0001
0002
0003
0004
0005
0006
0007
0008
0009 #define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
0010
0011
0012 #define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
0013
0014
0015 #define FREE_NID_PAGES 8
0016 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
0017
0018
0019 #define SHRINK_NID_BATCH_SIZE 8
0020
0021 #define DEF_RA_NID_PAGES 0
0022
0023
0024 #define MAX_RA_NODE 128
0025
0026
0027 #define DEF_RAM_THRESHOLD 1
0028
0029
0030 #define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
0031
0032 #define DEF_NAT_CACHE_THRESHOLD 100000
0033
0034
0035 #define DEF_RF_NODE_BLOCKS 0
0036
0037
0038 #define NATVEC_SIZE 64
0039 #define SETVEC_SIZE 32
0040
0041
0042 #define LOCKED_PAGE 1
0043
0044
0045 #define FILE_NOT_ALIGNED 1
0046
0047
0048 enum {
0049 IS_CHECKPOINTED,
0050 HAS_FSYNCED_INODE,
0051 HAS_LAST_FSYNC,
0052 IS_DIRTY,
0053 IS_PREALLOC,
0054 };
0055
0056
0057
0058
0059 struct node_info {
0060 nid_t nid;
0061 nid_t ino;
0062 block_t blk_addr;
0063 unsigned char version;
0064 unsigned char flag;
0065 };
0066
0067 struct nat_entry {
0068 struct list_head list;
0069 struct node_info ni;
0070 };
0071
0072 #define nat_get_nid(nat) ((nat)->ni.nid)
0073 #define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
0074 #define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
0075 #define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
0076 #define nat_get_ino(nat) ((nat)->ni.ino)
0077 #define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
0078 #define nat_get_version(nat) ((nat)->ni.version)
0079 #define nat_set_version(nat, v) ((nat)->ni.version = (v))
0080
0081 #define inc_node_version(version) (++(version))
0082
0083 static inline void copy_node_info(struct node_info *dst,
0084 struct node_info *src)
0085 {
0086 dst->nid = src->nid;
0087 dst->ino = src->ino;
0088 dst->blk_addr = src->blk_addr;
0089 dst->version = src->version;
0090
0091 }
0092
0093 static inline void set_nat_flag(struct nat_entry *ne,
0094 unsigned int type, bool set)
0095 {
0096 unsigned char mask = 0x01 << type;
0097 if (set)
0098 ne->ni.flag |= mask;
0099 else
0100 ne->ni.flag &= ~mask;
0101 }
0102
0103 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
0104 {
0105 unsigned char mask = 0x01 << type;
0106 return ne->ni.flag & mask;
0107 }
0108
0109 static inline void nat_reset_flag(struct nat_entry *ne)
0110 {
0111
0112 set_nat_flag(ne, IS_CHECKPOINTED, true);
0113 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
0114 set_nat_flag(ne, HAS_LAST_FSYNC, true);
0115 }
0116
0117 static inline void node_info_from_raw_nat(struct node_info *ni,
0118 struct f2fs_nat_entry *raw_ne)
0119 {
0120 ni->ino = le32_to_cpu(raw_ne->ino);
0121 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
0122 ni->version = raw_ne->version;
0123 }
0124
0125 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
0126 struct node_info *ni)
0127 {
0128 raw_ne->ino = cpu_to_le32(ni->ino);
0129 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
0130 raw_ne->version = ni->version;
0131 }
0132
0133 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
0134 {
0135 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
0136 NM_I(sbi)->dirty_nats_ratio / 100;
0137 }
0138
0139 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
0140 {
0141 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
0142 }
0143
0144 enum mem_type {
0145 FREE_NIDS,
0146 NAT_ENTRIES,
0147 DIRTY_DENTS,
0148 INO_ENTRIES,
0149 EXTENT_CACHE,
0150 DISCARD_CACHE,
0151 COMPRESS_PAGE,
0152 BASE_CHECK,
0153 };
0154
0155 struct nat_entry_set {
0156 struct list_head set_list;
0157 struct list_head entry_list;
0158 nid_t set;
0159 unsigned int entry_cnt;
0160 };
0161
0162 struct free_nid {
0163 struct list_head list;
0164 nid_t nid;
0165 int state;
0166 };
0167
0168 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
0169 {
0170 struct f2fs_nm_info *nm_i = NM_I(sbi);
0171 struct free_nid *fnid;
0172
0173 spin_lock(&nm_i->nid_list_lock);
0174 if (nm_i->nid_cnt[FREE_NID] <= 0) {
0175 spin_unlock(&nm_i->nid_list_lock);
0176 return;
0177 }
0178 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
0179 *nid = fnid->nid;
0180 spin_unlock(&nm_i->nid_list_lock);
0181 }
0182
0183
0184
0185
0186 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
0187 {
0188 struct f2fs_nm_info *nm_i = NM_I(sbi);
0189
0190 #ifdef CONFIG_F2FS_CHECK_FS
0191 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
0192 nm_i->bitmap_size))
0193 f2fs_bug_on(sbi, 1);
0194 #endif
0195 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
0196 }
0197
0198 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
0199 {
0200 struct f2fs_nm_info *nm_i = NM_I(sbi);
0201 pgoff_t block_off;
0202 pgoff_t block_addr;
0203
0204
0205
0206
0207
0208
0209 block_off = NAT_BLOCK_OFFSET(start);
0210
0211 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
0212 (block_off << 1) -
0213 (block_off & (sbi->blocks_per_seg - 1)));
0214
0215 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
0216 block_addr += sbi->blocks_per_seg;
0217
0218 return block_addr;
0219 }
0220
0221 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
0222 pgoff_t block_addr)
0223 {
0224 struct f2fs_nm_info *nm_i = NM_I(sbi);
0225
0226 block_addr -= nm_i->nat_blkaddr;
0227 block_addr ^= 1 << sbi->log_blocks_per_seg;
0228 return block_addr + nm_i->nat_blkaddr;
0229 }
0230
0231 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
0232 {
0233 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
0234
0235 f2fs_change_bit(block_off, nm_i->nat_bitmap);
0236 #ifdef CONFIG_F2FS_CHECK_FS
0237 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
0238 #endif
0239 }
0240
0241 static inline nid_t ino_of_node(struct page *node_page)
0242 {
0243 struct f2fs_node *rn = F2FS_NODE(node_page);
0244 return le32_to_cpu(rn->footer.ino);
0245 }
0246
0247 static inline nid_t nid_of_node(struct page *node_page)
0248 {
0249 struct f2fs_node *rn = F2FS_NODE(node_page);
0250 return le32_to_cpu(rn->footer.nid);
0251 }
0252
0253 static inline unsigned int ofs_of_node(struct page *node_page)
0254 {
0255 struct f2fs_node *rn = F2FS_NODE(node_page);
0256 unsigned flag = le32_to_cpu(rn->footer.flag);
0257 return flag >> OFFSET_BIT_SHIFT;
0258 }
0259
0260 static inline __u64 cpver_of_node(struct page *node_page)
0261 {
0262 struct f2fs_node *rn = F2FS_NODE(node_page);
0263 return le64_to_cpu(rn->footer.cp_ver);
0264 }
0265
0266 static inline block_t next_blkaddr_of_node(struct page *node_page)
0267 {
0268 struct f2fs_node *rn = F2FS_NODE(node_page);
0269 return le32_to_cpu(rn->footer.next_blkaddr);
0270 }
0271
0272 static inline void fill_node_footer(struct page *page, nid_t nid,
0273 nid_t ino, unsigned int ofs, bool reset)
0274 {
0275 struct f2fs_node *rn = F2FS_NODE(page);
0276 unsigned int old_flag = 0;
0277
0278 if (reset)
0279 memset(rn, 0, sizeof(*rn));
0280 else
0281 old_flag = le32_to_cpu(rn->footer.flag);
0282
0283 rn->footer.nid = cpu_to_le32(nid);
0284 rn->footer.ino = cpu_to_le32(ino);
0285
0286
0287 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
0288 (old_flag & OFFSET_BIT_MASK));
0289 }
0290
0291 static inline void copy_node_footer(struct page *dst, struct page *src)
0292 {
0293 struct f2fs_node *src_rn = F2FS_NODE(src);
0294 struct f2fs_node *dst_rn = F2FS_NODE(dst);
0295 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
0296 }
0297
0298 static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
0299 {
0300 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
0301 struct f2fs_node *rn = F2FS_NODE(page);
0302 __u64 cp_ver = cur_cp_version(ckpt);
0303
0304 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
0305 cp_ver |= (cur_cp_crc(ckpt) << 32);
0306
0307 rn->footer.cp_ver = cpu_to_le64(cp_ver);
0308 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
0309 }
0310
0311 static inline bool is_recoverable_dnode(struct page *page)
0312 {
0313 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
0314 __u64 cp_ver = cur_cp_version(ckpt);
0315
0316
0317 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
0318 return (cp_ver << 32) == (cpver_of_node(page) << 32);
0319
0320 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
0321 cp_ver |= (cur_cp_crc(ckpt) << 32);
0322
0323 return cp_ver == cpver_of_node(page);
0324 }
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347 static inline bool IS_DNODE(struct page *node_page)
0348 {
0349 unsigned int ofs = ofs_of_node(node_page);
0350
0351 if (f2fs_has_xattr_block(ofs))
0352 return true;
0353
0354 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
0355 ofs == 5 + 2 * NIDS_PER_BLOCK)
0356 return false;
0357 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
0358 ofs -= 6 + 2 * NIDS_PER_BLOCK;
0359 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
0360 return false;
0361 }
0362 return true;
0363 }
0364
0365 static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
0366 {
0367 struct f2fs_node *rn = F2FS_NODE(p);
0368
0369 f2fs_wait_on_page_writeback(p, NODE, true, true);
0370
0371 if (i)
0372 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
0373 else
0374 rn->in.nid[off] = cpu_to_le32(nid);
0375 return set_page_dirty(p);
0376 }
0377
0378 static inline nid_t get_nid(struct page *p, int off, bool i)
0379 {
0380 struct f2fs_node *rn = F2FS_NODE(p);
0381
0382 if (i)
0383 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
0384 return le32_to_cpu(rn->in.nid[off]);
0385 }
0386
0387
0388
0389
0390
0391
0392
0393
0394 static inline int is_node(struct page *page, int type)
0395 {
0396 struct f2fs_node *rn = F2FS_NODE(page);
0397 return le32_to_cpu(rn->footer.flag) & (1 << type);
0398 }
0399
0400 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
0401 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
0402 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
0403
0404 static inline void set_cold_node(struct page *page, bool is_dir)
0405 {
0406 struct f2fs_node *rn = F2FS_NODE(page);
0407 unsigned int flag = le32_to_cpu(rn->footer.flag);
0408
0409 if (is_dir)
0410 flag &= ~(0x1 << COLD_BIT_SHIFT);
0411 else
0412 flag |= (0x1 << COLD_BIT_SHIFT);
0413 rn->footer.flag = cpu_to_le32(flag);
0414 }
0415
0416 static inline void set_mark(struct page *page, int mark, int type)
0417 {
0418 struct f2fs_node *rn = F2FS_NODE(page);
0419 unsigned int flag = le32_to_cpu(rn->footer.flag);
0420 if (mark)
0421 flag |= (0x1 << type);
0422 else
0423 flag &= ~(0x1 << type);
0424 rn->footer.flag = cpu_to_le32(flag);
0425
0426 #ifdef CONFIG_F2FS_CHECK_FS
0427 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
0428 #endif
0429 }
0430 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
0431 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)