0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/fs.h>
0009 #include <linux/f2fs_fs.h>
0010 #include <linux/bio.h>
0011 #include <linux/blkdev.h>
0012 #include <linux/sched/mm.h>
0013 #include <linux/prefetch.h>
0014 #include <linux/kthread.h>
0015 #include <linux/swap.h>
0016 #include <linux/timer.h>
0017 #include <linux/freezer.h>
0018 #include <linux/sched/signal.h>
0019 #include <linux/random.h>
0020
0021 #include "f2fs.h"
0022 #include "segment.h"
0023 #include "node.h"
0024 #include "gc.h"
0025 #include "iostat.h"
0026 #include <trace/events/f2fs.h>
0027
0028 #define __reverse_ffz(x) __reverse_ffs(~(x))
0029
0030 static struct kmem_cache *discard_entry_slab;
0031 static struct kmem_cache *discard_cmd_slab;
0032 static struct kmem_cache *sit_entry_set_slab;
0033 static struct kmem_cache *revoke_entry_slab;
0034
0035 static unsigned long __reverse_ulong(unsigned char *str)
0036 {
0037 unsigned long tmp = 0;
0038 int shift = 24, idx = 0;
0039
0040 #if BITS_PER_LONG == 64
0041 shift = 56;
0042 #endif
0043 while (shift >= 0) {
0044 tmp |= (unsigned long)str[idx++] << shift;
0045 shift -= BITS_PER_BYTE;
0046 }
0047 return tmp;
0048 }
0049
0050
0051
0052
0053
0054 static inline unsigned long __reverse_ffs(unsigned long word)
0055 {
0056 int num = 0;
0057
0058 #if BITS_PER_LONG == 64
0059 if ((word & 0xffffffff00000000UL) == 0)
0060 num += 32;
0061 else
0062 word >>= 32;
0063 #endif
0064 if ((word & 0xffff0000) == 0)
0065 num += 16;
0066 else
0067 word >>= 16;
0068
0069 if ((word & 0xff00) == 0)
0070 num += 8;
0071 else
0072 word >>= 8;
0073
0074 if ((word & 0xf0) == 0)
0075 num += 4;
0076 else
0077 word >>= 4;
0078
0079 if ((word & 0xc) == 0)
0080 num += 2;
0081 else
0082 word >>= 2;
0083
0084 if ((word & 0x2) == 0)
0085 num += 1;
0086 return num;
0087 }
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098 static unsigned long __find_rev_next_bit(const unsigned long *addr,
0099 unsigned long size, unsigned long offset)
0100 {
0101 const unsigned long *p = addr + BIT_WORD(offset);
0102 unsigned long result = size;
0103 unsigned long tmp;
0104
0105 if (offset >= size)
0106 return size;
0107
0108 size -= (offset & ~(BITS_PER_LONG - 1));
0109 offset %= BITS_PER_LONG;
0110
0111 while (1) {
0112 if (*p == 0)
0113 goto pass;
0114
0115 tmp = __reverse_ulong((unsigned char *)p);
0116
0117 tmp &= ~0UL >> offset;
0118 if (size < BITS_PER_LONG)
0119 tmp &= (~0UL << (BITS_PER_LONG - size));
0120 if (tmp)
0121 goto found;
0122 pass:
0123 if (size <= BITS_PER_LONG)
0124 break;
0125 size -= BITS_PER_LONG;
0126 offset = 0;
0127 p++;
0128 }
0129 return result;
0130 found:
0131 return result - size + __reverse_ffs(tmp);
0132 }
0133
0134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
0135 unsigned long size, unsigned long offset)
0136 {
0137 const unsigned long *p = addr + BIT_WORD(offset);
0138 unsigned long result = size;
0139 unsigned long tmp;
0140
0141 if (offset >= size)
0142 return size;
0143
0144 size -= (offset & ~(BITS_PER_LONG - 1));
0145 offset %= BITS_PER_LONG;
0146
0147 while (1) {
0148 if (*p == ~0UL)
0149 goto pass;
0150
0151 tmp = __reverse_ulong((unsigned char *)p);
0152
0153 if (offset)
0154 tmp |= ~0UL << (BITS_PER_LONG - offset);
0155 if (size < BITS_PER_LONG)
0156 tmp |= ~0UL >> size;
0157 if (tmp != ~0UL)
0158 goto found;
0159 pass:
0160 if (size <= BITS_PER_LONG)
0161 break;
0162 size -= BITS_PER_LONG;
0163 offset = 0;
0164 p++;
0165 }
0166 return result;
0167 found:
0168 return result - size + __reverse_ffz(tmp);
0169 }
0170
0171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
0172 {
0173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
0174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
0175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
0176
0177 if (f2fs_lfs_mode(sbi))
0178 return false;
0179 if (sbi->gc_mode == GC_URGENT_HIGH)
0180 return true;
0181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
0182 return true;
0183
0184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
0185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
0186 }
0187
0188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
0189 {
0190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0191 struct f2fs_inode_info *fi = F2FS_I(inode);
0192
0193 if (!f2fs_is_atomic_file(inode))
0194 return;
0195
0196 if (clean)
0197 truncate_inode_pages_final(inode->i_mapping);
0198 clear_inode_flag(fi->cow_inode, FI_COW_FILE);
0199 iput(fi->cow_inode);
0200 fi->cow_inode = NULL;
0201 release_atomic_write_cnt(inode);
0202 clear_inode_flag(inode, FI_ATOMIC_FILE);
0203
0204 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
0205 sbi->atomic_files--;
0206 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
0207 }
0208
0209 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
0210 block_t new_addr, block_t *old_addr, bool recover)
0211 {
0212 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0213 struct dnode_of_data dn;
0214 struct node_info ni;
0215 int err;
0216
0217 retry:
0218 set_new_dnode(&dn, inode, NULL, NULL, 0);
0219 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
0220 if (err) {
0221 if (err == -ENOMEM) {
0222 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
0223 goto retry;
0224 }
0225 return err;
0226 }
0227
0228 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
0229 if (err) {
0230 f2fs_put_dnode(&dn);
0231 return err;
0232 }
0233
0234 if (recover) {
0235
0236 if (!__is_valid_data_blkaddr(new_addr)) {
0237 if (new_addr == NULL_ADDR)
0238 dec_valid_block_count(sbi, inode, 1);
0239 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
0240 f2fs_update_data_blkaddr(&dn, new_addr);
0241 } else {
0242 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
0243 new_addr, ni.version, true, true);
0244 }
0245 } else {
0246 blkcnt_t count = 1;
0247
0248 *old_addr = dn.data_blkaddr;
0249 f2fs_truncate_data_blocks_range(&dn, 1);
0250 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
0251 inc_valid_block_count(sbi, inode, &count);
0252 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
0253 ni.version, true, false);
0254 }
0255
0256 f2fs_put_dnode(&dn);
0257 return 0;
0258 }
0259
0260 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
0261 bool revoke)
0262 {
0263 struct revoke_entry *cur, *tmp;
0264
0265 list_for_each_entry_safe(cur, tmp, head, list) {
0266 if (revoke)
0267 __replace_atomic_write_block(inode, cur->index,
0268 cur->old_addr, NULL, true);
0269 list_del(&cur->list);
0270 kmem_cache_free(revoke_entry_slab, cur);
0271 }
0272 }
0273
0274 static int __f2fs_commit_atomic_write(struct inode *inode)
0275 {
0276 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0277 struct f2fs_inode_info *fi = F2FS_I(inode);
0278 struct inode *cow_inode = fi->cow_inode;
0279 struct revoke_entry *new;
0280 struct list_head revoke_list;
0281 block_t blkaddr;
0282 struct dnode_of_data dn;
0283 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
0284 pgoff_t off = 0, blen, index;
0285 int ret = 0, i;
0286
0287 INIT_LIST_HEAD(&revoke_list);
0288
0289 while (len) {
0290 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
0291
0292 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
0293 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
0294 if (ret && ret != -ENOENT) {
0295 goto out;
0296 } else if (ret == -ENOENT) {
0297 ret = 0;
0298 if (dn.max_level == 0)
0299 goto out;
0300 goto next;
0301 }
0302
0303 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
0304 len);
0305 index = off;
0306 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
0307 blkaddr = f2fs_data_blkaddr(&dn);
0308
0309 if (!__is_valid_data_blkaddr(blkaddr)) {
0310 continue;
0311 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
0312 DATA_GENERIC_ENHANCE)) {
0313 f2fs_put_dnode(&dn);
0314 ret = -EFSCORRUPTED;
0315 goto out;
0316 }
0317
0318 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
0319 true, NULL);
0320
0321 ret = __replace_atomic_write_block(inode, index, blkaddr,
0322 &new->old_addr, false);
0323 if (ret) {
0324 f2fs_put_dnode(&dn);
0325 kmem_cache_free(revoke_entry_slab, new);
0326 goto out;
0327 }
0328
0329 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
0330 new->index = index;
0331 list_add_tail(&new->list, &revoke_list);
0332 }
0333 f2fs_put_dnode(&dn);
0334 next:
0335 off += blen;
0336 len -= blen;
0337 }
0338
0339 out:
0340 if (ret)
0341 sbi->revoked_atomic_block += fi->atomic_write_cnt;
0342 else
0343 sbi->committed_atomic_block += fi->atomic_write_cnt;
0344
0345 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
0346
0347 return ret;
0348 }
0349
0350 int f2fs_commit_atomic_write(struct inode *inode)
0351 {
0352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0353 struct f2fs_inode_info *fi = F2FS_I(inode);
0354 int err;
0355
0356 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
0357 if (err)
0358 return err;
0359
0360 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
0361 f2fs_lock_op(sbi);
0362
0363 err = __f2fs_commit_atomic_write(inode);
0364
0365 f2fs_unlock_op(sbi);
0366 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
0367
0368 return err;
0369 }
0370
0371
0372
0373
0374
0375 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
0376 {
0377 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
0378 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
0379 f2fs_stop_checkpoint(sbi, false);
0380 }
0381
0382
0383 if (need && excess_cached_nats(sbi))
0384 f2fs_balance_fs_bg(sbi, false);
0385
0386 if (!f2fs_is_checkpoint_ready(sbi))
0387 return;
0388
0389
0390
0391
0392
0393 if (has_not_enough_free_secs(sbi, 0, 0)) {
0394 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
0395 sbi->gc_thread->f2fs_gc_task) {
0396 DEFINE_WAIT(wait);
0397
0398 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
0399 TASK_UNINTERRUPTIBLE);
0400 wake_up(&sbi->gc_thread->gc_wait_queue_head);
0401 io_schedule();
0402 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
0403 } else {
0404 struct f2fs_gc_control gc_control = {
0405 .victim_segno = NULL_SEGNO,
0406 .init_gc_type = BG_GC,
0407 .no_bg_gc = true,
0408 .should_migrate_blocks = false,
0409 .err_gc_skipped = false,
0410 .nr_free_secs = 1 };
0411 f2fs_down_write(&sbi->gc_lock);
0412 f2fs_gc(sbi, &gc_control);
0413 }
0414 }
0415 }
0416
0417 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
0418 {
0419 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
0420 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
0421 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
0422 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
0423 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
0424 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
0425 unsigned int threshold = sbi->blocks_per_seg * factor *
0426 DEFAULT_DIRTY_THRESHOLD;
0427 unsigned int global_threshold = threshold * 3 / 2;
0428
0429 if (dents >= threshold || qdata >= threshold ||
0430 nodes >= threshold || meta >= threshold ||
0431 imeta >= threshold)
0432 return true;
0433 return dents + qdata + nodes + meta + imeta > global_threshold;
0434 }
0435
0436 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
0437 {
0438 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
0439 return;
0440
0441
0442 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
0443 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
0444
0445
0446 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
0447 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
0448
0449 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
0450 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
0451 else
0452 f2fs_build_free_nids(sbi, false, false);
0453
0454 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
0455 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
0456 goto do_sync;
0457
0458
0459 if (is_inflight_io(sbi, REQ_TIME) ||
0460 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
0461 return;
0462
0463
0464 if (f2fs_time_over(sbi, CP_TIME))
0465 goto do_sync;
0466
0467
0468 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
0469 f2fs_available_free_memory(sbi, INO_ENTRIES))
0470 return;
0471
0472 do_sync:
0473 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
0474 struct blk_plug plug;
0475
0476 mutex_lock(&sbi->flush_lock);
0477
0478 blk_start_plug(&plug);
0479 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
0480 blk_finish_plug(&plug);
0481
0482 mutex_unlock(&sbi->flush_lock);
0483 }
0484 f2fs_sync_fs(sbi->sb, true);
0485 stat_inc_bg_cp_count(sbi->stat_info);
0486 }
0487
0488 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
0489 struct block_device *bdev)
0490 {
0491 int ret = blkdev_issue_flush(bdev);
0492
0493 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
0494 test_opt(sbi, FLUSH_MERGE), ret);
0495 return ret;
0496 }
0497
0498 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
0499 {
0500 int ret = 0;
0501 int i;
0502
0503 if (!f2fs_is_multi_device(sbi))
0504 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
0505
0506 for (i = 0; i < sbi->s_ndevs; i++) {
0507 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
0508 continue;
0509 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
0510 if (ret)
0511 break;
0512 }
0513 return ret;
0514 }
0515
0516 static int issue_flush_thread(void *data)
0517 {
0518 struct f2fs_sb_info *sbi = data;
0519 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
0520 wait_queue_head_t *q = &fcc->flush_wait_queue;
0521 repeat:
0522 if (kthread_should_stop())
0523 return 0;
0524
0525 if (!llist_empty(&fcc->issue_list)) {
0526 struct flush_cmd *cmd, *next;
0527 int ret;
0528
0529 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
0530 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
0531
0532 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
0533
0534 ret = submit_flush_wait(sbi, cmd->ino);
0535 atomic_inc(&fcc->issued_flush);
0536
0537 llist_for_each_entry_safe(cmd, next,
0538 fcc->dispatch_list, llnode) {
0539 cmd->ret = ret;
0540 complete(&cmd->wait);
0541 }
0542 fcc->dispatch_list = NULL;
0543 }
0544
0545 wait_event_interruptible(*q,
0546 kthread_should_stop() || !llist_empty(&fcc->issue_list));
0547 goto repeat;
0548 }
0549
0550 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
0551 {
0552 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
0553 struct flush_cmd cmd;
0554 int ret;
0555
0556 if (test_opt(sbi, NOBARRIER))
0557 return 0;
0558
0559 if (!test_opt(sbi, FLUSH_MERGE)) {
0560 atomic_inc(&fcc->queued_flush);
0561 ret = submit_flush_wait(sbi, ino);
0562 atomic_dec(&fcc->queued_flush);
0563 atomic_inc(&fcc->issued_flush);
0564 return ret;
0565 }
0566
0567 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
0568 f2fs_is_multi_device(sbi)) {
0569 ret = submit_flush_wait(sbi, ino);
0570 atomic_dec(&fcc->queued_flush);
0571
0572 atomic_inc(&fcc->issued_flush);
0573 return ret;
0574 }
0575
0576 cmd.ino = ino;
0577 init_completion(&cmd.wait);
0578
0579 llist_add(&cmd.llnode, &fcc->issue_list);
0580
0581
0582
0583
0584
0585
0586 smp_mb();
0587
0588 if (waitqueue_active(&fcc->flush_wait_queue))
0589 wake_up(&fcc->flush_wait_queue);
0590
0591 if (fcc->f2fs_issue_flush) {
0592 wait_for_completion(&cmd.wait);
0593 atomic_dec(&fcc->queued_flush);
0594 } else {
0595 struct llist_node *list;
0596
0597 list = llist_del_all(&fcc->issue_list);
0598 if (!list) {
0599 wait_for_completion(&cmd.wait);
0600 atomic_dec(&fcc->queued_flush);
0601 } else {
0602 struct flush_cmd *tmp, *next;
0603
0604 ret = submit_flush_wait(sbi, ino);
0605
0606 llist_for_each_entry_safe(tmp, next, list, llnode) {
0607 if (tmp == &cmd) {
0608 cmd.ret = ret;
0609 atomic_dec(&fcc->queued_flush);
0610 continue;
0611 }
0612 tmp->ret = ret;
0613 complete(&tmp->wait);
0614 }
0615 }
0616 }
0617
0618 return cmd.ret;
0619 }
0620
0621 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
0622 {
0623 dev_t dev = sbi->sb->s_bdev->bd_dev;
0624 struct flush_cmd_control *fcc;
0625 int err = 0;
0626
0627 if (SM_I(sbi)->fcc_info) {
0628 fcc = SM_I(sbi)->fcc_info;
0629 if (fcc->f2fs_issue_flush)
0630 return err;
0631 goto init_thread;
0632 }
0633
0634 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
0635 if (!fcc)
0636 return -ENOMEM;
0637 atomic_set(&fcc->issued_flush, 0);
0638 atomic_set(&fcc->queued_flush, 0);
0639 init_waitqueue_head(&fcc->flush_wait_queue);
0640 init_llist_head(&fcc->issue_list);
0641 SM_I(sbi)->fcc_info = fcc;
0642 if (!test_opt(sbi, FLUSH_MERGE))
0643 return err;
0644
0645 init_thread:
0646 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
0647 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
0648 if (IS_ERR(fcc->f2fs_issue_flush)) {
0649 err = PTR_ERR(fcc->f2fs_issue_flush);
0650 kfree(fcc);
0651 SM_I(sbi)->fcc_info = NULL;
0652 return err;
0653 }
0654
0655 return err;
0656 }
0657
0658 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
0659 {
0660 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
0661
0662 if (fcc && fcc->f2fs_issue_flush) {
0663 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
0664
0665 fcc->f2fs_issue_flush = NULL;
0666 kthread_stop(flush_thread);
0667 }
0668 if (free) {
0669 kfree(fcc);
0670 SM_I(sbi)->fcc_info = NULL;
0671 }
0672 }
0673
0674 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
0675 {
0676 int ret = 0, i;
0677
0678 if (!f2fs_is_multi_device(sbi))
0679 return 0;
0680
0681 if (test_opt(sbi, NOBARRIER))
0682 return 0;
0683
0684 for (i = 1; i < sbi->s_ndevs; i++) {
0685 int count = DEFAULT_RETRY_IO_COUNT;
0686
0687 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
0688 continue;
0689
0690 do {
0691 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
0692 if (ret)
0693 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
0694 } while (ret && --count);
0695
0696 if (ret) {
0697 f2fs_stop_checkpoint(sbi, false);
0698 break;
0699 }
0700
0701 spin_lock(&sbi->dev_lock);
0702 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
0703 spin_unlock(&sbi->dev_lock);
0704 }
0705
0706 return ret;
0707 }
0708
0709 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
0710 enum dirty_type dirty_type)
0711 {
0712 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
0713
0714
0715 if (IS_CURSEG(sbi, segno))
0716 return;
0717
0718 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
0719 dirty_i->nr_dirty[dirty_type]++;
0720
0721 if (dirty_type == DIRTY) {
0722 struct seg_entry *sentry = get_seg_entry(sbi, segno);
0723 enum dirty_type t = sentry->type;
0724
0725 if (unlikely(t >= DIRTY)) {
0726 f2fs_bug_on(sbi, 1);
0727 return;
0728 }
0729 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
0730 dirty_i->nr_dirty[t]++;
0731
0732 if (__is_large_section(sbi)) {
0733 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
0734 block_t valid_blocks =
0735 get_valid_blocks(sbi, segno, true);
0736
0737 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
0738 valid_blocks == CAP_BLKS_PER_SEC(sbi)));
0739
0740 if (!IS_CURSEC(sbi, secno))
0741 set_bit(secno, dirty_i->dirty_secmap);
0742 }
0743 }
0744 }
0745
0746 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
0747 enum dirty_type dirty_type)
0748 {
0749 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
0750 block_t valid_blocks;
0751
0752 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
0753 dirty_i->nr_dirty[dirty_type]--;
0754
0755 if (dirty_type == DIRTY) {
0756 struct seg_entry *sentry = get_seg_entry(sbi, segno);
0757 enum dirty_type t = sentry->type;
0758
0759 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
0760 dirty_i->nr_dirty[t]--;
0761
0762 valid_blocks = get_valid_blocks(sbi, segno, true);
0763 if (valid_blocks == 0) {
0764 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
0765 dirty_i->victim_secmap);
0766 #ifdef CONFIG_F2FS_CHECK_FS
0767 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
0768 #endif
0769 }
0770 if (__is_large_section(sbi)) {
0771 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
0772
0773 if (!valid_blocks ||
0774 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
0775 clear_bit(secno, dirty_i->dirty_secmap);
0776 return;
0777 }
0778
0779 if (!IS_CURSEC(sbi, secno))
0780 set_bit(secno, dirty_i->dirty_secmap);
0781 }
0782 }
0783 }
0784
0785
0786
0787
0788
0789
0790 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
0791 {
0792 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
0793 unsigned short valid_blocks, ckpt_valid_blocks;
0794 unsigned int usable_blocks;
0795
0796 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
0797 return;
0798
0799 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
0800 mutex_lock(&dirty_i->seglist_lock);
0801
0802 valid_blocks = get_valid_blocks(sbi, segno, false);
0803 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
0804
0805 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
0806 ckpt_valid_blocks == usable_blocks)) {
0807 __locate_dirty_segment(sbi, segno, PRE);
0808 __remove_dirty_segment(sbi, segno, DIRTY);
0809 } else if (valid_blocks < usable_blocks) {
0810 __locate_dirty_segment(sbi, segno, DIRTY);
0811 } else {
0812
0813 __remove_dirty_segment(sbi, segno, DIRTY);
0814 }
0815
0816 mutex_unlock(&dirty_i->seglist_lock);
0817 }
0818
0819
0820 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
0821 {
0822 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
0823 unsigned int segno;
0824
0825 mutex_lock(&dirty_i->seglist_lock);
0826 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
0827 if (get_valid_blocks(sbi, segno, false))
0828 continue;
0829 if (IS_CURSEG(sbi, segno))
0830 continue;
0831 __locate_dirty_segment(sbi, segno, PRE);
0832 __remove_dirty_segment(sbi, segno, DIRTY);
0833 }
0834 mutex_unlock(&dirty_i->seglist_lock);
0835 }
0836
0837 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
0838 {
0839 int ovp_hole_segs =
0840 (overprovision_segments(sbi) - reserved_segments(sbi));
0841 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
0842 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
0843 block_t holes[2] = {0, 0};
0844 block_t unusable;
0845 struct seg_entry *se;
0846 unsigned int segno;
0847
0848 mutex_lock(&dirty_i->seglist_lock);
0849 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
0850 se = get_seg_entry(sbi, segno);
0851 if (IS_NODESEG(se->type))
0852 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
0853 se->valid_blocks;
0854 else
0855 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
0856 se->valid_blocks;
0857 }
0858 mutex_unlock(&dirty_i->seglist_lock);
0859
0860 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
0861 if (unusable > ovp_holes)
0862 return unusable - ovp_holes;
0863 return 0;
0864 }
0865
0866 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
0867 {
0868 int ovp_hole_segs =
0869 (overprovision_segments(sbi) - reserved_segments(sbi));
0870 if (unusable > F2FS_OPTION(sbi).unusable_cap)
0871 return -EAGAIN;
0872 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
0873 dirty_segments(sbi) > ovp_hole_segs)
0874 return -EAGAIN;
0875 return 0;
0876 }
0877
0878
0879 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
0880 {
0881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
0882 unsigned int segno = 0;
0883
0884 mutex_lock(&dirty_i->seglist_lock);
0885 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
0886 if (get_valid_blocks(sbi, segno, false))
0887 continue;
0888 if (get_ckpt_valid_blocks(sbi, segno, false))
0889 continue;
0890 mutex_unlock(&dirty_i->seglist_lock);
0891 return segno;
0892 }
0893 mutex_unlock(&dirty_i->seglist_lock);
0894 return NULL_SEGNO;
0895 }
0896
0897 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
0898 struct block_device *bdev, block_t lstart,
0899 block_t start, block_t len)
0900 {
0901 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
0902 struct list_head *pend_list;
0903 struct discard_cmd *dc;
0904
0905 f2fs_bug_on(sbi, !len);
0906
0907 pend_list = &dcc->pend_list[plist_idx(len)];
0908
0909 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
0910 INIT_LIST_HEAD(&dc->list);
0911 dc->bdev = bdev;
0912 dc->lstart = lstart;
0913 dc->start = start;
0914 dc->len = len;
0915 dc->ref = 0;
0916 dc->state = D_PREP;
0917 dc->queued = 0;
0918 dc->error = 0;
0919 init_completion(&dc->wait);
0920 list_add_tail(&dc->list, pend_list);
0921 spin_lock_init(&dc->lock);
0922 dc->bio_ref = 0;
0923 atomic_inc(&dcc->discard_cmd_cnt);
0924 dcc->undiscard_blks += len;
0925
0926 return dc;
0927 }
0928
0929 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
0930 struct block_device *bdev, block_t lstart,
0931 block_t start, block_t len,
0932 struct rb_node *parent, struct rb_node **p,
0933 bool leftmost)
0934 {
0935 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
0936 struct discard_cmd *dc;
0937
0938 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
0939
0940 rb_link_node(&dc->rb_node, parent, p);
0941 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
0942
0943 return dc;
0944 }
0945
0946 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
0947 struct discard_cmd *dc)
0948 {
0949 if (dc->state == D_DONE)
0950 atomic_sub(dc->queued, &dcc->queued_discard);
0951
0952 list_del(&dc->list);
0953 rb_erase_cached(&dc->rb_node, &dcc->root);
0954 dcc->undiscard_blks -= dc->len;
0955
0956 kmem_cache_free(discard_cmd_slab, dc);
0957
0958 atomic_dec(&dcc->discard_cmd_cnt);
0959 }
0960
0961 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
0962 struct discard_cmd *dc)
0963 {
0964 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
0965 unsigned long flags;
0966
0967 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
0968
0969 spin_lock_irqsave(&dc->lock, flags);
0970 if (dc->bio_ref) {
0971 spin_unlock_irqrestore(&dc->lock, flags);
0972 return;
0973 }
0974 spin_unlock_irqrestore(&dc->lock, flags);
0975
0976 f2fs_bug_on(sbi, dc->ref);
0977
0978 if (dc->error == -EOPNOTSUPP)
0979 dc->error = 0;
0980
0981 if (dc->error)
0982 printk_ratelimited(
0983 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
0984 KERN_INFO, sbi->sb->s_id,
0985 dc->lstart, dc->start, dc->len, dc->error);
0986 __detach_discard_cmd(dcc, dc);
0987 }
0988
0989 static void f2fs_submit_discard_endio(struct bio *bio)
0990 {
0991 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
0992 unsigned long flags;
0993
0994 spin_lock_irqsave(&dc->lock, flags);
0995 if (!dc->error)
0996 dc->error = blk_status_to_errno(bio->bi_status);
0997 dc->bio_ref--;
0998 if (!dc->bio_ref && dc->state == D_SUBMIT) {
0999 dc->state = D_DONE;
1000 complete_all(&dc->wait);
1001 }
1002 spin_unlock_irqrestore(&dc->lock, flags);
1003 bio_put(bio);
1004 }
1005
1006 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1007 block_t start, block_t end)
1008 {
1009 #ifdef CONFIG_F2FS_CHECK_FS
1010 struct seg_entry *sentry;
1011 unsigned int segno;
1012 block_t blk = start;
1013 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1014 unsigned long *map;
1015
1016 while (blk < end) {
1017 segno = GET_SEGNO(sbi, blk);
1018 sentry = get_seg_entry(sbi, segno);
1019 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1020
1021 if (end < START_BLOCK(sbi, segno + 1))
1022 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1023 else
1024 size = max_blocks;
1025 map = (unsigned long *)(sentry->cur_valid_map);
1026 offset = __find_rev_next_bit(map, size, offset);
1027 f2fs_bug_on(sbi, offset != size);
1028 blk = START_BLOCK(sbi, segno + 1);
1029 }
1030 #endif
1031 }
1032
1033 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1034 struct discard_policy *dpolicy,
1035 int discard_type, unsigned int granularity)
1036 {
1037 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1038
1039
1040 dpolicy->type = discard_type;
1041 dpolicy->sync = true;
1042 dpolicy->ordered = false;
1043 dpolicy->granularity = granularity;
1044
1045 dpolicy->max_requests = dcc->max_discard_request;
1046 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1047 dpolicy->timeout = false;
1048
1049 if (discard_type == DPOLICY_BG) {
1050 dpolicy->min_interval = dcc->min_discard_issue_time;
1051 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1052 dpolicy->max_interval = dcc->max_discard_issue_time;
1053 dpolicy->io_aware = true;
1054 dpolicy->sync = false;
1055 dpolicy->ordered = true;
1056 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1057 dpolicy->granularity = 1;
1058 if (atomic_read(&dcc->discard_cmd_cnt))
1059 dpolicy->max_interval =
1060 dcc->min_discard_issue_time;
1061 }
1062 } else if (discard_type == DPOLICY_FORCE) {
1063 dpolicy->min_interval = dcc->min_discard_issue_time;
1064 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1065 dpolicy->max_interval = dcc->max_discard_issue_time;
1066 dpolicy->io_aware = false;
1067 } else if (discard_type == DPOLICY_FSTRIM) {
1068 dpolicy->io_aware = false;
1069 } else if (discard_type == DPOLICY_UMOUNT) {
1070 dpolicy->io_aware = false;
1071
1072 dpolicy->granularity = 1;
1073 dpolicy->timeout = true;
1074 }
1075 }
1076
1077 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1078 struct block_device *bdev, block_t lstart,
1079 block_t start, block_t len);
1080
1081 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1082 struct discard_policy *dpolicy,
1083 struct discard_cmd *dc,
1084 unsigned int *issued)
1085 {
1086 struct block_device *bdev = dc->bdev;
1087 unsigned int max_discard_blocks =
1088 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1089 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1090 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1091 &(dcc->fstrim_list) : &(dcc->wait_list);
1092 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1093 block_t lstart, start, len, total_len;
1094 int err = 0;
1095
1096 if (dc->state != D_PREP)
1097 return 0;
1098
1099 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1100 return 0;
1101
1102 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1103
1104 lstart = dc->lstart;
1105 start = dc->start;
1106 len = dc->len;
1107 total_len = len;
1108
1109 dc->len = 0;
1110
1111 while (total_len && *issued < dpolicy->max_requests && !err) {
1112 struct bio *bio = NULL;
1113 unsigned long flags;
1114 bool last = true;
1115
1116 if (len > max_discard_blocks) {
1117 len = max_discard_blocks;
1118 last = false;
1119 }
1120
1121 (*issued)++;
1122 if (*issued == dpolicy->max_requests)
1123 last = true;
1124
1125 dc->len += len;
1126
1127 if (time_to_inject(sbi, FAULT_DISCARD)) {
1128 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1129 err = -EIO;
1130 goto submit;
1131 }
1132 err = __blkdev_issue_discard(bdev,
1133 SECTOR_FROM_BLOCK(start),
1134 SECTOR_FROM_BLOCK(len),
1135 GFP_NOFS, &bio);
1136 submit:
1137 if (err) {
1138 spin_lock_irqsave(&dc->lock, flags);
1139 if (dc->state == D_PARTIAL)
1140 dc->state = D_SUBMIT;
1141 spin_unlock_irqrestore(&dc->lock, flags);
1142
1143 break;
1144 }
1145
1146 f2fs_bug_on(sbi, !bio);
1147
1148
1149
1150
1151
1152 spin_lock_irqsave(&dc->lock, flags);
1153 if (last)
1154 dc->state = D_SUBMIT;
1155 else
1156 dc->state = D_PARTIAL;
1157 dc->bio_ref++;
1158 spin_unlock_irqrestore(&dc->lock, flags);
1159
1160 atomic_inc(&dcc->queued_discard);
1161 dc->queued++;
1162 list_move_tail(&dc->list, wait_list);
1163
1164
1165 __check_sit_bitmap(sbi, lstart, lstart + len);
1166
1167 bio->bi_private = dc;
1168 bio->bi_end_io = f2fs_submit_discard_endio;
1169 bio->bi_opf |= flag;
1170 submit_bio(bio);
1171
1172 atomic_inc(&dcc->issued_discard);
1173
1174 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1175
1176 lstart += len;
1177 start += len;
1178 total_len -= len;
1179 len = total_len;
1180 }
1181
1182 if (!err && len) {
1183 dcc->undiscard_blks -= len;
1184 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1185 }
1186 return err;
1187 }
1188
1189 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1190 struct block_device *bdev, block_t lstart,
1191 block_t start, block_t len,
1192 struct rb_node **insert_p,
1193 struct rb_node *insert_parent)
1194 {
1195 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1196 struct rb_node **p;
1197 struct rb_node *parent = NULL;
1198 bool leftmost = true;
1199
1200 if (insert_p && insert_parent) {
1201 parent = insert_parent;
1202 p = insert_p;
1203 goto do_insert;
1204 }
1205
1206 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1207 lstart, &leftmost);
1208 do_insert:
1209 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1210 p, leftmost);
1211 }
1212
1213 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1214 struct discard_cmd *dc)
1215 {
1216 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1217 }
1218
1219 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1220 struct discard_cmd *dc, block_t blkaddr)
1221 {
1222 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1223 struct discard_info di = dc->di;
1224 bool modified = false;
1225
1226 if (dc->state == D_DONE || dc->len == 1) {
1227 __remove_discard_cmd(sbi, dc);
1228 return;
1229 }
1230
1231 dcc->undiscard_blks -= di.len;
1232
1233 if (blkaddr > di.lstart) {
1234 dc->len = blkaddr - dc->lstart;
1235 dcc->undiscard_blks += dc->len;
1236 __relocate_discard_cmd(dcc, dc);
1237 modified = true;
1238 }
1239
1240 if (blkaddr < di.lstart + di.len - 1) {
1241 if (modified) {
1242 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1243 di.start + blkaddr + 1 - di.lstart,
1244 di.lstart + di.len - 1 - blkaddr,
1245 NULL, NULL);
1246 } else {
1247 dc->lstart++;
1248 dc->len--;
1249 dc->start++;
1250 dcc->undiscard_blks += dc->len;
1251 __relocate_discard_cmd(dcc, dc);
1252 }
1253 }
1254 }
1255
1256 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1257 struct block_device *bdev, block_t lstart,
1258 block_t start, block_t len)
1259 {
1260 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1261 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1262 struct discard_cmd *dc;
1263 struct discard_info di = {0};
1264 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1265 unsigned int max_discard_blocks =
1266 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1267 block_t end = lstart + len;
1268
1269 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1270 NULL, lstart,
1271 (struct rb_entry **)&prev_dc,
1272 (struct rb_entry **)&next_dc,
1273 &insert_p, &insert_parent, true, NULL);
1274 if (dc)
1275 prev_dc = dc;
1276
1277 if (!prev_dc) {
1278 di.lstart = lstart;
1279 di.len = next_dc ? next_dc->lstart - lstart : len;
1280 di.len = min(di.len, len);
1281 di.start = start;
1282 }
1283
1284 while (1) {
1285 struct rb_node *node;
1286 bool merged = false;
1287 struct discard_cmd *tdc = NULL;
1288
1289 if (prev_dc) {
1290 di.lstart = prev_dc->lstart + prev_dc->len;
1291 if (di.lstart < lstart)
1292 di.lstart = lstart;
1293 if (di.lstart >= end)
1294 break;
1295
1296 if (!next_dc || next_dc->lstart > end)
1297 di.len = end - di.lstart;
1298 else
1299 di.len = next_dc->lstart - di.lstart;
1300 di.start = start + di.lstart - lstart;
1301 }
1302
1303 if (!di.len)
1304 goto next;
1305
1306 if (prev_dc && prev_dc->state == D_PREP &&
1307 prev_dc->bdev == bdev &&
1308 __is_discard_back_mergeable(&di, &prev_dc->di,
1309 max_discard_blocks)) {
1310 prev_dc->di.len += di.len;
1311 dcc->undiscard_blks += di.len;
1312 __relocate_discard_cmd(dcc, prev_dc);
1313 di = prev_dc->di;
1314 tdc = prev_dc;
1315 merged = true;
1316 }
1317
1318 if (next_dc && next_dc->state == D_PREP &&
1319 next_dc->bdev == bdev &&
1320 __is_discard_front_mergeable(&di, &next_dc->di,
1321 max_discard_blocks)) {
1322 next_dc->di.lstart = di.lstart;
1323 next_dc->di.len += di.len;
1324 next_dc->di.start = di.start;
1325 dcc->undiscard_blks += di.len;
1326 __relocate_discard_cmd(dcc, next_dc);
1327 if (tdc)
1328 __remove_discard_cmd(sbi, tdc);
1329 merged = true;
1330 }
1331
1332 if (!merged) {
1333 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1334 di.len, NULL, NULL);
1335 }
1336 next:
1337 prev_dc = next_dc;
1338 if (!prev_dc)
1339 break;
1340
1341 node = rb_next(&prev_dc->rb_node);
1342 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1343 }
1344 }
1345
1346 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1347 struct block_device *bdev, block_t blkstart, block_t blklen)
1348 {
1349 block_t lblkstart = blkstart;
1350
1351 if (!f2fs_bdev_support_discard(bdev))
1352 return 0;
1353
1354 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1355
1356 if (f2fs_is_multi_device(sbi)) {
1357 int devi = f2fs_target_device_index(sbi, blkstart);
1358
1359 blkstart -= FDEV(devi).start_blk;
1360 }
1361 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1362 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1363 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1364 return 0;
1365 }
1366
1367 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1368 struct discard_policy *dpolicy)
1369 {
1370 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1371 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1372 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1373 struct discard_cmd *dc;
1374 struct blk_plug plug;
1375 unsigned int pos = dcc->next_pos;
1376 unsigned int issued = 0;
1377 bool io_interrupted = false;
1378
1379 mutex_lock(&dcc->cmd_lock);
1380 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1381 NULL, pos,
1382 (struct rb_entry **)&prev_dc,
1383 (struct rb_entry **)&next_dc,
1384 &insert_p, &insert_parent, true, NULL);
1385 if (!dc)
1386 dc = next_dc;
1387
1388 blk_start_plug(&plug);
1389
1390 while (dc) {
1391 struct rb_node *node;
1392 int err = 0;
1393
1394 if (dc->state != D_PREP)
1395 goto next;
1396
1397 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1398 io_interrupted = true;
1399 break;
1400 }
1401
1402 dcc->next_pos = dc->lstart + dc->len;
1403 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1404
1405 if (issued >= dpolicy->max_requests)
1406 break;
1407 next:
1408 node = rb_next(&dc->rb_node);
1409 if (err)
1410 __remove_discard_cmd(sbi, dc);
1411 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1412 }
1413
1414 blk_finish_plug(&plug);
1415
1416 if (!dc)
1417 dcc->next_pos = 0;
1418
1419 mutex_unlock(&dcc->cmd_lock);
1420
1421 if (!issued && io_interrupted)
1422 issued = -1;
1423
1424 return issued;
1425 }
1426 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1427 struct discard_policy *dpolicy);
1428
1429 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1430 struct discard_policy *dpolicy)
1431 {
1432 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1433 struct list_head *pend_list;
1434 struct discard_cmd *dc, *tmp;
1435 struct blk_plug plug;
1436 int i, issued;
1437 bool io_interrupted = false;
1438
1439 if (dpolicy->timeout)
1440 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1441
1442 retry:
1443 issued = 0;
1444 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1445 if (dpolicy->timeout &&
1446 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1447 break;
1448
1449 if (i + 1 < dpolicy->granularity)
1450 break;
1451
1452 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1453 return __issue_discard_cmd_orderly(sbi, dpolicy);
1454
1455 pend_list = &dcc->pend_list[i];
1456
1457 mutex_lock(&dcc->cmd_lock);
1458 if (list_empty(pend_list))
1459 goto next;
1460 if (unlikely(dcc->rbtree_check))
1461 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1462 &dcc->root, false));
1463 blk_start_plug(&plug);
1464 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1465 f2fs_bug_on(sbi, dc->state != D_PREP);
1466
1467 if (dpolicy->timeout &&
1468 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1469 break;
1470
1471 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1472 !is_idle(sbi, DISCARD_TIME)) {
1473 io_interrupted = true;
1474 break;
1475 }
1476
1477 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1478
1479 if (issued >= dpolicy->max_requests)
1480 break;
1481 }
1482 blk_finish_plug(&plug);
1483 next:
1484 mutex_unlock(&dcc->cmd_lock);
1485
1486 if (issued >= dpolicy->max_requests || io_interrupted)
1487 break;
1488 }
1489
1490 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1491 __wait_all_discard_cmd(sbi, dpolicy);
1492 goto retry;
1493 }
1494
1495 if (!issued && io_interrupted)
1496 issued = -1;
1497
1498 return issued;
1499 }
1500
1501 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1502 {
1503 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1504 struct list_head *pend_list;
1505 struct discard_cmd *dc, *tmp;
1506 int i;
1507 bool dropped = false;
1508
1509 mutex_lock(&dcc->cmd_lock);
1510 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1511 pend_list = &dcc->pend_list[i];
1512 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1513 f2fs_bug_on(sbi, dc->state != D_PREP);
1514 __remove_discard_cmd(sbi, dc);
1515 dropped = true;
1516 }
1517 }
1518 mutex_unlock(&dcc->cmd_lock);
1519
1520 return dropped;
1521 }
1522
1523 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1524 {
1525 __drop_discard_cmd(sbi);
1526 }
1527
1528 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1529 struct discard_cmd *dc)
1530 {
1531 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1532 unsigned int len = 0;
1533
1534 wait_for_completion_io(&dc->wait);
1535 mutex_lock(&dcc->cmd_lock);
1536 f2fs_bug_on(sbi, dc->state != D_DONE);
1537 dc->ref--;
1538 if (!dc->ref) {
1539 if (!dc->error)
1540 len = dc->len;
1541 __remove_discard_cmd(sbi, dc);
1542 }
1543 mutex_unlock(&dcc->cmd_lock);
1544
1545 return len;
1546 }
1547
1548 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1549 struct discard_policy *dpolicy,
1550 block_t start, block_t end)
1551 {
1552 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1553 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1554 &(dcc->fstrim_list) : &(dcc->wait_list);
1555 struct discard_cmd *dc = NULL, *iter, *tmp;
1556 unsigned int trimmed = 0;
1557
1558 next:
1559 dc = NULL;
1560
1561 mutex_lock(&dcc->cmd_lock);
1562 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1563 if (iter->lstart + iter->len <= start || end <= iter->lstart)
1564 continue;
1565 if (iter->len < dpolicy->granularity)
1566 continue;
1567 if (iter->state == D_DONE && !iter->ref) {
1568 wait_for_completion_io(&iter->wait);
1569 if (!iter->error)
1570 trimmed += iter->len;
1571 __remove_discard_cmd(sbi, iter);
1572 } else {
1573 iter->ref++;
1574 dc = iter;
1575 break;
1576 }
1577 }
1578 mutex_unlock(&dcc->cmd_lock);
1579
1580 if (dc) {
1581 trimmed += __wait_one_discard_bio(sbi, dc);
1582 goto next;
1583 }
1584
1585 return trimmed;
1586 }
1587
1588 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1589 struct discard_policy *dpolicy)
1590 {
1591 struct discard_policy dp;
1592 unsigned int discard_blks;
1593
1594 if (dpolicy)
1595 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1596
1597
1598 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1599 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1600 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1601 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1602
1603 return discard_blks;
1604 }
1605
1606
1607 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1608 {
1609 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1610 struct discard_cmd *dc;
1611 bool need_wait = false;
1612
1613 mutex_lock(&dcc->cmd_lock);
1614 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1615 NULL, blkaddr);
1616 if (dc) {
1617 if (dc->state == D_PREP) {
1618 __punch_discard_cmd(sbi, dc, blkaddr);
1619 } else {
1620 dc->ref++;
1621 need_wait = true;
1622 }
1623 }
1624 mutex_unlock(&dcc->cmd_lock);
1625
1626 if (need_wait)
1627 __wait_one_discard_bio(sbi, dc);
1628 }
1629
1630 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1631 {
1632 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1633
1634 if (dcc && dcc->f2fs_issue_discard) {
1635 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1636
1637 dcc->f2fs_issue_discard = NULL;
1638 kthread_stop(discard_thread);
1639 }
1640 }
1641
1642
1643 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1644 {
1645 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1646 struct discard_policy dpolicy;
1647 bool dropped;
1648
1649 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1650 dcc->discard_granularity);
1651 __issue_discard_cmd(sbi, &dpolicy);
1652 dropped = __drop_discard_cmd(sbi);
1653
1654
1655 __wait_all_discard_cmd(sbi, NULL);
1656
1657 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1658 return dropped;
1659 }
1660
1661 static int issue_discard_thread(void *data)
1662 {
1663 struct f2fs_sb_info *sbi = data;
1664 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1665 wait_queue_head_t *q = &dcc->discard_wait_queue;
1666 struct discard_policy dpolicy;
1667 unsigned int wait_ms = dcc->min_discard_issue_time;
1668 int issued;
1669
1670 set_freezable();
1671
1672 do {
1673 if (sbi->gc_mode == GC_URGENT_HIGH ||
1674 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1675 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1676 else
1677 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1678 dcc->discard_granularity);
1679
1680 if (!atomic_read(&dcc->discard_cmd_cnt))
1681 wait_ms = dpolicy.max_interval;
1682
1683 wait_event_interruptible_timeout(*q,
1684 kthread_should_stop() || freezing(current) ||
1685 dcc->discard_wake,
1686 msecs_to_jiffies(wait_ms));
1687
1688 if (dcc->discard_wake)
1689 dcc->discard_wake = 0;
1690
1691
1692 if (atomic_read(&dcc->queued_discard))
1693 __wait_all_discard_cmd(sbi, NULL);
1694
1695 if (try_to_freeze())
1696 continue;
1697 if (f2fs_readonly(sbi->sb))
1698 continue;
1699 if (kthread_should_stop())
1700 return 0;
1701 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1702 wait_ms = dpolicy.max_interval;
1703 continue;
1704 }
1705 if (!atomic_read(&dcc->discard_cmd_cnt))
1706 continue;
1707
1708 sb_start_intwrite(sbi->sb);
1709
1710 issued = __issue_discard_cmd(sbi, &dpolicy);
1711 if (issued > 0) {
1712 __wait_all_discard_cmd(sbi, &dpolicy);
1713 wait_ms = dpolicy.min_interval;
1714 } else if (issued == -1) {
1715 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1716 if (!wait_ms)
1717 wait_ms = dpolicy.mid_interval;
1718 } else {
1719 wait_ms = dpolicy.max_interval;
1720 }
1721
1722 sb_end_intwrite(sbi->sb);
1723
1724 } while (!kthread_should_stop());
1725 return 0;
1726 }
1727
1728 #ifdef CONFIG_BLK_DEV_ZONED
1729 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1730 struct block_device *bdev, block_t blkstart, block_t blklen)
1731 {
1732 sector_t sector, nr_sects;
1733 block_t lblkstart = blkstart;
1734 int devi = 0;
1735
1736 if (f2fs_is_multi_device(sbi)) {
1737 devi = f2fs_target_device_index(sbi, blkstart);
1738 if (blkstart < FDEV(devi).start_blk ||
1739 blkstart > FDEV(devi).end_blk) {
1740 f2fs_err(sbi, "Invalid block %x", blkstart);
1741 return -EIO;
1742 }
1743 blkstart -= FDEV(devi).start_blk;
1744 }
1745
1746
1747 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1748 sector = SECTOR_FROM_BLOCK(blkstart);
1749 nr_sects = SECTOR_FROM_BLOCK(blklen);
1750
1751 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1752 nr_sects != bdev_zone_sectors(bdev)) {
1753 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1754 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1755 blkstart, blklen);
1756 return -EIO;
1757 }
1758 trace_f2fs_issue_reset_zone(bdev, blkstart);
1759 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1760 sector, nr_sects, GFP_NOFS);
1761 }
1762
1763
1764 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1765 }
1766 #endif
1767
1768 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1769 struct block_device *bdev, block_t blkstart, block_t blklen)
1770 {
1771 #ifdef CONFIG_BLK_DEV_ZONED
1772 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1773 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1774 #endif
1775 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1776 }
1777
1778 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1779 block_t blkstart, block_t blklen)
1780 {
1781 sector_t start = blkstart, len = 0;
1782 struct block_device *bdev;
1783 struct seg_entry *se;
1784 unsigned int offset;
1785 block_t i;
1786 int err = 0;
1787
1788 bdev = f2fs_target_device(sbi, blkstart, NULL);
1789
1790 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1791 if (i != start) {
1792 struct block_device *bdev2 =
1793 f2fs_target_device(sbi, i, NULL);
1794
1795 if (bdev2 != bdev) {
1796 err = __issue_discard_async(sbi, bdev,
1797 start, len);
1798 if (err)
1799 return err;
1800 bdev = bdev2;
1801 start = i;
1802 len = 0;
1803 }
1804 }
1805
1806 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1807 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1808
1809 if (f2fs_block_unit_discard(sbi) &&
1810 !f2fs_test_and_set_bit(offset, se->discard_map))
1811 sbi->discard_blks--;
1812 }
1813
1814 if (len)
1815 err = __issue_discard_async(sbi, bdev, start, len);
1816 return err;
1817 }
1818
1819 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1820 bool check_only)
1821 {
1822 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1823 int max_blocks = sbi->blocks_per_seg;
1824 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1825 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1826 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1827 unsigned long *discard_map = (unsigned long *)se->discard_map;
1828 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1829 unsigned int start = 0, end = -1;
1830 bool force = (cpc->reason & CP_DISCARD);
1831 struct discard_entry *de = NULL;
1832 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1833 int i;
1834
1835 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1836 !f2fs_block_unit_discard(sbi))
1837 return false;
1838
1839 if (!force) {
1840 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1841 SM_I(sbi)->dcc_info->nr_discards >=
1842 SM_I(sbi)->dcc_info->max_discards)
1843 return false;
1844 }
1845
1846
1847 for (i = 0; i < entries; i++)
1848 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1849 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1850
1851 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1852 SM_I(sbi)->dcc_info->max_discards) {
1853 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1854 if (start >= max_blocks)
1855 break;
1856
1857 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1858 if (force && start && end != max_blocks
1859 && (end - start) < cpc->trim_minlen)
1860 continue;
1861
1862 if (check_only)
1863 return true;
1864
1865 if (!de) {
1866 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1867 GFP_F2FS_ZERO, true, NULL);
1868 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1869 list_add_tail(&de->list, head);
1870 }
1871
1872 for (i = start; i < end; i++)
1873 __set_bit_le(i, (void *)de->discard_map);
1874
1875 SM_I(sbi)->dcc_info->nr_discards += end - start;
1876 }
1877 return false;
1878 }
1879
1880 static void release_discard_addr(struct discard_entry *entry)
1881 {
1882 list_del(&entry->list);
1883 kmem_cache_free(discard_entry_slab, entry);
1884 }
1885
1886 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1887 {
1888 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1889 struct discard_entry *entry, *this;
1890
1891
1892 list_for_each_entry_safe(entry, this, head, list)
1893 release_discard_addr(entry);
1894 }
1895
1896
1897
1898
1899 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1900 {
1901 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1902 unsigned int segno;
1903
1904 mutex_lock(&dirty_i->seglist_lock);
1905 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1906 __set_test_and_free(sbi, segno, false);
1907 mutex_unlock(&dirty_i->seglist_lock);
1908 }
1909
1910 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1911 struct cp_control *cpc)
1912 {
1913 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1914 struct list_head *head = &dcc->entry_list;
1915 struct discard_entry *entry, *this;
1916 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1917 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1918 unsigned int start = 0, end = -1;
1919 unsigned int secno, start_segno;
1920 bool force = (cpc->reason & CP_DISCARD);
1921 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1922 DISCARD_UNIT_SECTION;
1923
1924 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1925 section_alignment = true;
1926
1927 mutex_lock(&dirty_i->seglist_lock);
1928
1929 while (1) {
1930 int i;
1931
1932 if (section_alignment && end != -1)
1933 end--;
1934 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1935 if (start >= MAIN_SEGS(sbi))
1936 break;
1937 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1938 start + 1);
1939
1940 if (section_alignment) {
1941 start = rounddown(start, sbi->segs_per_sec);
1942 end = roundup(end, sbi->segs_per_sec);
1943 }
1944
1945 for (i = start; i < end; i++) {
1946 if (test_and_clear_bit(i, prefree_map))
1947 dirty_i->nr_dirty[PRE]--;
1948 }
1949
1950 if (!f2fs_realtime_discard_enable(sbi))
1951 continue;
1952
1953 if (force && start >= cpc->trim_start &&
1954 (end - 1) <= cpc->trim_end)
1955 continue;
1956
1957 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1958 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1959 (end - start) << sbi->log_blocks_per_seg);
1960 continue;
1961 }
1962 next:
1963 secno = GET_SEC_FROM_SEG(sbi, start);
1964 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1965 if (!IS_CURSEC(sbi, secno) &&
1966 !get_valid_blocks(sbi, start, true))
1967 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1968 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1969
1970 start = start_segno + sbi->segs_per_sec;
1971 if (start < end)
1972 goto next;
1973 else
1974 end = start - 1;
1975 }
1976 mutex_unlock(&dirty_i->seglist_lock);
1977
1978 if (!f2fs_block_unit_discard(sbi))
1979 goto wakeup;
1980
1981
1982 list_for_each_entry_safe(entry, this, head, list) {
1983 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1984 bool is_valid = test_bit_le(0, entry->discard_map);
1985
1986 find_next:
1987 if (is_valid) {
1988 next_pos = find_next_zero_bit_le(entry->discard_map,
1989 sbi->blocks_per_seg, cur_pos);
1990 len = next_pos - cur_pos;
1991
1992 if (f2fs_sb_has_blkzoned(sbi) ||
1993 (force && len < cpc->trim_minlen))
1994 goto skip;
1995
1996 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1997 len);
1998 total_len += len;
1999 } else {
2000 next_pos = find_next_bit_le(entry->discard_map,
2001 sbi->blocks_per_seg, cur_pos);
2002 }
2003 skip:
2004 cur_pos = next_pos;
2005 is_valid = !is_valid;
2006
2007 if (cur_pos < sbi->blocks_per_seg)
2008 goto find_next;
2009
2010 release_discard_addr(entry);
2011 dcc->nr_discards -= total_len;
2012 }
2013
2014 wakeup:
2015 wake_up_discard_thread(sbi, false);
2016 }
2017
2018 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2019 {
2020 dev_t dev = sbi->sb->s_bdev->bd_dev;
2021 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2022 int err = 0;
2023
2024 if (!f2fs_realtime_discard_enable(sbi))
2025 return 0;
2026
2027 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2028 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2029 if (IS_ERR(dcc->f2fs_issue_discard))
2030 err = PTR_ERR(dcc->f2fs_issue_discard);
2031
2032 return err;
2033 }
2034
2035 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2036 {
2037 struct discard_cmd_control *dcc;
2038 int err = 0, i;
2039
2040 if (SM_I(sbi)->dcc_info) {
2041 dcc = SM_I(sbi)->dcc_info;
2042 goto init_thread;
2043 }
2044
2045 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2046 if (!dcc)
2047 return -ENOMEM;
2048
2049 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2050 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2051 dcc->discard_granularity = sbi->blocks_per_seg;
2052 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2053 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2054
2055 INIT_LIST_HEAD(&dcc->entry_list);
2056 for (i = 0; i < MAX_PLIST_NUM; i++)
2057 INIT_LIST_HEAD(&dcc->pend_list[i]);
2058 INIT_LIST_HEAD(&dcc->wait_list);
2059 INIT_LIST_HEAD(&dcc->fstrim_list);
2060 mutex_init(&dcc->cmd_lock);
2061 atomic_set(&dcc->issued_discard, 0);
2062 atomic_set(&dcc->queued_discard, 0);
2063 atomic_set(&dcc->discard_cmd_cnt, 0);
2064 dcc->nr_discards = 0;
2065 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2066 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2067 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2068 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2069 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2070 dcc->undiscard_blks = 0;
2071 dcc->next_pos = 0;
2072 dcc->root = RB_ROOT_CACHED;
2073 dcc->rbtree_check = false;
2074
2075 init_waitqueue_head(&dcc->discard_wait_queue);
2076 SM_I(sbi)->dcc_info = dcc;
2077 init_thread:
2078 err = f2fs_start_discard_thread(sbi);
2079 if (err) {
2080 kfree(dcc);
2081 SM_I(sbi)->dcc_info = NULL;
2082 }
2083
2084 return err;
2085 }
2086
2087 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2088 {
2089 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2090
2091 if (!dcc)
2092 return;
2093
2094 f2fs_stop_discard_thread(sbi);
2095
2096
2097
2098
2099
2100 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2101 f2fs_issue_discard_timeout(sbi);
2102
2103 kfree(dcc);
2104 SM_I(sbi)->dcc_info = NULL;
2105 }
2106
2107 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2108 {
2109 struct sit_info *sit_i = SIT_I(sbi);
2110
2111 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2112 sit_i->dirty_sentries++;
2113 return false;
2114 }
2115
2116 return true;
2117 }
2118
2119 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2120 unsigned int segno, int modified)
2121 {
2122 struct seg_entry *se = get_seg_entry(sbi, segno);
2123
2124 se->type = type;
2125 if (modified)
2126 __mark_sit_entry_dirty(sbi, segno);
2127 }
2128
2129 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2130 block_t blkaddr)
2131 {
2132 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2133
2134 if (segno == NULL_SEGNO)
2135 return 0;
2136 return get_seg_entry(sbi, segno)->mtime;
2137 }
2138
2139 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2140 unsigned long long old_mtime)
2141 {
2142 struct seg_entry *se;
2143 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2144 unsigned long long ctime = get_mtime(sbi, false);
2145 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2146
2147 if (segno == NULL_SEGNO)
2148 return;
2149
2150 se = get_seg_entry(sbi, segno);
2151
2152 if (!se->mtime)
2153 se->mtime = mtime;
2154 else
2155 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2156 se->valid_blocks + 1);
2157
2158 if (ctime > SIT_I(sbi)->max_mtime)
2159 SIT_I(sbi)->max_mtime = ctime;
2160 }
2161
2162 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2163 {
2164 struct seg_entry *se;
2165 unsigned int segno, offset;
2166 long int new_vblocks;
2167 bool exist;
2168 #ifdef CONFIG_F2FS_CHECK_FS
2169 bool mir_exist;
2170 #endif
2171
2172 segno = GET_SEGNO(sbi, blkaddr);
2173
2174 se = get_seg_entry(sbi, segno);
2175 new_vblocks = se->valid_blocks + del;
2176 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2177
2178 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2179 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2180
2181 se->valid_blocks = new_vblocks;
2182
2183
2184 if (del > 0) {
2185 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2186 #ifdef CONFIG_F2FS_CHECK_FS
2187 mir_exist = f2fs_test_and_set_bit(offset,
2188 se->cur_valid_map_mir);
2189 if (unlikely(exist != mir_exist)) {
2190 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2191 blkaddr, exist);
2192 f2fs_bug_on(sbi, 1);
2193 }
2194 #endif
2195 if (unlikely(exist)) {
2196 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2197 blkaddr);
2198 f2fs_bug_on(sbi, 1);
2199 se->valid_blocks--;
2200 del = 0;
2201 }
2202
2203 if (f2fs_block_unit_discard(sbi) &&
2204 !f2fs_test_and_set_bit(offset, se->discard_map))
2205 sbi->discard_blks--;
2206
2207
2208
2209
2210
2211 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2212 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2213 se->ckpt_valid_blocks++;
2214 }
2215 } else {
2216 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2217 #ifdef CONFIG_F2FS_CHECK_FS
2218 mir_exist = f2fs_test_and_clear_bit(offset,
2219 se->cur_valid_map_mir);
2220 if (unlikely(exist != mir_exist)) {
2221 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2222 blkaddr, exist);
2223 f2fs_bug_on(sbi, 1);
2224 }
2225 #endif
2226 if (unlikely(!exist)) {
2227 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2228 blkaddr);
2229 f2fs_bug_on(sbi, 1);
2230 se->valid_blocks++;
2231 del = 0;
2232 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2233
2234
2235
2236
2237
2238
2239 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2240 spin_lock(&sbi->stat_lock);
2241 sbi->unusable_block_count++;
2242 spin_unlock(&sbi->stat_lock);
2243 }
2244 }
2245
2246 if (f2fs_block_unit_discard(sbi) &&
2247 f2fs_test_and_clear_bit(offset, se->discard_map))
2248 sbi->discard_blks++;
2249 }
2250 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2251 se->ckpt_valid_blocks += del;
2252
2253 __mark_sit_entry_dirty(sbi, segno);
2254
2255
2256 SIT_I(sbi)->written_valid_blocks += del;
2257
2258 if (__is_large_section(sbi))
2259 get_sec_entry(sbi, segno)->valid_blocks += del;
2260 }
2261
2262 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2263 {
2264 unsigned int segno = GET_SEGNO(sbi, addr);
2265 struct sit_info *sit_i = SIT_I(sbi);
2266
2267 f2fs_bug_on(sbi, addr == NULL_ADDR);
2268 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2269 return;
2270
2271 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2272 f2fs_invalidate_compress_page(sbi, addr);
2273
2274
2275 down_write(&sit_i->sentry_lock);
2276
2277 update_segment_mtime(sbi, addr, 0);
2278 update_sit_entry(sbi, addr, -1);
2279
2280
2281 locate_dirty_segment(sbi, segno);
2282
2283 up_write(&sit_i->sentry_lock);
2284 }
2285
2286 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2287 {
2288 struct sit_info *sit_i = SIT_I(sbi);
2289 unsigned int segno, offset;
2290 struct seg_entry *se;
2291 bool is_cp = false;
2292
2293 if (!__is_valid_data_blkaddr(blkaddr))
2294 return true;
2295
2296 down_read(&sit_i->sentry_lock);
2297
2298 segno = GET_SEGNO(sbi, blkaddr);
2299 se = get_seg_entry(sbi, segno);
2300 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2301
2302 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2303 is_cp = true;
2304
2305 up_read(&sit_i->sentry_lock);
2306
2307 return is_cp;
2308 }
2309
2310
2311
2312
2313 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2314 struct f2fs_summary *sum)
2315 {
2316 struct curseg_info *curseg = CURSEG_I(sbi, type);
2317 void *addr = curseg->sum_blk;
2318
2319 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2320 memcpy(addr, sum, sizeof(struct f2fs_summary));
2321 }
2322
2323
2324
2325
2326 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2327 {
2328 int valid_sum_count = 0;
2329 int i, sum_in_page;
2330
2331 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2332 if (sbi->ckpt->alloc_type[i] == SSR)
2333 valid_sum_count += sbi->blocks_per_seg;
2334 else {
2335 if (for_ra)
2336 valid_sum_count += le16_to_cpu(
2337 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2338 else
2339 valid_sum_count += curseg_blkoff(sbi, i);
2340 }
2341 }
2342
2343 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2344 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2345 if (valid_sum_count <= sum_in_page)
2346 return 1;
2347 else if ((valid_sum_count - sum_in_page) <=
2348 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2349 return 2;
2350 return 3;
2351 }
2352
2353
2354
2355
2356 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2357 {
2358 if (unlikely(f2fs_cp_error(sbi)))
2359 return ERR_PTR(-EIO);
2360 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2361 }
2362
2363 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2364 void *src, block_t blk_addr)
2365 {
2366 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2367
2368 memcpy(page_address(page), src, PAGE_SIZE);
2369 set_page_dirty(page);
2370 f2fs_put_page(page, 1);
2371 }
2372
2373 static void write_sum_page(struct f2fs_sb_info *sbi,
2374 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2375 {
2376 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2377 }
2378
2379 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2380 int type, block_t blk_addr)
2381 {
2382 struct curseg_info *curseg = CURSEG_I(sbi, type);
2383 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2384 struct f2fs_summary_block *src = curseg->sum_blk;
2385 struct f2fs_summary_block *dst;
2386
2387 dst = (struct f2fs_summary_block *)page_address(page);
2388 memset(dst, 0, PAGE_SIZE);
2389
2390 mutex_lock(&curseg->curseg_mutex);
2391
2392 down_read(&curseg->journal_rwsem);
2393 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2394 up_read(&curseg->journal_rwsem);
2395
2396 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2397 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2398
2399 mutex_unlock(&curseg->curseg_mutex);
2400
2401 set_page_dirty(page);
2402 f2fs_put_page(page, 1);
2403 }
2404
2405 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2406 struct curseg_info *curseg, int type)
2407 {
2408 unsigned int segno = curseg->segno + 1;
2409 struct free_segmap_info *free_i = FREE_I(sbi);
2410
2411 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2412 return !test_bit(segno, free_i->free_segmap);
2413 return 0;
2414 }
2415
2416
2417
2418
2419
2420 static void get_new_segment(struct f2fs_sb_info *sbi,
2421 unsigned int *newseg, bool new_sec, int dir)
2422 {
2423 struct free_segmap_info *free_i = FREE_I(sbi);
2424 unsigned int segno, secno, zoneno;
2425 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2426 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2427 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2428 unsigned int left_start = hint;
2429 bool init = true;
2430 int go_left = 0;
2431 int i;
2432
2433 spin_lock(&free_i->segmap_lock);
2434
2435 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2436 segno = find_next_zero_bit(free_i->free_segmap,
2437 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2438 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2439 goto got_it;
2440 }
2441 find_other_zone:
2442 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2443 if (secno >= MAIN_SECS(sbi)) {
2444 if (dir == ALLOC_RIGHT) {
2445 secno = find_first_zero_bit(free_i->free_secmap,
2446 MAIN_SECS(sbi));
2447 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2448 } else {
2449 go_left = 1;
2450 left_start = hint - 1;
2451 }
2452 }
2453 if (go_left == 0)
2454 goto skip_left;
2455
2456 while (test_bit(left_start, free_i->free_secmap)) {
2457 if (left_start > 0) {
2458 left_start--;
2459 continue;
2460 }
2461 left_start = find_first_zero_bit(free_i->free_secmap,
2462 MAIN_SECS(sbi));
2463 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2464 break;
2465 }
2466 secno = left_start;
2467 skip_left:
2468 segno = GET_SEG_FROM_SEC(sbi, secno);
2469 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2470
2471
2472 if (!init)
2473 goto got_it;
2474 if (sbi->secs_per_zone == 1)
2475 goto got_it;
2476 if (zoneno == old_zoneno)
2477 goto got_it;
2478 if (dir == ALLOC_LEFT) {
2479 if (!go_left && zoneno + 1 >= total_zones)
2480 goto got_it;
2481 if (go_left && zoneno == 0)
2482 goto got_it;
2483 }
2484 for (i = 0; i < NR_CURSEG_TYPE; i++)
2485 if (CURSEG_I(sbi, i)->zone == zoneno)
2486 break;
2487
2488 if (i < NR_CURSEG_TYPE) {
2489
2490 if (go_left)
2491 hint = zoneno * sbi->secs_per_zone - 1;
2492 else if (zoneno + 1 >= total_zones)
2493 hint = 0;
2494 else
2495 hint = (zoneno + 1) * sbi->secs_per_zone;
2496 init = false;
2497 goto find_other_zone;
2498 }
2499 got_it:
2500
2501 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2502 __set_inuse(sbi, segno);
2503 *newseg = segno;
2504 spin_unlock(&free_i->segmap_lock);
2505 }
2506
2507 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2508 {
2509 struct curseg_info *curseg = CURSEG_I(sbi, type);
2510 struct summary_footer *sum_footer;
2511 unsigned short seg_type = curseg->seg_type;
2512
2513 curseg->inited = true;
2514 curseg->segno = curseg->next_segno;
2515 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2516 curseg->next_blkoff = 0;
2517 curseg->next_segno = NULL_SEGNO;
2518
2519 sum_footer = &(curseg->sum_blk->footer);
2520 memset(sum_footer, 0, sizeof(struct summary_footer));
2521
2522 sanity_check_seg_type(sbi, seg_type);
2523
2524 if (IS_DATASEG(seg_type))
2525 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2526 if (IS_NODESEG(seg_type))
2527 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2528 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2529 }
2530
2531 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2532 {
2533 struct curseg_info *curseg = CURSEG_I(sbi, type);
2534 unsigned short seg_type = curseg->seg_type;
2535
2536 sanity_check_seg_type(sbi, seg_type);
2537 if (f2fs_need_rand_seg(sbi))
2538 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2539
2540
2541 if (__is_large_section(sbi))
2542 return curseg->segno;
2543
2544
2545 if (!curseg->inited)
2546 return 0;
2547
2548 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2549 return 0;
2550
2551 if (test_opt(sbi, NOHEAP) &&
2552 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2553 return 0;
2554
2555 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2556 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2557
2558
2559 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2560 return 0;
2561
2562 return curseg->segno;
2563 }
2564
2565
2566
2567
2568
2569 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2570 {
2571 struct curseg_info *curseg = CURSEG_I(sbi, type);
2572 unsigned short seg_type = curseg->seg_type;
2573 unsigned int segno = curseg->segno;
2574 int dir = ALLOC_LEFT;
2575
2576 if (curseg->inited)
2577 write_sum_page(sbi, curseg->sum_blk,
2578 GET_SUM_BLOCK(sbi, segno));
2579 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2580 dir = ALLOC_RIGHT;
2581
2582 if (test_opt(sbi, NOHEAP))
2583 dir = ALLOC_RIGHT;
2584
2585 segno = __get_next_segno(sbi, type);
2586 get_new_segment(sbi, &segno, new_sec, dir);
2587 curseg->next_segno = segno;
2588 reset_curseg(sbi, type, 1);
2589 curseg->alloc_type = LFS;
2590 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2591 curseg->fragment_remained_chunk =
2592 prandom_u32() % sbi->max_fragment_chunk + 1;
2593 }
2594
2595 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2596 int segno, block_t start)
2597 {
2598 struct seg_entry *se = get_seg_entry(sbi, segno);
2599 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2600 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2601 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2602 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2603 int i;
2604
2605 for (i = 0; i < entries; i++)
2606 target_map[i] = ckpt_map[i] | cur_map[i];
2607
2608 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2609 }
2610
2611
2612
2613
2614
2615
2616 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2617 struct curseg_info *seg)
2618 {
2619 if (seg->alloc_type == SSR) {
2620 seg->next_blkoff =
2621 __next_free_blkoff(sbi, seg->segno,
2622 seg->next_blkoff + 1);
2623 } else {
2624 seg->next_blkoff++;
2625 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2626
2627 if (--seg->fragment_remained_chunk <= 0) {
2628 seg->fragment_remained_chunk =
2629 prandom_u32() % sbi->max_fragment_chunk + 1;
2630 seg->next_blkoff +=
2631 prandom_u32() % sbi->max_fragment_hole + 1;
2632 }
2633 }
2634 }
2635 }
2636
2637 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2638 {
2639 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2640 }
2641
2642
2643
2644
2645
2646 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2647 {
2648 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2649 struct curseg_info *curseg = CURSEG_I(sbi, type);
2650 unsigned int new_segno = curseg->next_segno;
2651 struct f2fs_summary_block *sum_node;
2652 struct page *sum_page;
2653
2654 if (flush)
2655 write_sum_page(sbi, curseg->sum_blk,
2656 GET_SUM_BLOCK(sbi, curseg->segno));
2657
2658 __set_test_and_inuse(sbi, new_segno);
2659
2660 mutex_lock(&dirty_i->seglist_lock);
2661 __remove_dirty_segment(sbi, new_segno, PRE);
2662 __remove_dirty_segment(sbi, new_segno, DIRTY);
2663 mutex_unlock(&dirty_i->seglist_lock);
2664
2665 reset_curseg(sbi, type, 1);
2666 curseg->alloc_type = SSR;
2667 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2668
2669 sum_page = f2fs_get_sum_page(sbi, new_segno);
2670 if (IS_ERR(sum_page)) {
2671
2672 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2673 return;
2674 }
2675 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2676 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2677 f2fs_put_page(sum_page, 1);
2678 }
2679
2680 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2681 int alloc_mode, unsigned long long age);
2682
2683 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2684 int target_type, int alloc_mode,
2685 unsigned long long age)
2686 {
2687 struct curseg_info *curseg = CURSEG_I(sbi, type);
2688
2689 curseg->seg_type = target_type;
2690
2691 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2692 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2693
2694 curseg->seg_type = se->type;
2695 change_curseg(sbi, type, true);
2696 } else {
2697
2698 curseg->seg_type = CURSEG_COLD_DATA;
2699 new_curseg(sbi, type, true);
2700 }
2701 stat_inc_seg_type(sbi, curseg);
2702 }
2703
2704 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2705 {
2706 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2707
2708 if (!sbi->am.atgc_enabled)
2709 return;
2710
2711 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2712
2713 mutex_lock(&curseg->curseg_mutex);
2714 down_write(&SIT_I(sbi)->sentry_lock);
2715
2716 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2717
2718 up_write(&SIT_I(sbi)->sentry_lock);
2719 mutex_unlock(&curseg->curseg_mutex);
2720
2721 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2722
2723 }
2724 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2725 {
2726 __f2fs_init_atgc_curseg(sbi);
2727 }
2728
2729 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2730 {
2731 struct curseg_info *curseg = CURSEG_I(sbi, type);
2732
2733 mutex_lock(&curseg->curseg_mutex);
2734 if (!curseg->inited)
2735 goto out;
2736
2737 if (get_valid_blocks(sbi, curseg->segno, false)) {
2738 write_sum_page(sbi, curseg->sum_blk,
2739 GET_SUM_BLOCK(sbi, curseg->segno));
2740 } else {
2741 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2742 __set_test_and_free(sbi, curseg->segno, true);
2743 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2744 }
2745 out:
2746 mutex_unlock(&curseg->curseg_mutex);
2747 }
2748
2749 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2750 {
2751 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2752
2753 if (sbi->am.atgc_enabled)
2754 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2755 }
2756
2757 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2758 {
2759 struct curseg_info *curseg = CURSEG_I(sbi, type);
2760
2761 mutex_lock(&curseg->curseg_mutex);
2762 if (!curseg->inited)
2763 goto out;
2764 if (get_valid_blocks(sbi, curseg->segno, false))
2765 goto out;
2766
2767 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2768 __set_test_and_inuse(sbi, curseg->segno);
2769 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2770 out:
2771 mutex_unlock(&curseg->curseg_mutex);
2772 }
2773
2774 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2775 {
2776 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2777
2778 if (sbi->am.atgc_enabled)
2779 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2780 }
2781
2782 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2783 int alloc_mode, unsigned long long age)
2784 {
2785 struct curseg_info *curseg = CURSEG_I(sbi, type);
2786 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2787 unsigned segno = NULL_SEGNO;
2788 unsigned short seg_type = curseg->seg_type;
2789 int i, cnt;
2790 bool reversed = false;
2791
2792 sanity_check_seg_type(sbi, seg_type);
2793
2794
2795 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2796 curseg->next_segno = segno;
2797 return 1;
2798 }
2799
2800
2801 if (IS_NODESEG(seg_type)) {
2802 if (seg_type >= CURSEG_WARM_NODE) {
2803 reversed = true;
2804 i = CURSEG_COLD_NODE;
2805 } else {
2806 i = CURSEG_HOT_NODE;
2807 }
2808 cnt = NR_CURSEG_NODE_TYPE;
2809 } else {
2810 if (seg_type >= CURSEG_WARM_DATA) {
2811 reversed = true;
2812 i = CURSEG_COLD_DATA;
2813 } else {
2814 i = CURSEG_HOT_DATA;
2815 }
2816 cnt = NR_CURSEG_DATA_TYPE;
2817 }
2818
2819 for (; cnt-- > 0; reversed ? i-- : i++) {
2820 if (i == seg_type)
2821 continue;
2822 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2823 curseg->next_segno = segno;
2824 return 1;
2825 }
2826 }
2827
2828
2829 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2830 segno = get_free_segment(sbi);
2831 if (segno != NULL_SEGNO) {
2832 curseg->next_segno = segno;
2833 return 1;
2834 }
2835 }
2836 return 0;
2837 }
2838
2839
2840
2841
2842
2843 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2844 int type, bool force)
2845 {
2846 struct curseg_info *curseg = CURSEG_I(sbi, type);
2847
2848 if (force)
2849 new_curseg(sbi, type, true);
2850 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2851 curseg->seg_type == CURSEG_WARM_NODE)
2852 new_curseg(sbi, type, false);
2853 else if (curseg->alloc_type == LFS &&
2854 is_next_segment_free(sbi, curseg, type) &&
2855 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2856 new_curseg(sbi, type, false);
2857 else if (f2fs_need_SSR(sbi) &&
2858 get_ssr_segment(sbi, type, SSR, 0))
2859 change_curseg(sbi, type, true);
2860 else
2861 new_curseg(sbi, type, false);
2862
2863 stat_inc_seg_type(sbi, curseg);
2864 }
2865
2866 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2867 unsigned int start, unsigned int end)
2868 {
2869 struct curseg_info *curseg = CURSEG_I(sbi, type);
2870 unsigned int segno;
2871
2872 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2873 mutex_lock(&curseg->curseg_mutex);
2874 down_write(&SIT_I(sbi)->sentry_lock);
2875
2876 segno = CURSEG_I(sbi, type)->segno;
2877 if (segno < start || segno > end)
2878 goto unlock;
2879
2880 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2881 change_curseg(sbi, type, true);
2882 else
2883 new_curseg(sbi, type, true);
2884
2885 stat_inc_seg_type(sbi, curseg);
2886
2887 locate_dirty_segment(sbi, segno);
2888 unlock:
2889 up_write(&SIT_I(sbi)->sentry_lock);
2890
2891 if (segno != curseg->segno)
2892 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2893 type, segno, curseg->segno);
2894
2895 mutex_unlock(&curseg->curseg_mutex);
2896 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2897 }
2898
2899 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2900 bool new_sec, bool force)
2901 {
2902 struct curseg_info *curseg = CURSEG_I(sbi, type);
2903 unsigned int old_segno;
2904
2905 if (!curseg->inited)
2906 goto alloc;
2907
2908 if (force || curseg->next_blkoff ||
2909 get_valid_blocks(sbi, curseg->segno, new_sec))
2910 goto alloc;
2911
2912 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2913 return;
2914 alloc:
2915 old_segno = curseg->segno;
2916 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2917 locate_dirty_segment(sbi, old_segno);
2918 }
2919
2920 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2921 int type, bool force)
2922 {
2923 __allocate_new_segment(sbi, type, true, force);
2924 }
2925
2926 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2927 {
2928 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2929 down_write(&SIT_I(sbi)->sentry_lock);
2930 __allocate_new_section(sbi, type, force);
2931 up_write(&SIT_I(sbi)->sentry_lock);
2932 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2933 }
2934
2935 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2936 {
2937 int i;
2938
2939 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2940 down_write(&SIT_I(sbi)->sentry_lock);
2941 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2942 __allocate_new_segment(sbi, i, false, false);
2943 up_write(&SIT_I(sbi)->sentry_lock);
2944 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2945 }
2946
2947 static const struct segment_allocation default_salloc_ops = {
2948 .allocate_segment = allocate_segment_by_default,
2949 };
2950
2951 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2952 struct cp_control *cpc)
2953 {
2954 __u64 trim_start = cpc->trim_start;
2955 bool has_candidate = false;
2956
2957 down_write(&SIT_I(sbi)->sentry_lock);
2958 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2959 if (add_discard_addrs(sbi, cpc, true)) {
2960 has_candidate = true;
2961 break;
2962 }
2963 }
2964 up_write(&SIT_I(sbi)->sentry_lock);
2965
2966 cpc->trim_start = trim_start;
2967 return has_candidate;
2968 }
2969
2970 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2971 struct discard_policy *dpolicy,
2972 unsigned int start, unsigned int end)
2973 {
2974 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2975 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2976 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2977 struct discard_cmd *dc;
2978 struct blk_plug plug;
2979 int issued;
2980 unsigned int trimmed = 0;
2981
2982 next:
2983 issued = 0;
2984
2985 mutex_lock(&dcc->cmd_lock);
2986 if (unlikely(dcc->rbtree_check))
2987 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2988 &dcc->root, false));
2989
2990 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2991 NULL, start,
2992 (struct rb_entry **)&prev_dc,
2993 (struct rb_entry **)&next_dc,
2994 &insert_p, &insert_parent, true, NULL);
2995 if (!dc)
2996 dc = next_dc;
2997
2998 blk_start_plug(&plug);
2999
3000 while (dc && dc->lstart <= end) {
3001 struct rb_node *node;
3002 int err = 0;
3003
3004 if (dc->len < dpolicy->granularity)
3005 goto skip;
3006
3007 if (dc->state != D_PREP) {
3008 list_move_tail(&dc->list, &dcc->fstrim_list);
3009 goto skip;
3010 }
3011
3012 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3013
3014 if (issued >= dpolicy->max_requests) {
3015 start = dc->lstart + dc->len;
3016
3017 if (err)
3018 __remove_discard_cmd(sbi, dc);
3019
3020 blk_finish_plug(&plug);
3021 mutex_unlock(&dcc->cmd_lock);
3022 trimmed += __wait_all_discard_cmd(sbi, NULL);
3023 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3024 goto next;
3025 }
3026 skip:
3027 node = rb_next(&dc->rb_node);
3028 if (err)
3029 __remove_discard_cmd(sbi, dc);
3030 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3031
3032 if (fatal_signal_pending(current))
3033 break;
3034 }
3035
3036 blk_finish_plug(&plug);
3037 mutex_unlock(&dcc->cmd_lock);
3038
3039 return trimmed;
3040 }
3041
3042 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3043 {
3044 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3045 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3046 unsigned int start_segno, end_segno;
3047 block_t start_block, end_block;
3048 struct cp_control cpc;
3049 struct discard_policy dpolicy;
3050 unsigned long long trimmed = 0;
3051 int err = 0;
3052 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3053
3054 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3055 return -EINVAL;
3056
3057 if (end < MAIN_BLKADDR(sbi))
3058 goto out;
3059
3060 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3061 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3062 return -EFSCORRUPTED;
3063 }
3064
3065
3066 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3067 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3068 GET_SEGNO(sbi, end);
3069 if (need_align) {
3070 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3071 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3072 }
3073
3074 cpc.reason = CP_DISCARD;
3075 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3076 cpc.trim_start = start_segno;
3077 cpc.trim_end = end_segno;
3078
3079 if (sbi->discard_blks == 0)
3080 goto out;
3081
3082 f2fs_down_write(&sbi->gc_lock);
3083 err = f2fs_write_checkpoint(sbi, &cpc);
3084 f2fs_up_write(&sbi->gc_lock);
3085 if (err)
3086 goto out;
3087
3088
3089
3090
3091
3092
3093
3094 if (f2fs_realtime_discard_enable(sbi))
3095 goto out;
3096
3097 start_block = START_BLOCK(sbi, start_segno);
3098 end_block = START_BLOCK(sbi, end_segno + 1);
3099
3100 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3101 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3102 start_block, end_block);
3103
3104 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3105 start_block, end_block);
3106 out:
3107 if (!err)
3108 range->len = F2FS_BLK_TO_BYTES(trimmed);
3109 return err;
3110 }
3111
3112 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3113 struct curseg_info *curseg)
3114 {
3115 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3116 curseg->segno);
3117 }
3118
3119 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3120 {
3121 switch (hint) {
3122 case WRITE_LIFE_SHORT:
3123 return CURSEG_HOT_DATA;
3124 case WRITE_LIFE_EXTREME:
3125 return CURSEG_COLD_DATA;
3126 default:
3127 return CURSEG_WARM_DATA;
3128 }
3129 }
3130
3131 static int __get_segment_type_2(struct f2fs_io_info *fio)
3132 {
3133 if (fio->type == DATA)
3134 return CURSEG_HOT_DATA;
3135 else
3136 return CURSEG_HOT_NODE;
3137 }
3138
3139 static int __get_segment_type_4(struct f2fs_io_info *fio)
3140 {
3141 if (fio->type == DATA) {
3142 struct inode *inode = fio->page->mapping->host;
3143
3144 if (S_ISDIR(inode->i_mode))
3145 return CURSEG_HOT_DATA;
3146 else
3147 return CURSEG_COLD_DATA;
3148 } else {
3149 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3150 return CURSEG_WARM_NODE;
3151 else
3152 return CURSEG_COLD_NODE;
3153 }
3154 }
3155
3156 static int __get_segment_type_6(struct f2fs_io_info *fio)
3157 {
3158 if (fio->type == DATA) {
3159 struct inode *inode = fio->page->mapping->host;
3160
3161 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3162 return CURSEG_COLD_DATA_PINNED;
3163
3164 if (page_private_gcing(fio->page)) {
3165 if (fio->sbi->am.atgc_enabled &&
3166 (fio->io_type == FS_DATA_IO) &&
3167 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3168 return CURSEG_ALL_DATA_ATGC;
3169 else
3170 return CURSEG_COLD_DATA;
3171 }
3172 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3173 return CURSEG_COLD_DATA;
3174 if (file_is_hot(inode) ||
3175 is_inode_flag_set(inode, FI_HOT_DATA) ||
3176 f2fs_is_cow_file(inode))
3177 return CURSEG_HOT_DATA;
3178 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3179 } else {
3180 if (IS_DNODE(fio->page))
3181 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3182 CURSEG_HOT_NODE;
3183 return CURSEG_COLD_NODE;
3184 }
3185 }
3186
3187 static int __get_segment_type(struct f2fs_io_info *fio)
3188 {
3189 int type = 0;
3190
3191 switch (F2FS_OPTION(fio->sbi).active_logs) {
3192 case 2:
3193 type = __get_segment_type_2(fio);
3194 break;
3195 case 4:
3196 type = __get_segment_type_4(fio);
3197 break;
3198 case 6:
3199 type = __get_segment_type_6(fio);
3200 break;
3201 default:
3202 f2fs_bug_on(fio->sbi, true);
3203 }
3204
3205 if (IS_HOT(type))
3206 fio->temp = HOT;
3207 else if (IS_WARM(type))
3208 fio->temp = WARM;
3209 else
3210 fio->temp = COLD;
3211 return type;
3212 }
3213
3214 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3215 block_t old_blkaddr, block_t *new_blkaddr,
3216 struct f2fs_summary *sum, int type,
3217 struct f2fs_io_info *fio)
3218 {
3219 struct sit_info *sit_i = SIT_I(sbi);
3220 struct curseg_info *curseg = CURSEG_I(sbi, type);
3221 unsigned long long old_mtime;
3222 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3223 struct seg_entry *se = NULL;
3224
3225 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3226
3227 mutex_lock(&curseg->curseg_mutex);
3228 down_write(&sit_i->sentry_lock);
3229
3230 if (from_gc) {
3231 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3232 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3233 sanity_check_seg_type(sbi, se->type);
3234 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3235 }
3236 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3237
3238 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3239
3240 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3241
3242
3243
3244
3245
3246
3247 __add_sum_entry(sbi, type, sum);
3248
3249 __refresh_next_blkoff(sbi, curseg);
3250
3251 stat_inc_block_count(sbi, curseg);
3252
3253 if (from_gc) {
3254 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3255 } else {
3256 update_segment_mtime(sbi, old_blkaddr, 0);
3257 old_mtime = 0;
3258 }
3259 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3260
3261
3262
3263
3264
3265 update_sit_entry(sbi, *new_blkaddr, 1);
3266 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3267 update_sit_entry(sbi, old_blkaddr, -1);
3268
3269 if (!__has_curseg_space(sbi, curseg)) {
3270 if (from_gc)
3271 get_atssr_segment(sbi, type, se->type,
3272 AT_SSR, se->mtime);
3273 else
3274 sit_i->s_ops->allocate_segment(sbi, type, false);
3275 }
3276
3277
3278
3279
3280
3281 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3282 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3283
3284 up_write(&sit_i->sentry_lock);
3285
3286 if (page && IS_NODESEG(type)) {
3287 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3288
3289 f2fs_inode_chksum_set(sbi, page);
3290 }
3291
3292 if (fio) {
3293 struct f2fs_bio_info *io;
3294
3295 if (F2FS_IO_ALIGNED(sbi))
3296 fio->retry = false;
3297
3298 INIT_LIST_HEAD(&fio->list);
3299 fio->in_list = true;
3300 io = sbi->write_io[fio->type] + fio->temp;
3301 spin_lock(&io->io_lock);
3302 list_add_tail(&fio->list, &io->io_list);
3303 spin_unlock(&io->io_lock);
3304 }
3305
3306 mutex_unlock(&curseg->curseg_mutex);
3307
3308 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3309 }
3310
3311 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3312 block_t blkaddr, unsigned int blkcnt)
3313 {
3314 if (!f2fs_is_multi_device(sbi))
3315 return;
3316
3317 while (1) {
3318 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3319 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3320
3321
3322 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3323
3324
3325 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3326 spin_lock(&sbi->dev_lock);
3327 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3328 spin_unlock(&sbi->dev_lock);
3329 }
3330
3331 if (blkcnt <= blks)
3332 break;
3333 blkcnt -= blks;
3334 blkaddr += blks;
3335 }
3336 }
3337
3338 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3339 {
3340 int type = __get_segment_type(fio);
3341 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3342
3343 if (keep_order)
3344 f2fs_down_read(&fio->sbi->io_order_lock);
3345 reallocate:
3346 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3347 &fio->new_blkaddr, sum, type, fio);
3348 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3349 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3350 fio->old_blkaddr, fio->old_blkaddr);
3351 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3352 }
3353
3354
3355 f2fs_submit_page_write(fio);
3356 if (fio->retry) {
3357 fio->old_blkaddr = fio->new_blkaddr;
3358 goto reallocate;
3359 }
3360
3361 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3362
3363 if (keep_order)
3364 f2fs_up_read(&fio->sbi->io_order_lock);
3365 }
3366
3367 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3368 enum iostat_type io_type)
3369 {
3370 struct f2fs_io_info fio = {
3371 .sbi = sbi,
3372 .type = META,
3373 .temp = HOT,
3374 .op = REQ_OP_WRITE,
3375 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3376 .old_blkaddr = page->index,
3377 .new_blkaddr = page->index,
3378 .page = page,
3379 .encrypted_page = NULL,
3380 .in_list = false,
3381 };
3382
3383 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3384 fio.op_flags &= ~REQ_META;
3385
3386 set_page_writeback(page);
3387 ClearPageError(page);
3388 f2fs_submit_page_write(&fio);
3389
3390 stat_inc_meta_count(sbi, page->index);
3391 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3392 }
3393
3394 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3395 {
3396 struct f2fs_summary sum;
3397
3398 set_summary(&sum, nid, 0, 0);
3399 do_write_page(&sum, fio);
3400
3401 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3402 }
3403
3404 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3405 struct f2fs_io_info *fio)
3406 {
3407 struct f2fs_sb_info *sbi = fio->sbi;
3408 struct f2fs_summary sum;
3409
3410 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3411 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3412 do_write_page(&sum, fio);
3413 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3414
3415 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3416 }
3417
3418 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3419 {
3420 int err;
3421 struct f2fs_sb_info *sbi = fio->sbi;
3422 unsigned int segno;
3423
3424 fio->new_blkaddr = fio->old_blkaddr;
3425
3426 __get_segment_type(fio);
3427
3428 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3429
3430 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3431 set_sbi_flag(sbi, SBI_NEED_FSCK);
3432 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3433 __func__, segno);
3434 err = -EFSCORRUPTED;
3435 goto drop_bio;
3436 }
3437
3438 if (f2fs_cp_error(sbi)) {
3439 err = -EIO;
3440 goto drop_bio;
3441 }
3442
3443 if (fio->post_read)
3444 invalidate_mapping_pages(META_MAPPING(sbi),
3445 fio->new_blkaddr, fio->new_blkaddr);
3446
3447 stat_inc_inplace_blocks(fio->sbi);
3448
3449 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3450 err = f2fs_merge_page_bio(fio);
3451 else
3452 err = f2fs_submit_page_bio(fio);
3453 if (!err) {
3454 f2fs_update_device_state(fio->sbi, fio->ino,
3455 fio->new_blkaddr, 1);
3456 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3457 }
3458
3459 return err;
3460 drop_bio:
3461 if (fio->bio && *(fio->bio)) {
3462 struct bio *bio = *(fio->bio);
3463
3464 bio->bi_status = BLK_STS_IOERR;
3465 bio_endio(bio);
3466 *(fio->bio) = NULL;
3467 }
3468 return err;
3469 }
3470
3471 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3472 unsigned int segno)
3473 {
3474 int i;
3475
3476 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3477 if (CURSEG_I(sbi, i)->segno == segno)
3478 break;
3479 }
3480 return i;
3481 }
3482
3483 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3484 block_t old_blkaddr, block_t new_blkaddr,
3485 bool recover_curseg, bool recover_newaddr,
3486 bool from_gc)
3487 {
3488 struct sit_info *sit_i = SIT_I(sbi);
3489 struct curseg_info *curseg;
3490 unsigned int segno, old_cursegno;
3491 struct seg_entry *se;
3492 int type;
3493 unsigned short old_blkoff;
3494 unsigned char old_alloc_type;
3495
3496 segno = GET_SEGNO(sbi, new_blkaddr);
3497 se = get_seg_entry(sbi, segno);
3498 type = se->type;
3499
3500 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3501
3502 if (!recover_curseg) {
3503
3504 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3505 if (old_blkaddr == NULL_ADDR)
3506 type = CURSEG_COLD_DATA;
3507 else
3508 type = CURSEG_WARM_DATA;
3509 }
3510 } else {
3511 if (IS_CURSEG(sbi, segno)) {
3512
3513 type = __f2fs_get_curseg(sbi, segno);
3514 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3515 } else {
3516 type = CURSEG_WARM_DATA;
3517 }
3518 }
3519
3520 f2fs_bug_on(sbi, !IS_DATASEG(type));
3521 curseg = CURSEG_I(sbi, type);
3522
3523 mutex_lock(&curseg->curseg_mutex);
3524 down_write(&sit_i->sentry_lock);
3525
3526 old_cursegno = curseg->segno;
3527 old_blkoff = curseg->next_blkoff;
3528 old_alloc_type = curseg->alloc_type;
3529
3530
3531 if (segno != curseg->segno) {
3532 curseg->next_segno = segno;
3533 change_curseg(sbi, type, true);
3534 }
3535
3536 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3537 __add_sum_entry(sbi, type, sum);
3538
3539 if (!recover_curseg || recover_newaddr) {
3540 if (!from_gc)
3541 update_segment_mtime(sbi, new_blkaddr, 0);
3542 update_sit_entry(sbi, new_blkaddr, 1);
3543 }
3544 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3545 invalidate_mapping_pages(META_MAPPING(sbi),
3546 old_blkaddr, old_blkaddr);
3547 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3548 if (!from_gc)
3549 update_segment_mtime(sbi, old_blkaddr, 0);
3550 update_sit_entry(sbi, old_blkaddr, -1);
3551 }
3552
3553 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3554 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3555
3556 locate_dirty_segment(sbi, old_cursegno);
3557
3558 if (recover_curseg) {
3559 if (old_cursegno != curseg->segno) {
3560 curseg->next_segno = old_cursegno;
3561 change_curseg(sbi, type, true);
3562 }
3563 curseg->next_blkoff = old_blkoff;
3564 curseg->alloc_type = old_alloc_type;
3565 }
3566
3567 up_write(&sit_i->sentry_lock);
3568 mutex_unlock(&curseg->curseg_mutex);
3569 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3570 }
3571
3572 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3573 block_t old_addr, block_t new_addr,
3574 unsigned char version, bool recover_curseg,
3575 bool recover_newaddr)
3576 {
3577 struct f2fs_summary sum;
3578
3579 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3580
3581 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3582 recover_curseg, recover_newaddr, false);
3583
3584 f2fs_update_data_blkaddr(dn, new_addr);
3585 }
3586
3587 void f2fs_wait_on_page_writeback(struct page *page,
3588 enum page_type type, bool ordered, bool locked)
3589 {
3590 if (PageWriteback(page)) {
3591 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3592
3593
3594 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3595
3596 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3597 if (ordered) {
3598 wait_on_page_writeback(page);
3599 f2fs_bug_on(sbi, locked && PageWriteback(page));
3600 } else {
3601 wait_for_stable_page(page);
3602 }
3603 }
3604 }
3605
3606 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3607 {
3608 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3609 struct page *cpage;
3610
3611 if (!f2fs_post_read_required(inode))
3612 return;
3613
3614 if (!__is_valid_data_blkaddr(blkaddr))
3615 return;
3616
3617 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3618 if (cpage) {
3619 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3620 f2fs_put_page(cpage, 1);
3621 }
3622 }
3623
3624 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3625 block_t len)
3626 {
3627 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3628 block_t i;
3629
3630 if (!f2fs_post_read_required(inode))
3631 return;
3632
3633 for (i = 0; i < len; i++)
3634 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3635
3636 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3637 }
3638
3639 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3640 {
3641 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3642 struct curseg_info *seg_i;
3643 unsigned char *kaddr;
3644 struct page *page;
3645 block_t start;
3646 int i, j, offset;
3647
3648 start = start_sum_block(sbi);
3649
3650 page = f2fs_get_meta_page(sbi, start++);
3651 if (IS_ERR(page))
3652 return PTR_ERR(page);
3653 kaddr = (unsigned char *)page_address(page);
3654
3655
3656 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3657 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3658
3659
3660 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3661 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3662 offset = 2 * SUM_JOURNAL_SIZE;
3663
3664
3665 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3666 unsigned short blk_off;
3667 unsigned int segno;
3668
3669 seg_i = CURSEG_I(sbi, i);
3670 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3671 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3672 seg_i->next_segno = segno;
3673 reset_curseg(sbi, i, 0);
3674 seg_i->alloc_type = ckpt->alloc_type[i];
3675 seg_i->next_blkoff = blk_off;
3676
3677 if (seg_i->alloc_type == SSR)
3678 blk_off = sbi->blocks_per_seg;
3679
3680 for (j = 0; j < blk_off; j++) {
3681 struct f2fs_summary *s;
3682
3683 s = (struct f2fs_summary *)(kaddr + offset);
3684 seg_i->sum_blk->entries[j] = *s;
3685 offset += SUMMARY_SIZE;
3686 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3687 SUM_FOOTER_SIZE)
3688 continue;
3689
3690 f2fs_put_page(page, 1);
3691 page = NULL;
3692
3693 page = f2fs_get_meta_page(sbi, start++);
3694 if (IS_ERR(page))
3695 return PTR_ERR(page);
3696 kaddr = (unsigned char *)page_address(page);
3697 offset = 0;
3698 }
3699 }
3700 f2fs_put_page(page, 1);
3701 return 0;
3702 }
3703
3704 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3705 {
3706 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3707 struct f2fs_summary_block *sum;
3708 struct curseg_info *curseg;
3709 struct page *new;
3710 unsigned short blk_off;
3711 unsigned int segno = 0;
3712 block_t blk_addr = 0;
3713 int err = 0;
3714
3715
3716 if (IS_DATASEG(type)) {
3717 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3718 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3719 CURSEG_HOT_DATA]);
3720 if (__exist_node_summaries(sbi))
3721 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3722 else
3723 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3724 } else {
3725 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3726 CURSEG_HOT_NODE]);
3727 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3728 CURSEG_HOT_NODE]);
3729 if (__exist_node_summaries(sbi))
3730 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3731 type - CURSEG_HOT_NODE);
3732 else
3733 blk_addr = GET_SUM_BLOCK(sbi, segno);
3734 }
3735
3736 new = f2fs_get_meta_page(sbi, blk_addr);
3737 if (IS_ERR(new))
3738 return PTR_ERR(new);
3739 sum = (struct f2fs_summary_block *)page_address(new);
3740
3741 if (IS_NODESEG(type)) {
3742 if (__exist_node_summaries(sbi)) {
3743 struct f2fs_summary *ns = &sum->entries[0];
3744 int i;
3745
3746 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3747 ns->version = 0;
3748 ns->ofs_in_node = 0;
3749 }
3750 } else {
3751 err = f2fs_restore_node_summary(sbi, segno, sum);
3752 if (err)
3753 goto out;
3754 }
3755 }
3756
3757
3758 curseg = CURSEG_I(sbi, type);
3759 mutex_lock(&curseg->curseg_mutex);
3760
3761
3762 down_write(&curseg->journal_rwsem);
3763 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3764 up_write(&curseg->journal_rwsem);
3765
3766 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3767 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3768 curseg->next_segno = segno;
3769 reset_curseg(sbi, type, 0);
3770 curseg->alloc_type = ckpt->alloc_type[type];
3771 curseg->next_blkoff = blk_off;
3772 mutex_unlock(&curseg->curseg_mutex);
3773 out:
3774 f2fs_put_page(new, 1);
3775 return err;
3776 }
3777
3778 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3779 {
3780 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3781 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3782 int type = CURSEG_HOT_DATA;
3783 int err;
3784
3785 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3786 int npages = f2fs_npages_for_summary_flush(sbi, true);
3787
3788 if (npages >= 2)
3789 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3790 META_CP, true);
3791
3792
3793 err = read_compacted_summaries(sbi);
3794 if (err)
3795 return err;
3796 type = CURSEG_HOT_NODE;
3797 }
3798
3799 if (__exist_node_summaries(sbi))
3800 f2fs_ra_meta_pages(sbi,
3801 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3802 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3803
3804 for (; type <= CURSEG_COLD_NODE; type++) {
3805 err = read_normal_summaries(sbi, type);
3806 if (err)
3807 return err;
3808 }
3809
3810
3811 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3812 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3813 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3814 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3815 return -EINVAL;
3816 }
3817
3818 return 0;
3819 }
3820
3821 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3822 {
3823 struct page *page;
3824 unsigned char *kaddr;
3825 struct f2fs_summary *summary;
3826 struct curseg_info *seg_i;
3827 int written_size = 0;
3828 int i, j;
3829
3830 page = f2fs_grab_meta_page(sbi, blkaddr++);
3831 kaddr = (unsigned char *)page_address(page);
3832 memset(kaddr, 0, PAGE_SIZE);
3833
3834
3835 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3836 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3837 written_size += SUM_JOURNAL_SIZE;
3838
3839
3840 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3841 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3842 written_size += SUM_JOURNAL_SIZE;
3843
3844
3845 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3846 unsigned short blkoff;
3847
3848 seg_i = CURSEG_I(sbi, i);
3849 if (sbi->ckpt->alloc_type[i] == SSR)
3850 blkoff = sbi->blocks_per_seg;
3851 else
3852 blkoff = curseg_blkoff(sbi, i);
3853
3854 for (j = 0; j < blkoff; j++) {
3855 if (!page) {
3856 page = f2fs_grab_meta_page(sbi, blkaddr++);
3857 kaddr = (unsigned char *)page_address(page);
3858 memset(kaddr, 0, PAGE_SIZE);
3859 written_size = 0;
3860 }
3861 summary = (struct f2fs_summary *)(kaddr + written_size);
3862 *summary = seg_i->sum_blk->entries[j];
3863 written_size += SUMMARY_SIZE;
3864
3865 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3866 SUM_FOOTER_SIZE)
3867 continue;
3868
3869 set_page_dirty(page);
3870 f2fs_put_page(page, 1);
3871 page = NULL;
3872 }
3873 }
3874 if (page) {
3875 set_page_dirty(page);
3876 f2fs_put_page(page, 1);
3877 }
3878 }
3879
3880 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3881 block_t blkaddr, int type)
3882 {
3883 int i, end;
3884
3885 if (IS_DATASEG(type))
3886 end = type + NR_CURSEG_DATA_TYPE;
3887 else
3888 end = type + NR_CURSEG_NODE_TYPE;
3889
3890 for (i = type; i < end; i++)
3891 write_current_sum_page(sbi, i, blkaddr + (i - type));
3892 }
3893
3894 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3895 {
3896 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3897 write_compacted_summaries(sbi, start_blk);
3898 else
3899 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3900 }
3901
3902 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3903 {
3904 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3905 }
3906
3907 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3908 unsigned int val, int alloc)
3909 {
3910 int i;
3911
3912 if (type == NAT_JOURNAL) {
3913 for (i = 0; i < nats_in_cursum(journal); i++) {
3914 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3915 return i;
3916 }
3917 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3918 return update_nats_in_cursum(journal, 1);
3919 } else if (type == SIT_JOURNAL) {
3920 for (i = 0; i < sits_in_cursum(journal); i++)
3921 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3922 return i;
3923 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3924 return update_sits_in_cursum(journal, 1);
3925 }
3926 return -1;
3927 }
3928
3929 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3930 unsigned int segno)
3931 {
3932 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3933 }
3934
3935 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3936 unsigned int start)
3937 {
3938 struct sit_info *sit_i = SIT_I(sbi);
3939 struct page *page;
3940 pgoff_t src_off, dst_off;
3941
3942 src_off = current_sit_addr(sbi, start);
3943 dst_off = next_sit_addr(sbi, src_off);
3944
3945 page = f2fs_grab_meta_page(sbi, dst_off);
3946 seg_info_to_sit_page(sbi, page, start);
3947
3948 set_page_dirty(page);
3949 set_to_next_sit(sit_i, start);
3950
3951 return page;
3952 }
3953
3954 static struct sit_entry_set *grab_sit_entry_set(void)
3955 {
3956 struct sit_entry_set *ses =
3957 f2fs_kmem_cache_alloc(sit_entry_set_slab,
3958 GFP_NOFS, true, NULL);
3959
3960 ses->entry_cnt = 0;
3961 INIT_LIST_HEAD(&ses->set_list);
3962 return ses;
3963 }
3964
3965 static void release_sit_entry_set(struct sit_entry_set *ses)
3966 {
3967 list_del(&ses->set_list);
3968 kmem_cache_free(sit_entry_set_slab, ses);
3969 }
3970
3971 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3972 struct list_head *head)
3973 {
3974 struct sit_entry_set *next = ses;
3975
3976 if (list_is_last(&ses->set_list, head))
3977 return;
3978
3979 list_for_each_entry_continue(next, head, set_list)
3980 if (ses->entry_cnt <= next->entry_cnt) {
3981 list_move_tail(&ses->set_list, &next->set_list);
3982 return;
3983 }
3984
3985 list_move_tail(&ses->set_list, head);
3986 }
3987
3988 static void add_sit_entry(unsigned int segno, struct list_head *head)
3989 {
3990 struct sit_entry_set *ses;
3991 unsigned int start_segno = START_SEGNO(segno);
3992
3993 list_for_each_entry(ses, head, set_list) {
3994 if (ses->start_segno == start_segno) {
3995 ses->entry_cnt++;
3996 adjust_sit_entry_set(ses, head);
3997 return;
3998 }
3999 }
4000
4001 ses = grab_sit_entry_set();
4002
4003 ses->start_segno = start_segno;
4004 ses->entry_cnt++;
4005 list_add(&ses->set_list, head);
4006 }
4007
4008 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4009 {
4010 struct f2fs_sm_info *sm_info = SM_I(sbi);
4011 struct list_head *set_list = &sm_info->sit_entry_set;
4012 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4013 unsigned int segno;
4014
4015 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4016 add_sit_entry(segno, set_list);
4017 }
4018
4019 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4020 {
4021 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4022 struct f2fs_journal *journal = curseg->journal;
4023 int i;
4024
4025 down_write(&curseg->journal_rwsem);
4026 for (i = 0; i < sits_in_cursum(journal); i++) {
4027 unsigned int segno;
4028 bool dirtied;
4029
4030 segno = le32_to_cpu(segno_in_journal(journal, i));
4031 dirtied = __mark_sit_entry_dirty(sbi, segno);
4032
4033 if (!dirtied)
4034 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4035 }
4036 update_sits_in_cursum(journal, -i);
4037 up_write(&curseg->journal_rwsem);
4038 }
4039
4040
4041
4042
4043
4044 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4045 {
4046 struct sit_info *sit_i = SIT_I(sbi);
4047 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4048 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4049 struct f2fs_journal *journal = curseg->journal;
4050 struct sit_entry_set *ses, *tmp;
4051 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4052 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4053 struct seg_entry *se;
4054
4055 down_write(&sit_i->sentry_lock);
4056
4057 if (!sit_i->dirty_sentries)
4058 goto out;
4059
4060
4061
4062
4063
4064 add_sits_in_set(sbi);
4065
4066
4067
4068
4069
4070
4071 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4072 !to_journal)
4073 remove_sits_in_journal(sbi);
4074
4075
4076
4077
4078
4079
4080 list_for_each_entry_safe(ses, tmp, head, set_list) {
4081 struct page *page = NULL;
4082 struct f2fs_sit_block *raw_sit = NULL;
4083 unsigned int start_segno = ses->start_segno;
4084 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4085 (unsigned long)MAIN_SEGS(sbi));
4086 unsigned int segno = start_segno;
4087
4088 if (to_journal &&
4089 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4090 to_journal = false;
4091
4092 if (to_journal) {
4093 down_write(&curseg->journal_rwsem);
4094 } else {
4095 page = get_next_sit_page(sbi, start_segno);
4096 raw_sit = page_address(page);
4097 }
4098
4099
4100 for_each_set_bit_from(segno, bitmap, end) {
4101 int offset, sit_offset;
4102
4103 se = get_seg_entry(sbi, segno);
4104 #ifdef CONFIG_F2FS_CHECK_FS
4105 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4106 SIT_VBLOCK_MAP_SIZE))
4107 f2fs_bug_on(sbi, 1);
4108 #endif
4109
4110
4111 if (!(cpc->reason & CP_DISCARD)) {
4112 cpc->trim_start = segno;
4113 add_discard_addrs(sbi, cpc, false);
4114 }
4115
4116 if (to_journal) {
4117 offset = f2fs_lookup_journal_in_cursum(journal,
4118 SIT_JOURNAL, segno, 1);
4119 f2fs_bug_on(sbi, offset < 0);
4120 segno_in_journal(journal, offset) =
4121 cpu_to_le32(segno);
4122 seg_info_to_raw_sit(se,
4123 &sit_in_journal(journal, offset));
4124 check_block_count(sbi, segno,
4125 &sit_in_journal(journal, offset));
4126 } else {
4127 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4128 seg_info_to_raw_sit(se,
4129 &raw_sit->entries[sit_offset]);
4130 check_block_count(sbi, segno,
4131 &raw_sit->entries[sit_offset]);
4132 }
4133
4134 __clear_bit(segno, bitmap);
4135 sit_i->dirty_sentries--;
4136 ses->entry_cnt--;
4137 }
4138
4139 if (to_journal)
4140 up_write(&curseg->journal_rwsem);
4141 else
4142 f2fs_put_page(page, 1);
4143
4144 f2fs_bug_on(sbi, ses->entry_cnt);
4145 release_sit_entry_set(ses);
4146 }
4147
4148 f2fs_bug_on(sbi, !list_empty(head));
4149 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4150 out:
4151 if (cpc->reason & CP_DISCARD) {
4152 __u64 trim_start = cpc->trim_start;
4153
4154 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4155 add_discard_addrs(sbi, cpc, false);
4156
4157 cpc->trim_start = trim_start;
4158 }
4159 up_write(&sit_i->sentry_lock);
4160
4161 set_prefree_as_free_segments(sbi);
4162 }
4163
4164 static int build_sit_info(struct f2fs_sb_info *sbi)
4165 {
4166 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4167 struct sit_info *sit_i;
4168 unsigned int sit_segs, start;
4169 char *src_bitmap, *bitmap;
4170 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4171 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4172
4173
4174 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4175 if (!sit_i)
4176 return -ENOMEM;
4177
4178 SM_I(sbi)->sit_info = sit_i;
4179
4180 sit_i->sentries =
4181 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4182 MAIN_SEGS(sbi)),
4183 GFP_KERNEL);
4184 if (!sit_i->sentries)
4185 return -ENOMEM;
4186
4187 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4188 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4189 GFP_KERNEL);
4190 if (!sit_i->dirty_sentries_bitmap)
4191 return -ENOMEM;
4192
4193 #ifdef CONFIG_F2FS_CHECK_FS
4194 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4195 #else
4196 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4197 #endif
4198 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4199 if (!sit_i->bitmap)
4200 return -ENOMEM;
4201
4202 bitmap = sit_i->bitmap;
4203
4204 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4205 sit_i->sentries[start].cur_valid_map = bitmap;
4206 bitmap += SIT_VBLOCK_MAP_SIZE;
4207
4208 sit_i->sentries[start].ckpt_valid_map = bitmap;
4209 bitmap += SIT_VBLOCK_MAP_SIZE;
4210
4211 #ifdef CONFIG_F2FS_CHECK_FS
4212 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4213 bitmap += SIT_VBLOCK_MAP_SIZE;
4214 #endif
4215
4216 if (discard_map) {
4217 sit_i->sentries[start].discard_map = bitmap;
4218 bitmap += SIT_VBLOCK_MAP_SIZE;
4219 }
4220 }
4221
4222 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4223 if (!sit_i->tmp_map)
4224 return -ENOMEM;
4225
4226 if (__is_large_section(sbi)) {
4227 sit_i->sec_entries =
4228 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4229 MAIN_SECS(sbi)),
4230 GFP_KERNEL);
4231 if (!sit_i->sec_entries)
4232 return -ENOMEM;
4233 }
4234
4235
4236 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4237
4238
4239 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4240 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4241
4242 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4243 if (!sit_i->sit_bitmap)
4244 return -ENOMEM;
4245
4246 #ifdef CONFIG_F2FS_CHECK_FS
4247 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4248 sit_bitmap_size, GFP_KERNEL);
4249 if (!sit_i->sit_bitmap_mir)
4250 return -ENOMEM;
4251
4252 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4253 main_bitmap_size, GFP_KERNEL);
4254 if (!sit_i->invalid_segmap)
4255 return -ENOMEM;
4256 #endif
4257
4258
4259 sit_i->s_ops = &default_salloc_ops;
4260
4261 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4262 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4263 sit_i->written_valid_blocks = 0;
4264 sit_i->bitmap_size = sit_bitmap_size;
4265 sit_i->dirty_sentries = 0;
4266 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4267 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4268 sit_i->mounted_time = ktime_get_boottime_seconds();
4269 init_rwsem(&sit_i->sentry_lock);
4270 return 0;
4271 }
4272
4273 static int build_free_segmap(struct f2fs_sb_info *sbi)
4274 {
4275 struct free_segmap_info *free_i;
4276 unsigned int bitmap_size, sec_bitmap_size;
4277
4278
4279 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4280 if (!free_i)
4281 return -ENOMEM;
4282
4283 SM_I(sbi)->free_info = free_i;
4284
4285 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4286 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4287 if (!free_i->free_segmap)
4288 return -ENOMEM;
4289
4290 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4291 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4292 if (!free_i->free_secmap)
4293 return -ENOMEM;
4294
4295
4296 memset(free_i->free_segmap, 0xff, bitmap_size);
4297 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4298
4299
4300 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4301 free_i->free_segments = 0;
4302 free_i->free_sections = 0;
4303 spin_lock_init(&free_i->segmap_lock);
4304 return 0;
4305 }
4306
4307 static int build_curseg(struct f2fs_sb_info *sbi)
4308 {
4309 struct curseg_info *array;
4310 int i;
4311
4312 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4313 sizeof(*array)), GFP_KERNEL);
4314 if (!array)
4315 return -ENOMEM;
4316
4317 SM_I(sbi)->curseg_array = array;
4318
4319 for (i = 0; i < NO_CHECK_TYPE; i++) {
4320 mutex_init(&array[i].curseg_mutex);
4321 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4322 if (!array[i].sum_blk)
4323 return -ENOMEM;
4324 init_rwsem(&array[i].journal_rwsem);
4325 array[i].journal = f2fs_kzalloc(sbi,
4326 sizeof(struct f2fs_journal), GFP_KERNEL);
4327 if (!array[i].journal)
4328 return -ENOMEM;
4329 if (i < NR_PERSISTENT_LOG)
4330 array[i].seg_type = CURSEG_HOT_DATA + i;
4331 else if (i == CURSEG_COLD_DATA_PINNED)
4332 array[i].seg_type = CURSEG_COLD_DATA;
4333 else if (i == CURSEG_ALL_DATA_ATGC)
4334 array[i].seg_type = CURSEG_COLD_DATA;
4335 array[i].segno = NULL_SEGNO;
4336 array[i].next_blkoff = 0;
4337 array[i].inited = false;
4338 }
4339 return restore_curseg_summaries(sbi);
4340 }
4341
4342 static int build_sit_entries(struct f2fs_sb_info *sbi)
4343 {
4344 struct sit_info *sit_i = SIT_I(sbi);
4345 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4346 struct f2fs_journal *journal = curseg->journal;
4347 struct seg_entry *se;
4348 struct f2fs_sit_entry sit;
4349 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4350 unsigned int i, start, end;
4351 unsigned int readed, start_blk = 0;
4352 int err = 0;
4353 block_t sit_valid_blocks[2] = {0, 0};
4354
4355 do {
4356 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4357 META_SIT, true);
4358
4359 start = start_blk * sit_i->sents_per_block;
4360 end = (start_blk + readed) * sit_i->sents_per_block;
4361
4362 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4363 struct f2fs_sit_block *sit_blk;
4364 struct page *page;
4365
4366 se = &sit_i->sentries[start];
4367 page = get_current_sit_page(sbi, start);
4368 if (IS_ERR(page))
4369 return PTR_ERR(page);
4370 sit_blk = (struct f2fs_sit_block *)page_address(page);
4371 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4372 f2fs_put_page(page, 1);
4373
4374 err = check_block_count(sbi, start, &sit);
4375 if (err)
4376 return err;
4377 seg_info_from_raw_sit(se, &sit);
4378
4379 if (se->type >= NR_PERSISTENT_LOG) {
4380 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4381 se->type, start);
4382 return -EFSCORRUPTED;
4383 }
4384
4385 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4386
4387 if (f2fs_block_unit_discard(sbi)) {
4388
4389 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4390 memset(se->discard_map, 0xff,
4391 SIT_VBLOCK_MAP_SIZE);
4392 } else {
4393 memcpy(se->discard_map,
4394 se->cur_valid_map,
4395 SIT_VBLOCK_MAP_SIZE);
4396 sbi->discard_blks +=
4397 sbi->blocks_per_seg -
4398 se->valid_blocks;
4399 }
4400 }
4401
4402 if (__is_large_section(sbi))
4403 get_sec_entry(sbi, start)->valid_blocks +=
4404 se->valid_blocks;
4405 }
4406 start_blk += readed;
4407 } while (start_blk < sit_blk_cnt);
4408
4409 down_read(&curseg->journal_rwsem);
4410 for (i = 0; i < sits_in_cursum(journal); i++) {
4411 unsigned int old_valid_blocks;
4412
4413 start = le32_to_cpu(segno_in_journal(journal, i));
4414 if (start >= MAIN_SEGS(sbi)) {
4415 f2fs_err(sbi, "Wrong journal entry on segno %u",
4416 start);
4417 err = -EFSCORRUPTED;
4418 break;
4419 }
4420
4421 se = &sit_i->sentries[start];
4422 sit = sit_in_journal(journal, i);
4423
4424 old_valid_blocks = se->valid_blocks;
4425
4426 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4427
4428 err = check_block_count(sbi, start, &sit);
4429 if (err)
4430 break;
4431 seg_info_from_raw_sit(se, &sit);
4432
4433 if (se->type >= NR_PERSISTENT_LOG) {
4434 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4435 se->type, start);
4436 err = -EFSCORRUPTED;
4437 break;
4438 }
4439
4440 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4441
4442 if (f2fs_block_unit_discard(sbi)) {
4443 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4444 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4445 } else {
4446 memcpy(se->discard_map, se->cur_valid_map,
4447 SIT_VBLOCK_MAP_SIZE);
4448 sbi->discard_blks += old_valid_blocks;
4449 sbi->discard_blks -= se->valid_blocks;
4450 }
4451 }
4452
4453 if (__is_large_section(sbi)) {
4454 get_sec_entry(sbi, start)->valid_blocks +=
4455 se->valid_blocks;
4456 get_sec_entry(sbi, start)->valid_blocks -=
4457 old_valid_blocks;
4458 }
4459 }
4460 up_read(&curseg->journal_rwsem);
4461
4462 if (err)
4463 return err;
4464
4465 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4466 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4467 sit_valid_blocks[NODE], valid_node_count(sbi));
4468 return -EFSCORRUPTED;
4469 }
4470
4471 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4472 valid_user_blocks(sbi)) {
4473 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4474 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4475 valid_user_blocks(sbi));
4476 return -EFSCORRUPTED;
4477 }
4478
4479 return 0;
4480 }
4481
4482 static void init_free_segmap(struct f2fs_sb_info *sbi)
4483 {
4484 unsigned int start;
4485 int type;
4486 struct seg_entry *sentry;
4487
4488 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4489 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4490 continue;
4491 sentry = get_seg_entry(sbi, start);
4492 if (!sentry->valid_blocks)
4493 __set_free(sbi, start);
4494 else
4495 SIT_I(sbi)->written_valid_blocks +=
4496 sentry->valid_blocks;
4497 }
4498
4499
4500 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4501 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4502
4503 __set_test_and_inuse(sbi, curseg_t->segno);
4504 }
4505 }
4506
4507 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4508 {
4509 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4510 struct free_segmap_info *free_i = FREE_I(sbi);
4511 unsigned int segno = 0, offset = 0, secno;
4512 block_t valid_blocks, usable_blks_in_seg;
4513
4514 while (1) {
4515
4516 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4517 if (segno >= MAIN_SEGS(sbi))
4518 break;
4519 offset = segno + 1;
4520 valid_blocks = get_valid_blocks(sbi, segno, false);
4521 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4522 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4523 continue;
4524 if (valid_blocks > usable_blks_in_seg) {
4525 f2fs_bug_on(sbi, 1);
4526 continue;
4527 }
4528 mutex_lock(&dirty_i->seglist_lock);
4529 __locate_dirty_segment(sbi, segno, DIRTY);
4530 mutex_unlock(&dirty_i->seglist_lock);
4531 }
4532
4533 if (!__is_large_section(sbi))
4534 return;
4535
4536 mutex_lock(&dirty_i->seglist_lock);
4537 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4538 valid_blocks = get_valid_blocks(sbi, segno, true);
4539 secno = GET_SEC_FROM_SEG(sbi, segno);
4540
4541 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4542 continue;
4543 if (IS_CURSEC(sbi, secno))
4544 continue;
4545 set_bit(secno, dirty_i->dirty_secmap);
4546 }
4547 mutex_unlock(&dirty_i->seglist_lock);
4548 }
4549
4550 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4551 {
4552 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4553 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4554
4555 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4556 if (!dirty_i->victim_secmap)
4557 return -ENOMEM;
4558
4559 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4560 if (!dirty_i->pinned_secmap)
4561 return -ENOMEM;
4562
4563 dirty_i->pinned_secmap_cnt = 0;
4564 dirty_i->enable_pin_section = true;
4565 return 0;
4566 }
4567
4568 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4569 {
4570 struct dirty_seglist_info *dirty_i;
4571 unsigned int bitmap_size, i;
4572
4573
4574 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4575 GFP_KERNEL);
4576 if (!dirty_i)
4577 return -ENOMEM;
4578
4579 SM_I(sbi)->dirty_info = dirty_i;
4580 mutex_init(&dirty_i->seglist_lock);
4581
4582 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4583
4584 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4585 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4586 GFP_KERNEL);
4587 if (!dirty_i->dirty_segmap[i])
4588 return -ENOMEM;
4589 }
4590
4591 if (__is_large_section(sbi)) {
4592 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4593 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4594 bitmap_size, GFP_KERNEL);
4595 if (!dirty_i->dirty_secmap)
4596 return -ENOMEM;
4597 }
4598
4599 init_dirty_segmap(sbi);
4600 return init_victim_secmap(sbi);
4601 }
4602
4603 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4604 {
4605 int i;
4606
4607
4608
4609
4610
4611 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4612 struct curseg_info *curseg = CURSEG_I(sbi, i);
4613 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4614 unsigned int blkofs = curseg->next_blkoff;
4615
4616 if (f2fs_sb_has_readonly(sbi) &&
4617 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4618 continue;
4619
4620 sanity_check_seg_type(sbi, curseg->seg_type);
4621
4622 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4623 f2fs_err(sbi,
4624 "Current segment has invalid alloc_type:%d",
4625 curseg->alloc_type);
4626 return -EFSCORRUPTED;
4627 }
4628
4629 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4630 goto out;
4631
4632 if (curseg->alloc_type == SSR)
4633 continue;
4634
4635 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4636 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4637 continue;
4638 out:
4639 f2fs_err(sbi,
4640 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4641 i, curseg->segno, curseg->alloc_type,
4642 curseg->next_blkoff, blkofs);
4643 return -EFSCORRUPTED;
4644 }
4645 }
4646 return 0;
4647 }
4648
4649 #ifdef CONFIG_BLK_DEV_ZONED
4650
4651 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4652 struct f2fs_dev_info *fdev,
4653 struct blk_zone *zone)
4654 {
4655 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4656 block_t zone_block, wp_block, last_valid_block;
4657 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4658 int i, s, b, ret;
4659 struct seg_entry *se;
4660
4661 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4662 return 0;
4663
4664 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4665 wp_segno = GET_SEGNO(sbi, wp_block);
4666 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4667 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4668 zone_segno = GET_SEGNO(sbi, zone_block);
4669 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4670
4671 if (zone_segno >= MAIN_SEGS(sbi))
4672 return 0;
4673
4674
4675
4676
4677
4678 for (i = 0; i < NO_CHECK_TYPE; i++)
4679 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4680 CURSEG_I(sbi, i)->segno))
4681 return 0;
4682
4683
4684
4685
4686 last_valid_block = zone_block - 1;
4687 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4688 segno = zone_segno + s;
4689 se = get_seg_entry(sbi, segno);
4690 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4691 if (f2fs_test_bit(b, se->cur_valid_map)) {
4692 last_valid_block = START_BLOCK(sbi, segno) + b;
4693 break;
4694 }
4695 if (last_valid_block >= zone_block)
4696 break;
4697 }
4698
4699
4700
4701
4702
4703
4704
4705 if (last_valid_block >= wp_block) {
4706 f2fs_notice(sbi, "Valid block beyond write pointer: "
4707 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4708 GET_SEGNO(sbi, last_valid_block),
4709 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4710 wp_segno, wp_blkoff);
4711 return 0;
4712 }
4713
4714
4715
4716
4717
4718 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4719 f2fs_notice(sbi,
4720 "Zone without valid block has non-zero write "
4721 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4722 wp_segno, wp_blkoff);
4723 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4724 zone->len >> log_sectors_per_block);
4725 if (ret) {
4726 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4727 fdev->path, ret);
4728 return ret;
4729 }
4730 }
4731
4732 return 0;
4733 }
4734
4735 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4736 block_t zone_blkaddr)
4737 {
4738 int i;
4739
4740 for (i = 0; i < sbi->s_ndevs; i++) {
4741 if (!bdev_is_zoned(FDEV(i).bdev))
4742 continue;
4743 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4744 zone_blkaddr <= FDEV(i).end_blk))
4745 return &FDEV(i);
4746 }
4747
4748 return NULL;
4749 }
4750
4751 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4752 void *data)
4753 {
4754 memcpy(data, zone, sizeof(struct blk_zone));
4755 return 0;
4756 }
4757
4758 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4759 {
4760 struct curseg_info *cs = CURSEG_I(sbi, type);
4761 struct f2fs_dev_info *zbd;
4762 struct blk_zone zone;
4763 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4764 block_t cs_zone_block, wp_block;
4765 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4766 sector_t zone_sector;
4767 int err;
4768
4769 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4770 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4771
4772 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4773 if (!zbd)
4774 return 0;
4775
4776
4777 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4778 << log_sectors_per_block;
4779 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4780 report_one_zone_cb, &zone);
4781 if (err != 1) {
4782 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4783 zbd->path, err);
4784 return err;
4785 }
4786
4787 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4788 return 0;
4789
4790 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4791 wp_segno = GET_SEGNO(sbi, wp_block);
4792 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4793 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4794
4795 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4796 wp_sector_off == 0)
4797 return 0;
4798
4799 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4800 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4801 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4802
4803 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4804 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4805
4806 f2fs_allocate_new_section(sbi, type, true);
4807
4808
4809 if (check_zone_write_pointer(sbi, zbd, &zone))
4810 return -EIO;
4811
4812
4813 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4814 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4815
4816 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4817 if (!zbd)
4818 return 0;
4819
4820 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4821 << log_sectors_per_block;
4822 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4823 report_one_zone_cb, &zone);
4824 if (err != 1) {
4825 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4826 zbd->path, err);
4827 return err;
4828 }
4829
4830 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4831 return 0;
4832
4833 if (zone.wp != zone.start) {
4834 f2fs_notice(sbi,
4835 "New zone for curseg[%d] is not yet discarded. "
4836 "Reset the zone: curseg[0x%x,0x%x]",
4837 type, cs->segno, cs->next_blkoff);
4838 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4839 zone_sector >> log_sectors_per_block,
4840 zone.len >> log_sectors_per_block);
4841 if (err) {
4842 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4843 zbd->path, err);
4844 return err;
4845 }
4846 }
4847
4848 return 0;
4849 }
4850
4851 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4852 {
4853 int i, ret;
4854
4855 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4856 ret = fix_curseg_write_pointer(sbi, i);
4857 if (ret)
4858 return ret;
4859 }
4860
4861 return 0;
4862 }
4863
4864 struct check_zone_write_pointer_args {
4865 struct f2fs_sb_info *sbi;
4866 struct f2fs_dev_info *fdev;
4867 };
4868
4869 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4870 void *data)
4871 {
4872 struct check_zone_write_pointer_args *args;
4873
4874 args = (struct check_zone_write_pointer_args *)data;
4875
4876 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4877 }
4878
4879 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4880 {
4881 int i, ret;
4882 struct check_zone_write_pointer_args args;
4883
4884 for (i = 0; i < sbi->s_ndevs; i++) {
4885 if (!bdev_is_zoned(FDEV(i).bdev))
4886 continue;
4887
4888 args.sbi = sbi;
4889 args.fdev = &FDEV(i);
4890 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4891 check_zone_write_pointer_cb, &args);
4892 if (ret < 0)
4893 return ret;
4894 }
4895
4896 return 0;
4897 }
4898
4899 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4900 unsigned int dev_idx)
4901 {
4902 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4903 return true;
4904 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4905 }
4906
4907
4908 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4909 int dev_idx)
4910 {
4911 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4912
4913 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4914 sbi->log_blocks_per_blkz;
4915 }
4916
4917
4918
4919
4920
4921 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4922 struct f2fs_sb_info *sbi, unsigned int segno)
4923 {
4924 unsigned int dev_idx, zone_idx;
4925
4926 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4927 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4928
4929
4930 if (is_conv_zone(sbi, zone_idx, dev_idx))
4931 return sbi->segs_per_sec;
4932
4933 if (!sbi->unusable_blocks_per_sec)
4934 return sbi->segs_per_sec;
4935
4936
4937 return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4938 sbi->log_blocks_per_seg);
4939 }
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4950 struct f2fs_sb_info *sbi, unsigned int segno)
4951 {
4952 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4953 unsigned int zone_idx, dev_idx, secno;
4954
4955 secno = GET_SEC_FROM_SEG(sbi, segno);
4956 seg_start = START_BLOCK(sbi, segno);
4957 dev_idx = f2fs_target_device_index(sbi, seg_start);
4958 zone_idx = get_zone_idx(sbi, secno, dev_idx);
4959
4960
4961
4962
4963
4964 if (is_conv_zone(sbi, zone_idx, dev_idx))
4965 return sbi->blocks_per_seg;
4966
4967 if (!sbi->unusable_blocks_per_sec)
4968 return sbi->blocks_per_seg;
4969
4970 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4971 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
4972
4973
4974
4975
4976
4977
4978
4979 if (seg_start >= sec_cap_blkaddr)
4980 return 0;
4981 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
4982 return sec_cap_blkaddr - seg_start;
4983
4984 return sbi->blocks_per_seg;
4985 }
4986 #else
4987 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4988 {
4989 return 0;
4990 }
4991
4992 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4993 {
4994 return 0;
4995 }
4996
4997 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
4998 unsigned int segno)
4999 {
5000 return 0;
5001 }
5002
5003 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5004 unsigned int segno)
5005 {
5006 return 0;
5007 }
5008 #endif
5009 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5010 unsigned int segno)
5011 {
5012 if (f2fs_sb_has_blkzoned(sbi))
5013 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5014
5015 return sbi->blocks_per_seg;
5016 }
5017
5018 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5019 unsigned int segno)
5020 {
5021 if (f2fs_sb_has_blkzoned(sbi))
5022 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5023
5024 return sbi->segs_per_sec;
5025 }
5026
5027
5028
5029
5030 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5031 {
5032 struct sit_info *sit_i = SIT_I(sbi);
5033 unsigned int segno;
5034
5035 down_write(&sit_i->sentry_lock);
5036
5037 sit_i->min_mtime = ULLONG_MAX;
5038
5039 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5040 unsigned int i;
5041 unsigned long long mtime = 0;
5042
5043 for (i = 0; i < sbi->segs_per_sec; i++)
5044 mtime += get_seg_entry(sbi, segno + i)->mtime;
5045
5046 mtime = div_u64(mtime, sbi->segs_per_sec);
5047
5048 if (sit_i->min_mtime > mtime)
5049 sit_i->min_mtime = mtime;
5050 }
5051 sit_i->max_mtime = get_mtime(sbi, false);
5052 sit_i->dirty_max_mtime = 0;
5053 up_write(&sit_i->sentry_lock);
5054 }
5055
5056 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5057 {
5058 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5059 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5060 struct f2fs_sm_info *sm_info;
5061 int err;
5062
5063 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5064 if (!sm_info)
5065 return -ENOMEM;
5066
5067
5068 sbi->sm_info = sm_info;
5069 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5070 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5071 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5072 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5073 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5074 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5075 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5076 sm_info->rec_prefree_segments = sm_info->main_segments *
5077 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5078 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5079 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5080
5081 if (!f2fs_lfs_mode(sbi))
5082 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5083 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5084 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5085 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5086 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5087 sm_info->min_ssr_sections = reserved_sections(sbi);
5088
5089 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5090
5091 init_f2fs_rwsem(&sm_info->curseg_lock);
5092
5093 if (!f2fs_readonly(sbi->sb)) {
5094 err = f2fs_create_flush_cmd_control(sbi);
5095 if (err)
5096 return err;
5097 }
5098
5099 err = create_discard_cmd_control(sbi);
5100 if (err)
5101 return err;
5102
5103 err = build_sit_info(sbi);
5104 if (err)
5105 return err;
5106 err = build_free_segmap(sbi);
5107 if (err)
5108 return err;
5109 err = build_curseg(sbi);
5110 if (err)
5111 return err;
5112
5113
5114 err = build_sit_entries(sbi);
5115 if (err)
5116 return err;
5117
5118 init_free_segmap(sbi);
5119 err = build_dirty_segmap(sbi);
5120 if (err)
5121 return err;
5122
5123 err = sanity_check_curseg(sbi);
5124 if (err)
5125 return err;
5126
5127 init_min_max_mtime(sbi);
5128 return 0;
5129 }
5130
5131 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5132 enum dirty_type dirty_type)
5133 {
5134 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5135
5136 mutex_lock(&dirty_i->seglist_lock);
5137 kvfree(dirty_i->dirty_segmap[dirty_type]);
5138 dirty_i->nr_dirty[dirty_type] = 0;
5139 mutex_unlock(&dirty_i->seglist_lock);
5140 }
5141
5142 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5143 {
5144 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5145
5146 kvfree(dirty_i->pinned_secmap);
5147 kvfree(dirty_i->victim_secmap);
5148 }
5149
5150 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5151 {
5152 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5153 int i;
5154
5155 if (!dirty_i)
5156 return;
5157
5158
5159 for (i = 0; i < NR_DIRTY_TYPE; i++)
5160 discard_dirty_segmap(sbi, i);
5161
5162 if (__is_large_section(sbi)) {
5163 mutex_lock(&dirty_i->seglist_lock);
5164 kvfree(dirty_i->dirty_secmap);
5165 mutex_unlock(&dirty_i->seglist_lock);
5166 }
5167
5168 destroy_victim_secmap(sbi);
5169 SM_I(sbi)->dirty_info = NULL;
5170 kfree(dirty_i);
5171 }
5172
5173 static void destroy_curseg(struct f2fs_sb_info *sbi)
5174 {
5175 struct curseg_info *array = SM_I(sbi)->curseg_array;
5176 int i;
5177
5178 if (!array)
5179 return;
5180 SM_I(sbi)->curseg_array = NULL;
5181 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5182 kfree(array[i].sum_blk);
5183 kfree(array[i].journal);
5184 }
5185 kfree(array);
5186 }
5187
5188 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5189 {
5190 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5191
5192 if (!free_i)
5193 return;
5194 SM_I(sbi)->free_info = NULL;
5195 kvfree(free_i->free_segmap);
5196 kvfree(free_i->free_secmap);
5197 kfree(free_i);
5198 }
5199
5200 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5201 {
5202 struct sit_info *sit_i = SIT_I(sbi);
5203
5204 if (!sit_i)
5205 return;
5206
5207 if (sit_i->sentries)
5208 kvfree(sit_i->bitmap);
5209 kfree(sit_i->tmp_map);
5210
5211 kvfree(sit_i->sentries);
5212 kvfree(sit_i->sec_entries);
5213 kvfree(sit_i->dirty_sentries_bitmap);
5214
5215 SM_I(sbi)->sit_info = NULL;
5216 kvfree(sit_i->sit_bitmap);
5217 #ifdef CONFIG_F2FS_CHECK_FS
5218 kvfree(sit_i->sit_bitmap_mir);
5219 kvfree(sit_i->invalid_segmap);
5220 #endif
5221 kfree(sit_i);
5222 }
5223
5224 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5225 {
5226 struct f2fs_sm_info *sm_info = SM_I(sbi);
5227
5228 if (!sm_info)
5229 return;
5230 f2fs_destroy_flush_cmd_control(sbi, true);
5231 destroy_discard_cmd_control(sbi);
5232 destroy_dirty_segmap(sbi);
5233 destroy_curseg(sbi);
5234 destroy_free_segmap(sbi);
5235 destroy_sit_info(sbi);
5236 sbi->sm_info = NULL;
5237 kfree(sm_info);
5238 }
5239
5240 int __init f2fs_create_segment_manager_caches(void)
5241 {
5242 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5243 sizeof(struct discard_entry));
5244 if (!discard_entry_slab)
5245 goto fail;
5246
5247 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5248 sizeof(struct discard_cmd));
5249 if (!discard_cmd_slab)
5250 goto destroy_discard_entry;
5251
5252 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5253 sizeof(struct sit_entry_set));
5254 if (!sit_entry_set_slab)
5255 goto destroy_discard_cmd;
5256
5257 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5258 sizeof(struct revoke_entry));
5259 if (!revoke_entry_slab)
5260 goto destroy_sit_entry_set;
5261 return 0;
5262
5263 destroy_sit_entry_set:
5264 kmem_cache_destroy(sit_entry_set_slab);
5265 destroy_discard_cmd:
5266 kmem_cache_destroy(discard_cmd_slab);
5267 destroy_discard_entry:
5268 kmem_cache_destroy(discard_entry_slab);
5269 fail:
5270 return -ENOMEM;
5271 }
5272
5273 void f2fs_destroy_segment_manager_caches(void)
5274 {
5275 kmem_cache_destroy(sit_entry_set_slab);
5276 kmem_cache_destroy(discard_cmd_slab);
5277 kmem_cache_destroy(discard_entry_slab);
5278 kmem_cache_destroy(revoke_entry_slab);
5279 }