode.
0383      */
0384     inode_reclaim_dmap_range(fc->dax, inode, 0, -1);
0385     WARN_ON(fi->dax->nr);
0386 }
0387 
0388 static void fuse_fill_iomap_hole(struct iomap *iomap, loff_t length)
0389 {
0390     iomap->addr = IOMAP_NULL_ADDR;
0391     iomap->length = length;
0392     iomap->type = IOMAP_HOLE;
0393 }
0394 
0395 static void fuse_fill_iomap(struct inode *inode, loff_t pos, loff_t length,
0396                 struct iomap *iomap, struct fuse_dax_mapping *dmap,
0397                 unsigned int flags)
0398 {
0399     loff_t offset, len;
0400     loff_t i_size = i_size_read(inode);
0401 
0402     offset = pos - (dmap->itn.start << FUSE_DAX_SHIFT);
0403     len = min(length, dmap->length - offset);
0404 
0405     /* If length is beyond end of file, truncate further */
0406     if (pos + len > i_size)
0407         len = i_size - pos;
0408 
0409     if (len > 0) {
0410         iomap->addr = dmap->window_offset + offset;
0411         iomap->length = len;
0412         if (flags & IOMAP_FAULT)
0413             iomap->length = ALIGN(len, PAGE_SIZE);
0414         iomap->type = IOMAP_MAPPED;
0415         /*
0416          * increace refcnt so that reclaim code knows this dmap is in
0417          * use. This assumes fi->dax->sem mutex is held either
0418          * shared/exclusive.
0419          */
0420         refcount_inc(&dmap->refcnt);
0421 
0422         /* iomap->private should be NULL */
0423         WARN_ON_ONCE(iomap->private);
0424         iomap->private = dmap;
0425     } else {
0426         /* Mapping beyond end of file is hole */
0427         fuse_fill_iomap_hole(iomap, length);
0428     }
0429 }
0430 
0431 static int fuse_setup_new_dax_mapping(struct inode *inode, loff_t pos,
0432                       loff_t length, unsigned int flags,
0433                       struct iomap *iomap)
0434 {
0435     struct fuse_inode *fi = get_fuse_inode(inode);
0436     struct fuse_conn *fc = get_fuse_conn(inode);
0437     struct fuse_conn_dax *fcd = fc->dax;
0438     struct fuse_dax_mapping *dmap, *alloc_dmap = NULL;
0439     int ret;
0440     bool writable = flags & IOMAP_WRITE;
0441     unsigned long start_idx = pos >> FUSE_DAX_SHIFT;
0442     struct interval_tree_node *node;
0443 
0444     /*
0445      * Can't do inline reclaim in fault path. We call
0446      * dax_layout_busy_page() before we free a range. And
0447      * fuse_wait_dax_page() drops mapping->invalidate_lock and requires it.
0448      * In fault path we enter with mapping->invalidate_lock held and can't
0449      * drop it. Also in fault path we hold mapping->invalidate_lock shared
0450      * and not exclusive, so that creates further issues with
0451      * fuse_wait_dax_page().  Hence return -EAGAIN and fuse_dax_fault()
0452      * will wait for a memory range to become free and retry.
0453      */
0454     if (flags & IOMAP_FAULT) {
0455         alloc_dmap = alloc_dax_mapping(fcd);
0456         if (!alloc_dmap)
0457             return -EAGAIN;
0458     } else {
0459         alloc_dmap = alloc_dax_mapping_reclaim(fcd, inode);
0460         if (IS_ERR(alloc_dmap))
0461             return PTR_ERR(alloc_dmap);
0462     }
0463 
0464     /* If we are here, we should have memory allocated */
0465     if (WARN_ON(!alloc_dmap))
0466         return -EIO;
0467 
0468     /*
0469      * Take write lock so that only one caller can try to setup mapping
0470      * and other waits.
0471      */
0472     down_write(&fi->dax->sem);
0473     /*
0474      * We dropped lock. Check again if somebody else setup
0475      * mapping already.
0476      */
0477     node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx);
0478     if (node) {
0479         dmap = node_to_dmap(node);
0480         fuse_fill_iomap(inode, pos, length, iomap, dmap, flags);
0481         dmap_add_to_free_pool(fcd, alloc_dmap);
0482         up_write(&fi->dax->sem);
0483         return 0;
0484     }
0485 
0486     /* Setup one mapping */
0487     ret = fuse_setup_one_mapping(inode, pos >> FUSE_DAX_SHIFT, alloc_dmap,
0488                      writable, false);
0489     if (ret < 0) {
0490         dmap_add_to_free_pool(fcd, alloc_dmap);
0491         up_write(&fi->dax->sem);
0492         return ret;
0493     }
0494     fuse_fill_iomap(inode, pos, length, iomap, alloc_dmap, flags);
0495     up_write(&fi->dax->sem);
0496     return 0;
0497 }
0498 
0499 static int fuse_upgrade_dax_mapping(struct inode *inode, loff_t pos,
0500                     loff_t length, unsigned int flags,
0501                     struct iomap *iomap)
0502 {
0503     struct fuse_inode *fi = get_fuse_inode(inode);
0504     struct fuse_dax_mapping *dmap;
0505     int ret;
0506     unsigned long idx = pos >> FUSE_DAX_SHIFT;
0507     struct interval_tree_node *node;
0508 
0509     /*
0510      * Take exclusive lock so that only one caller can try to setup
0511      * mapping and others wait.
0512      */
0513     down_write(&fi->dax->sem);
0514     node = interval_tree_iter_first(&fi->dax->tree, idx, idx);
0515 
0516     /* We are holding either inode lock or invalidate_lock, and that should
0517      * ensure that dmap can't be truncated. We are holding a reference
0518      * on dmap and that should make sure it can't be reclaimed. So dmap
0519      * should still be there in tree despite the fact we dropped and
0520      * re-acquired the fi->dax->sem lock.
0521      */
0522     ret = -EIO;
0523     if (WARN_ON(!node))
0524         goto out_err;
0525 
0526     dmap = node_to_dmap(node);
0527 
0528     /* We took an extra reference on dmap to make sure its not reclaimd.
0529      * Now we hold fi->dax->sem lock and that reference is not needed
0530      * anymore. Drop it.
0531      */
0532     if (refcount_dec_and_test(&dmap->refcnt)) {
0533         /* refcount should not hit 0. This object only goes
0534          * away when fuse connection goes away
0535          */
0536         WARN_ON_ONCE(1);
0537     }
0538 
0539     /* Maybe another thread already upgraded mapping while we were not
0540      * holding lock.
0541      */
0542     if (dmap->writable) {
0543         ret = 0;
0544         goto out_fill_iomap;
0545     }
0546 
0547     ret = fuse_setup_one_mapping(inode, pos >> FUSE_DAX_SHIFT, dmap, true,
0548                      true);
0549     if (ret < 0)
0550         goto out_err;
0551 out_fill_iomap:
0552     fuse_fill_iomap(inode, pos, length, iomap, dmap, flags);
0553 out_err:
0554     up_write(&fi->dax->sem);
0555     return ret;
0556 }
0557 
0558 /* This is just for DAX and the mapping is ephemeral, do not use it for other
0559  * purposes since there is no block device with a permanent mapping.
0560  */
0561 static int fuse_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
0562                 unsigned int flags, struct iomap *iomap,
0563                 struct iomap *srcmap)
0564 {
0565     struct fuse_inode *fi = get_fuse_inode(inode);
0566     struct fuse_conn *fc = get_fuse_conn(inode);
0567     struct fuse_dax_mapping *dmap;
0568     bool writable = flags & IOMAP_WRITE;
0569     unsigned long start_idx = pos >> FUSE_DAX_SHIFT;
0570     struct interval_tree_node *node;
0571 
0572     /* We don't support FIEMAP */
0573     if (WARN_ON(flags & IOMAP_REPORT))
0574         return -EIO;
0575 
0576     iomap->offset = pos;
0577     iomap->flags = 0;
0578     iomap->bdev = NULL;
0579     iomap->dax_dev = fc->dax->dev;
0580 
0581     /*
0582      * Both read/write and mmap path can race here. So we need something
0583      * to make sure if we are setting up mapping, then other path waits
0584      *
0585      * For now, use a semaphore for this. It probably needs to be
0586      * optimized later.
0587      */
0588     down_read(&fi->dax->sem);
0589     node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx);
0590     if (node) {
0591         dmap = node_to_dmap(node);
0592         if (writable && !dmap->writable) {
0593             /* Upgrade read-only mapping to read-write. This will
0594              * require exclusive fi->dax->sem lock as we don't want
0595              * two threads to be trying to this simultaneously
0596              * for same dmap. So drop shared lock and acquire
0597              * exclusive lock.
0598              *
0599              * Before dropping fi->dax->sem lock, take reference
0600              * on dmap so that its not freed by range reclaim.
0601              */
0602             refcount_inc(&dmap->refcnt);
0603             up_read(&fi->dax->sem);
0604             pr_debug("%s: Upgrading mapping at offset 0x%llx length 0x%llx\n",
0605                  __func__, pos, length);
0606             return fuse_upgrade_dax_mapping(inode, pos, length,
0607                             flags, iomap);
0608         } else {
0609             fuse_fill_iomap(inode, pos, length, iomap, dmap, flags);
0610             up_read(&fi->dax->sem);
0611             return 0;
0612         }
0613     } else {
0614         up_read(&fi->dax->sem);
0615         pr_debug("%s: no mapping at offset 0x%llx length 0x%llx\n",
0616                 __func__, pos, length);
0617         if (pos >= i_size_read(inode))
0618             goto iomap_hole;
0619 
0620         return fuse_setup_new_dax_mapping(inode, pos, length, flags,
0621                           iomap);
0622     }
0623 
0624     /*
0625      * If read beyond end of file happens, fs code seems to return
0626      * it as hole
0627      */
0628 iomap_hole:
0629     fuse_fill_iomap_hole(iomap, length);
0630     pr_debug("%s returning hole mapping. pos=0x%llx length_asked=0x%llx length_returned=0x%llx\n",
0631          __func__, pos, length, iomap->length);
0632     return 0;
0633 }
0634 
0635 static int fuse_iomap_end(struct inode *inode, loff_t pos, loff_t length,
0636               ssize_t written, unsigned int flags,
0637               struct iomap *iomap)
0638 {
0639     struct fuse_dax_mapping *dmap = iomap->private;
0640 
0641     if (dmap) {
0642         if (refcount_dec_and_test(&dmap->refcnt)) {
0643             /* refcount should not hit 0. This object only goes
0644              * away when fuse connection goes away
0645              */
0646             WARN_ON_ONCE(1);
0647         }
0648     }
0649 
0650     /* DAX writes beyond end-of-file aren't handled using iomap, so the
0651      * file size is unchanged and there is nothing to do here.
0652      */
0653     return 0;
0654 }
0655 
0656 static const struct iomap_ops fuse_iomap_ops = {
0657     .iomap_begin = fuse_iomap_begin,
0658     .iomap_end = fuse_iomap_end,
0659 };
0660 
0661 static void fuse_wait_dax_page(struct inode *inode)
0662 {
0663     filemap_invalidate_unlock(inode->i_mapping);
0664     schedule();
0665     filemap_invalidate_lock(inode->i_mapping);
0666 }
0667 
0668 /* Should be called with mapping->invalidate_lock held exclusively */
0669 static int __fuse_dax_break_layouts(struct inode *inode, bool *retry,
0670                     loff_t start, loff_t end)
0671 {
0672     struct page *page;
0673 
0674     page = dax_layout_busy_page_range(inode->i_mapping, start, end);
0675     if (!page)
0676         return 0;
0677 
0678     *retry = true;
0679     return ___wait_var_event(&page->_refcount,
0680             atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
0681             0, 0, fuse_wait_dax_page(inode));
0682 }
0683 
0684 /* dmap_end == 0 leads to unmapping of whole file */
0685 int fuse_dax_break_layouts(struct inode *inode, u64 dmap_start,
0686                   u64 dmap_end)
0687 {
0688     bool    retry;
0689     int ret;
0690 
0691     do {
0692         retry = false;
0693         ret = __fuse_dax_break_layouts(inode, &retry, dmap_start,
0694                            dmap_end);
0695     } while (ret == 0 && retry);
0696 
0697     return ret;
0698 }
0699 
0700 ssize_t fuse_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
0701 {
0702     struct inode *inode = file_inode(iocb->ki_filp);
0703     ssize_t ret;
0704 
0705     if (iocb->ki_flags & IOCB_NOWAIT) {
0706         if (!inode_trylock_shared(inode))
0707             return -EAGAIN;
0708     } else {
0709         inode_lock_shared(inode);
0710     }
0711 
0712     ret = dax_iomap_rw(iocb, to, &fuse_iomap_ops);
0713     inode_unlock_shared(inode);
0714 
0715     /* TODO file_accessed(iocb->f_filp) */
0716     return ret;
0717 }
0718 
0719 static bool file_extending_write(struct kiocb *iocb, struct iov_iter *from)
0720 {
0721     struct inode *inode = file_inode(iocb->ki_filp);
0722 
0723     return (iov_iter_rw(from) == WRITE &&
0724         ((iocb->ki_pos) >= i_size_read(inode) ||
0725           (iocb->ki_pos + iov_iter_count(from) > i_size_read(inode))));
0726 }
0727 
0728 static ssize_t fuse_dax_direct_write(struct kiocb *iocb, struct iov_iter *from)
0729 {
0730     struct inode *inode = file_inode(iocb->ki_filp);
0731     struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
0732     ssize_t ret;
0733 
0734     ret = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE);
0735 
0736     fuse_write_update_attr(inode, iocb->ki_pos, ret);
0737     return ret;
0738 }
0739 
0740 ssize_t fuse_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
0741 {
0742     struct inode *inode = file_inode(iocb->ki_filp);
0743     ssize_t ret;
0744 
0745     if (iocb->ki_flags & IOCB_NOWAIT) {
0746         if (!inode_trylock(inode))
0747             return -EAGAIN;
0748     } else {
0749         inode_lock(inode);
0750     }
0751 
0752     ret = generic_write_checks(iocb, from);
0753     if (ret <= 0)
0754         goto out;
0755 
0756     ret = file_remove_privs(iocb->ki_filp);
0757     if (ret)
0758         goto out;
0759     /* TODO file_update_time() but we don't want metadata I/O */
0760 
0761     /* Do not use dax for file extending writes as write and on
0762      * disk i_size increase are not atomic otherwise.
0763      */
0764     if (file_extending_write(iocb, from))
0765         ret = fuse_dax_direct_write(iocb, from);
0766     else
0767         ret = dax_iomap_rw(iocb, from, &fuse_iomap_ops);
0768 
0769 out:
0770     inode_unlock(inode);
0771 
0772     if (ret > 0)
0773         ret = generic_write_sync(iocb, ret);
0774     return ret;
0775 }
0776 
0777 static int fuse_dax_writepages(struct address_space *mapping,
0778                    struct writeback_control *wbc)
0779 {
0780 
0781     struct inode *inode = mapping->host;
0782     struct fuse_conn *fc = get_fuse_conn(inode);
0783 
0784     return dax_writeback_mapping_range(mapping, fc->dax->dev, wbc);
0785 }
0786 
0787 static vm_fault_t __fuse_dax_fault(struct vm_fault *vmf,
0788                    enum page_entry_size pe_size, bool write)
0789 {
0790     vm_fault_t ret;
0791     struct inode *inode = file_inode(vmf->vma->vm_file);
0792     struct super_block *sb = inode->i_sb;
0793     pfn_t pfn;
0794     int error = 0;
0795     struct fuse_conn *fc = get_fuse_conn(inode);
0796     struct fuse_conn_dax *fcd = fc->dax;
0797     bool retry = false;
0798 
0799     if (write)
0800         sb_start_pagefault(sb);
0801 retry:
0802     if (retry && !(fcd->nr_free_ranges > 0))
0803         wait_event(fcd->range_waitq, (fcd->nr_free_ranges > 0));
0804 
0805     /*
0806      * We need to serialize against not only truncate but also against
0807      * fuse dax memory range reclaim. While a range is being reclaimed,
0808      * we do not want any read/write/mmap to make progress and try
0809      * to populate page cache or access memory we are trying to free.
0810      */
0811     filemap_invalidate_lock_shared(inode->i_mapping);
0812     ret = dax_iomap_fault(vmf, pe_size, &pfn, &error, &fuse_iomap_ops);
0813     if ((ret & VM_FAULT_ERROR) && error == -EAGAIN) {
0814         error = 0;
0815         retry = true;
0816         filemap_invalidate_unlock_shared(inode->i_mapping);
0817         goto retry;
0818     }
0819 
0820     if (ret & VM_FAULT_NEEDDSYNC)
0821         ret = dax_finish_sync_fault(vmf, pe_size, pfn);
0822     filemap_invalidate_unlock_shared(inode->i_mapping);
0823 
0824     if (write)
0825         sb_end_pagefault(sb);
0826 
0827     return ret;
0828 }
0829 
0830 static vm_fault_t fuse_dax_fault(struct vm_fault *vmf)
0831 {
0832     return __fuse_dax_fault(vmf, PE_SIZE_PTE,
0833                 vmf->flags & FAULT_FLAG_WRITE);
0834 }
0835 
0836 static vm_fault_t fuse_dax_huge_fault(struct vm_fault *vmf,
0837                    enum page_entry_size pe_size)
0838 {
0839     return __fuse_dax_fault(vmf, pe_size, vmf->flags & FAULT_FLAG_WRITE);
0840 }
0841 
0842 static vm_fault_t fuse_dax_page_mkwrite(struct vm_fault *vmf)
0843 {
0844     return __fuse_dax_fault(vmf, PE_SIZE_PTE, true);
0845 }
0846 
0847 static vm_fault_t fuse_dax_pfn_mkwrite(struct vm_fault *vmf)
0848 {
0849     return __fuse_dax_fault(vmf, PE_SIZE_PTE, true);
0850 }
0851 
0852 static const struct vm_operations_struct fuse_dax_vm_ops = {
0853     .fault      = fuse_dax_fault,
0854     .huge_fault = fuse_dax_huge_fault,
0855     .page_mkwrite   = fuse_dax_page_mkwrite,
0856     .pfn_mkwrite    = fuse_dax_pfn_mkwrite,
0857 };
0858 
0859 int fuse_dax_mmap(struct file *file, struct vm_area_struct *vma)
0860 {
0861     file_accessed(file);
0862     vma->vm_ops = &fuse_dax_vm_ops;
0863     vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
0864     return 0;
0865 }
0866 
0867 static int dmap_writeback_invalidate(struct inode *inode,
0868                      struct fuse_dax_mapping *dmap)
0869 {
0870     int ret;
0871     loff_t start_pos = dmap->itn.start << FUSE_DAX_SHIFT;
0872     loff_t end_pos = (start_pos + FUSE_DAX_SZ - 1);
0873 
0874     ret = filemap_fdatawrite_range(inode->i_mapping, start_pos, end_pos);
0875     if (ret) {
0876         pr_debug("fuse: filemap_fdatawrite_range() failed. err=%d start_pos=0x%llx, end_pos=0x%llx\n",
0877              ret, start_pos, end_pos);
0878         return ret;
0879     }
0880 
0881     ret = invalidate_inode_pages2_range(inode->i_mapping,
0882                         start_pos >> PAGE_SHIFT,
0883                         end_pos >> PAGE_SHIFT);
0884     if (ret)
0885         pr_debug("fuse: invalidate_inode_pages2_range() failed err=%d\n",
0886              ret);
0887 
0888     return ret;
0889 }
0890 
0891 static int reclaim_one_dmap_locked(struct inode *inode,
0892                    struct fuse_dax_mapping *dmap)
0893 {
0894     int ret;
0895     struct fuse_inode *fi = get_fuse_inode(inode);
0896 
0897     /*
0898      * igrab() was done to make sure inode won't go under us, and this
0899      * further avoids the race with evict().
0900      */
0901     ret = dmap_writeback_invalidate(inode, dmap);
0902     if (ret)
0903         return ret;
0904 
0905     /* Remove dax mapping from inode interval tree now */
0906     interval_tree_remove(&dmap->itn, &fi->dax->tree);
0907     fi->dax->nr--;
0908 
0909     /* It is possible that umount/shutdown has killed the fuse connection
0910      * and worker thread is trying to reclaim memory in parallel.  Don't
0911      * warn in that case.
0912      */
0913     ret = dmap_removemapping_one(inode, dmap);
0914     if (ret && ret != -ENOTCONN) {
0915         pr_warn("Failed to remove mapping. offset=0x%llx len=0x%llx ret=%d\n",
0916             dmap->window_offset, dmap->length, ret);
0917     }
0918     return 0;
0919 }
0920 
0921 /* Find first mapped dmap for an inode and return file offset. Caller needs
0922  * to hold fi->dax->sem lock either shared or exclusive.
0923  */
0924 static struct fuse_dax_mapping *inode_lookup_first_dmap(struct inode *inode)
0925 {
0926     struct fuse_inode *fi = get_fuse_inode(inode);
0927     struct fuse_dax_mapping *dmap;
0928     struct interval_tree_node *node;
0929 
0930     for (node = interval_tree_iter_first(&fi->dax->tree, 0, -1); node;
0931          node = interval_tree_iter_next(node, 0, -1)) {
0932         dmap = node_to_dmap(node);
0933         /* still in use. */
0934         if (refcount_read(&dmap->refcnt) > 1)
0935             continue;
0936 
0937         return dmap;
0938     }
0939 
0940     return NULL;
0941 }
0942 
0943 /*
0944  * Find first mapping in the tree and free it and return it. Do not add
0945  * it back to free pool.
0946  */
0947 static struct fuse_dax_mapping *
0948 inode_inline_reclaim_one_dmap(struct fuse_conn_dax *fcd, struct inode *inode,
0949                   bool *retry)
0950 {
0951     struct fuse_inode *fi = get_fuse_inode(inode);
0952     struct fuse_dax_mapping *dmap;
0953     u64 dmap_start, dmap_end;
0954     unsigned long start_idx;
0955     int ret;
0956     struct interval_tree_node *node;
0957 
0958     filemap_invalidate_lock(inode->i_mapping);
0959 
0960     /* Lookup a dmap and corresponding file offset to reclaim. */
0961     down_read(&fi->dax->sem);
0962     dmap = inode_lookup_first_dmap(inode);
0963     if (dmap) {
0964         start_idx = dmap->itn.start;
0965         dmap_start = start_idx << FUSE_DAX_SHIFT;
0966         dmap_end = dmap_start + FUSE_DAX_SZ - 1;
0967     }
0968     up_read(&fi->dax->sem);
0969 
0970     if (!dmap)
0971         goto out_mmap_sem;
0972     /*
0973      * Make sure there are no references to inode pages using
0974      * get_user_pages()
0975      */
0976     ret = fuse_dax_break_layouts(inode, dmap_start, dmap_end);
0977     if (ret) {
0978         pr_debug("fuse: fuse_dax_break_layouts() failed. err=%d\n",
0979              ret);
0980         dmap = ERR_PTR(ret);
0981         goto out_mmap_sem;
0982     }
0983 
0984     down_write(&fi->dax->sem);
0985     node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx);
0986     /* Range already got reclaimed by somebody else */
0987     if (!node) {
0988         if (retry)
0989             *retry = true;
0990         goto out_write_dmap_sem;
0991     }
0992 
0993     dmap = node_to_dmap(node);
0994     /* still in use. */
0995     if (refcount_read(&dmap->refcnt) > 1) {
0996         dmap = NULL;
0997         if (retry)
0998             *retry = true;
0999         goto out_write_dmap_sem;
1000     }
1001 
1002     ret = reclaim_one_dmap_locked(inode, dmap);
1003     if (ret < 0) {
1004         dmap = ERR_PTR(ret);
1005         goto out_write_dmap_sem;
1006     }
1007 
1008     /* Clean up dmap. Do not add back to free list */
1009     dmap_remove_busy_list(fcd, dmap);
1010     dmap->inode = NULL;
1011     dmap->itn.start = dmap->itn.last = 0;
1012 
1013     pr_debug("fuse: %s: inline reclaimed memory range. inode=%p, window_offset=0x%llx, length=0x%llx\n",
1014          __func__, inode, dmap->window_offset, dmap->length);
1015 
1016 out_write_dmap_sem:
1017     up_write(&fi->dax->sem);
1018 out_mmap_sem:
1019     filemap_invalidate_unlock(inode->i_mapping);
1020     return dmap;
1021 }
1022 
1023 static struct fuse_dax_mapping *
1024 alloc_dax_mapping_reclaim(struct fuse_conn_dax *fcd, struct inode *inode)
1025 {
1026     struct fuse_dax_mapping *dmap;
1027     struct fuse_inode *fi = get_fuse_inode(inode);
1028 
1029     while (1) {
1030         bool retry = false;
1031 
1032         dmap = alloc_dax_mapping(fcd);
1033         if (dmap)
1034             return dmap;
1035 
1036         dmap = inode_inline_reclaim_one_dmap(fcd, inode, &retry);
1037         /*
1038          * Either we got a mapping or it is an error, return in both
1039          * the cases.
1040          */
1041         if (dmap)
1042             return dmap;
1043 
1044         /* If we could not reclaim a mapping because it
1045          * had a reference or some other temporary failure,
1046          * Try again. We want to give up inline reclaim only
1047          * if there is no range assigned to this node. Otherwise
1048          * if a deadlock is possible if we sleep with
1049          * mapping->invalidate_lock held and worker to free memory
1050          * can't make progress due to unavailability of
1051          * mapping->invalidate_lock.  So sleep only if fi->dax->nr=0
1052          */
1053         if (retry)
1054             continue;
1055         /*
1056          * There are no mappings which can be reclaimed. Wait for one.
1057          * We are not holding fi->dax->sem. So it is possible
1058          * that range gets added now. But as we are not holding
1059          * mapping->invalidate_lock, worker should still be able to
1060          * free up a range and wake us up.
1061          */
1062         if (!fi->dax->nr && !(fcd->nr_free_ranges > 0)) {
1063             if (wait_event_killable_exclusive(fcd->range_waitq,
1064                     (fcd->nr_free_ranges > 0))) {
1065                 return ERR_PTR(-EINTR);
1066             }
1067         }
1068     }
1069 }
1070 
1071 static int lookup_and_reclaim_dmap_locked(struct fuse_conn_dax *fcd,
1072                       struct inode *inode,
1073                       unsigned long start_idx)
1074 {
1075     int ret;
1076     struct fuse_inode *fi = get_fuse_inode(inode);
1077     struct fuse_dax_mapping *dmap;
1078     struct interval_tree_node *node;
1079 
1080     /* Find fuse dax mapping at file offset inode. */
1081     node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx);
1082 
1083     /* Range already got cleaned up by somebody else */
1084     if (!node)
1085         return 0;
1086     dmap = node_to_dmap(node);
1087 
1088     /* still in use. */
1089     if (refcount_read(&dmap->refcnt) > 1)
1090         return 0;
1091 
1092     ret = reclaim_one_dmap_locked(inode, dmap);
1093     if (ret < 0)
1094         return ret;
1095 
1096     /* Cleanup dmap entry and add back to free list */
1097     spin_lock(&fcd->lock);
1098     dmap_reinit_add_to_free_pool(fcd, dmap);
1099     spin_unlock(&fcd->lock);
1100     return ret;
1101 }
1102 
1103 /*
1104  * Free a range of memory.
1105  * Locking:
1106  * 1. Take mapping->invalidate_lock to block dax faults.
1107  * 2. Take fi->dax->sem to protect interval tree and also to make sure
1108  *    read/write can not reuse a dmap which we might be freeing.
1109  */
1110 static int lookup_and_reclaim_dmap(struct fuse_conn_dax *fcd,
1111                    struct inode *inode,
1112                    unsigned long start_idx,
1113                    unsigned long end_idx)
1114 {
1115     int ret;
1116     struct fuse_inode *fi = get_fuse_inode(inode);
1117     loff_t dmap_start = start_idx << FUSE_DAX_SHIFT;
1118     loff_t dmap_end = (dmap_start + FUSE_DAX_SZ) - 1;
1119 
1120     filemap_invalidate_lock(inode->i_mapping);
1121     ret = fuse_dax_break_layouts(inode, dmap_start, dmap_end);
1122     if (ret) {
1123         pr_debug("virtio_fs: fuse_dax_break_layouts() failed. err=%d\n",
1124              ret);
1125         goto out_mmap_sem;
1126     }
1127 
1128     down_write(&fi->dax->sem);
1129     ret = lookup_and_reclaim_dmap_locked(fcd, inode, start_idx);
1130     up_write(&fi->dax->sem);
1131 out_mmap_sem:
1132     filemap_invalidate_unlock(inode->i_mapping);
1133     return ret;
1134 }
1135 
1136 static int try_to_free_dmap_chunks(struct fuse_conn_dax *fcd,
1137                    unsigned long nr_to_free)
1138 {
1139     struct fuse_dax_mapping *dmap, *pos, *temp;
1140     int ret, nr_freed = 0;
1141     unsigned long start_idx = 0, end_idx = 0;
1142     struct inode *inode = NULL;
1143 
1144     /* Pick first busy range and free it for now*/
1145     while (1) {
1146         if (nr_freed >= nr_to_free)
1147             break;
1148 
1149         dmap = NULL;
1150         spin_lock(&fcd->lock);
1151 
1152         if (!fcd->nr_busy_ranges) {
1153             spin_unlock(&fcd->lock);
1154             return 0;
1155         }
1156 
1157         list_for_each_entry_safe(pos, temp, &fcd->busy_ranges,
1158                         busy_list) {
1159             /* skip this range if it's in use. */
1160             if (refcount_read(&pos->refcnt) > 1)
1161                 continue;
1162 
1163             inode = igrab(pos->inode);
1164             /*
1165              * This inode is going away. That will free
1166              * up all the ranges anyway, continue to
1167              * next range.
1168              */
1169             if (!inode)
1170                 continue;
1171             /*
1172              * Take this element off list and add it tail. If
1173              * this element can't be freed, it will help with
1174              * selecting new element in next iteration of loop.
1175              */
1176             dmap = pos;
1177             list_move_tail(&dmap->busy_list, &fcd->busy_ranges);
1178             start_idx = end_idx = dmap->itn.start;
1179             break;
1180         }
1181         spin_unlock(&fcd->lock);
1182         if (!dmap)
1183             return 0;
1184 
1185         ret = lookup_and_reclaim_dmap(fcd, inode, start_idx, end_idx);
1186         iput(inode);
1187         if (ret)
1188             return ret;
1189         nr_freed++;
1190     }
1191     return 0;
1192 }
1193 
1194 static void fuse_dax_free_mem_worker(struct work_struct *work)
1195 {
1196     int ret;
1197     struct fuse_conn_dax *fcd = container_of(work, struct fuse_conn_dax,
1198                          free_work.work);
1199     ret = try_to_free_dmap_chunks(fcd, FUSE_DAX_RECLAIM_CHUNK);
1200     if (ret) {
1201         pr_debug("fuse: try_to_free_dmap_chunks() failed with err=%d\n",
1202              ret);
1203     }
1204 
1205     /* If number of free ranges are still below threshold, requeue */
1206     kick_dmap_free_worker(fcd, 1);
1207 }
1208 
1209 static void fuse_free_dax_mem_ranges(struct list_head *mem_list)
1210 {
1211     struct fuse_dax_mapping *range, *temp;
1212 
1213     /* Free All allocated elements */
1214     list_for_each_entry_safe(range, temp, mem_list, list) {
1215         list_del(&range->list);
1216         if (!list_empty(&range->busy_list))
1217             list_del(&range->busy_list);
1218         kfree(range);
1219     }
1220 }
1221 
1222 void fuse_dax_conn_free(struct fuse_conn *fc)
1223 {
1224     if (fc->dax) {
1225         fuse_free_dax_mem_ranges(&fc->dax->free_ranges);
1226         kfree(fc->dax);
1227     }
1228 }
1229 
1230 static int fuse_dax_mem_range_init(struct fuse_conn_dax *fcd)
1231 {
1232     long nr_pages, nr_ranges;
1233     struct fuse_dax_mapping *range;
1234     int ret, id;
1235     size_t dax_size = -1;
1236     unsigned long i;
1237 
1238     init_waitqueue_head(&fcd->range_waitq);
1239     INIT_LIST_HEAD(&fcd->free_ranges);
1240     INIT_LIST_HEAD(&fcd->busy_ranges);
1241     INIT_DELAYED_WORK(&fcd->free_work, fuse_dax_free_mem_worker);
1242 
1243     id = dax_read_lock();
1244     nr_pages = dax_direct_access(fcd->dev, 0, PHYS_PFN(dax_size),
1245             DAX_ACCESS, NULL, NULL);
1246     dax_read_unlock(id);
1247     if (nr_pages < 0) {
1248         pr_debug("dax_direct_access() returned %ld\n", nr_pages);
1249         return nr_pages;
1250     }
1251 
1252     nr_ranges = nr_pages/FUSE_DAX_PAGES;
1253     pr_debug("%s: dax mapped %ld pages. nr_ranges=%ld\n",
1254         __func__, nr_pages, nr_ranges);
1255 
1256     for (i = 0; i < nr_ranges; i++) {
1257         range = kzalloc(sizeof(struct fuse_dax_mapping), GFP_KERNEL);
1258         ret = -ENOMEM;
1259         if (!range)
1260             goto out_err;
1261 
1262         /* TODO: This offset only works if virtio-fs driver is not
1263          * having some memory hidden at the beginning. This needs
1264          * better handling
1265          */
1266         range->window_offset = i * FUSE_DAX_SZ;
1267         range->length = FUSE_DAX_SZ;
1268         INIT_LIST_HEAD(&range->busy_list);
1269         refcount_set(&range->refcnt, 1);
1270         list_add_tail(&range->list, &fcd->free_ranges);
1271     }
1272 
1273     fcd->nr_free_ranges = nr_ranges;
1274     fcd->nr_ranges = nr_ranges;
1275     return 0;
1276 out_err:
1277     /* Free All allocated elements */
1278     fuse_free_dax_mem_ranges(&fcd->free_ranges);
1279     return ret;
1280 }
1281 
1282 int fuse_dax_conn_alloc(struct fuse_conn *fc, enum fuse_dax_mode dax_mode,
1283             struct dax_device *dax_dev)
1284 {
1285     struct fuse_conn_dax *fcd;
1286     int err;
1287 
1288     fc->dax_mode = dax_mode;
1289 
1290     if (!dax_dev)
1291         return 0;
1292 
1293     fcd = kzalloc(sizeof(*fcd), GFP_KERNEL);
1294     if (!fcd)
1295         return -ENOMEM;
1296 
1297     spin_lock_init(&fcd->lock);
1298     fcd->dev = dax_dev;
1299     err = fuse_dax_mem_range_init(fcd);
1300     if (err) {
1301         kfree(fcd);
1302         return err;
1303     }
1304 
1305     fc->dax = fcd;
1306     return 0;
1307 }
1308 
1309 bool fuse_dax_inode_alloc(struct super_block *sb, struct fuse_inode *fi)
1310 {
1311     struct fuse_conn *fc = get_fuse_conn_super(sb);
1312 
1313     fi->dax = NULL;
1314     if (fc->dax) {
1315         fi->dax = kzalloc(sizeof(*fi->dax), GFP_KERNEL_ACCOUNT);
1316         if (!fi->dax)
1317             return false;
1318 
1319         init_rwsem(&fi->dax->sem);
1320         fi->dax->tree = RB_ROOT_CACHED;
1321     }
1322 
1323     return true;
1324 }
1325 
1326 static const struct address_space_operations fuse_dax_file_aops  = {
1327     .writepages = fuse_dax_writepages,
1328     .direct_IO  = noop_direct_IO,
1329     .dirty_folio    = noop_dirty_folio,
1330 };
1331 
1332 static bool fuse_should_enable_dax(struct inode *inode, unsigned int flags)
1333 {
1334     struct fuse_conn *fc = get_fuse_conn(inode);
1335     enum fuse_dax_mode dax_mode = fc->dax_mode;
1336 
1337     if (dax_mode == FUSE_DAX_NEVER)
1338         return false;
1339 
1340     /*
1341      * fc->dax may be NULL in 'inode' mode when filesystem device doesn't
1342      * support DAX, in which case it will silently fallback to 'never' mode.
1343      */
1344     if (!fc->dax)
1345         return false;
1346 
1347     if (dax_mode == FUSE_DAX_ALWAYS)
1348         return true;
1349 
1350     /* dax_mode is FUSE_DAX_INODE* */
1351     return fc->inode_dax && (flags & FUSE_ATTR_DAX);
1352 }
1353 
1354 void fuse_dax_inode_init(struct inode *inode, unsigned int flags)
1355 {
1356     if (!fuse_should_enable_dax(inode, flags))
1357         return;
1358 
1359     inode->i_flags |= S_DAX;
1360     inode->i_data.a_ops = &fuse_dax_file_aops;
1361 }
1362 
1363 void fuse_dax_dontcache(struct inode *inode, unsigned int flags)
1364 {
1365     struct fuse_conn *fc = get_fuse_conn(inode);
1366 
1367     if (fuse_is_inode_dax_mode(fc->dax_mode) &&
1368         ((bool) IS_DAX(inode) != (bool) (flags & FUSE_ATTR_DAX)))
1369         d_mark_dontcache(inode);
1370 }
1371 
1372 bool fuse_dax_check_alignment(struct fuse_conn *fc, unsigned int map_alignment)
1373 {
1374     if (fc->dax && (map_alignment > FUSE_DAX_SHIFT)) {
1375         pr_warn("FUSE: map_alignment %u incompatible with dax mem range size %u\n",
1376             map_alignment, FUSE_DAX_SZ);
1377         return false;
1378     }
1379     return true;
1380 }
1381 
1382 void fuse_dax_cancel_work(struct fuse_conn *fc)
1383 {
1384     struct fuse_conn_dax *fcd = fc->dax;
1385 
1386     if (fcd)
1387         cancel_delayed_work_sync(&fcd->free_work);
1388 
1389 }
1390 EXPORT_SYMBOL_GPL(fuse_dax_cancel_work);