Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  *  linux/fs/file.c
0004  *
0005  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
0006  *
0007  *  Manage the dynamic fd arrays in the process files_struct.
0008  */
0009 
0010 #include <linux/syscalls.h>
0011 #include <linux/export.h>
0012 #include <linux/fs.h>
0013 #include <linux/kernel.h>
0014 #include <linux/mm.h>
0015 #include <linux/sched/signal.h>
0016 #include <linux/slab.h>
0017 #include <linux/file.h>
0018 #include <linux/fdtable.h>
0019 #include <linux/bitops.h>
0020 #include <linux/spinlock.h>
0021 #include <linux/rcupdate.h>
0022 #include <linux/close_range.h>
0023 #include <net/sock.h>
0024 
0025 #include "internal.h"
0026 
0027 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
0028 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
0029 /* our min() is unusable in constant expressions ;-/ */
0030 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
0031 unsigned int sysctl_nr_open_max =
0032     __const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
0033 
0034 static void __free_fdtable(struct fdtable *fdt)
0035 {
0036     kvfree(fdt->fd);
0037     kvfree(fdt->open_fds);
0038     kfree(fdt);
0039 }
0040 
0041 static void free_fdtable_rcu(struct rcu_head *rcu)
0042 {
0043     __free_fdtable(container_of(rcu, struct fdtable, rcu));
0044 }
0045 
0046 #define BITBIT_NR(nr)   BITS_TO_LONGS(BITS_TO_LONGS(nr))
0047 #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long))
0048 
0049 /*
0050  * Copy 'count' fd bits from the old table to the new table and clear the extra
0051  * space if any.  This does not copy the file pointers.  Called with the files
0052  * spinlock held for write.
0053  */
0054 static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
0055                 unsigned int count)
0056 {
0057     unsigned int cpy, set;
0058 
0059     cpy = count / BITS_PER_BYTE;
0060     set = (nfdt->max_fds - count) / BITS_PER_BYTE;
0061     memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
0062     memset((char *)nfdt->open_fds + cpy, 0, set);
0063     memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
0064     memset((char *)nfdt->close_on_exec + cpy, 0, set);
0065 
0066     cpy = BITBIT_SIZE(count);
0067     set = BITBIT_SIZE(nfdt->max_fds) - cpy;
0068     memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy);
0069     memset((char *)nfdt->full_fds_bits + cpy, 0, set);
0070 }
0071 
0072 /*
0073  * Copy all file descriptors from the old table to the new, expanded table and
0074  * clear the extra space.  Called with the files spinlock held for write.
0075  */
0076 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
0077 {
0078     size_t cpy, set;
0079 
0080     BUG_ON(nfdt->max_fds < ofdt->max_fds);
0081 
0082     cpy = ofdt->max_fds * sizeof(struct file *);
0083     set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
0084     memcpy(nfdt->fd, ofdt->fd, cpy);
0085     memset((char *)nfdt->fd + cpy, 0, set);
0086 
0087     copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds);
0088 }
0089 
0090 /*
0091  * Note how the fdtable bitmap allocations very much have to be a multiple of
0092  * BITS_PER_LONG. This is not only because we walk those things in chunks of
0093  * 'unsigned long' in some places, but simply because that is how the Linux
0094  * kernel bitmaps are defined to work: they are not "bits in an array of bytes",
0095  * they are very much "bits in an array of unsigned long".
0096  *
0097  * The ALIGN(nr, BITS_PER_LONG) here is for clarity: since we just multiplied
0098  * by that "1024/sizeof(ptr)" before, we already know there are sufficient
0099  * clear low bits. Clang seems to realize that, gcc ends up being confused.
0100  *
0101  * On a 128-bit machine, the ALIGN() would actually matter. In the meantime,
0102  * let's consider it documentation (and maybe a test-case for gcc to improve
0103  * its code generation ;)
0104  */
0105 static struct fdtable * alloc_fdtable(unsigned int nr)
0106 {
0107     struct fdtable *fdt;
0108     void *data;
0109 
0110     /*
0111      * Figure out how many fds we actually want to support in this fdtable.
0112      * Allocation steps are keyed to the size of the fdarray, since it
0113      * grows far faster than any of the other dynamic data. We try to fit
0114      * the fdarray into comfortable page-tuned chunks: starting at 1024B
0115      * and growing in powers of two from there on.
0116      */
0117     nr /= (1024 / sizeof(struct file *));
0118     nr = roundup_pow_of_two(nr + 1);
0119     nr *= (1024 / sizeof(struct file *));
0120     nr = ALIGN(nr, BITS_PER_LONG);
0121     /*
0122      * Note that this can drive nr *below* what we had passed if sysctl_nr_open
0123      * had been set lower between the check in expand_files() and here.  Deal
0124      * with that in caller, it's cheaper that way.
0125      *
0126      * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
0127      * bitmaps handling below becomes unpleasant, to put it mildly...
0128      */
0129     if (unlikely(nr > sysctl_nr_open))
0130         nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
0131 
0132     fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
0133     if (!fdt)
0134         goto out;
0135     fdt->max_fds = nr;
0136     data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
0137     if (!data)
0138         goto out_fdt;
0139     fdt->fd = data;
0140 
0141     data = kvmalloc(max_t(size_t,
0142                  2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
0143                  GFP_KERNEL_ACCOUNT);
0144     if (!data)
0145         goto out_arr;
0146     fdt->open_fds = data;
0147     data += nr / BITS_PER_BYTE;
0148     fdt->close_on_exec = data;
0149     data += nr / BITS_PER_BYTE;
0150     fdt->full_fds_bits = data;
0151 
0152     return fdt;
0153 
0154 out_arr:
0155     kvfree(fdt->fd);
0156 out_fdt:
0157     kfree(fdt);
0158 out:
0159     return NULL;
0160 }
0161 
0162 /*
0163  * Expand the file descriptor table.
0164  * This function will allocate a new fdtable and both fd array and fdset, of
0165  * the given size.
0166  * Return <0 error code on error; 1 on successful completion.
0167  * The files->file_lock should be held on entry, and will be held on exit.
0168  */
0169 static int expand_fdtable(struct files_struct *files, unsigned int nr)
0170     __releases(files->file_lock)
0171     __acquires(files->file_lock)
0172 {
0173     struct fdtable *new_fdt, *cur_fdt;
0174 
0175     spin_unlock(&files->file_lock);
0176     new_fdt = alloc_fdtable(nr);
0177 
0178     /* make sure all fd_install() have seen resize_in_progress
0179      * or have finished their rcu_read_lock_sched() section.
0180      */
0181     if (atomic_read(&files->count) > 1)
0182         synchronize_rcu();
0183 
0184     spin_lock(&files->file_lock);
0185     if (!new_fdt)
0186         return -ENOMEM;
0187     /*
0188      * extremely unlikely race - sysctl_nr_open decreased between the check in
0189      * caller and alloc_fdtable().  Cheaper to catch it here...
0190      */
0191     if (unlikely(new_fdt->max_fds <= nr)) {
0192         __free_fdtable(new_fdt);
0193         return -EMFILE;
0194     }
0195     cur_fdt = files_fdtable(files);
0196     BUG_ON(nr < cur_fdt->max_fds);
0197     copy_fdtable(new_fdt, cur_fdt);
0198     rcu_assign_pointer(files->fdt, new_fdt);
0199     if (cur_fdt != &files->fdtab)
0200         call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
0201     /* coupled with smp_rmb() in fd_install() */
0202     smp_wmb();
0203     return 1;
0204 }
0205 
0206 /*
0207  * Expand files.
0208  * This function will expand the file structures, if the requested size exceeds
0209  * the current capacity and there is room for expansion.
0210  * Return <0 error code on error; 0 when nothing done; 1 when files were
0211  * expanded and execution may have blocked.
0212  * The files->file_lock should be held on entry, and will be held on exit.
0213  */
0214 static int expand_files(struct files_struct *files, unsigned int nr)
0215     __releases(files->file_lock)
0216     __acquires(files->file_lock)
0217 {
0218     struct fdtable *fdt;
0219     int expanded = 0;
0220 
0221 repeat:
0222     fdt = files_fdtable(files);
0223 
0224     /* Do we need to expand? */
0225     if (nr < fdt->max_fds)
0226         return expanded;
0227 
0228     /* Can we expand? */
0229     if (nr >= sysctl_nr_open)
0230         return -EMFILE;
0231 
0232     if (unlikely(files->resize_in_progress)) {
0233         spin_unlock(&files->file_lock);
0234         expanded = 1;
0235         wait_event(files->resize_wait, !files->resize_in_progress);
0236         spin_lock(&files->file_lock);
0237         goto repeat;
0238     }
0239 
0240     /* All good, so we try */
0241     files->resize_in_progress = true;
0242     expanded = expand_fdtable(files, nr);
0243     files->resize_in_progress = false;
0244 
0245     wake_up_all(&files->resize_wait);
0246     return expanded;
0247 }
0248 
0249 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
0250 {
0251     __set_bit(fd, fdt->close_on_exec);
0252 }
0253 
0254 static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
0255 {
0256     if (test_bit(fd, fdt->close_on_exec))
0257         __clear_bit(fd, fdt->close_on_exec);
0258 }
0259 
0260 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
0261 {
0262     __set_bit(fd, fdt->open_fds);
0263     fd /= BITS_PER_LONG;
0264     if (!~fdt->open_fds[fd])
0265         __set_bit(fd, fdt->full_fds_bits);
0266 }
0267 
0268 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
0269 {
0270     __clear_bit(fd, fdt->open_fds);
0271     __clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
0272 }
0273 
0274 static unsigned int count_open_files(struct fdtable *fdt)
0275 {
0276     unsigned int size = fdt->max_fds;
0277     unsigned int i;
0278 
0279     /* Find the last open fd */
0280     for (i = size / BITS_PER_LONG; i > 0; ) {
0281         if (fdt->open_fds[--i])
0282             break;
0283     }
0284     i = (i + 1) * BITS_PER_LONG;
0285     return i;
0286 }
0287 
0288 /*
0289  * Note that a sane fdtable size always has to be a multiple of
0290  * BITS_PER_LONG, since we have bitmaps that are sized by this.
0291  *
0292  * 'max_fds' will normally already be properly aligned, but it
0293  * turns out that in the close_range() -> __close_range() ->
0294  * unshare_fd() -> dup_fd() -> sane_fdtable_size() we can end
0295  * up having a 'max_fds' value that isn't already aligned.
0296  *
0297  * Rather than make close_range() have to worry about this,
0298  * just make that BITS_PER_LONG alignment be part of a sane
0299  * fdtable size. Becuase that's really what it is.
0300  */
0301 static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds)
0302 {
0303     unsigned int count;
0304 
0305     count = count_open_files(fdt);
0306     if (max_fds < NR_OPEN_DEFAULT)
0307         max_fds = NR_OPEN_DEFAULT;
0308     return ALIGN(min(count, max_fds), BITS_PER_LONG);
0309 }
0310 
0311 /*
0312  * Allocate a new files structure and copy contents from the
0313  * passed in files structure.
0314  * errorp will be valid only when the returned files_struct is NULL.
0315  */
0316 struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp)
0317 {
0318     struct files_struct *newf;
0319     struct file **old_fds, **new_fds;
0320     unsigned int open_files, i;
0321     struct fdtable *old_fdt, *new_fdt;
0322 
0323     *errorp = -ENOMEM;
0324     newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
0325     if (!newf)
0326         goto out;
0327 
0328     atomic_set(&newf->count, 1);
0329 
0330     spin_lock_init(&newf->file_lock);
0331     newf->resize_in_progress = false;
0332     init_waitqueue_head(&newf->resize_wait);
0333     newf->next_fd = 0;
0334     new_fdt = &newf->fdtab;
0335     new_fdt->max_fds = NR_OPEN_DEFAULT;
0336     new_fdt->close_on_exec = newf->close_on_exec_init;
0337     new_fdt->open_fds = newf->open_fds_init;
0338     new_fdt->full_fds_bits = newf->full_fds_bits_init;
0339     new_fdt->fd = &newf->fd_array[0];
0340 
0341     spin_lock(&oldf->file_lock);
0342     old_fdt = files_fdtable(oldf);
0343     open_files = sane_fdtable_size(old_fdt, max_fds);
0344 
0345     /*
0346      * Check whether we need to allocate a larger fd array and fd set.
0347      */
0348     while (unlikely(open_files > new_fdt->max_fds)) {
0349         spin_unlock(&oldf->file_lock);
0350 
0351         if (new_fdt != &newf->fdtab)
0352             __free_fdtable(new_fdt);
0353 
0354         new_fdt = alloc_fdtable(open_files - 1);
0355         if (!new_fdt) {
0356             *errorp = -ENOMEM;
0357             goto out_release;
0358         }
0359 
0360         /* beyond sysctl_nr_open; nothing to do */
0361         if (unlikely(new_fdt->max_fds < open_files)) {
0362             __free_fdtable(new_fdt);
0363             *errorp = -EMFILE;
0364             goto out_release;
0365         }
0366 
0367         /*
0368          * Reacquire the oldf lock and a pointer to its fd table
0369          * who knows it may have a new bigger fd table. We need
0370          * the latest pointer.
0371          */
0372         spin_lock(&oldf->file_lock);
0373         old_fdt = files_fdtable(oldf);
0374         open_files = sane_fdtable_size(old_fdt, max_fds);
0375     }
0376 
0377     copy_fd_bitmaps(new_fdt, old_fdt, open_files);
0378 
0379     old_fds = old_fdt->fd;
0380     new_fds = new_fdt->fd;
0381 
0382     for (i = open_files; i != 0; i--) {
0383         struct file *f = *old_fds++;
0384         if (f) {
0385             get_file(f);
0386         } else {
0387             /*
0388              * The fd may be claimed in the fd bitmap but not yet
0389              * instantiated in the files array if a sibling thread
0390              * is partway through open().  So make sure that this
0391              * fd is available to the new process.
0392              */
0393             __clear_open_fd(open_files - i, new_fdt);
0394         }
0395         rcu_assign_pointer(*new_fds++, f);
0396     }
0397     spin_unlock(&oldf->file_lock);
0398 
0399     /* clear the remainder */
0400     memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
0401 
0402     rcu_assign_pointer(newf->fdt, new_fdt);
0403 
0404     return newf;
0405 
0406 out_release:
0407     kmem_cache_free(files_cachep, newf);
0408 out:
0409     return NULL;
0410 }
0411 
0412 static struct fdtable *close_files(struct files_struct * files)
0413 {
0414     /*
0415      * It is safe to dereference the fd table without RCU or
0416      * ->file_lock because this is the last reference to the
0417      * files structure.
0418      */
0419     struct fdtable *fdt = rcu_dereference_raw(files->fdt);
0420     unsigned int i, j = 0;
0421 
0422     for (;;) {
0423         unsigned long set;
0424         i = j * BITS_PER_LONG;
0425         if (i >= fdt->max_fds)
0426             break;
0427         set = fdt->open_fds[j++];
0428         while (set) {
0429             if (set & 1) {
0430                 struct file * file = xchg(&fdt->fd[i], NULL);
0431                 if (file) {
0432                     filp_close(file, files);
0433                     cond_resched();
0434                 }
0435             }
0436             i++;
0437             set >>= 1;
0438         }
0439     }
0440 
0441     return fdt;
0442 }
0443 
0444 void put_files_struct(struct files_struct *files)
0445 {
0446     if (atomic_dec_and_test(&files->count)) {
0447         struct fdtable *fdt = close_files(files);
0448 
0449         /* free the arrays if they are not embedded */
0450         if (fdt != &files->fdtab)
0451             __free_fdtable(fdt);
0452         kmem_cache_free(files_cachep, files);
0453     }
0454 }
0455 
0456 void exit_files(struct task_struct *tsk)
0457 {
0458     struct files_struct * files = tsk->files;
0459 
0460     if (files) {
0461         task_lock(tsk);
0462         tsk->files = NULL;
0463         task_unlock(tsk);
0464         put_files_struct(files);
0465     }
0466 }
0467 
0468 struct files_struct init_files = {
0469     .count      = ATOMIC_INIT(1),
0470     .fdt        = &init_files.fdtab,
0471     .fdtab      = {
0472         .max_fds    = NR_OPEN_DEFAULT,
0473         .fd     = &init_files.fd_array[0],
0474         .close_on_exec  = init_files.close_on_exec_init,
0475         .open_fds   = init_files.open_fds_init,
0476         .full_fds_bits  = init_files.full_fds_bits_init,
0477     },
0478     .file_lock  = __SPIN_LOCK_UNLOCKED(init_files.file_lock),
0479     .resize_wait    = __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
0480 };
0481 
0482 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
0483 {
0484     unsigned int maxfd = fdt->max_fds;
0485     unsigned int maxbit = maxfd / BITS_PER_LONG;
0486     unsigned int bitbit = start / BITS_PER_LONG;
0487 
0488     bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
0489     if (bitbit > maxfd)
0490         return maxfd;
0491     if (bitbit > start)
0492         start = bitbit;
0493     return find_next_zero_bit(fdt->open_fds, maxfd, start);
0494 }
0495 
0496 /*
0497  * allocate a file descriptor, mark it busy.
0498  */
0499 static int alloc_fd(unsigned start, unsigned end, unsigned flags)
0500 {
0501     struct files_struct *files = current->files;
0502     unsigned int fd;
0503     int error;
0504     struct fdtable *fdt;
0505 
0506     spin_lock(&files->file_lock);
0507 repeat:
0508     fdt = files_fdtable(files);
0509     fd = start;
0510     if (fd < files->next_fd)
0511         fd = files->next_fd;
0512 
0513     if (fd < fdt->max_fds)
0514         fd = find_next_fd(fdt, fd);
0515 
0516     /*
0517      * N.B. For clone tasks sharing a files structure, this test
0518      * will limit the total number of files that can be opened.
0519      */
0520     error = -EMFILE;
0521     if (fd >= end)
0522         goto out;
0523 
0524     error = expand_files(files, fd);
0525     if (error < 0)
0526         goto out;
0527 
0528     /*
0529      * If we needed to expand the fs array we
0530      * might have blocked - try again.
0531      */
0532     if (error)
0533         goto repeat;
0534 
0535     if (start <= files->next_fd)
0536         files->next_fd = fd + 1;
0537 
0538     __set_open_fd(fd, fdt);
0539     if (flags & O_CLOEXEC)
0540         __set_close_on_exec(fd, fdt);
0541     else
0542         __clear_close_on_exec(fd, fdt);
0543     error = fd;
0544 #if 1
0545     /* Sanity check */
0546     if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
0547         printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
0548         rcu_assign_pointer(fdt->fd[fd], NULL);
0549     }
0550 #endif
0551 
0552 out:
0553     spin_unlock(&files->file_lock);
0554     return error;
0555 }
0556 
0557 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
0558 {
0559     return alloc_fd(0, nofile, flags);
0560 }
0561 
0562 int get_unused_fd_flags(unsigned flags)
0563 {
0564     return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
0565 }
0566 EXPORT_SYMBOL(get_unused_fd_flags);
0567 
0568 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
0569 {
0570     struct fdtable *fdt = files_fdtable(files);
0571     __clear_open_fd(fd, fdt);
0572     if (fd < files->next_fd)
0573         files->next_fd = fd;
0574 }
0575 
0576 void put_unused_fd(unsigned int fd)
0577 {
0578     struct files_struct *files = current->files;
0579     spin_lock(&files->file_lock);
0580     __put_unused_fd(files, fd);
0581     spin_unlock(&files->file_lock);
0582 }
0583 
0584 EXPORT_SYMBOL(put_unused_fd);
0585 
0586 /*
0587  * Install a file pointer in the fd array.
0588  *
0589  * The VFS is full of places where we drop the files lock between
0590  * setting the open_fds bitmap and installing the file in the file
0591  * array.  At any such point, we are vulnerable to a dup2() race
0592  * installing a file in the array before us.  We need to detect this and
0593  * fput() the struct file we are about to overwrite in this case.
0594  *
0595  * It should never happen - if we allow dup2() do it, _really_ bad things
0596  * will follow.
0597  *
0598  * This consumes the "file" refcount, so callers should treat it
0599  * as if they had called fput(file).
0600  */
0601 
0602 void fd_install(unsigned int fd, struct file *file)
0603 {
0604     struct files_struct *files = current->files;
0605     struct fdtable *fdt;
0606 
0607     rcu_read_lock_sched();
0608 
0609     if (unlikely(files->resize_in_progress)) {
0610         rcu_read_unlock_sched();
0611         spin_lock(&files->file_lock);
0612         fdt = files_fdtable(files);
0613         BUG_ON(fdt->fd[fd] != NULL);
0614         rcu_assign_pointer(fdt->fd[fd], file);
0615         spin_unlock(&files->file_lock);
0616         return;
0617     }
0618     /* coupled with smp_wmb() in expand_fdtable() */
0619     smp_rmb();
0620     fdt = rcu_dereference_sched(files->fdt);
0621     BUG_ON(fdt->fd[fd] != NULL);
0622     rcu_assign_pointer(fdt->fd[fd], file);
0623     rcu_read_unlock_sched();
0624 }
0625 
0626 EXPORT_SYMBOL(fd_install);
0627 
0628 /**
0629  * pick_file - return file associatd with fd
0630  * @files: file struct to retrieve file from
0631  * @fd: file descriptor to retrieve file for
0632  *
0633  * Context: files_lock must be held.
0634  *
0635  * Returns: The file associated with @fd (NULL if @fd is not open)
0636  */
0637 static struct file *pick_file(struct files_struct *files, unsigned fd)
0638 {
0639     struct fdtable *fdt = files_fdtable(files);
0640     struct file *file;
0641 
0642     if (fd >= fdt->max_fds)
0643         return NULL;
0644 
0645     file = fdt->fd[fd];
0646     if (file) {
0647         rcu_assign_pointer(fdt->fd[fd], NULL);
0648         __put_unused_fd(files, fd);
0649     }
0650     return file;
0651 }
0652 
0653 int close_fd(unsigned fd)
0654 {
0655     struct files_struct *files = current->files;
0656     struct file *file;
0657 
0658     spin_lock(&files->file_lock);
0659     file = pick_file(files, fd);
0660     spin_unlock(&files->file_lock);
0661     if (!file)
0662         return -EBADF;
0663 
0664     return filp_close(file, files);
0665 }
0666 EXPORT_SYMBOL(close_fd); /* for ksys_close() */
0667 
0668 /**
0669  * last_fd - return last valid index into fd table
0670  * @cur_fds: files struct
0671  *
0672  * Context: Either rcu read lock or files_lock must be held.
0673  *
0674  * Returns: Last valid index into fdtable.
0675  */
0676 static inline unsigned last_fd(struct fdtable *fdt)
0677 {
0678     return fdt->max_fds - 1;
0679 }
0680 
0681 static inline void __range_cloexec(struct files_struct *cur_fds,
0682                    unsigned int fd, unsigned int max_fd)
0683 {
0684     struct fdtable *fdt;
0685 
0686     /* make sure we're using the correct maximum value */
0687     spin_lock(&cur_fds->file_lock);
0688     fdt = files_fdtable(cur_fds);
0689     max_fd = min(last_fd(fdt), max_fd);
0690     if (fd <= max_fd)
0691         bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
0692     spin_unlock(&cur_fds->file_lock);
0693 }
0694 
0695 static inline void __range_close(struct files_struct *cur_fds, unsigned int fd,
0696                  unsigned int max_fd)
0697 {
0698     unsigned n;
0699 
0700     rcu_read_lock();
0701     n = last_fd(files_fdtable(cur_fds));
0702     rcu_read_unlock();
0703     max_fd = min(max_fd, n);
0704 
0705     while (fd <= max_fd) {
0706         struct file *file;
0707 
0708         spin_lock(&cur_fds->file_lock);
0709         file = pick_file(cur_fds, fd++);
0710         spin_unlock(&cur_fds->file_lock);
0711 
0712         if (file) {
0713             /* found a valid file to close */
0714             filp_close(file, cur_fds);
0715             cond_resched();
0716         }
0717     }
0718 }
0719 
0720 /**
0721  * __close_range() - Close all file descriptors in a given range.
0722  *
0723  * @fd:     starting file descriptor to close
0724  * @max_fd: last file descriptor to close
0725  *
0726  * This closes a range of file descriptors. All file descriptors
0727  * from @fd up to and including @max_fd are closed.
0728  */
0729 int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
0730 {
0731     struct task_struct *me = current;
0732     struct files_struct *cur_fds = me->files, *fds = NULL;
0733 
0734     if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
0735         return -EINVAL;
0736 
0737     if (fd > max_fd)
0738         return -EINVAL;
0739 
0740     if (flags & CLOSE_RANGE_UNSHARE) {
0741         int ret;
0742         unsigned int max_unshare_fds = NR_OPEN_MAX;
0743 
0744         /*
0745          * If the caller requested all fds to be made cloexec we always
0746          * copy all of the file descriptors since they still want to
0747          * use them.
0748          */
0749         if (!(flags & CLOSE_RANGE_CLOEXEC)) {
0750             /*
0751              * If the requested range is greater than the current
0752              * maximum, we're closing everything so only copy all
0753              * file descriptors beneath the lowest file descriptor.
0754              */
0755             rcu_read_lock();
0756             if (max_fd >= last_fd(files_fdtable(cur_fds)))
0757                 max_unshare_fds = fd;
0758             rcu_read_unlock();
0759         }
0760 
0761         ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds);
0762         if (ret)
0763             return ret;
0764 
0765         /*
0766          * We used to share our file descriptor table, and have now
0767          * created a private one, make sure we're using it below.
0768          */
0769         if (fds)
0770             swap(cur_fds, fds);
0771     }
0772 
0773     if (flags & CLOSE_RANGE_CLOEXEC)
0774         __range_cloexec(cur_fds, fd, max_fd);
0775     else
0776         __range_close(cur_fds, fd, max_fd);
0777 
0778     if (fds) {
0779         /*
0780          * We're done closing the files we were supposed to. Time to install
0781          * the new file descriptor table and drop the old one.
0782          */
0783         task_lock(me);
0784         me->files = cur_fds;
0785         task_unlock(me);
0786         put_files_struct(fds);
0787     }
0788 
0789     return 0;
0790 }
0791 
0792 /*
0793  * See close_fd_get_file() below, this variant assumes current->files->file_lock
0794  * is held.
0795  */
0796 struct file *__close_fd_get_file(unsigned int fd)
0797 {
0798     return pick_file(current->files, fd);
0799 }
0800 
0801 /*
0802  * variant of close_fd that gets a ref on the file for later fput.
0803  * The caller must ensure that filp_close() called on the file.
0804  */
0805 struct file *close_fd_get_file(unsigned int fd)
0806 {
0807     struct files_struct *files = current->files;
0808     struct file *file;
0809 
0810     spin_lock(&files->file_lock);
0811     file = pick_file(files, fd);
0812     spin_unlock(&files->file_lock);
0813 
0814     return file;
0815 }
0816 
0817 void do_close_on_exec(struct files_struct *files)
0818 {
0819     unsigned i;
0820     struct fdtable *fdt;
0821 
0822     /* exec unshares first */
0823     spin_lock(&files->file_lock);
0824     for (i = 0; ; i++) {
0825         unsigned long set;
0826         unsigned fd = i * BITS_PER_LONG;
0827         fdt = files_fdtable(files);
0828         if (fd >= fdt->max_fds)
0829             break;
0830         set = fdt->close_on_exec[i];
0831         if (!set)
0832             continue;
0833         fdt->close_on_exec[i] = 0;
0834         for ( ; set ; fd++, set >>= 1) {
0835             struct file *file;
0836             if (!(set & 1))
0837                 continue;
0838             file = fdt->fd[fd];
0839             if (!file)
0840                 continue;
0841             rcu_assign_pointer(fdt->fd[fd], NULL);
0842             __put_unused_fd(files, fd);
0843             spin_unlock(&files->file_lock);
0844             filp_close(file, files);
0845             cond_resched();
0846             spin_lock(&files->file_lock);
0847         }
0848 
0849     }
0850     spin_unlock(&files->file_lock);
0851 }
0852 
0853 static inline struct file *__fget_files_rcu(struct files_struct *files,
0854     unsigned int fd, fmode_t mask)
0855 {
0856     for (;;) {
0857         struct file *file;
0858         struct fdtable *fdt = rcu_dereference_raw(files->fdt);
0859         struct file __rcu **fdentry;
0860 
0861         if (unlikely(fd >= fdt->max_fds))
0862             return NULL;
0863 
0864         fdentry = fdt->fd + array_index_nospec(fd, fdt->max_fds);
0865         file = rcu_dereference_raw(*fdentry);
0866         if (unlikely(!file))
0867             return NULL;
0868 
0869         if (unlikely(file->f_mode & mask))
0870             return NULL;
0871 
0872         /*
0873          * Ok, we have a file pointer. However, because we do
0874          * this all locklessly under RCU, we may be racing with
0875          * that file being closed.
0876          *
0877          * Such a race can take two forms:
0878          *
0879          *  (a) the file ref already went down to zero,
0880          *      and get_file_rcu() fails. Just try again:
0881          */
0882         if (unlikely(!get_file_rcu(file)))
0883             continue;
0884 
0885         /*
0886          *  (b) the file table entry has changed under us.
0887          *       Note that we don't need to re-check the 'fdt->fd'
0888          *       pointer having changed, because it always goes
0889          *       hand-in-hand with 'fdt'.
0890          *
0891          * If so, we need to put our ref and try again.
0892          */
0893         if (unlikely(rcu_dereference_raw(files->fdt) != fdt) ||
0894             unlikely(rcu_dereference_raw(*fdentry) != file)) {
0895             fput(file);
0896             continue;
0897         }
0898 
0899         /*
0900          * Ok, we have a ref to the file, and checked that it
0901          * still exists.
0902          */
0903         return file;
0904     }
0905 }
0906 
0907 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
0908                  fmode_t mask)
0909 {
0910     struct file *file;
0911 
0912     rcu_read_lock();
0913     file = __fget_files_rcu(files, fd, mask);
0914     rcu_read_unlock();
0915 
0916     return file;
0917 }
0918 
0919 static inline struct file *__fget(unsigned int fd, fmode_t mask)
0920 {
0921     return __fget_files(current->files, fd, mask);
0922 }
0923 
0924 struct file *fget(unsigned int fd)
0925 {
0926     return __fget(fd, FMODE_PATH);
0927 }
0928 EXPORT_SYMBOL(fget);
0929 
0930 struct file *fget_raw(unsigned int fd)
0931 {
0932     return __fget(fd, 0);
0933 }
0934 EXPORT_SYMBOL(fget_raw);
0935 
0936 struct file *fget_task(struct task_struct *task, unsigned int fd)
0937 {
0938     struct file *file = NULL;
0939 
0940     task_lock(task);
0941     if (task->files)
0942         file = __fget_files(task->files, fd, 0);
0943     task_unlock(task);
0944 
0945     return file;
0946 }
0947 
0948 struct file *task_lookup_fd_rcu(struct task_struct *task, unsigned int fd)
0949 {
0950     /* Must be called with rcu_read_lock held */
0951     struct files_struct *files;
0952     struct file *file = NULL;
0953 
0954     task_lock(task);
0955     files = task->files;
0956     if (files)
0957         file = files_lookup_fd_rcu(files, fd);
0958     task_unlock(task);
0959 
0960     return file;
0961 }
0962 
0963 struct file *task_lookup_next_fd_rcu(struct task_struct *task, unsigned int *ret_fd)
0964 {
0965     /* Must be called with rcu_read_lock held */
0966     struct files_struct *files;
0967     unsigned int fd = *ret_fd;
0968     struct file *file = NULL;
0969 
0970     task_lock(task);
0971     files = task->files;
0972     if (files) {
0973         for (; fd < files_fdtable(files)->max_fds; fd++) {
0974             file = files_lookup_fd_rcu(files, fd);
0975             if (file)
0976                 break;
0977         }
0978     }
0979     task_unlock(task);
0980     *ret_fd = fd;
0981     return file;
0982 }
0983 
0984 /*
0985  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
0986  *
0987  * You can use this instead of fget if you satisfy all of the following
0988  * conditions:
0989  * 1) You must call fput_light before exiting the syscall and returning control
0990  *    to userspace (i.e. you cannot remember the returned struct file * after
0991  *    returning to userspace).
0992  * 2) You must not call filp_close on the returned struct file * in between
0993  *    calls to fget_light and fput_light.
0994  * 3) You must not clone the current task in between the calls to fget_light
0995  *    and fput_light.
0996  *
0997  * The fput_needed flag returned by fget_light should be passed to the
0998  * corresponding fput_light.
0999  */
1000 static unsigned long __fget_light(unsigned int fd, fmode_t mask)
1001 {
1002     struct files_struct *files = current->files;
1003     struct file *file;
1004 
1005     if (atomic_read(&files->count) == 1) {
1006         file = files_lookup_fd_raw(files, fd);
1007         if (!file || unlikely(file->f_mode & mask))
1008             return 0;
1009         return (unsigned long)file;
1010     } else {
1011         file = __fget(fd, mask);
1012         if (!file)
1013             return 0;
1014         return FDPUT_FPUT | (unsigned long)file;
1015     }
1016 }
1017 unsigned long __fdget(unsigned int fd)
1018 {
1019     return __fget_light(fd, FMODE_PATH);
1020 }
1021 EXPORT_SYMBOL(__fdget);
1022 
1023 unsigned long __fdget_raw(unsigned int fd)
1024 {
1025     return __fget_light(fd, 0);
1026 }
1027 
1028 unsigned long __fdget_pos(unsigned int fd)
1029 {
1030     unsigned long v = __fdget(fd);
1031     struct file *file = (struct file *)(v & ~3);
1032 
1033     if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
1034         if (file_count(file) > 1) {
1035             v |= FDPUT_POS_UNLOCK;
1036             mutex_lock(&file->f_pos_lock);
1037         }
1038     }
1039     return v;
1040 }
1041 
1042 void __f_unlock_pos(struct file *f)
1043 {
1044     mutex_unlock(&f->f_pos_lock);
1045 }
1046 
1047 /*
1048  * We only lock f_pos if we have threads or if the file might be
1049  * shared with another process. In both cases we'll have an elevated
1050  * file count (done either by fdget() or by fork()).
1051  */
1052 
1053 void set_close_on_exec(unsigned int fd, int flag)
1054 {
1055     struct files_struct *files = current->files;
1056     struct fdtable *fdt;
1057     spin_lock(&files->file_lock);
1058     fdt = files_fdtable(files);
1059     if (flag)
1060         __set_close_on_exec(fd, fdt);
1061     else
1062         __clear_close_on_exec(fd, fdt);
1063     spin_unlock(&files->file_lock);
1064 }
1065 
1066 bool get_close_on_exec(unsigned int fd)
1067 {
1068     struct files_struct *files = current->files;
1069     struct fdtable *fdt;
1070     bool res;
1071     rcu_read_lock();
1072     fdt = files_fdtable(files);
1073     res = close_on_exec(fd, fdt);
1074     rcu_read_unlock();
1075     return res;
1076 }
1077 
1078 static int do_dup2(struct files_struct *files,
1079     struct file *file, unsigned fd, unsigned flags)
1080 __releases(&files->file_lock)
1081 {
1082     struct file *tofree;
1083     struct fdtable *fdt;
1084 
1085     /*
1086      * We need to detect attempts to do dup2() over allocated but still
1087      * not finished descriptor.  NB: OpenBSD avoids that at the price of
1088      * extra work in their equivalent of fget() - they insert struct
1089      * file immediately after grabbing descriptor, mark it larval if
1090      * more work (e.g. actual opening) is needed and make sure that
1091      * fget() treats larval files as absent.  Potentially interesting,
1092      * but while extra work in fget() is trivial, locking implications
1093      * and amount of surgery on open()-related paths in VFS are not.
1094      * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
1095      * deadlocks in rather amusing ways, AFAICS.  All of that is out of
1096      * scope of POSIX or SUS, since neither considers shared descriptor
1097      * tables and this condition does not arise without those.
1098      */
1099     fdt = files_fdtable(files);
1100     tofree = fdt->fd[fd];
1101     if (!tofree && fd_is_open(fd, fdt))
1102         goto Ebusy;
1103     get_file(file);
1104     rcu_assign_pointer(fdt->fd[fd], file);
1105     __set_open_fd(fd, fdt);
1106     if (flags & O_CLOEXEC)
1107         __set_close_on_exec(fd, fdt);
1108     else
1109         __clear_close_on_exec(fd, fdt);
1110     spin_unlock(&files->file_lock);
1111 
1112     if (tofree)
1113         filp_close(tofree, files);
1114 
1115     return fd;
1116 
1117 Ebusy:
1118     spin_unlock(&files->file_lock);
1119     return -EBUSY;
1120 }
1121 
1122 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1123 {
1124     int err;
1125     struct files_struct *files = current->files;
1126 
1127     if (!file)
1128         return close_fd(fd);
1129 
1130     if (fd >= rlimit(RLIMIT_NOFILE))
1131         return -EBADF;
1132 
1133     spin_lock(&files->file_lock);
1134     err = expand_files(files, fd);
1135     if (unlikely(err < 0))
1136         goto out_unlock;
1137     return do_dup2(files, file, fd, flags);
1138 
1139 out_unlock:
1140     spin_unlock(&files->file_lock);
1141     return err;
1142 }
1143 
1144 /**
1145  * __receive_fd() - Install received file into file descriptor table
1146  * @file: struct file that was received from another process
1147  * @ufd: __user pointer to write new fd number to
1148  * @o_flags: the O_* flags to apply to the new fd entry
1149  *
1150  * Installs a received file into the file descriptor table, with appropriate
1151  * checks and count updates. Optionally writes the fd number to userspace, if
1152  * @ufd is non-NULL.
1153  *
1154  * This helper handles its own reference counting of the incoming
1155  * struct file.
1156  *
1157  * Returns newly install fd or -ve on error.
1158  */
1159 int __receive_fd(struct file *file, int __user *ufd, unsigned int o_flags)
1160 {
1161     int new_fd;
1162     int error;
1163 
1164     error = security_file_receive(file);
1165     if (error)
1166         return error;
1167 
1168     new_fd = get_unused_fd_flags(o_flags);
1169     if (new_fd < 0)
1170         return new_fd;
1171 
1172     if (ufd) {
1173         error = put_user(new_fd, ufd);
1174         if (error) {
1175             put_unused_fd(new_fd);
1176             return error;
1177         }
1178     }
1179 
1180     fd_install(new_fd, get_file(file));
1181     __receive_sock(file);
1182     return new_fd;
1183 }
1184 
1185 int receive_fd_replace(int new_fd, struct file *file, unsigned int o_flags)
1186 {
1187     int error;
1188 
1189     error = security_file_receive(file);
1190     if (error)
1191         return error;
1192     error = replace_fd(new_fd, file, o_flags);
1193     if (error)
1194         return error;
1195     __receive_sock(file);
1196     return new_fd;
1197 }
1198 
1199 int receive_fd(struct file *file, unsigned int o_flags)
1200 {
1201     return __receive_fd(file, NULL, o_flags);
1202 }
1203 EXPORT_SYMBOL_GPL(receive_fd);
1204 
1205 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1206 {
1207     int err = -EBADF;
1208     struct file *file;
1209     struct files_struct *files = current->files;
1210 
1211     if ((flags & ~O_CLOEXEC) != 0)
1212         return -EINVAL;
1213 
1214     if (unlikely(oldfd == newfd))
1215         return -EINVAL;
1216 
1217     if (newfd >= rlimit(RLIMIT_NOFILE))
1218         return -EBADF;
1219 
1220     spin_lock(&files->file_lock);
1221     err = expand_files(files, newfd);
1222     file = files_lookup_fd_locked(files, oldfd);
1223     if (unlikely(!file))
1224         goto Ebadf;
1225     if (unlikely(err < 0)) {
1226         if (err == -EMFILE)
1227             goto Ebadf;
1228         goto out_unlock;
1229     }
1230     return do_dup2(files, file, newfd, flags);
1231 
1232 Ebadf:
1233     err = -EBADF;
1234 out_unlock:
1235     spin_unlock(&files->file_lock);
1236     return err;
1237 }
1238 
1239 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1240 {
1241     return ksys_dup3(oldfd, newfd, flags);
1242 }
1243 
1244 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1245 {
1246     if (unlikely(newfd == oldfd)) { /* corner case */
1247         struct files_struct *files = current->files;
1248         int retval = oldfd;
1249 
1250         rcu_read_lock();
1251         if (!files_lookup_fd_rcu(files, oldfd))
1252             retval = -EBADF;
1253         rcu_read_unlock();
1254         return retval;
1255     }
1256     return ksys_dup3(oldfd, newfd, 0);
1257 }
1258 
1259 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1260 {
1261     int ret = -EBADF;
1262     struct file *file = fget_raw(fildes);
1263 
1264     if (file) {
1265         ret = get_unused_fd_flags(0);
1266         if (ret >= 0)
1267             fd_install(ret, file);
1268         else
1269             fput(file);
1270     }
1271     return ret;
1272 }
1273 
1274 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1275 {
1276     unsigned long nofile = rlimit(RLIMIT_NOFILE);
1277     int err;
1278     if (from >= nofile)
1279         return -EINVAL;
1280     err = alloc_fd(from, nofile, flags);
1281     if (err >= 0) {
1282         get_file(file);
1283         fd_install(err, file);
1284     }
1285     return err;
1286 }
1287 
1288 int iterate_fd(struct files_struct *files, unsigned n,
1289         int (*f)(const void *, struct file *, unsigned),
1290         const void *p)
1291 {
1292     struct fdtable *fdt;
1293     int res = 0;
1294     if (!files)
1295         return 0;
1296     spin_lock(&files->file_lock);
1297     for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1298         struct file *file;
1299         file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1300         if (!file)
1301             continue;
1302         res = f(p, file, n);
1303         if (res)
1304             break;
1305     }
1306     spin_unlock(&files->file_lock);
1307     return res;
1308 }
1309 EXPORT_SYMBOL(iterate_fd);