Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  * fs/fs-writeback.c
0004  *
0005  * Copyright (C) 2002, Linus Torvalds.
0006  *
0007  * Contains all the functions related to writing back and waiting
0008  * upon dirty inodes against superblocks, and writing back dirty
0009  * pages against inodes.  ie: data writeback.  Writeout of the
0010  * inode itself is not handled here.
0011  *
0012  * 10Apr2002    Andrew Morton
0013  *      Split out of fs/inode.c
0014  *      Additions for address_space-based writeback
0015  */
0016 
0017 #include <linux/kernel.h>
0018 #include <linux/export.h>
0019 #include <linux/spinlock.h>
0020 #include <linux/slab.h>
0021 #include <linux/sched.h>
0022 #include <linux/fs.h>
0023 #include <linux/mm.h>
0024 #include <linux/pagemap.h>
0025 #include <linux/kthread.h>
0026 #include <linux/writeback.h>
0027 #include <linux/blkdev.h>
0028 #include <linux/backing-dev.h>
0029 #include <linux/tracepoint.h>
0030 #include <linux/device.h>
0031 #include <linux/memcontrol.h>
0032 #include "internal.h"
0033 
0034 /*
0035  * 4MB minimal write chunk size
0036  */
0037 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
0038 
0039 /*
0040  * Passed into wb_writeback(), essentially a subset of writeback_control
0041  */
0042 struct wb_writeback_work {
0043     long nr_pages;
0044     struct super_block *sb;
0045     enum writeback_sync_modes sync_mode;
0046     unsigned int tagged_writepages:1;
0047     unsigned int for_kupdate:1;
0048     unsigned int range_cyclic:1;
0049     unsigned int for_background:1;
0050     unsigned int for_sync:1;    /* sync(2) WB_SYNC_ALL writeback */
0051     unsigned int auto_free:1;   /* free on completion */
0052     enum wb_reason reason;      /* why was writeback initiated? */
0053 
0054     struct list_head list;      /* pending work list */
0055     struct wb_completion *done; /* set if the caller waits */
0056 };
0057 
0058 /*
0059  * If an inode is constantly having its pages dirtied, but then the
0060  * updates stop dirtytime_expire_interval seconds in the past, it's
0061  * possible for the worst case time between when an inode has its
0062  * timestamps updated and when they finally get written out to be two
0063  * dirtytime_expire_intervals.  We set the default to 12 hours (in
0064  * seconds), which means most of the time inodes will have their
0065  * timestamps written to disk after 12 hours, but in the worst case a
0066  * few inodes might not their timestamps updated for 24 hours.
0067  */
0068 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
0069 
0070 static inline struct inode *wb_inode(struct list_head *head)
0071 {
0072     return list_entry(head, struct inode, i_io_list);
0073 }
0074 
0075 /*
0076  * Include the creation of the trace points after defining the
0077  * wb_writeback_work structure and inline functions so that the definition
0078  * remains local to this file.
0079  */
0080 #define CREATE_TRACE_POINTS
0081 #include <trace/events/writeback.h>
0082 
0083 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
0084 
0085 static bool wb_io_lists_populated(struct bdi_writeback *wb)
0086 {
0087     if (wb_has_dirty_io(wb)) {
0088         return false;
0089     } else {
0090         set_bit(WB_has_dirty_io, &wb->state);
0091         WARN_ON_ONCE(!wb->avg_write_bandwidth);
0092         atomic_long_add(wb->avg_write_bandwidth,
0093                 &wb->bdi->tot_write_bandwidth);
0094         return true;
0095     }
0096 }
0097 
0098 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
0099 {
0100     if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
0101         list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
0102         clear_bit(WB_has_dirty_io, &wb->state);
0103         WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
0104                     &wb->bdi->tot_write_bandwidth) < 0);
0105     }
0106 }
0107 
0108 /**
0109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
0110  * @inode: inode to be moved
0111  * @wb: target bdi_writeback
0112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
0113  *
0114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
0115  * Returns %true if @inode is the first occupant of the !dirty_time IO
0116  * lists; otherwise, %false.
0117  */
0118 static bool inode_io_list_move_locked(struct inode *inode,
0119                       struct bdi_writeback *wb,
0120                       struct list_head *head)
0121 {
0122     assert_spin_locked(&wb->list_lock);
0123     assert_spin_locked(&inode->i_lock);
0124 
0125     list_move(&inode->i_io_list, head);
0126 
0127     /* dirty_time doesn't count as dirty_io until expiration */
0128     if (head != &wb->b_dirty_time)
0129         return wb_io_lists_populated(wb);
0130 
0131     wb_io_lists_depopulated(wb);
0132     return false;
0133 }
0134 
0135 static void wb_wakeup(struct bdi_writeback *wb)
0136 {
0137     spin_lock_irq(&wb->work_lock);
0138     if (test_bit(WB_registered, &wb->state))
0139         mod_delayed_work(bdi_wq, &wb->dwork, 0);
0140     spin_unlock_irq(&wb->work_lock);
0141 }
0142 
0143 static void finish_writeback_work(struct bdi_writeback *wb,
0144                   struct wb_writeback_work *work)
0145 {
0146     struct wb_completion *done = work->done;
0147 
0148     if (work->auto_free)
0149         kfree(work);
0150     if (done) {
0151         wait_queue_head_t *waitq = done->waitq;
0152 
0153         /* @done can't be accessed after the following dec */
0154         if (atomic_dec_and_test(&done->cnt))
0155             wake_up_all(waitq);
0156     }
0157 }
0158 
0159 static void wb_queue_work(struct bdi_writeback *wb,
0160               struct wb_writeback_work *work)
0161 {
0162     trace_writeback_queue(wb, work);
0163 
0164     if (work->done)
0165         atomic_inc(&work->done->cnt);
0166 
0167     spin_lock_irq(&wb->work_lock);
0168 
0169     if (test_bit(WB_registered, &wb->state)) {
0170         list_add_tail(&work->list, &wb->work_list);
0171         mod_delayed_work(bdi_wq, &wb->dwork, 0);
0172     } else
0173         finish_writeback_work(wb, work);
0174 
0175     spin_unlock_irq(&wb->work_lock);
0176 }
0177 
0178 /**
0179  * wb_wait_for_completion - wait for completion of bdi_writeback_works
0180  * @done: target wb_completion
0181  *
0182  * Wait for one or more work items issued to @bdi with their ->done field
0183  * set to @done, which should have been initialized with
0184  * DEFINE_WB_COMPLETION().  This function returns after all such work items
0185  * are completed.  Work items which are waited upon aren't freed
0186  * automatically on completion.
0187  */
0188 void wb_wait_for_completion(struct wb_completion *done)
0189 {
0190     atomic_dec(&done->cnt);     /* put down the initial count */
0191     wait_event(*done->waitq, !atomic_read(&done->cnt));
0192 }
0193 
0194 #ifdef CONFIG_CGROUP_WRITEBACK
0195 
0196 /*
0197  * Parameters for foreign inode detection, see wbc_detach_inode() to see
0198  * how they're used.
0199  *
0200  * These paramters are inherently heuristical as the detection target
0201  * itself is fuzzy.  All we want to do is detaching an inode from the
0202  * current owner if it's being written to by some other cgroups too much.
0203  *
0204  * The current cgroup writeback is built on the assumption that multiple
0205  * cgroups writing to the same inode concurrently is very rare and a mode
0206  * of operation which isn't well supported.  As such, the goal is not
0207  * taking too long when a different cgroup takes over an inode while
0208  * avoiding too aggressive flip-flops from occasional foreign writes.
0209  *
0210  * We record, very roughly, 2s worth of IO time history and if more than
0211  * half of that is foreign, trigger the switch.  The recording is quantized
0212  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
0213  * writes smaller than 1/8 of avg size are ignored.
0214  */
0215 #define WB_FRN_TIME_SHIFT   13  /* 1s = 2^13, upto 8 secs w/ 16bit */
0216 #define WB_FRN_TIME_AVG_SHIFT   3   /* avg = avg * 7/8 + new * 1/8 */
0217 #define WB_FRN_TIME_CUT_DIV 8   /* ignore rounds < avg / 8 */
0218 #define WB_FRN_TIME_PERIOD  (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
0219 
0220 #define WB_FRN_HIST_SLOTS   16  /* inode->i_wb_frn_history is 16bit */
0221 #define WB_FRN_HIST_UNIT    (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
0222                     /* each slot's duration is 2s / 16 */
0223 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
0224                     /* if foreign slots >= 8, switch */
0225 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
0226                     /* one round can affect upto 5 slots */
0227 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
0228 
0229 /*
0230  * Maximum inodes per isw.  A specific value has been chosen to make
0231  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
0232  */
0233 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
0234                                 / sizeof(struct inode *))
0235 
0236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
0237 static struct workqueue_struct *isw_wq;
0238 
0239 void __inode_attach_wb(struct inode *inode, struct page *page)
0240 {
0241     struct backing_dev_info *bdi = inode_to_bdi(inode);
0242     struct bdi_writeback *wb = NULL;
0243 
0244     if (inode_cgwb_enabled(inode)) {
0245         struct cgroup_subsys_state *memcg_css;
0246 
0247         if (page) {
0248             memcg_css = mem_cgroup_css_from_page(page);
0249             wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
0250         } else {
0251             /* must pin memcg_css, see wb_get_create() */
0252             memcg_css = task_get_css(current, memory_cgrp_id);
0253             wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
0254             css_put(memcg_css);
0255         }
0256     }
0257 
0258     if (!wb)
0259         wb = &bdi->wb;
0260 
0261     /*
0262      * There may be multiple instances of this function racing to
0263      * update the same inode.  Use cmpxchg() to tell the winner.
0264      */
0265     if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
0266         wb_put(wb);
0267 }
0268 EXPORT_SYMBOL_GPL(__inode_attach_wb);
0269 
0270 /**
0271  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
0272  * @inode: inode of interest with i_lock held
0273  * @wb: target bdi_writeback
0274  *
0275  * Remove the inode from wb's io lists and if necessarily put onto b_attached
0276  * list.  Only inodes attached to cgwb's are kept on this list.
0277  */
0278 static void inode_cgwb_move_to_attached(struct inode *inode,
0279                     struct bdi_writeback *wb)
0280 {
0281     assert_spin_locked(&wb->list_lock);
0282     assert_spin_locked(&inode->i_lock);
0283 
0284     inode->i_state &= ~I_SYNC_QUEUED;
0285     if (wb != &wb->bdi->wb)
0286         list_move(&inode->i_io_list, &wb->b_attached);
0287     else
0288         list_del_init(&inode->i_io_list);
0289     wb_io_lists_depopulated(wb);
0290 }
0291 
0292 /**
0293  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
0294  * @inode: inode of interest with i_lock held
0295  *
0296  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
0297  * held on entry and is released on return.  The returned wb is guaranteed
0298  * to stay @inode's associated wb until its list_lock is released.
0299  */
0300 static struct bdi_writeback *
0301 locked_inode_to_wb_and_lock_list(struct inode *inode)
0302     __releases(&inode->i_lock)
0303     __acquires(&wb->list_lock)
0304 {
0305     while (true) {
0306         struct bdi_writeback *wb = inode_to_wb(inode);
0307 
0308         /*
0309          * inode_to_wb() association is protected by both
0310          * @inode->i_lock and @wb->list_lock but list_lock nests
0311          * outside i_lock.  Drop i_lock and verify that the
0312          * association hasn't changed after acquiring list_lock.
0313          */
0314         wb_get(wb);
0315         spin_unlock(&inode->i_lock);
0316         spin_lock(&wb->list_lock);
0317 
0318         /* i_wb may have changed inbetween, can't use inode_to_wb() */
0319         if (likely(wb == inode->i_wb)) {
0320             wb_put(wb); /* @inode already has ref */
0321             return wb;
0322         }
0323 
0324         spin_unlock(&wb->list_lock);
0325         wb_put(wb);
0326         cpu_relax();
0327         spin_lock(&inode->i_lock);
0328     }
0329 }
0330 
0331 /**
0332  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
0333  * @inode: inode of interest
0334  *
0335  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
0336  * on entry.
0337  */
0338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
0339     __acquires(&wb->list_lock)
0340 {
0341     spin_lock(&inode->i_lock);
0342     return locked_inode_to_wb_and_lock_list(inode);
0343 }
0344 
0345 struct inode_switch_wbs_context {
0346     struct rcu_work     work;
0347 
0348     /*
0349      * Multiple inodes can be switched at once.  The switching procedure
0350      * consists of two parts, separated by a RCU grace period.  To make
0351      * sure that the second part is executed for each inode gone through
0352      * the first part, all inode pointers are placed into a NULL-terminated
0353      * array embedded into struct inode_switch_wbs_context.  Otherwise
0354      * an inode could be left in a non-consistent state.
0355      */
0356     struct bdi_writeback    *new_wb;
0357     struct inode        *inodes[];
0358 };
0359 
0360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
0361 {
0362     down_write(&bdi->wb_switch_rwsem);
0363 }
0364 
0365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
0366 {
0367     up_write(&bdi->wb_switch_rwsem);
0368 }
0369 
0370 static bool inode_do_switch_wbs(struct inode *inode,
0371                 struct bdi_writeback *old_wb,
0372                 struct bdi_writeback *new_wb)
0373 {
0374     struct address_space *mapping = inode->i_mapping;
0375     XA_STATE(xas, &mapping->i_pages, 0);
0376     struct folio *folio;
0377     bool switched = false;
0378 
0379     spin_lock(&inode->i_lock);
0380     xa_lock_irq(&mapping->i_pages);
0381 
0382     /*
0383      * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
0384      * path owns the inode and we shouldn't modify ->i_io_list.
0385      */
0386     if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
0387         goto skip_switch;
0388 
0389     trace_inode_switch_wbs(inode, old_wb, new_wb);
0390 
0391     /*
0392      * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
0393      * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
0394      * folios actually under writeback.
0395      */
0396     xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
0397         if (folio_test_dirty(folio)) {
0398             long nr = folio_nr_pages(folio);
0399             wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
0400             wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
0401         }
0402     }
0403 
0404     xas_set(&xas, 0);
0405     xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
0406         long nr = folio_nr_pages(folio);
0407         WARN_ON_ONCE(!folio_test_writeback(folio));
0408         wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
0409         wb_stat_mod(new_wb, WB_WRITEBACK, nr);
0410     }
0411 
0412     if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
0413         atomic_dec(&old_wb->writeback_inodes);
0414         atomic_inc(&new_wb->writeback_inodes);
0415     }
0416 
0417     wb_get(new_wb);
0418 
0419     /*
0420      * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
0421      * the specific list @inode was on is ignored and the @inode is put on
0422      * ->b_dirty which is always correct including from ->b_dirty_time.
0423      * The transfer preserves @inode->dirtied_when ordering.  If the @inode
0424      * was clean, it means it was on the b_attached list, so move it onto
0425      * the b_attached list of @new_wb.
0426      */
0427     if (!list_empty(&inode->i_io_list)) {
0428         inode->i_wb = new_wb;
0429 
0430         if (inode->i_state & I_DIRTY_ALL) {
0431             struct inode *pos;
0432 
0433             list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
0434                 if (time_after_eq(inode->dirtied_when,
0435                           pos->dirtied_when))
0436                     break;
0437             inode_io_list_move_locked(inode, new_wb,
0438                           pos->i_io_list.prev);
0439         } else {
0440             inode_cgwb_move_to_attached(inode, new_wb);
0441         }
0442     } else {
0443         inode->i_wb = new_wb;
0444     }
0445 
0446     /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
0447     inode->i_wb_frn_winner = 0;
0448     inode->i_wb_frn_avg_time = 0;
0449     inode->i_wb_frn_history = 0;
0450     switched = true;
0451 skip_switch:
0452     /*
0453      * Paired with load_acquire in unlocked_inode_to_wb_begin() and
0454      * ensures that the new wb is visible if they see !I_WB_SWITCH.
0455      */
0456     smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
0457 
0458     xa_unlock_irq(&mapping->i_pages);
0459     spin_unlock(&inode->i_lock);
0460 
0461     return switched;
0462 }
0463 
0464 static void inode_switch_wbs_work_fn(struct work_struct *work)
0465 {
0466     struct inode_switch_wbs_context *isw =
0467         container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
0468     struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
0469     struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
0470     struct bdi_writeback *new_wb = isw->new_wb;
0471     unsigned long nr_switched = 0;
0472     struct inode **inodep;
0473 
0474     /*
0475      * If @inode switches cgwb membership while sync_inodes_sb() is
0476      * being issued, sync_inodes_sb() might miss it.  Synchronize.
0477      */
0478     down_read(&bdi->wb_switch_rwsem);
0479 
0480     /*
0481      * By the time control reaches here, RCU grace period has passed
0482      * since I_WB_SWITCH assertion and all wb stat update transactions
0483      * between unlocked_inode_to_wb_begin/end() are guaranteed to be
0484      * synchronizing against the i_pages lock.
0485      *
0486      * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
0487      * gives us exclusion against all wb related operations on @inode
0488      * including IO list manipulations and stat updates.
0489      */
0490     if (old_wb < new_wb) {
0491         spin_lock(&old_wb->list_lock);
0492         spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
0493     } else {
0494         spin_lock(&new_wb->list_lock);
0495         spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
0496     }
0497 
0498     for (inodep = isw->inodes; *inodep; inodep++) {
0499         WARN_ON_ONCE((*inodep)->i_wb != old_wb);
0500         if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
0501             nr_switched++;
0502     }
0503 
0504     spin_unlock(&new_wb->list_lock);
0505     spin_unlock(&old_wb->list_lock);
0506 
0507     up_read(&bdi->wb_switch_rwsem);
0508 
0509     if (nr_switched) {
0510         wb_wakeup(new_wb);
0511         wb_put_many(old_wb, nr_switched);
0512     }
0513 
0514     for (inodep = isw->inodes; *inodep; inodep++)
0515         iput(*inodep);
0516     wb_put(new_wb);
0517     kfree(isw);
0518     atomic_dec(&isw_nr_in_flight);
0519 }
0520 
0521 static bool inode_prepare_wbs_switch(struct inode *inode,
0522                      struct bdi_writeback *new_wb)
0523 {
0524     /*
0525      * Paired with smp_mb() in cgroup_writeback_umount().
0526      * isw_nr_in_flight must be increased before checking SB_ACTIVE and
0527      * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
0528      * in cgroup_writeback_umount() and the isw_wq will be not flushed.
0529      */
0530     smp_mb();
0531 
0532     if (IS_DAX(inode))
0533         return false;
0534 
0535     /* while holding I_WB_SWITCH, no one else can update the association */
0536     spin_lock(&inode->i_lock);
0537     if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
0538         inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
0539         inode_to_wb(inode) == new_wb) {
0540         spin_unlock(&inode->i_lock);
0541         return false;
0542     }
0543     inode->i_state |= I_WB_SWITCH;
0544     __iget(inode);
0545     spin_unlock(&inode->i_lock);
0546 
0547     return true;
0548 }
0549 
0550 /**
0551  * inode_switch_wbs - change the wb association of an inode
0552  * @inode: target inode
0553  * @new_wb_id: ID of the new wb
0554  *
0555  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
0556  * switching is performed asynchronously and may fail silently.
0557  */
0558 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
0559 {
0560     struct backing_dev_info *bdi = inode_to_bdi(inode);
0561     struct cgroup_subsys_state *memcg_css;
0562     struct inode_switch_wbs_context *isw;
0563 
0564     /* noop if seems to be already in progress */
0565     if (inode->i_state & I_WB_SWITCH)
0566         return;
0567 
0568     /* avoid queueing a new switch if too many are already in flight */
0569     if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
0570         return;
0571 
0572     isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
0573     if (!isw)
0574         return;
0575 
0576     atomic_inc(&isw_nr_in_flight);
0577 
0578     /* find and pin the new wb */
0579     rcu_read_lock();
0580     memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
0581     if (memcg_css && !css_tryget(memcg_css))
0582         memcg_css = NULL;
0583     rcu_read_unlock();
0584     if (!memcg_css)
0585         goto out_free;
0586 
0587     isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
0588     css_put(memcg_css);
0589     if (!isw->new_wb)
0590         goto out_free;
0591 
0592     if (!inode_prepare_wbs_switch(inode, isw->new_wb))
0593         goto out_free;
0594 
0595     isw->inodes[0] = inode;
0596 
0597     /*
0598      * In addition to synchronizing among switchers, I_WB_SWITCH tells
0599      * the RCU protected stat update paths to grab the i_page
0600      * lock so that stat transfer can synchronize against them.
0601      * Let's continue after I_WB_SWITCH is guaranteed to be visible.
0602      */
0603     INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
0604     queue_rcu_work(isw_wq, &isw->work);
0605     return;
0606 
0607 out_free:
0608     atomic_dec(&isw_nr_in_flight);
0609     if (isw->new_wb)
0610         wb_put(isw->new_wb);
0611     kfree(isw);
0612 }
0613 
0614 /**
0615  * cleanup_offline_cgwb - detach associated inodes
0616  * @wb: target wb
0617  *
0618  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
0619  * to eventually release the dying @wb.  Returns %true if not all inodes were
0620  * switched and the function has to be restarted.
0621  */
0622 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
0623 {
0624     struct cgroup_subsys_state *memcg_css;
0625     struct inode_switch_wbs_context *isw;
0626     struct inode *inode;
0627     int nr;
0628     bool restart = false;
0629 
0630     isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
0631               GFP_KERNEL);
0632     if (!isw)
0633         return restart;
0634 
0635     atomic_inc(&isw_nr_in_flight);
0636 
0637     for (memcg_css = wb->memcg_css->parent; memcg_css;
0638          memcg_css = memcg_css->parent) {
0639         isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
0640         if (isw->new_wb)
0641             break;
0642     }
0643     if (unlikely(!isw->new_wb))
0644         isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
0645 
0646     nr = 0;
0647     spin_lock(&wb->list_lock);
0648     list_for_each_entry(inode, &wb->b_attached, i_io_list) {
0649         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
0650             continue;
0651 
0652         isw->inodes[nr++] = inode;
0653 
0654         if (nr >= WB_MAX_INODES_PER_ISW - 1) {
0655             restart = true;
0656             break;
0657         }
0658     }
0659     spin_unlock(&wb->list_lock);
0660 
0661     /* no attached inodes? bail out */
0662     if (nr == 0) {
0663         atomic_dec(&isw_nr_in_flight);
0664         wb_put(isw->new_wb);
0665         kfree(isw);
0666         return restart;
0667     }
0668 
0669     /*
0670      * In addition to synchronizing among switchers, I_WB_SWITCH tells
0671      * the RCU protected stat update paths to grab the i_page
0672      * lock so that stat transfer can synchronize against them.
0673      * Let's continue after I_WB_SWITCH is guaranteed to be visible.
0674      */
0675     INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
0676     queue_rcu_work(isw_wq, &isw->work);
0677 
0678     return restart;
0679 }
0680 
0681 /**
0682  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
0683  * @wbc: writeback_control of interest
0684  * @inode: target inode
0685  *
0686  * @inode is locked and about to be written back under the control of @wbc.
0687  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
0688  * writeback completion, wbc_detach_inode() should be called.  This is used
0689  * to track the cgroup writeback context.
0690  */
0691 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
0692                  struct inode *inode)
0693 {
0694     if (!inode_cgwb_enabled(inode)) {
0695         spin_unlock(&inode->i_lock);
0696         return;
0697     }
0698 
0699     wbc->wb = inode_to_wb(inode);
0700     wbc->inode = inode;
0701 
0702     wbc->wb_id = wbc->wb->memcg_css->id;
0703     wbc->wb_lcand_id = inode->i_wb_frn_winner;
0704     wbc->wb_tcand_id = 0;
0705     wbc->wb_bytes = 0;
0706     wbc->wb_lcand_bytes = 0;
0707     wbc->wb_tcand_bytes = 0;
0708 
0709     wb_get(wbc->wb);
0710     spin_unlock(&inode->i_lock);
0711 
0712     /*
0713      * A dying wb indicates that either the blkcg associated with the
0714      * memcg changed or the associated memcg is dying.  In the first
0715      * case, a replacement wb should already be available and we should
0716      * refresh the wb immediately.  In the second case, trying to
0717      * refresh will keep failing.
0718      */
0719     if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
0720         inode_switch_wbs(inode, wbc->wb_id);
0721 }
0722 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
0723 
0724 /**
0725  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
0726  * @wbc: writeback_control of the just finished writeback
0727  *
0728  * To be called after a writeback attempt of an inode finishes and undoes
0729  * wbc_attach_and_unlock_inode().  Can be called under any context.
0730  *
0731  * As concurrent write sharing of an inode is expected to be very rare and
0732  * memcg only tracks page ownership on first-use basis severely confining
0733  * the usefulness of such sharing, cgroup writeback tracks ownership
0734  * per-inode.  While the support for concurrent write sharing of an inode
0735  * is deemed unnecessary, an inode being written to by different cgroups at
0736  * different points in time is a lot more common, and, more importantly,
0737  * charging only by first-use can too readily lead to grossly incorrect
0738  * behaviors (single foreign page can lead to gigabytes of writeback to be
0739  * incorrectly attributed).
0740  *
0741  * To resolve this issue, cgroup writeback detects the majority dirtier of
0742  * an inode and transfers the ownership to it.  To avoid unnecessary
0743  * oscillation, the detection mechanism keeps track of history and gives
0744  * out the switch verdict only if the foreign usage pattern is stable over
0745  * a certain amount of time and/or writeback attempts.
0746  *
0747  * On each writeback attempt, @wbc tries to detect the majority writer
0748  * using Boyer-Moore majority vote algorithm.  In addition to the byte
0749  * count from the majority voting, it also counts the bytes written for the
0750  * current wb and the last round's winner wb (max of last round's current
0751  * wb, the winner from two rounds ago, and the last round's majority
0752  * candidate).  Keeping track of the historical winner helps the algorithm
0753  * to semi-reliably detect the most active writer even when it's not the
0754  * absolute majority.
0755  *
0756  * Once the winner of the round is determined, whether the winner is
0757  * foreign or not and how much IO time the round consumed is recorded in
0758  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
0759  * over a certain threshold, the switch verdict is given.
0760  */
0761 void wbc_detach_inode(struct writeback_control *wbc)
0762 {
0763     struct bdi_writeback *wb = wbc->wb;
0764     struct inode *inode = wbc->inode;
0765     unsigned long avg_time, max_bytes, max_time;
0766     u16 history;
0767     int max_id;
0768 
0769     if (!wb)
0770         return;
0771 
0772     history = inode->i_wb_frn_history;
0773     avg_time = inode->i_wb_frn_avg_time;
0774 
0775     /* pick the winner of this round */
0776     if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
0777         wbc->wb_bytes >= wbc->wb_tcand_bytes) {
0778         max_id = wbc->wb_id;
0779         max_bytes = wbc->wb_bytes;
0780     } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
0781         max_id = wbc->wb_lcand_id;
0782         max_bytes = wbc->wb_lcand_bytes;
0783     } else {
0784         max_id = wbc->wb_tcand_id;
0785         max_bytes = wbc->wb_tcand_bytes;
0786     }
0787 
0788     /*
0789      * Calculate the amount of IO time the winner consumed and fold it
0790      * into the running average kept per inode.  If the consumed IO
0791      * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
0792      * deciding whether to switch or not.  This is to prevent one-off
0793      * small dirtiers from skewing the verdict.
0794      */
0795     max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
0796                 wb->avg_write_bandwidth);
0797     if (avg_time)
0798         avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
0799                 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
0800     else
0801         avg_time = max_time;    /* immediate catch up on first run */
0802 
0803     if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
0804         int slots;
0805 
0806         /*
0807          * The switch verdict is reached if foreign wb's consume
0808          * more than a certain proportion of IO time in a
0809          * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
0810          * history mask where each bit represents one sixteenth of
0811          * the period.  Determine the number of slots to shift into
0812          * history from @max_time.
0813          */
0814         slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
0815                 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
0816         history <<= slots;
0817         if (wbc->wb_id != max_id)
0818             history |= (1U << slots) - 1;
0819 
0820         if (history)
0821             trace_inode_foreign_history(inode, wbc, history);
0822 
0823         /*
0824          * Switch if the current wb isn't the consistent winner.
0825          * If there are multiple closely competing dirtiers, the
0826          * inode may switch across them repeatedly over time, which
0827          * is okay.  The main goal is avoiding keeping an inode on
0828          * the wrong wb for an extended period of time.
0829          */
0830         if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
0831             inode_switch_wbs(inode, max_id);
0832     }
0833 
0834     /*
0835      * Multiple instances of this function may race to update the
0836      * following fields but we don't mind occassional inaccuracies.
0837      */
0838     inode->i_wb_frn_winner = max_id;
0839     inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
0840     inode->i_wb_frn_history = history;
0841 
0842     wb_put(wbc->wb);
0843     wbc->wb = NULL;
0844 }
0845 EXPORT_SYMBOL_GPL(wbc_detach_inode);
0846 
0847 /**
0848  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
0849  * @wbc: writeback_control of the writeback in progress
0850  * @page: page being written out
0851  * @bytes: number of bytes being written out
0852  *
0853  * @bytes from @page are about to written out during the writeback
0854  * controlled by @wbc.  Keep the book for foreign inode detection.  See
0855  * wbc_detach_inode().
0856  */
0857 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
0858                   size_t bytes)
0859 {
0860     struct cgroup_subsys_state *css;
0861     int id;
0862 
0863     /*
0864      * pageout() path doesn't attach @wbc to the inode being written
0865      * out.  This is intentional as we don't want the function to block
0866      * behind a slow cgroup.  Ultimately, we want pageout() to kick off
0867      * regular writeback instead of writing things out itself.
0868      */
0869     if (!wbc->wb || wbc->no_cgroup_owner)
0870         return;
0871 
0872     css = mem_cgroup_css_from_page(page);
0873     /* dead cgroups shouldn't contribute to inode ownership arbitration */
0874     if (!(css->flags & CSS_ONLINE))
0875         return;
0876 
0877     id = css->id;
0878 
0879     if (id == wbc->wb_id) {
0880         wbc->wb_bytes += bytes;
0881         return;
0882     }
0883 
0884     if (id == wbc->wb_lcand_id)
0885         wbc->wb_lcand_bytes += bytes;
0886 
0887     /* Boyer-Moore majority vote algorithm */
0888     if (!wbc->wb_tcand_bytes)
0889         wbc->wb_tcand_id = id;
0890     if (id == wbc->wb_tcand_id)
0891         wbc->wb_tcand_bytes += bytes;
0892     else
0893         wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
0894 }
0895 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
0896 
0897 /**
0898  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
0899  * @wb: target bdi_writeback to split @nr_pages to
0900  * @nr_pages: number of pages to write for the whole bdi
0901  *
0902  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
0903  * relation to the total write bandwidth of all wb's w/ dirty inodes on
0904  * @wb->bdi.
0905  */
0906 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
0907 {
0908     unsigned long this_bw = wb->avg_write_bandwidth;
0909     unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
0910 
0911     if (nr_pages == LONG_MAX)
0912         return LONG_MAX;
0913 
0914     /*
0915      * This may be called on clean wb's and proportional distribution
0916      * may not make sense, just use the original @nr_pages in those
0917      * cases.  In general, we wanna err on the side of writing more.
0918      */
0919     if (!tot_bw || this_bw >= tot_bw)
0920         return nr_pages;
0921     else
0922         return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
0923 }
0924 
0925 /**
0926  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
0927  * @bdi: target backing_dev_info
0928  * @base_work: wb_writeback_work to issue
0929  * @skip_if_busy: skip wb's which already have writeback in progress
0930  *
0931  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
0932  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
0933  * distributed to the busy wbs according to each wb's proportion in the
0934  * total active write bandwidth of @bdi.
0935  */
0936 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
0937                   struct wb_writeback_work *base_work,
0938                   bool skip_if_busy)
0939 {
0940     struct bdi_writeback *last_wb = NULL;
0941     struct bdi_writeback *wb = list_entry(&bdi->wb_list,
0942                           struct bdi_writeback, bdi_node);
0943 
0944     might_sleep();
0945 restart:
0946     rcu_read_lock();
0947     list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
0948         DEFINE_WB_COMPLETION(fallback_work_done, bdi);
0949         struct wb_writeback_work fallback_work;
0950         struct wb_writeback_work *work;
0951         long nr_pages;
0952 
0953         if (last_wb) {
0954             wb_put(last_wb);
0955             last_wb = NULL;
0956         }
0957 
0958         /* SYNC_ALL writes out I_DIRTY_TIME too */
0959         if (!wb_has_dirty_io(wb) &&
0960             (base_work->sync_mode == WB_SYNC_NONE ||
0961              list_empty(&wb->b_dirty_time)))
0962             continue;
0963         if (skip_if_busy && writeback_in_progress(wb))
0964             continue;
0965 
0966         nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
0967 
0968         work = kmalloc(sizeof(*work), GFP_ATOMIC);
0969         if (work) {
0970             *work = *base_work;
0971             work->nr_pages = nr_pages;
0972             work->auto_free = 1;
0973             wb_queue_work(wb, work);
0974             continue;
0975         }
0976 
0977         /* alloc failed, execute synchronously using on-stack fallback */
0978         work = &fallback_work;
0979         *work = *base_work;
0980         work->nr_pages = nr_pages;
0981         work->auto_free = 0;
0982         work->done = &fallback_work_done;
0983 
0984         wb_queue_work(wb, work);
0985 
0986         /*
0987          * Pin @wb so that it stays on @bdi->wb_list.  This allows
0988          * continuing iteration from @wb after dropping and
0989          * regrabbing rcu read lock.
0990          */
0991         wb_get(wb);
0992         last_wb = wb;
0993 
0994         rcu_read_unlock();
0995         wb_wait_for_completion(&fallback_work_done);
0996         goto restart;
0997     }
0998     rcu_read_unlock();
0999 
1000     if (last_wb)
1001         wb_put(last_wb);
1002 }
1003 
1004 /**
1005  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1006  * @bdi_id: target bdi id
1007  * @memcg_id: target memcg css id
1008  * @reason: reason why some writeback work initiated
1009  * @done: target wb_completion
1010  *
1011  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1012  * with the specified parameters.
1013  */
1014 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1015                enum wb_reason reason, struct wb_completion *done)
1016 {
1017     struct backing_dev_info *bdi;
1018     struct cgroup_subsys_state *memcg_css;
1019     struct bdi_writeback *wb;
1020     struct wb_writeback_work *work;
1021     unsigned long dirty;
1022     int ret;
1023 
1024     /* lookup bdi and memcg */
1025     bdi = bdi_get_by_id(bdi_id);
1026     if (!bdi)
1027         return -ENOENT;
1028 
1029     rcu_read_lock();
1030     memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1031     if (memcg_css && !css_tryget(memcg_css))
1032         memcg_css = NULL;
1033     rcu_read_unlock();
1034     if (!memcg_css) {
1035         ret = -ENOENT;
1036         goto out_bdi_put;
1037     }
1038 
1039     /*
1040      * And find the associated wb.  If the wb isn't there already
1041      * there's nothing to flush, don't create one.
1042      */
1043     wb = wb_get_lookup(bdi, memcg_css);
1044     if (!wb) {
1045         ret = -ENOENT;
1046         goto out_css_put;
1047     }
1048 
1049     /*
1050      * The caller is attempting to write out most of
1051      * the currently dirty pages.  Let's take the current dirty page
1052      * count and inflate it by 25% which should be large enough to
1053      * flush out most dirty pages while avoiding getting livelocked by
1054      * concurrent dirtiers.
1055      *
1056      * BTW the memcg stats are flushed periodically and this is best-effort
1057      * estimation, so some potential error is ok.
1058      */
1059     dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1060     dirty = dirty * 10 / 8;
1061 
1062     /* issue the writeback work */
1063     work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1064     if (work) {
1065         work->nr_pages = dirty;
1066         work->sync_mode = WB_SYNC_NONE;
1067         work->range_cyclic = 1;
1068         work->reason = reason;
1069         work->done = done;
1070         work->auto_free = 1;
1071         wb_queue_work(wb, work);
1072         ret = 0;
1073     } else {
1074         ret = -ENOMEM;
1075     }
1076 
1077     wb_put(wb);
1078 out_css_put:
1079     css_put(memcg_css);
1080 out_bdi_put:
1081     bdi_put(bdi);
1082     return ret;
1083 }
1084 
1085 /**
1086  * cgroup_writeback_umount - flush inode wb switches for umount
1087  *
1088  * This function is called when a super_block is about to be destroyed and
1089  * flushes in-flight inode wb switches.  An inode wb switch goes through
1090  * RCU and then workqueue, so the two need to be flushed in order to ensure
1091  * that all previously scheduled switches are finished.  As wb switches are
1092  * rare occurrences and synchronize_rcu() can take a while, perform
1093  * flushing iff wb switches are in flight.
1094  */
1095 void cgroup_writeback_umount(void)
1096 {
1097     /*
1098      * SB_ACTIVE should be reliably cleared before checking
1099      * isw_nr_in_flight, see generic_shutdown_super().
1100      */
1101     smp_mb();
1102 
1103     if (atomic_read(&isw_nr_in_flight)) {
1104         /*
1105          * Use rcu_barrier() to wait for all pending callbacks to
1106          * ensure that all in-flight wb switches are in the workqueue.
1107          */
1108         rcu_barrier();
1109         flush_workqueue(isw_wq);
1110     }
1111 }
1112 
1113 static int __init cgroup_writeback_init(void)
1114 {
1115     isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1116     if (!isw_wq)
1117         return -ENOMEM;
1118     return 0;
1119 }
1120 fs_initcall(cgroup_writeback_init);
1121 
1122 #else   /* CONFIG_CGROUP_WRITEBACK */
1123 
1124 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1125 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1126 
1127 static void inode_cgwb_move_to_attached(struct inode *inode,
1128                     struct bdi_writeback *wb)
1129 {
1130     assert_spin_locked(&wb->list_lock);
1131     assert_spin_locked(&inode->i_lock);
1132 
1133     inode->i_state &= ~I_SYNC_QUEUED;
1134     list_del_init(&inode->i_io_list);
1135     wb_io_lists_depopulated(wb);
1136 }
1137 
1138 static struct bdi_writeback *
1139 locked_inode_to_wb_and_lock_list(struct inode *inode)
1140     __releases(&inode->i_lock)
1141     __acquires(&wb->list_lock)
1142 {
1143     struct bdi_writeback *wb = inode_to_wb(inode);
1144 
1145     spin_unlock(&inode->i_lock);
1146     spin_lock(&wb->list_lock);
1147     return wb;
1148 }
1149 
1150 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1151     __acquires(&wb->list_lock)
1152 {
1153     struct bdi_writeback *wb = inode_to_wb(inode);
1154 
1155     spin_lock(&wb->list_lock);
1156     return wb;
1157 }
1158 
1159 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1160 {
1161     return nr_pages;
1162 }
1163 
1164 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1165                   struct wb_writeback_work *base_work,
1166                   bool skip_if_busy)
1167 {
1168     might_sleep();
1169 
1170     if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1171         base_work->auto_free = 0;
1172         wb_queue_work(&bdi->wb, base_work);
1173     }
1174 }
1175 
1176 #endif  /* CONFIG_CGROUP_WRITEBACK */
1177 
1178 /*
1179  * Add in the number of potentially dirty inodes, because each inode
1180  * write can dirty pagecache in the underlying blockdev.
1181  */
1182 static unsigned long get_nr_dirty_pages(void)
1183 {
1184     return global_node_page_state(NR_FILE_DIRTY) +
1185         get_nr_dirty_inodes();
1186 }
1187 
1188 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1189 {
1190     if (!wb_has_dirty_io(wb))
1191         return;
1192 
1193     /*
1194      * All callers of this function want to start writeback of all
1195      * dirty pages. Places like vmscan can call this at a very
1196      * high frequency, causing pointless allocations of tons of
1197      * work items and keeping the flusher threads busy retrieving
1198      * that work. Ensure that we only allow one of them pending and
1199      * inflight at the time.
1200      */
1201     if (test_bit(WB_start_all, &wb->state) ||
1202         test_and_set_bit(WB_start_all, &wb->state))
1203         return;
1204 
1205     wb->start_all_reason = reason;
1206     wb_wakeup(wb);
1207 }
1208 
1209 /**
1210  * wb_start_background_writeback - start background writeback
1211  * @wb: bdi_writback to write from
1212  *
1213  * Description:
1214  *   This makes sure WB_SYNC_NONE background writeback happens. When
1215  *   this function returns, it is only guaranteed that for given wb
1216  *   some IO is happening if we are over background dirty threshold.
1217  *   Caller need not hold sb s_umount semaphore.
1218  */
1219 void wb_start_background_writeback(struct bdi_writeback *wb)
1220 {
1221     /*
1222      * We just wake up the flusher thread. It will perform background
1223      * writeback as soon as there is no other work to do.
1224      */
1225     trace_writeback_wake_background(wb);
1226     wb_wakeup(wb);
1227 }
1228 
1229 /*
1230  * Remove the inode from the writeback list it is on.
1231  */
1232 void inode_io_list_del(struct inode *inode)
1233 {
1234     struct bdi_writeback *wb;
1235 
1236     wb = inode_to_wb_and_lock_list(inode);
1237     spin_lock(&inode->i_lock);
1238 
1239     inode->i_state &= ~I_SYNC_QUEUED;
1240     list_del_init(&inode->i_io_list);
1241     wb_io_lists_depopulated(wb);
1242 
1243     spin_unlock(&inode->i_lock);
1244     spin_unlock(&wb->list_lock);
1245 }
1246 EXPORT_SYMBOL(inode_io_list_del);
1247 
1248 /*
1249  * mark an inode as under writeback on the sb
1250  */
1251 void sb_mark_inode_writeback(struct inode *inode)
1252 {
1253     struct super_block *sb = inode->i_sb;
1254     unsigned long flags;
1255 
1256     if (list_empty(&inode->i_wb_list)) {
1257         spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1258         if (list_empty(&inode->i_wb_list)) {
1259             list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1260             trace_sb_mark_inode_writeback(inode);
1261         }
1262         spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1263     }
1264 }
1265 
1266 /*
1267  * clear an inode as under writeback on the sb
1268  */
1269 void sb_clear_inode_writeback(struct inode *inode)
1270 {
1271     struct super_block *sb = inode->i_sb;
1272     unsigned long flags;
1273 
1274     if (!list_empty(&inode->i_wb_list)) {
1275         spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1276         if (!list_empty(&inode->i_wb_list)) {
1277             list_del_init(&inode->i_wb_list);
1278             trace_sb_clear_inode_writeback(inode);
1279         }
1280         spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1281     }
1282 }
1283 
1284 /*
1285  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1286  * furthest end of its superblock's dirty-inode list.
1287  *
1288  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1289  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1290  * the case then the inode must have been redirtied while it was being written
1291  * out and we don't reset its dirtied_when.
1292  */
1293 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1294 {
1295     assert_spin_locked(&inode->i_lock);
1296 
1297     if (!list_empty(&wb->b_dirty)) {
1298         struct inode *tail;
1299 
1300         tail = wb_inode(wb->b_dirty.next);
1301         if (time_before(inode->dirtied_when, tail->dirtied_when))
1302             inode->dirtied_when = jiffies;
1303     }
1304     inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1305     inode->i_state &= ~I_SYNC_QUEUED;
1306 }
1307 
1308 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1309 {
1310     spin_lock(&inode->i_lock);
1311     redirty_tail_locked(inode, wb);
1312     spin_unlock(&inode->i_lock);
1313 }
1314 
1315 /*
1316  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1317  */
1318 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1319 {
1320     inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1321 }
1322 
1323 static void inode_sync_complete(struct inode *inode)
1324 {
1325     inode->i_state &= ~I_SYNC;
1326     /* If inode is clean an unused, put it into LRU now... */
1327     inode_add_lru(inode);
1328     /* Waiters must see I_SYNC cleared before being woken up */
1329     smp_mb();
1330     wake_up_bit(&inode->i_state, __I_SYNC);
1331 }
1332 
1333 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1334 {
1335     bool ret = time_after(inode->dirtied_when, t);
1336 #ifndef CONFIG_64BIT
1337     /*
1338      * For inodes being constantly redirtied, dirtied_when can get stuck.
1339      * It _appears_ to be in the future, but is actually in distant past.
1340      * This test is necessary to prevent such wrapped-around relative times
1341      * from permanently stopping the whole bdi writeback.
1342      */
1343     ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1344 #endif
1345     return ret;
1346 }
1347 
1348 #define EXPIRE_DIRTY_ATIME 0x0001
1349 
1350 /*
1351  * Move expired (dirtied before dirtied_before) dirty inodes from
1352  * @delaying_queue to @dispatch_queue.
1353  */
1354 static int move_expired_inodes(struct list_head *delaying_queue,
1355                    struct list_head *dispatch_queue,
1356                    unsigned long dirtied_before)
1357 {
1358     LIST_HEAD(tmp);
1359     struct list_head *pos, *node;
1360     struct super_block *sb = NULL;
1361     struct inode *inode;
1362     int do_sb_sort = 0;
1363     int moved = 0;
1364 
1365     while (!list_empty(delaying_queue)) {
1366         inode = wb_inode(delaying_queue->prev);
1367         if (inode_dirtied_after(inode, dirtied_before))
1368             break;
1369         spin_lock(&inode->i_lock);
1370         list_move(&inode->i_io_list, &tmp);
1371         moved++;
1372         inode->i_state |= I_SYNC_QUEUED;
1373         spin_unlock(&inode->i_lock);
1374         if (sb_is_blkdev_sb(inode->i_sb))
1375             continue;
1376         if (sb && sb != inode->i_sb)
1377             do_sb_sort = 1;
1378         sb = inode->i_sb;
1379     }
1380 
1381     /* just one sb in list, splice to dispatch_queue and we're done */
1382     if (!do_sb_sort) {
1383         list_splice(&tmp, dispatch_queue);
1384         goto out;
1385     }
1386 
1387     /*
1388      * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1389      * we don't take inode->i_lock here because it is just a pointless overhead.
1390      * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1391      * fully under our control.
1392      */
1393     while (!list_empty(&tmp)) {
1394         sb = wb_inode(tmp.prev)->i_sb;
1395         list_for_each_prev_safe(pos, node, &tmp) {
1396             inode = wb_inode(pos);
1397             if (inode->i_sb == sb)
1398                 list_move(&inode->i_io_list, dispatch_queue);
1399         }
1400     }
1401 out:
1402     return moved;
1403 }
1404 
1405 /*
1406  * Queue all expired dirty inodes for io, eldest first.
1407  * Before
1408  *         newly dirtied     b_dirty    b_io    b_more_io
1409  *         =============>    gf         edc     BA
1410  * After
1411  *         newly dirtied     b_dirty    b_io    b_more_io
1412  *         =============>    g          fBAedc
1413  *                                           |
1414  *                                           +--> dequeue for IO
1415  */
1416 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1417              unsigned long dirtied_before)
1418 {
1419     int moved;
1420     unsigned long time_expire_jif = dirtied_before;
1421 
1422     assert_spin_locked(&wb->list_lock);
1423     list_splice_init(&wb->b_more_io, &wb->b_io);
1424     moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1425     if (!work->for_sync)
1426         time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1427     moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1428                      time_expire_jif);
1429     if (moved)
1430         wb_io_lists_populated(wb);
1431     trace_writeback_queue_io(wb, work, dirtied_before, moved);
1432 }
1433 
1434 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1435 {
1436     int ret;
1437 
1438     if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1439         trace_writeback_write_inode_start(inode, wbc);
1440         ret = inode->i_sb->s_op->write_inode(inode, wbc);
1441         trace_writeback_write_inode(inode, wbc);
1442         return ret;
1443     }
1444     return 0;
1445 }
1446 
1447 /*
1448  * Wait for writeback on an inode to complete. Called with i_lock held.
1449  * Caller must make sure inode cannot go away when we drop i_lock.
1450  */
1451 static void __inode_wait_for_writeback(struct inode *inode)
1452     __releases(inode->i_lock)
1453     __acquires(inode->i_lock)
1454 {
1455     DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1456     wait_queue_head_t *wqh;
1457 
1458     wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1459     while (inode->i_state & I_SYNC) {
1460         spin_unlock(&inode->i_lock);
1461         __wait_on_bit(wqh, &wq, bit_wait,
1462                   TASK_UNINTERRUPTIBLE);
1463         spin_lock(&inode->i_lock);
1464     }
1465 }
1466 
1467 /*
1468  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1469  */
1470 void inode_wait_for_writeback(struct inode *inode)
1471 {
1472     spin_lock(&inode->i_lock);
1473     __inode_wait_for_writeback(inode);
1474     spin_unlock(&inode->i_lock);
1475 }
1476 
1477 /*
1478  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1479  * held and drops it. It is aimed for callers not holding any inode reference
1480  * so once i_lock is dropped, inode can go away.
1481  */
1482 static void inode_sleep_on_writeback(struct inode *inode)
1483     __releases(inode->i_lock)
1484 {
1485     DEFINE_WAIT(wait);
1486     wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1487     int sleep;
1488 
1489     prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1490     sleep = inode->i_state & I_SYNC;
1491     spin_unlock(&inode->i_lock);
1492     if (sleep)
1493         schedule();
1494     finish_wait(wqh, &wait);
1495 }
1496 
1497 /*
1498  * Find proper writeback list for the inode depending on its current state and
1499  * possibly also change of its state while we were doing writeback.  Here we
1500  * handle things such as livelock prevention or fairness of writeback among
1501  * inodes. This function can be called only by flusher thread - noone else
1502  * processes all inodes in writeback lists and requeueing inodes behind flusher
1503  * thread's back can have unexpected consequences.
1504  */
1505 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1506               struct writeback_control *wbc)
1507 {
1508     if (inode->i_state & I_FREEING)
1509         return;
1510 
1511     /*
1512      * Sync livelock prevention. Each inode is tagged and synced in one
1513      * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1514      * the dirty time to prevent enqueue and sync it again.
1515      */
1516     if ((inode->i_state & I_DIRTY) &&
1517         (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1518         inode->dirtied_when = jiffies;
1519 
1520     if (wbc->pages_skipped) {
1521         /*
1522          * writeback is not making progress due to locked
1523          * buffers. Skip this inode for now.
1524          */
1525         redirty_tail_locked(inode, wb);
1526         return;
1527     }
1528 
1529     if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1530         /*
1531          * We didn't write back all the pages.  nfs_writepages()
1532          * sometimes bales out without doing anything.
1533          */
1534         if (wbc->nr_to_write <= 0) {
1535             /* Slice used up. Queue for next turn. */
1536             requeue_io(inode, wb);
1537         } else {
1538             /*
1539              * Writeback blocked by something other than
1540              * congestion. Delay the inode for some time to
1541              * avoid spinning on the CPU (100% iowait)
1542              * retrying writeback of the dirty page/inode
1543              * that cannot be performed immediately.
1544              */
1545             redirty_tail_locked(inode, wb);
1546         }
1547     } else if (inode->i_state & I_DIRTY) {
1548         /*
1549          * Filesystems can dirty the inode during writeback operations,
1550          * such as delayed allocation during submission or metadata
1551          * updates after data IO completion.
1552          */
1553         redirty_tail_locked(inode, wb);
1554     } else if (inode->i_state & I_DIRTY_TIME) {
1555         inode->dirtied_when = jiffies;
1556         inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1557         inode->i_state &= ~I_SYNC_QUEUED;
1558     } else {
1559         /* The inode is clean. Remove from writeback lists. */
1560         inode_cgwb_move_to_attached(inode, wb);
1561     }
1562 }
1563 
1564 /*
1565  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1566  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1567  *
1568  * This doesn't remove the inode from the writeback list it is on, except
1569  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1570  * expiration.  The caller is otherwise responsible for writeback list handling.
1571  *
1572  * The caller is also responsible for setting the I_SYNC flag beforehand and
1573  * calling inode_sync_complete() to clear it afterwards.
1574  */
1575 static int
1576 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1577 {
1578     struct address_space *mapping = inode->i_mapping;
1579     long nr_to_write = wbc->nr_to_write;
1580     unsigned dirty;
1581     int ret;
1582 
1583     WARN_ON(!(inode->i_state & I_SYNC));
1584 
1585     trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1586 
1587     ret = do_writepages(mapping, wbc);
1588 
1589     /*
1590      * Make sure to wait on the data before writing out the metadata.
1591      * This is important for filesystems that modify metadata on data
1592      * I/O completion. We don't do it for sync(2) writeback because it has a
1593      * separate, external IO completion path and ->sync_fs for guaranteeing
1594      * inode metadata is written back correctly.
1595      */
1596     if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1597         int err = filemap_fdatawait(mapping);
1598         if (ret == 0)
1599             ret = err;
1600     }
1601 
1602     /*
1603      * If the inode has dirty timestamps and we need to write them, call
1604      * mark_inode_dirty_sync() to notify the filesystem about it and to
1605      * change I_DIRTY_TIME into I_DIRTY_SYNC.
1606      */
1607     if ((inode->i_state & I_DIRTY_TIME) &&
1608         (wbc->sync_mode == WB_SYNC_ALL ||
1609          time_after(jiffies, inode->dirtied_time_when +
1610             dirtytime_expire_interval * HZ))) {
1611         trace_writeback_lazytime(inode);
1612         mark_inode_dirty_sync(inode);
1613     }
1614 
1615     /*
1616      * Get and clear the dirty flags from i_state.  This needs to be done
1617      * after calling writepages because some filesystems may redirty the
1618      * inode during writepages due to delalloc.  It also needs to be done
1619      * after handling timestamp expiration, as that may dirty the inode too.
1620      */
1621     spin_lock(&inode->i_lock);
1622     dirty = inode->i_state & I_DIRTY;
1623     inode->i_state &= ~dirty;
1624 
1625     /*
1626      * Paired with smp_mb() in __mark_inode_dirty().  This allows
1627      * __mark_inode_dirty() to test i_state without grabbing i_lock -
1628      * either they see the I_DIRTY bits cleared or we see the dirtied
1629      * inode.
1630      *
1631      * I_DIRTY_PAGES is always cleared together above even if @mapping
1632      * still has dirty pages.  The flag is reinstated after smp_mb() if
1633      * necessary.  This guarantees that either __mark_inode_dirty()
1634      * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1635      */
1636     smp_mb();
1637 
1638     if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1639         inode->i_state |= I_DIRTY_PAGES;
1640     else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1641         if (!(inode->i_state & I_DIRTY_PAGES)) {
1642             inode->i_state &= ~I_PINNING_FSCACHE_WB;
1643             wbc->unpinned_fscache_wb = true;
1644             dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1645         }
1646     }
1647 
1648     spin_unlock(&inode->i_lock);
1649 
1650     /* Don't write the inode if only I_DIRTY_PAGES was set */
1651     if (dirty & ~I_DIRTY_PAGES) {
1652         int err = write_inode(inode, wbc);
1653         if (ret == 0)
1654             ret = err;
1655     }
1656     wbc->unpinned_fscache_wb = false;
1657     trace_writeback_single_inode(inode, wbc, nr_to_write);
1658     return ret;
1659 }
1660 
1661 /*
1662  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1663  * the regular batched writeback done by the flusher threads in
1664  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1665  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1666  *
1667  * To prevent the inode from going away, either the caller must have a reference
1668  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1669  */
1670 static int writeback_single_inode(struct inode *inode,
1671                   struct writeback_control *wbc)
1672 {
1673     struct bdi_writeback *wb;
1674     int ret = 0;
1675 
1676     spin_lock(&inode->i_lock);
1677     if (!atomic_read(&inode->i_count))
1678         WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1679     else
1680         WARN_ON(inode->i_state & I_WILL_FREE);
1681 
1682     if (inode->i_state & I_SYNC) {
1683         /*
1684          * Writeback is already running on the inode.  For WB_SYNC_NONE,
1685          * that's enough and we can just return.  For WB_SYNC_ALL, we
1686          * must wait for the existing writeback to complete, then do
1687          * writeback again if there's anything left.
1688          */
1689         if (wbc->sync_mode != WB_SYNC_ALL)
1690             goto out;
1691         __inode_wait_for_writeback(inode);
1692     }
1693     WARN_ON(inode->i_state & I_SYNC);
1694     /*
1695      * If the inode is already fully clean, then there's nothing to do.
1696      *
1697      * For data-integrity syncs we also need to check whether any pages are
1698      * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1699      * there are any such pages, we'll need to wait for them.
1700      */
1701     if (!(inode->i_state & I_DIRTY_ALL) &&
1702         (wbc->sync_mode != WB_SYNC_ALL ||
1703          !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1704         goto out;
1705     inode->i_state |= I_SYNC;
1706     wbc_attach_and_unlock_inode(wbc, inode);
1707 
1708     ret = __writeback_single_inode(inode, wbc);
1709 
1710     wbc_detach_inode(wbc);
1711 
1712     wb = inode_to_wb_and_lock_list(inode);
1713     spin_lock(&inode->i_lock);
1714     /*
1715      * If the inode is now fully clean, then it can be safely removed from
1716      * its writeback list (if any).  Otherwise the flusher threads are
1717      * responsible for the writeback lists.
1718      */
1719     if (!(inode->i_state & I_DIRTY_ALL))
1720         inode_cgwb_move_to_attached(inode, wb);
1721     else if (!(inode->i_state & I_SYNC_QUEUED) &&
1722          (inode->i_state & I_DIRTY))
1723         redirty_tail_locked(inode, wb);
1724 
1725     spin_unlock(&wb->list_lock);
1726     inode_sync_complete(inode);
1727 out:
1728     spin_unlock(&inode->i_lock);
1729     return ret;
1730 }
1731 
1732 static long writeback_chunk_size(struct bdi_writeback *wb,
1733                  struct wb_writeback_work *work)
1734 {
1735     long pages;
1736 
1737     /*
1738      * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1739      * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1740      * here avoids calling into writeback_inodes_wb() more than once.
1741      *
1742      * The intended call sequence for WB_SYNC_ALL writeback is:
1743      *
1744      *      wb_writeback()
1745      *          writeback_sb_inodes()       <== called only once
1746      *              write_cache_pages()     <== called once for each inode
1747      *                   (quickly) tag currently dirty pages
1748      *                   (maybe slowly) sync all tagged pages
1749      */
1750     if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1751         pages = LONG_MAX;
1752     else {
1753         pages = min(wb->avg_write_bandwidth / 2,
1754                 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1755         pages = min(pages, work->nr_pages);
1756         pages = round_down(pages + MIN_WRITEBACK_PAGES,
1757                    MIN_WRITEBACK_PAGES);
1758     }
1759 
1760     return pages;
1761 }
1762 
1763 /*
1764  * Write a portion of b_io inodes which belong to @sb.
1765  *
1766  * Return the number of pages and/or inodes written.
1767  *
1768  * NOTE! This is called with wb->list_lock held, and will
1769  * unlock and relock that for each inode it ends up doing
1770  * IO for.
1771  */
1772 static long writeback_sb_inodes(struct super_block *sb,
1773                 struct bdi_writeback *wb,
1774                 struct wb_writeback_work *work)
1775 {
1776     struct writeback_control wbc = {
1777         .sync_mode      = work->sync_mode,
1778         .tagged_writepages  = work->tagged_writepages,
1779         .for_kupdate        = work->for_kupdate,
1780         .for_background     = work->for_background,
1781         .for_sync       = work->for_sync,
1782         .range_cyclic       = work->range_cyclic,
1783         .range_start        = 0,
1784         .range_end      = LLONG_MAX,
1785     };
1786     unsigned long start_time = jiffies;
1787     long write_chunk;
1788     long total_wrote = 0;  /* count both pages and inodes */
1789 
1790     while (!list_empty(&wb->b_io)) {
1791         struct inode *inode = wb_inode(wb->b_io.prev);
1792         struct bdi_writeback *tmp_wb;
1793         long wrote;
1794 
1795         if (inode->i_sb != sb) {
1796             if (work->sb) {
1797                 /*
1798                  * We only want to write back data for this
1799                  * superblock, move all inodes not belonging
1800                  * to it back onto the dirty list.
1801                  */
1802                 redirty_tail(inode, wb);
1803                 continue;
1804             }
1805 
1806             /*
1807              * The inode belongs to a different superblock.
1808              * Bounce back to the caller to unpin this and
1809              * pin the next superblock.
1810              */
1811             break;
1812         }
1813 
1814         /*
1815          * Don't bother with new inodes or inodes being freed, first
1816          * kind does not need periodic writeout yet, and for the latter
1817          * kind writeout is handled by the freer.
1818          */
1819         spin_lock(&inode->i_lock);
1820         if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1821             redirty_tail_locked(inode, wb);
1822             spin_unlock(&inode->i_lock);
1823             continue;
1824         }
1825         if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1826             /*
1827              * If this inode is locked for writeback and we are not
1828              * doing writeback-for-data-integrity, move it to
1829              * b_more_io so that writeback can proceed with the
1830              * other inodes on s_io.
1831              *
1832              * We'll have another go at writing back this inode
1833              * when we completed a full scan of b_io.
1834              */
1835             requeue_io(inode, wb);
1836             spin_unlock(&inode->i_lock);
1837             trace_writeback_sb_inodes_requeue(inode);
1838             continue;
1839         }
1840         spin_unlock(&wb->list_lock);
1841 
1842         /*
1843          * We already requeued the inode if it had I_SYNC set and we
1844          * are doing WB_SYNC_NONE writeback. So this catches only the
1845          * WB_SYNC_ALL case.
1846          */
1847         if (inode->i_state & I_SYNC) {
1848             /* Wait for I_SYNC. This function drops i_lock... */
1849             inode_sleep_on_writeback(inode);
1850             /* Inode may be gone, start again */
1851             spin_lock(&wb->list_lock);
1852             continue;
1853         }
1854         inode->i_state |= I_SYNC;
1855         wbc_attach_and_unlock_inode(&wbc, inode);
1856 
1857         write_chunk = writeback_chunk_size(wb, work);
1858         wbc.nr_to_write = write_chunk;
1859         wbc.pages_skipped = 0;
1860 
1861         /*
1862          * We use I_SYNC to pin the inode in memory. While it is set
1863          * evict_inode() will wait so the inode cannot be freed.
1864          */
1865         __writeback_single_inode(inode, &wbc);
1866 
1867         wbc_detach_inode(&wbc);
1868         work->nr_pages -= write_chunk - wbc.nr_to_write;
1869         wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1870         wrote = wrote < 0 ? 0 : wrote;
1871         total_wrote += wrote;
1872 
1873         if (need_resched()) {
1874             /*
1875              * We're trying to balance between building up a nice
1876              * long list of IOs to improve our merge rate, and
1877              * getting those IOs out quickly for anyone throttling
1878              * in balance_dirty_pages().  cond_resched() doesn't
1879              * unplug, so get our IOs out the door before we
1880              * give up the CPU.
1881              */
1882             blk_flush_plug(current->plug, false);
1883             cond_resched();
1884         }
1885 
1886         /*
1887          * Requeue @inode if still dirty.  Be careful as @inode may
1888          * have been switched to another wb in the meantime.
1889          */
1890         tmp_wb = inode_to_wb_and_lock_list(inode);
1891         spin_lock(&inode->i_lock);
1892         if (!(inode->i_state & I_DIRTY_ALL))
1893             total_wrote++;
1894         requeue_inode(inode, tmp_wb, &wbc);
1895         inode_sync_complete(inode);
1896         spin_unlock(&inode->i_lock);
1897 
1898         if (unlikely(tmp_wb != wb)) {
1899             spin_unlock(&tmp_wb->list_lock);
1900             spin_lock(&wb->list_lock);
1901         }
1902 
1903         /*
1904          * bail out to wb_writeback() often enough to check
1905          * background threshold and other termination conditions.
1906          */
1907         if (total_wrote) {
1908             if (time_is_before_jiffies(start_time + HZ / 10UL))
1909                 break;
1910             if (work->nr_pages <= 0)
1911                 break;
1912         }
1913     }
1914     return total_wrote;
1915 }
1916 
1917 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1918                   struct wb_writeback_work *work)
1919 {
1920     unsigned long start_time = jiffies;
1921     long wrote = 0;
1922 
1923     while (!list_empty(&wb->b_io)) {
1924         struct inode *inode = wb_inode(wb->b_io.prev);
1925         struct super_block *sb = inode->i_sb;
1926 
1927         if (!trylock_super(sb)) {
1928             /*
1929              * trylock_super() may fail consistently due to
1930              * s_umount being grabbed by someone else. Don't use
1931              * requeue_io() to avoid busy retrying the inode/sb.
1932              */
1933             redirty_tail(inode, wb);
1934             continue;
1935         }
1936         wrote += writeback_sb_inodes(sb, wb, work);
1937         up_read(&sb->s_umount);
1938 
1939         /* refer to the same tests at the end of writeback_sb_inodes */
1940         if (wrote) {
1941             if (time_is_before_jiffies(start_time + HZ / 10UL))
1942                 break;
1943             if (work->nr_pages <= 0)
1944                 break;
1945         }
1946     }
1947     /* Leave any unwritten inodes on b_io */
1948     return wrote;
1949 }
1950 
1951 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1952                 enum wb_reason reason)
1953 {
1954     struct wb_writeback_work work = {
1955         .nr_pages   = nr_pages,
1956         .sync_mode  = WB_SYNC_NONE,
1957         .range_cyclic   = 1,
1958         .reason     = reason,
1959     };
1960     struct blk_plug plug;
1961 
1962     blk_start_plug(&plug);
1963     spin_lock(&wb->list_lock);
1964     if (list_empty(&wb->b_io))
1965         queue_io(wb, &work, jiffies);
1966     __writeback_inodes_wb(wb, &work);
1967     spin_unlock(&wb->list_lock);
1968     blk_finish_plug(&plug);
1969 
1970     return nr_pages - work.nr_pages;
1971 }
1972 
1973 /*
1974  * Explicit flushing or periodic writeback of "old" data.
1975  *
1976  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1977  * dirtying-time in the inode's address_space.  So this periodic writeback code
1978  * just walks the superblock inode list, writing back any inodes which are
1979  * older than a specific point in time.
1980  *
1981  * Try to run once per dirty_writeback_interval.  But if a writeback event
1982  * takes longer than a dirty_writeback_interval interval, then leave a
1983  * one-second gap.
1984  *
1985  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1986  * all dirty pages if they are all attached to "old" mappings.
1987  */
1988 static long wb_writeback(struct bdi_writeback *wb,
1989              struct wb_writeback_work *work)
1990 {
1991     long nr_pages = work->nr_pages;
1992     unsigned long dirtied_before = jiffies;
1993     struct inode *inode;
1994     long progress;
1995     struct blk_plug plug;
1996 
1997     blk_start_plug(&plug);
1998     spin_lock(&wb->list_lock);
1999     for (;;) {
2000         /*
2001          * Stop writeback when nr_pages has been consumed
2002          */
2003         if (work->nr_pages <= 0)
2004             break;
2005 
2006         /*
2007          * Background writeout and kupdate-style writeback may
2008          * run forever. Stop them if there is other work to do
2009          * so that e.g. sync can proceed. They'll be restarted
2010          * after the other works are all done.
2011          */
2012         if ((work->for_background || work->for_kupdate) &&
2013             !list_empty(&wb->work_list))
2014             break;
2015 
2016         /*
2017          * For background writeout, stop when we are below the
2018          * background dirty threshold
2019          */
2020         if (work->for_background && !wb_over_bg_thresh(wb))
2021             break;
2022 
2023         /*
2024          * Kupdate and background works are special and we want to
2025          * include all inodes that need writing. Livelock avoidance is
2026          * handled by these works yielding to any other work so we are
2027          * safe.
2028          */
2029         if (work->for_kupdate) {
2030             dirtied_before = jiffies -
2031                 msecs_to_jiffies(dirty_expire_interval * 10);
2032         } else if (work->for_background)
2033             dirtied_before = jiffies;
2034 
2035         trace_writeback_start(wb, work);
2036         if (list_empty(&wb->b_io))
2037             queue_io(wb, work, dirtied_before);
2038         if (work->sb)
2039             progress = writeback_sb_inodes(work->sb, wb, work);
2040         else
2041             progress = __writeback_inodes_wb(wb, work);
2042         trace_writeback_written(wb, work);
2043 
2044         /*
2045          * Did we write something? Try for more
2046          *
2047          * Dirty inodes are moved to b_io for writeback in batches.
2048          * The completion of the current batch does not necessarily
2049          * mean the overall work is done. So we keep looping as long
2050          * as made some progress on cleaning pages or inodes.
2051          */
2052         if (progress)
2053             continue;
2054         /*
2055          * No more inodes for IO, bail
2056          */
2057         if (list_empty(&wb->b_more_io))
2058             break;
2059         /*
2060          * Nothing written. Wait for some inode to
2061          * become available for writeback. Otherwise
2062          * we'll just busyloop.
2063          */
2064         trace_writeback_wait(wb, work);
2065         inode = wb_inode(wb->b_more_io.prev);
2066         spin_lock(&inode->i_lock);
2067         spin_unlock(&wb->list_lock);
2068         /* This function drops i_lock... */
2069         inode_sleep_on_writeback(inode);
2070         spin_lock(&wb->list_lock);
2071     }
2072     spin_unlock(&wb->list_lock);
2073     blk_finish_plug(&plug);
2074 
2075     return nr_pages - work->nr_pages;
2076 }
2077 
2078 /*
2079  * Return the next wb_writeback_work struct that hasn't been processed yet.
2080  */
2081 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2082 {
2083     struct wb_writeback_work *work = NULL;
2084 
2085     spin_lock_irq(&wb->work_lock);
2086     if (!list_empty(&wb->work_list)) {
2087         work = list_entry(wb->work_list.next,
2088                   struct wb_writeback_work, list);
2089         list_del_init(&work->list);
2090     }
2091     spin_unlock_irq(&wb->work_lock);
2092     return work;
2093 }
2094 
2095 static long wb_check_background_flush(struct bdi_writeback *wb)
2096 {
2097     if (wb_over_bg_thresh(wb)) {
2098 
2099         struct wb_writeback_work work = {
2100             .nr_pages   = LONG_MAX,
2101             .sync_mode  = WB_SYNC_NONE,
2102             .for_background = 1,
2103             .range_cyclic   = 1,
2104             .reason     = WB_REASON_BACKGROUND,
2105         };
2106 
2107         return wb_writeback(wb, &work);
2108     }
2109 
2110     return 0;
2111 }
2112 
2113 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2114 {
2115     unsigned long expired;
2116     long nr_pages;
2117 
2118     /*
2119      * When set to zero, disable periodic writeback
2120      */
2121     if (!dirty_writeback_interval)
2122         return 0;
2123 
2124     expired = wb->last_old_flush +
2125             msecs_to_jiffies(dirty_writeback_interval * 10);
2126     if (time_before(jiffies, expired))
2127         return 0;
2128 
2129     wb->last_old_flush = jiffies;
2130     nr_pages = get_nr_dirty_pages();
2131 
2132     if (nr_pages) {
2133         struct wb_writeback_work work = {
2134             .nr_pages   = nr_pages,
2135             .sync_mode  = WB_SYNC_NONE,
2136             .for_kupdate    = 1,
2137             .range_cyclic   = 1,
2138             .reason     = WB_REASON_PERIODIC,
2139         };
2140 
2141         return wb_writeback(wb, &work);
2142     }
2143 
2144     return 0;
2145 }
2146 
2147 static long wb_check_start_all(struct bdi_writeback *wb)
2148 {
2149     long nr_pages;
2150 
2151     if (!test_bit(WB_start_all, &wb->state))
2152         return 0;
2153 
2154     nr_pages = get_nr_dirty_pages();
2155     if (nr_pages) {
2156         struct wb_writeback_work work = {
2157             .nr_pages   = wb_split_bdi_pages(wb, nr_pages),
2158             .sync_mode  = WB_SYNC_NONE,
2159             .range_cyclic   = 1,
2160             .reason     = wb->start_all_reason,
2161         };
2162 
2163         nr_pages = wb_writeback(wb, &work);
2164     }
2165 
2166     clear_bit(WB_start_all, &wb->state);
2167     return nr_pages;
2168 }
2169 
2170 
2171 /*
2172  * Retrieve work items and do the writeback they describe
2173  */
2174 static long wb_do_writeback(struct bdi_writeback *wb)
2175 {
2176     struct wb_writeback_work *work;
2177     long wrote = 0;
2178 
2179     set_bit(WB_writeback_running, &wb->state);
2180     while ((work = get_next_work_item(wb)) != NULL) {
2181         trace_writeback_exec(wb, work);
2182         wrote += wb_writeback(wb, work);
2183         finish_writeback_work(wb, work);
2184     }
2185 
2186     /*
2187      * Check for a flush-everything request
2188      */
2189     wrote += wb_check_start_all(wb);
2190 
2191     /*
2192      * Check for periodic writeback, kupdated() style
2193      */
2194     wrote += wb_check_old_data_flush(wb);
2195     wrote += wb_check_background_flush(wb);
2196     clear_bit(WB_writeback_running, &wb->state);
2197 
2198     return wrote;
2199 }
2200 
2201 /*
2202  * Handle writeback of dirty data for the device backed by this bdi. Also
2203  * reschedules periodically and does kupdated style flushing.
2204  */
2205 void wb_workfn(struct work_struct *work)
2206 {
2207     struct bdi_writeback *wb = container_of(to_delayed_work(work),
2208                         struct bdi_writeback, dwork);
2209     long pages_written;
2210 
2211     set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2212 
2213     if (likely(!current_is_workqueue_rescuer() ||
2214            !test_bit(WB_registered, &wb->state))) {
2215         /*
2216          * The normal path.  Keep writing back @wb until its
2217          * work_list is empty.  Note that this path is also taken
2218          * if @wb is shutting down even when we're running off the
2219          * rescuer as work_list needs to be drained.
2220          */
2221         do {
2222             pages_written = wb_do_writeback(wb);
2223             trace_writeback_pages_written(pages_written);
2224         } while (!list_empty(&wb->work_list));
2225     } else {
2226         /*
2227          * bdi_wq can't get enough workers and we're running off
2228          * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2229          * enough for efficient IO.
2230          */
2231         pages_written = writeback_inodes_wb(wb, 1024,
2232                             WB_REASON_FORKER_THREAD);
2233         trace_writeback_pages_written(pages_written);
2234     }
2235 
2236     if (!list_empty(&wb->work_list))
2237         wb_wakeup(wb);
2238     else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2239         wb_wakeup_delayed(wb);
2240 }
2241 
2242 /*
2243  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2244  * write back the whole world.
2245  */
2246 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2247                      enum wb_reason reason)
2248 {
2249     struct bdi_writeback *wb;
2250 
2251     if (!bdi_has_dirty_io(bdi))
2252         return;
2253 
2254     list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2255         wb_start_writeback(wb, reason);
2256 }
2257 
2258 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2259                 enum wb_reason reason)
2260 {
2261     rcu_read_lock();
2262     __wakeup_flusher_threads_bdi(bdi, reason);
2263     rcu_read_unlock();
2264 }
2265 
2266 /*
2267  * Wakeup the flusher threads to start writeback of all currently dirty pages
2268  */
2269 void wakeup_flusher_threads(enum wb_reason reason)
2270 {
2271     struct backing_dev_info *bdi;
2272 
2273     /*
2274      * If we are expecting writeback progress we must submit plugged IO.
2275      */
2276     blk_flush_plug(current->plug, true);
2277 
2278     rcu_read_lock();
2279     list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2280         __wakeup_flusher_threads_bdi(bdi, reason);
2281     rcu_read_unlock();
2282 }
2283 
2284 /*
2285  * Wake up bdi's periodically to make sure dirtytime inodes gets
2286  * written back periodically.  We deliberately do *not* check the
2287  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2288  * kernel to be constantly waking up once there are any dirtytime
2289  * inodes on the system.  So instead we define a separate delayed work
2290  * function which gets called much more rarely.  (By default, only
2291  * once every 12 hours.)
2292  *
2293  * If there is any other write activity going on in the file system,
2294  * this function won't be necessary.  But if the only thing that has
2295  * happened on the file system is a dirtytime inode caused by an atime
2296  * update, we need this infrastructure below to make sure that inode
2297  * eventually gets pushed out to disk.
2298  */
2299 static void wakeup_dirtytime_writeback(struct work_struct *w);
2300 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2301 
2302 static void wakeup_dirtytime_writeback(struct work_struct *w)
2303 {
2304     struct backing_dev_info *bdi;
2305 
2306     rcu_read_lock();
2307     list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2308         struct bdi_writeback *wb;
2309 
2310         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2311             if (!list_empty(&wb->b_dirty_time))
2312                 wb_wakeup(wb);
2313     }
2314     rcu_read_unlock();
2315     schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2316 }
2317 
2318 static int __init start_dirtytime_writeback(void)
2319 {
2320     schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2321     return 0;
2322 }
2323 __initcall(start_dirtytime_writeback);
2324 
2325 int dirtytime_interval_handler(struct ctl_table *table, int write,
2326                    void *buffer, size_t *lenp, loff_t *ppos)
2327 {
2328     int ret;
2329 
2330     ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2331     if (ret == 0 && write)
2332         mod_delayed_work(system_wq, &dirtytime_work, 0);
2333     return ret;
2334 }
2335 
2336 /**
2337  * __mark_inode_dirty - internal function to mark an inode dirty
2338  *
2339  * @inode: inode to mark
2340  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2341  *     multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2342  *     with I_DIRTY_PAGES.
2343  *
2344  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2345  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2346  *
2347  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2348  * instead of calling this directly.
2349  *
2350  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2351  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2352  * even if they are later hashed, as they will have been marked dirty already.
2353  *
2354  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2355  *
2356  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2357  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2358  * the kernel-internal blockdev inode represents the dirtying time of the
2359  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2360  * page->mapping->host, so the page-dirtying time is recorded in the internal
2361  * blockdev inode.
2362  */
2363 void __mark_inode_dirty(struct inode *inode, int flags)
2364 {
2365     struct super_block *sb = inode->i_sb;
2366     int dirtytime = 0;
2367     struct bdi_writeback *wb = NULL;
2368 
2369     trace_writeback_mark_inode_dirty(inode, flags);
2370 
2371     if (flags & I_DIRTY_INODE) {
2372         /*
2373          * Notify the filesystem about the inode being dirtied, so that
2374          * (if needed) it can update on-disk fields and journal the
2375          * inode.  This is only needed when the inode itself is being
2376          * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2377          * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2378          */
2379         trace_writeback_dirty_inode_start(inode, flags);
2380         if (sb->s_op->dirty_inode)
2381             sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2382         trace_writeback_dirty_inode(inode, flags);
2383 
2384         /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2385         flags &= ~I_DIRTY_TIME;
2386     } else {
2387         /*
2388          * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2389          * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2390          * in one call to __mark_inode_dirty().)
2391          */
2392         dirtytime = flags & I_DIRTY_TIME;
2393         WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2394     }
2395 
2396     /*
2397      * Paired with smp_mb() in __writeback_single_inode() for the
2398      * following lockless i_state test.  See there for details.
2399      */
2400     smp_mb();
2401 
2402     if (((inode->i_state & flags) == flags) ||
2403         (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2404         return;
2405 
2406     spin_lock(&inode->i_lock);
2407     if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2408         goto out_unlock_inode;
2409     if ((inode->i_state & flags) != flags) {
2410         const int was_dirty = inode->i_state & I_DIRTY;
2411 
2412         inode_attach_wb(inode, NULL);
2413 
2414         /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2415         if (flags & I_DIRTY_INODE)
2416             inode->i_state &= ~I_DIRTY_TIME;
2417         inode->i_state |= flags;
2418 
2419         /*
2420          * Grab inode's wb early because it requires dropping i_lock and we
2421          * need to make sure following checks happen atomically with dirty
2422          * list handling so that we don't move inodes under flush worker's
2423          * hands.
2424          */
2425         if (!was_dirty) {
2426             wb = locked_inode_to_wb_and_lock_list(inode);
2427             spin_lock(&inode->i_lock);
2428         }
2429 
2430         /*
2431          * If the inode is queued for writeback by flush worker, just
2432          * update its dirty state. Once the flush worker is done with
2433          * the inode it will place it on the appropriate superblock
2434          * list, based upon its state.
2435          */
2436         if (inode->i_state & I_SYNC_QUEUED)
2437             goto out_unlock;
2438 
2439         /*
2440          * Only add valid (hashed) inodes to the superblock's
2441          * dirty list.  Add blockdev inodes as well.
2442          */
2443         if (!S_ISBLK(inode->i_mode)) {
2444             if (inode_unhashed(inode))
2445                 goto out_unlock;
2446         }
2447         if (inode->i_state & I_FREEING)
2448             goto out_unlock;
2449 
2450         /*
2451          * If the inode was already on b_dirty/b_io/b_more_io, don't
2452          * reposition it (that would break b_dirty time-ordering).
2453          */
2454         if (!was_dirty) {
2455             struct list_head *dirty_list;
2456             bool wakeup_bdi = false;
2457 
2458             inode->dirtied_when = jiffies;
2459             if (dirtytime)
2460                 inode->dirtied_time_when = jiffies;
2461 
2462             if (inode->i_state & I_DIRTY)
2463                 dirty_list = &wb->b_dirty;
2464             else
2465                 dirty_list = &wb->b_dirty_time;
2466 
2467             wakeup_bdi = inode_io_list_move_locked(inode, wb,
2468                                    dirty_list);
2469 
2470             spin_unlock(&wb->list_lock);
2471             spin_unlock(&inode->i_lock);
2472             trace_writeback_dirty_inode_enqueue(inode);
2473 
2474             /*
2475              * If this is the first dirty inode for this bdi,
2476              * we have to wake-up the corresponding bdi thread
2477              * to make sure background write-back happens
2478              * later.
2479              */
2480             if (wakeup_bdi &&
2481                 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2482                 wb_wakeup_delayed(wb);
2483             return;
2484         }
2485     }
2486 out_unlock:
2487     if (wb)
2488         spin_unlock(&wb->list_lock);
2489 out_unlock_inode:
2490     spin_unlock(&inode->i_lock);
2491 }
2492 EXPORT_SYMBOL(__mark_inode_dirty);
2493 
2494 /*
2495  * The @s_sync_lock is used to serialise concurrent sync operations
2496  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2497  * Concurrent callers will block on the s_sync_lock rather than doing contending
2498  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2499  * has been issued up to the time this function is enter is guaranteed to be
2500  * completed by the time we have gained the lock and waited for all IO that is
2501  * in progress regardless of the order callers are granted the lock.
2502  */
2503 static void wait_sb_inodes(struct super_block *sb)
2504 {
2505     LIST_HEAD(sync_list);
2506 
2507     /*
2508      * We need to be protected against the filesystem going from
2509      * r/o to r/w or vice versa.
2510      */
2511     WARN_ON(!rwsem_is_locked(&sb->s_umount));
2512 
2513     mutex_lock(&sb->s_sync_lock);
2514 
2515     /*
2516      * Splice the writeback list onto a temporary list to avoid waiting on
2517      * inodes that have started writeback after this point.
2518      *
2519      * Use rcu_read_lock() to keep the inodes around until we have a
2520      * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2521      * the local list because inodes can be dropped from either by writeback
2522      * completion.
2523      */
2524     rcu_read_lock();
2525     spin_lock_irq(&sb->s_inode_wblist_lock);
2526     list_splice_init(&sb->s_inodes_wb, &sync_list);
2527 
2528     /*
2529      * Data integrity sync. Must wait for all pages under writeback, because
2530      * there may have been pages dirtied before our sync call, but which had
2531      * writeout started before we write it out.  In which case, the inode
2532      * may not be on the dirty list, but we still have to wait for that
2533      * writeout.
2534      */
2535     while (!list_empty(&sync_list)) {
2536         struct inode *inode = list_first_entry(&sync_list, struct inode,
2537                                i_wb_list);
2538         struct address_space *mapping = inode->i_mapping;
2539 
2540         /*
2541          * Move each inode back to the wb list before we drop the lock
2542          * to preserve consistency between i_wb_list and the mapping
2543          * writeback tag. Writeback completion is responsible to remove
2544          * the inode from either list once the writeback tag is cleared.
2545          */
2546         list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2547 
2548         /*
2549          * The mapping can appear untagged while still on-list since we
2550          * do not have the mapping lock. Skip it here, wb completion
2551          * will remove it.
2552          */
2553         if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2554             continue;
2555 
2556         spin_unlock_irq(&sb->s_inode_wblist_lock);
2557 
2558         spin_lock(&inode->i_lock);
2559         if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2560             spin_unlock(&inode->i_lock);
2561 
2562             spin_lock_irq(&sb->s_inode_wblist_lock);
2563             continue;
2564         }
2565         __iget(inode);
2566         spin_unlock(&inode->i_lock);
2567         rcu_read_unlock();
2568 
2569         /*
2570          * We keep the error status of individual mapping so that
2571          * applications can catch the writeback error using fsync(2).
2572          * See filemap_fdatawait_keep_errors() for details.
2573          */
2574         filemap_fdatawait_keep_errors(mapping);
2575 
2576         cond_resched();
2577 
2578         iput(inode);
2579 
2580         rcu_read_lock();
2581         spin_lock_irq(&sb->s_inode_wblist_lock);
2582     }
2583     spin_unlock_irq(&sb->s_inode_wblist_lock);
2584     rcu_read_unlock();
2585     mutex_unlock(&sb->s_sync_lock);
2586 }
2587 
2588 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2589                      enum wb_reason reason, bool skip_if_busy)
2590 {
2591     struct backing_dev_info *bdi = sb->s_bdi;
2592     DEFINE_WB_COMPLETION(done, bdi);
2593     struct wb_writeback_work work = {
2594         .sb         = sb,
2595         .sync_mode      = WB_SYNC_NONE,
2596         .tagged_writepages  = 1,
2597         .done           = &done,
2598         .nr_pages       = nr,
2599         .reason         = reason,
2600     };
2601 
2602     if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2603         return;
2604     WARN_ON(!rwsem_is_locked(&sb->s_umount));
2605 
2606     bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2607     wb_wait_for_completion(&done);
2608 }
2609 
2610 /**
2611  * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2612  * @sb: the superblock
2613  * @nr: the number of pages to write
2614  * @reason: reason why some writeback work initiated
2615  *
2616  * Start writeback on some inodes on this super_block. No guarantees are made
2617  * on how many (if any) will be written, and this function does not wait
2618  * for IO completion of submitted IO.
2619  */
2620 void writeback_inodes_sb_nr(struct super_block *sb,
2621                 unsigned long nr,
2622                 enum wb_reason reason)
2623 {
2624     __writeback_inodes_sb_nr(sb, nr, reason, false);
2625 }
2626 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2627 
2628 /**
2629  * writeback_inodes_sb  -   writeback dirty inodes from given super_block
2630  * @sb: the superblock
2631  * @reason: reason why some writeback work was initiated
2632  *
2633  * Start writeback on some inodes on this super_block. No guarantees are made
2634  * on how many (if any) will be written, and this function does not wait
2635  * for IO completion of submitted IO.
2636  */
2637 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2638 {
2639     return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2640 }
2641 EXPORT_SYMBOL(writeback_inodes_sb);
2642 
2643 /**
2644  * try_to_writeback_inodes_sb - try to start writeback if none underway
2645  * @sb: the superblock
2646  * @reason: reason why some writeback work was initiated
2647  *
2648  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2649  */
2650 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2651 {
2652     if (!down_read_trylock(&sb->s_umount))
2653         return;
2654 
2655     __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2656     up_read(&sb->s_umount);
2657 }
2658 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2659 
2660 /**
2661  * sync_inodes_sb   -   sync sb inode pages
2662  * @sb: the superblock
2663  *
2664  * This function writes and waits on any dirty inode belonging to this
2665  * super_block.
2666  */
2667 void sync_inodes_sb(struct super_block *sb)
2668 {
2669     struct backing_dev_info *bdi = sb->s_bdi;
2670     DEFINE_WB_COMPLETION(done, bdi);
2671     struct wb_writeback_work work = {
2672         .sb     = sb,
2673         .sync_mode  = WB_SYNC_ALL,
2674         .nr_pages   = LONG_MAX,
2675         .range_cyclic   = 0,
2676         .done       = &done,
2677         .reason     = WB_REASON_SYNC,
2678         .for_sync   = 1,
2679     };
2680 
2681     /*
2682      * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2683      * inodes under writeback and I_DIRTY_TIME inodes ignored by
2684      * bdi_has_dirty() need to be written out too.
2685      */
2686     if (bdi == &noop_backing_dev_info)
2687         return;
2688     WARN_ON(!rwsem_is_locked(&sb->s_umount));
2689 
2690     /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2691     bdi_down_write_wb_switch_rwsem(bdi);
2692     bdi_split_work_to_wbs(bdi, &work, false);
2693     wb_wait_for_completion(&done);
2694     bdi_up_write_wb_switch_rwsem(bdi);
2695 
2696     wait_sb_inodes(sb);
2697 }
2698 EXPORT_SYMBOL(sync_inodes_sb);
2699 
2700 /**
2701  * write_inode_now  -   write an inode to disk
2702  * @inode: inode to write to disk
2703  * @sync: whether the write should be synchronous or not
2704  *
2705  * This function commits an inode to disk immediately if it is dirty. This is
2706  * primarily needed by knfsd.
2707  *
2708  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2709  */
2710 int write_inode_now(struct inode *inode, int sync)
2711 {
2712     struct writeback_control wbc = {
2713         .nr_to_write = LONG_MAX,
2714         .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2715         .range_start = 0,
2716         .range_end = LLONG_MAX,
2717     };
2718 
2719     if (!mapping_can_writeback(inode->i_mapping))
2720         wbc.nr_to_write = 0;
2721 
2722     might_sleep();
2723     return writeback_single_inode(inode, &wbc);
2724 }
2725 EXPORT_SYMBOL(write_inode_now);
2726 
2727 /**
2728  * sync_inode_metadata - write an inode to disk
2729  * @inode: the inode to sync
2730  * @wait: wait for I/O to complete.
2731  *
2732  * Write an inode to disk and adjust its dirty state after completion.
2733  *
2734  * Note: only writes the actual inode, no associated data or other metadata.
2735  */
2736 int sync_inode_metadata(struct inode *inode, int wait)
2737 {
2738     struct writeback_control wbc = {
2739         .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2740         .nr_to_write = 0, /* metadata-only */
2741     };
2742 
2743     return writeback_single_inode(inode, &wbc);
2744 }
2745 EXPORT_SYMBOL(sync_inode_metadata);