0001
0002
0003
0004
0005
0006
0007
0008 #include <linux/fs.h>
0009 #include <linux/f2fs_fs.h>
0010 #include <linux/mpage.h>
0011 #include <linux/sched/mm.h>
0012 #include <linux/blkdev.h>
0013 #include <linux/pagevec.h>
0014 #include <linux/swap.h>
0015
0016 #include "f2fs.h"
0017 #include "node.h"
0018 #include "segment.h"
0019 #include "xattr.h"
0020 #include "iostat.h"
0021 #include <trace/events/f2fs.h>
0022
0023 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
0024
0025 static struct kmem_cache *nat_entry_slab;
0026 static struct kmem_cache *free_nid_slab;
0027 static struct kmem_cache *nat_entry_set_slab;
0028 static struct kmem_cache *fsync_node_entry_slab;
0029
0030
0031
0032
0033 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
0034 {
0035 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
0036 set_sbi_flag(sbi, SBI_NEED_FSCK);
0037 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
0038 __func__, nid);
0039 return -EFSCORRUPTED;
0040 }
0041 return 0;
0042 }
0043
0044 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
0045 {
0046 struct f2fs_nm_info *nm_i = NM_I(sbi);
0047 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
0048 struct sysinfo val;
0049 unsigned long avail_ram;
0050 unsigned long mem_size = 0;
0051 bool res = false;
0052
0053 if (!nm_i)
0054 return true;
0055
0056 si_meminfo(&val);
0057
0058
0059 avail_ram = val.totalram - val.totalhigh;
0060
0061
0062
0063
0064 if (type == FREE_NIDS) {
0065 mem_size = (nm_i->nid_cnt[FREE_NID] *
0066 sizeof(struct free_nid)) >> PAGE_SHIFT;
0067 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
0068 } else if (type == NAT_ENTRIES) {
0069 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
0070 sizeof(struct nat_entry)) >> PAGE_SHIFT;
0071 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
0072 if (excess_cached_nats(sbi))
0073 res = false;
0074 } else if (type == DIRTY_DENTS) {
0075 if (sbi->sb->s_bdi->wb.dirty_exceeded)
0076 return false;
0077 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
0078 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
0079 } else if (type == INO_ENTRIES) {
0080 int i;
0081
0082 for (i = 0; i < MAX_INO_ENTRY; i++)
0083 mem_size += sbi->im[i].ino_num *
0084 sizeof(struct ino_entry);
0085 mem_size >>= PAGE_SHIFT;
0086 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
0087 } else if (type == EXTENT_CACHE) {
0088 mem_size = (atomic_read(&sbi->total_ext_tree) *
0089 sizeof(struct extent_tree) +
0090 atomic_read(&sbi->total_ext_node) *
0091 sizeof(struct extent_node)) >> PAGE_SHIFT;
0092 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
0093 } else if (type == DISCARD_CACHE) {
0094 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
0095 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
0096 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
0097 } else if (type == COMPRESS_PAGE) {
0098 #ifdef CONFIG_F2FS_FS_COMPRESSION
0099 unsigned long free_ram = val.freeram;
0100
0101
0102
0103
0104
0105 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
0106 (COMPRESS_MAPPING(sbi)->nrpages <
0107 free_ram * sbi->compress_percent / 100);
0108 #else
0109 res = false;
0110 #endif
0111 } else {
0112 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
0113 return true;
0114 }
0115 return res;
0116 }
0117
0118 static void clear_node_page_dirty(struct page *page)
0119 {
0120 if (PageDirty(page)) {
0121 f2fs_clear_page_cache_dirty_tag(page);
0122 clear_page_dirty_for_io(page);
0123 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
0124 }
0125 ClearPageUptodate(page);
0126 }
0127
0128 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
0129 {
0130 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
0131 }
0132
0133 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
0134 {
0135 struct page *src_page;
0136 struct page *dst_page;
0137 pgoff_t dst_off;
0138 void *src_addr;
0139 void *dst_addr;
0140 struct f2fs_nm_info *nm_i = NM_I(sbi);
0141
0142 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
0143
0144
0145 src_page = get_current_nat_page(sbi, nid);
0146 if (IS_ERR(src_page))
0147 return src_page;
0148 dst_page = f2fs_grab_meta_page(sbi, dst_off);
0149 f2fs_bug_on(sbi, PageDirty(src_page));
0150
0151 src_addr = page_address(src_page);
0152 dst_addr = page_address(dst_page);
0153 memcpy(dst_addr, src_addr, PAGE_SIZE);
0154 set_page_dirty(dst_page);
0155 f2fs_put_page(src_page, 1);
0156
0157 set_to_next_nat(nm_i, nid);
0158
0159 return dst_page;
0160 }
0161
0162 static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
0163 nid_t nid, bool no_fail)
0164 {
0165 struct nat_entry *new;
0166
0167 new = f2fs_kmem_cache_alloc(nat_entry_slab,
0168 GFP_F2FS_ZERO, no_fail, sbi);
0169 if (new) {
0170 nat_set_nid(new, nid);
0171 nat_reset_flag(new);
0172 }
0173 return new;
0174 }
0175
0176 static void __free_nat_entry(struct nat_entry *e)
0177 {
0178 kmem_cache_free(nat_entry_slab, e);
0179 }
0180
0181
0182 static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
0183 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
0184 {
0185 if (no_fail)
0186 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
0187 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
0188 return NULL;
0189
0190 if (raw_ne)
0191 node_info_from_raw_nat(&ne->ni, raw_ne);
0192
0193 spin_lock(&nm_i->nat_list_lock);
0194 list_add_tail(&ne->list, &nm_i->nat_entries);
0195 spin_unlock(&nm_i->nat_list_lock);
0196
0197 nm_i->nat_cnt[TOTAL_NAT]++;
0198 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
0199 return ne;
0200 }
0201
0202 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
0203 {
0204 struct nat_entry *ne;
0205
0206 ne = radix_tree_lookup(&nm_i->nat_root, n);
0207
0208
0209 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
0210 spin_lock(&nm_i->nat_list_lock);
0211 if (!list_empty(&ne->list))
0212 list_move_tail(&ne->list, &nm_i->nat_entries);
0213 spin_unlock(&nm_i->nat_list_lock);
0214 }
0215
0216 return ne;
0217 }
0218
0219 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
0220 nid_t start, unsigned int nr, struct nat_entry **ep)
0221 {
0222 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
0223 }
0224
0225 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
0226 {
0227 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
0228 nm_i->nat_cnt[TOTAL_NAT]--;
0229 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
0230 __free_nat_entry(e);
0231 }
0232
0233 static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
0234 struct nat_entry *ne)
0235 {
0236 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
0237 struct nat_entry_set *head;
0238
0239 head = radix_tree_lookup(&nm_i->nat_set_root, set);
0240 if (!head) {
0241 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
0242 GFP_NOFS, true, NULL);
0243
0244 INIT_LIST_HEAD(&head->entry_list);
0245 INIT_LIST_HEAD(&head->set_list);
0246 head->set = set;
0247 head->entry_cnt = 0;
0248 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
0249 }
0250 return head;
0251 }
0252
0253 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
0254 struct nat_entry *ne)
0255 {
0256 struct nat_entry_set *head;
0257 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
0258
0259 if (!new_ne)
0260 head = __grab_nat_entry_set(nm_i, ne);
0261
0262
0263
0264
0265
0266
0267 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
0268 !get_nat_flag(ne, IS_DIRTY)))
0269 head->entry_cnt++;
0270
0271 set_nat_flag(ne, IS_PREALLOC, new_ne);
0272
0273 if (get_nat_flag(ne, IS_DIRTY))
0274 goto refresh_list;
0275
0276 nm_i->nat_cnt[DIRTY_NAT]++;
0277 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
0278 set_nat_flag(ne, IS_DIRTY, true);
0279 refresh_list:
0280 spin_lock(&nm_i->nat_list_lock);
0281 if (new_ne)
0282 list_del_init(&ne->list);
0283 else
0284 list_move_tail(&ne->list, &head->entry_list);
0285 spin_unlock(&nm_i->nat_list_lock);
0286 }
0287
0288 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
0289 struct nat_entry_set *set, struct nat_entry *ne)
0290 {
0291 spin_lock(&nm_i->nat_list_lock);
0292 list_move_tail(&ne->list, &nm_i->nat_entries);
0293 spin_unlock(&nm_i->nat_list_lock);
0294
0295 set_nat_flag(ne, IS_DIRTY, false);
0296 set->entry_cnt--;
0297 nm_i->nat_cnt[DIRTY_NAT]--;
0298 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
0299 }
0300
0301 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
0302 nid_t start, unsigned int nr, struct nat_entry_set **ep)
0303 {
0304 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
0305 start, nr);
0306 }
0307
0308 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
0309 {
0310 return NODE_MAPPING(sbi) == page->mapping &&
0311 IS_DNODE(page) && is_cold_node(page);
0312 }
0313
0314 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
0315 {
0316 spin_lock_init(&sbi->fsync_node_lock);
0317 INIT_LIST_HEAD(&sbi->fsync_node_list);
0318 sbi->fsync_seg_id = 0;
0319 sbi->fsync_node_num = 0;
0320 }
0321
0322 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
0323 struct page *page)
0324 {
0325 struct fsync_node_entry *fn;
0326 unsigned long flags;
0327 unsigned int seq_id;
0328
0329 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
0330 GFP_NOFS, true, NULL);
0331
0332 get_page(page);
0333 fn->page = page;
0334 INIT_LIST_HEAD(&fn->list);
0335
0336 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
0337 list_add_tail(&fn->list, &sbi->fsync_node_list);
0338 fn->seq_id = sbi->fsync_seg_id++;
0339 seq_id = fn->seq_id;
0340 sbi->fsync_node_num++;
0341 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
0342
0343 return seq_id;
0344 }
0345
0346 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
0347 {
0348 struct fsync_node_entry *fn;
0349 unsigned long flags;
0350
0351 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
0352 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
0353 if (fn->page == page) {
0354 list_del(&fn->list);
0355 sbi->fsync_node_num--;
0356 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
0357 kmem_cache_free(fsync_node_entry_slab, fn);
0358 put_page(page);
0359 return;
0360 }
0361 }
0362 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
0363 f2fs_bug_on(sbi, 1);
0364 }
0365
0366 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
0367 {
0368 unsigned long flags;
0369
0370 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
0371 sbi->fsync_seg_id = 0;
0372 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
0373 }
0374
0375 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
0376 {
0377 struct f2fs_nm_info *nm_i = NM_I(sbi);
0378 struct nat_entry *e;
0379 bool need = false;
0380
0381 f2fs_down_read(&nm_i->nat_tree_lock);
0382 e = __lookup_nat_cache(nm_i, nid);
0383 if (e) {
0384 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
0385 !get_nat_flag(e, HAS_FSYNCED_INODE))
0386 need = true;
0387 }
0388 f2fs_up_read(&nm_i->nat_tree_lock);
0389 return need;
0390 }
0391
0392 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
0393 {
0394 struct f2fs_nm_info *nm_i = NM_I(sbi);
0395 struct nat_entry *e;
0396 bool is_cp = true;
0397
0398 f2fs_down_read(&nm_i->nat_tree_lock);
0399 e = __lookup_nat_cache(nm_i, nid);
0400 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
0401 is_cp = false;
0402 f2fs_up_read(&nm_i->nat_tree_lock);
0403 return is_cp;
0404 }
0405
0406 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
0407 {
0408 struct f2fs_nm_info *nm_i = NM_I(sbi);
0409 struct nat_entry *e;
0410 bool need_update = true;
0411
0412 f2fs_down_read(&nm_i->nat_tree_lock);
0413 e = __lookup_nat_cache(nm_i, ino);
0414 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
0415 (get_nat_flag(e, IS_CHECKPOINTED) ||
0416 get_nat_flag(e, HAS_FSYNCED_INODE)))
0417 need_update = false;
0418 f2fs_up_read(&nm_i->nat_tree_lock);
0419 return need_update;
0420 }
0421
0422
0423 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
0424 struct f2fs_nat_entry *ne)
0425 {
0426 struct f2fs_nm_info *nm_i = NM_I(sbi);
0427 struct nat_entry *new, *e;
0428
0429
0430 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
0431 return;
0432
0433 new = __alloc_nat_entry(sbi, nid, false);
0434 if (!new)
0435 return;
0436
0437 f2fs_down_write(&nm_i->nat_tree_lock);
0438 e = __lookup_nat_cache(nm_i, nid);
0439 if (!e)
0440 e = __init_nat_entry(nm_i, new, ne, false);
0441 else
0442 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
0443 nat_get_blkaddr(e) !=
0444 le32_to_cpu(ne->block_addr) ||
0445 nat_get_version(e) != ne->version);
0446 f2fs_up_write(&nm_i->nat_tree_lock);
0447 if (e != new)
0448 __free_nat_entry(new);
0449 }
0450
0451 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
0452 block_t new_blkaddr, bool fsync_done)
0453 {
0454 struct f2fs_nm_info *nm_i = NM_I(sbi);
0455 struct nat_entry *e;
0456 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
0457
0458 f2fs_down_write(&nm_i->nat_tree_lock);
0459 e = __lookup_nat_cache(nm_i, ni->nid);
0460 if (!e) {
0461 e = __init_nat_entry(nm_i, new, NULL, true);
0462 copy_node_info(&e->ni, ni);
0463 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
0464 } else if (new_blkaddr == NEW_ADDR) {
0465
0466
0467
0468
0469
0470 copy_node_info(&e->ni, ni);
0471 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
0472 }
0473
0474 if (e != new)
0475 __free_nat_entry(new);
0476
0477
0478 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
0479 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
0480 new_blkaddr == NULL_ADDR);
0481 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
0482 new_blkaddr == NEW_ADDR);
0483 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
0484 new_blkaddr == NEW_ADDR);
0485
0486
0487 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
0488 unsigned char version = nat_get_version(e);
0489
0490 nat_set_version(e, inc_node_version(version));
0491 }
0492
0493
0494 nat_set_blkaddr(e, new_blkaddr);
0495 if (!__is_valid_data_blkaddr(new_blkaddr))
0496 set_nat_flag(e, IS_CHECKPOINTED, false);
0497 __set_nat_cache_dirty(nm_i, e);
0498
0499
0500 if (ni->nid != ni->ino)
0501 e = __lookup_nat_cache(nm_i, ni->ino);
0502 if (e) {
0503 if (fsync_done && ni->nid == ni->ino)
0504 set_nat_flag(e, HAS_FSYNCED_INODE, true);
0505 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
0506 }
0507 f2fs_up_write(&nm_i->nat_tree_lock);
0508 }
0509
0510 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
0511 {
0512 struct f2fs_nm_info *nm_i = NM_I(sbi);
0513 int nr = nr_shrink;
0514
0515 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
0516 return 0;
0517
0518 spin_lock(&nm_i->nat_list_lock);
0519 while (nr_shrink) {
0520 struct nat_entry *ne;
0521
0522 if (list_empty(&nm_i->nat_entries))
0523 break;
0524
0525 ne = list_first_entry(&nm_i->nat_entries,
0526 struct nat_entry, list);
0527 list_del(&ne->list);
0528 spin_unlock(&nm_i->nat_list_lock);
0529
0530 __del_from_nat_cache(nm_i, ne);
0531 nr_shrink--;
0532
0533 spin_lock(&nm_i->nat_list_lock);
0534 }
0535 spin_unlock(&nm_i->nat_list_lock);
0536
0537 f2fs_up_write(&nm_i->nat_tree_lock);
0538 return nr - nr_shrink;
0539 }
0540
0541 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
0542 struct node_info *ni, bool checkpoint_context)
0543 {
0544 struct f2fs_nm_info *nm_i = NM_I(sbi);
0545 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
0546 struct f2fs_journal *journal = curseg->journal;
0547 nid_t start_nid = START_NID(nid);
0548 struct f2fs_nat_block *nat_blk;
0549 struct page *page = NULL;
0550 struct f2fs_nat_entry ne;
0551 struct nat_entry *e;
0552 pgoff_t index;
0553 block_t blkaddr;
0554 int i;
0555
0556 ni->nid = nid;
0557 retry:
0558
0559 f2fs_down_read(&nm_i->nat_tree_lock);
0560 e = __lookup_nat_cache(nm_i, nid);
0561 if (e) {
0562 ni->ino = nat_get_ino(e);
0563 ni->blk_addr = nat_get_blkaddr(e);
0564 ni->version = nat_get_version(e);
0565 f2fs_up_read(&nm_i->nat_tree_lock);
0566 return 0;
0567 }
0568
0569
0570
0571
0572
0573
0574
0575 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
0576 down_read(&curseg->journal_rwsem);
0577 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
0578 !down_read_trylock(&curseg->journal_rwsem)) {
0579 f2fs_up_read(&nm_i->nat_tree_lock);
0580 goto retry;
0581 }
0582
0583 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
0584 if (i >= 0) {
0585 ne = nat_in_journal(journal, i);
0586 node_info_from_raw_nat(ni, &ne);
0587 }
0588 up_read(&curseg->journal_rwsem);
0589 if (i >= 0) {
0590 f2fs_up_read(&nm_i->nat_tree_lock);
0591 goto cache;
0592 }
0593
0594
0595 index = current_nat_addr(sbi, nid);
0596 f2fs_up_read(&nm_i->nat_tree_lock);
0597
0598 page = f2fs_get_meta_page(sbi, index);
0599 if (IS_ERR(page))
0600 return PTR_ERR(page);
0601
0602 nat_blk = (struct f2fs_nat_block *)page_address(page);
0603 ne = nat_blk->entries[nid - start_nid];
0604 node_info_from_raw_nat(ni, &ne);
0605 f2fs_put_page(page, 1);
0606 cache:
0607 blkaddr = le32_to_cpu(ne.block_addr);
0608 if (__is_valid_data_blkaddr(blkaddr) &&
0609 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
0610 return -EFAULT;
0611
0612
0613 cache_nat_entry(sbi, nid, &ne);
0614 return 0;
0615 }
0616
0617
0618
0619
0620 static void f2fs_ra_node_pages(struct page *parent, int start, int n)
0621 {
0622 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
0623 struct blk_plug plug;
0624 int i, end;
0625 nid_t nid;
0626
0627 blk_start_plug(&plug);
0628
0629
0630 end = start + n;
0631 end = min(end, NIDS_PER_BLOCK);
0632 for (i = start; i < end; i++) {
0633 nid = get_nid(parent, i, false);
0634 f2fs_ra_node_page(sbi, nid);
0635 }
0636
0637 blk_finish_plug(&plug);
0638 }
0639
0640 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
0641 {
0642 const long direct_index = ADDRS_PER_INODE(dn->inode);
0643 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
0644 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
0645 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
0646 int cur_level = dn->cur_level;
0647 int max_level = dn->max_level;
0648 pgoff_t base = 0;
0649
0650 if (!dn->max_level)
0651 return pgofs + 1;
0652
0653 while (max_level-- > cur_level)
0654 skipped_unit *= NIDS_PER_BLOCK;
0655
0656 switch (dn->max_level) {
0657 case 3:
0658 base += 2 * indirect_blks;
0659 fallthrough;
0660 case 2:
0661 base += 2 * direct_blks;
0662 fallthrough;
0663 case 1:
0664 base += direct_index;
0665 break;
0666 default:
0667 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
0668 }
0669
0670 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
0671 }
0672
0673
0674
0675
0676
0677 static int get_node_path(struct inode *inode, long block,
0678 int offset[4], unsigned int noffset[4])
0679 {
0680 const long direct_index = ADDRS_PER_INODE(inode);
0681 const long direct_blks = ADDRS_PER_BLOCK(inode);
0682 const long dptrs_per_blk = NIDS_PER_BLOCK;
0683 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
0684 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
0685 int n = 0;
0686 int level = 0;
0687
0688 noffset[0] = 0;
0689
0690 if (block < direct_index) {
0691 offset[n] = block;
0692 goto got;
0693 }
0694 block -= direct_index;
0695 if (block < direct_blks) {
0696 offset[n++] = NODE_DIR1_BLOCK;
0697 noffset[n] = 1;
0698 offset[n] = block;
0699 level = 1;
0700 goto got;
0701 }
0702 block -= direct_blks;
0703 if (block < direct_blks) {
0704 offset[n++] = NODE_DIR2_BLOCK;
0705 noffset[n] = 2;
0706 offset[n] = block;
0707 level = 1;
0708 goto got;
0709 }
0710 block -= direct_blks;
0711 if (block < indirect_blks) {
0712 offset[n++] = NODE_IND1_BLOCK;
0713 noffset[n] = 3;
0714 offset[n++] = block / direct_blks;
0715 noffset[n] = 4 + offset[n - 1];
0716 offset[n] = block % direct_blks;
0717 level = 2;
0718 goto got;
0719 }
0720 block -= indirect_blks;
0721 if (block < indirect_blks) {
0722 offset[n++] = NODE_IND2_BLOCK;
0723 noffset[n] = 4 + dptrs_per_blk;
0724 offset[n++] = block / direct_blks;
0725 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
0726 offset[n] = block % direct_blks;
0727 level = 2;
0728 goto got;
0729 }
0730 block -= indirect_blks;
0731 if (block < dindirect_blks) {
0732 offset[n++] = NODE_DIND_BLOCK;
0733 noffset[n] = 5 + (dptrs_per_blk * 2);
0734 offset[n++] = block / indirect_blks;
0735 noffset[n] = 6 + (dptrs_per_blk * 2) +
0736 offset[n - 1] * (dptrs_per_blk + 1);
0737 offset[n++] = (block / direct_blks) % dptrs_per_blk;
0738 noffset[n] = 7 + (dptrs_per_blk * 2) +
0739 offset[n - 2] * (dptrs_per_blk + 1) +
0740 offset[n - 1];
0741 offset[n] = block % direct_blks;
0742 level = 3;
0743 goto got;
0744 } else {
0745 return -E2BIG;
0746 }
0747 got:
0748 return level;
0749 }
0750
0751
0752
0753
0754
0755
0756 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
0757 {
0758 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
0759 struct page *npage[4];
0760 struct page *parent = NULL;
0761 int offset[4];
0762 unsigned int noffset[4];
0763 nid_t nids[4];
0764 int level, i = 0;
0765 int err = 0;
0766
0767 level = get_node_path(dn->inode, index, offset, noffset);
0768 if (level < 0)
0769 return level;
0770
0771 nids[0] = dn->inode->i_ino;
0772 npage[0] = dn->inode_page;
0773
0774 if (!npage[0]) {
0775 npage[0] = f2fs_get_node_page(sbi, nids[0]);
0776 if (IS_ERR(npage[0]))
0777 return PTR_ERR(npage[0]);
0778 }
0779
0780
0781 if (f2fs_has_inline_data(dn->inode) && index) {
0782 err = -ENOENT;
0783 f2fs_put_page(npage[0], 1);
0784 goto release_out;
0785 }
0786
0787 parent = npage[0];
0788 if (level != 0)
0789 nids[1] = get_nid(parent, offset[0], true);
0790 dn->inode_page = npage[0];
0791 dn->inode_page_locked = true;
0792
0793
0794 for (i = 1; i <= level; i++) {
0795 bool done = false;
0796
0797 if (!nids[i] && mode == ALLOC_NODE) {
0798
0799 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
0800 err = -ENOSPC;
0801 goto release_pages;
0802 }
0803
0804 dn->nid = nids[i];
0805 npage[i] = f2fs_new_node_page(dn, noffset[i]);
0806 if (IS_ERR(npage[i])) {
0807 f2fs_alloc_nid_failed(sbi, nids[i]);
0808 err = PTR_ERR(npage[i]);
0809 goto release_pages;
0810 }
0811
0812 set_nid(parent, offset[i - 1], nids[i], i == 1);
0813 f2fs_alloc_nid_done(sbi, nids[i]);
0814 done = true;
0815 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
0816 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
0817 if (IS_ERR(npage[i])) {
0818 err = PTR_ERR(npage[i]);
0819 goto release_pages;
0820 }
0821 done = true;
0822 }
0823 if (i == 1) {
0824 dn->inode_page_locked = false;
0825 unlock_page(parent);
0826 } else {
0827 f2fs_put_page(parent, 1);
0828 }
0829
0830 if (!done) {
0831 npage[i] = f2fs_get_node_page(sbi, nids[i]);
0832 if (IS_ERR(npage[i])) {
0833 err = PTR_ERR(npage[i]);
0834 f2fs_put_page(npage[0], 0);
0835 goto release_out;
0836 }
0837 }
0838 if (i < level) {
0839 parent = npage[i];
0840 nids[i + 1] = get_nid(parent, offset[i], false);
0841 }
0842 }
0843 dn->nid = nids[level];
0844 dn->ofs_in_node = offset[level];
0845 dn->node_page = npage[level];
0846 dn->data_blkaddr = f2fs_data_blkaddr(dn);
0847
0848 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
0849 f2fs_sb_has_readonly(sbi)) {
0850 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
0851 block_t blkaddr;
0852
0853 if (!c_len)
0854 goto out;
0855
0856 blkaddr = f2fs_data_blkaddr(dn);
0857 if (blkaddr == COMPRESS_ADDR)
0858 blkaddr = data_blkaddr(dn->inode, dn->node_page,
0859 dn->ofs_in_node + 1);
0860
0861 f2fs_update_extent_tree_range_compressed(dn->inode,
0862 index, blkaddr,
0863 F2FS_I(dn->inode)->i_cluster_size,
0864 c_len);
0865 }
0866 out:
0867 return 0;
0868
0869 release_pages:
0870 f2fs_put_page(parent, 1);
0871 if (i > 1)
0872 f2fs_put_page(npage[0], 0);
0873 release_out:
0874 dn->inode_page = NULL;
0875 dn->node_page = NULL;
0876 if (err == -ENOENT) {
0877 dn->cur_level = i;
0878 dn->max_level = level;
0879 dn->ofs_in_node = offset[level];
0880 }
0881 return err;
0882 }
0883
0884 static int truncate_node(struct dnode_of_data *dn)
0885 {
0886 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
0887 struct node_info ni;
0888 int err;
0889 pgoff_t index;
0890
0891 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
0892 if (err)
0893 return err;
0894
0895
0896 f2fs_invalidate_blocks(sbi, ni.blk_addr);
0897 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
0898 set_node_addr(sbi, &ni, NULL_ADDR, false);
0899
0900 if (dn->nid == dn->inode->i_ino) {
0901 f2fs_remove_orphan_inode(sbi, dn->nid);
0902 dec_valid_inode_count(sbi);
0903 f2fs_inode_synced(dn->inode);
0904 }
0905
0906 clear_node_page_dirty(dn->node_page);
0907 set_sbi_flag(sbi, SBI_IS_DIRTY);
0908
0909 index = dn->node_page->index;
0910 f2fs_put_page(dn->node_page, 1);
0911
0912 invalidate_mapping_pages(NODE_MAPPING(sbi),
0913 index, index);
0914
0915 dn->node_page = NULL;
0916 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
0917
0918 return 0;
0919 }
0920
0921 static int truncate_dnode(struct dnode_of_data *dn)
0922 {
0923 struct page *page;
0924 int err;
0925
0926 if (dn->nid == 0)
0927 return 1;
0928
0929
0930 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
0931 if (PTR_ERR(page) == -ENOENT)
0932 return 1;
0933 else if (IS_ERR(page))
0934 return PTR_ERR(page);
0935
0936
0937 dn->node_page = page;
0938 dn->ofs_in_node = 0;
0939 f2fs_truncate_data_blocks(dn);
0940 err = truncate_node(dn);
0941 if (err)
0942 return err;
0943
0944 return 1;
0945 }
0946
0947 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
0948 int ofs, int depth)
0949 {
0950 struct dnode_of_data rdn = *dn;
0951 struct page *page;
0952 struct f2fs_node *rn;
0953 nid_t child_nid;
0954 unsigned int child_nofs;
0955 int freed = 0;
0956 int i, ret;
0957
0958 if (dn->nid == 0)
0959 return NIDS_PER_BLOCK + 1;
0960
0961 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
0962
0963 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
0964 if (IS_ERR(page)) {
0965 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
0966 return PTR_ERR(page);
0967 }
0968
0969 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
0970
0971 rn = F2FS_NODE(page);
0972 if (depth < 3) {
0973 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
0974 child_nid = le32_to_cpu(rn->in.nid[i]);
0975 if (child_nid == 0)
0976 continue;
0977 rdn.nid = child_nid;
0978 ret = truncate_dnode(&rdn);
0979 if (ret < 0)
0980 goto out_err;
0981 if (set_nid(page, i, 0, false))
0982 dn->node_changed = true;
0983 }
0984 } else {
0985 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
0986 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
0987 child_nid = le32_to_cpu(rn->in.nid[i]);
0988 if (child_nid == 0) {
0989 child_nofs += NIDS_PER_BLOCK + 1;
0990 continue;
0991 }
0992 rdn.nid = child_nid;
0993 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
0994 if (ret == (NIDS_PER_BLOCK + 1)) {
0995 if (set_nid(page, i, 0, false))
0996 dn->node_changed = true;
0997 child_nofs += ret;
0998 } else if (ret < 0 && ret != -ENOENT) {
0999 goto out_err;
1000 }
1001 }
1002 freed = child_nofs;
1003 }
1004
1005 if (!ofs) {
1006
1007 dn->node_page = page;
1008 ret = truncate_node(dn);
1009 if (ret)
1010 goto out_err;
1011 freed++;
1012 } else {
1013 f2fs_put_page(page, 1);
1014 }
1015 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1016 return freed;
1017
1018 out_err:
1019 f2fs_put_page(page, 1);
1020 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1021 return ret;
1022 }
1023
1024 static int truncate_partial_nodes(struct dnode_of_data *dn,
1025 struct f2fs_inode *ri, int *offset, int depth)
1026 {
1027 struct page *pages[2];
1028 nid_t nid[3];
1029 nid_t child_nid;
1030 int err = 0;
1031 int i;
1032 int idx = depth - 2;
1033
1034 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1035 if (!nid[0])
1036 return 0;
1037
1038
1039 for (i = 0; i < idx + 1; i++) {
1040
1041 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1042 if (IS_ERR(pages[i])) {
1043 err = PTR_ERR(pages[i]);
1044 idx = i - 1;
1045 goto fail;
1046 }
1047 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1048 }
1049
1050 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1051
1052
1053 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1054 child_nid = get_nid(pages[idx], i, false);
1055 if (!child_nid)
1056 continue;
1057 dn->nid = child_nid;
1058 err = truncate_dnode(dn);
1059 if (err < 0)
1060 goto fail;
1061 if (set_nid(pages[idx], i, 0, false))
1062 dn->node_changed = true;
1063 }
1064
1065 if (offset[idx + 1] == 0) {
1066 dn->node_page = pages[idx];
1067 dn->nid = nid[idx];
1068 err = truncate_node(dn);
1069 if (err)
1070 goto fail;
1071 } else {
1072 f2fs_put_page(pages[idx], 1);
1073 }
1074 offset[idx]++;
1075 offset[idx + 1] = 0;
1076 idx--;
1077 fail:
1078 for (i = idx; i >= 0; i--)
1079 f2fs_put_page(pages[i], 1);
1080
1081 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1082
1083 return err;
1084 }
1085
1086
1087
1088
1089 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1090 {
1091 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1092 int err = 0, cont = 1;
1093 int level, offset[4], noffset[4];
1094 unsigned int nofs = 0;
1095 struct f2fs_inode *ri;
1096 struct dnode_of_data dn;
1097 struct page *page;
1098
1099 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1100
1101 level = get_node_path(inode, from, offset, noffset);
1102 if (level < 0) {
1103 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1104 return level;
1105 }
1106
1107 page = f2fs_get_node_page(sbi, inode->i_ino);
1108 if (IS_ERR(page)) {
1109 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1110 return PTR_ERR(page);
1111 }
1112
1113 set_new_dnode(&dn, inode, page, NULL, 0);
1114 unlock_page(page);
1115
1116 ri = F2FS_INODE(page);
1117 switch (level) {
1118 case 0:
1119 case 1:
1120 nofs = noffset[1];
1121 break;
1122 case 2:
1123 nofs = noffset[1];
1124 if (!offset[level - 1])
1125 goto skip_partial;
1126 err = truncate_partial_nodes(&dn, ri, offset, level);
1127 if (err < 0 && err != -ENOENT)
1128 goto fail;
1129 nofs += 1 + NIDS_PER_BLOCK;
1130 break;
1131 case 3:
1132 nofs = 5 + 2 * NIDS_PER_BLOCK;
1133 if (!offset[level - 1])
1134 goto skip_partial;
1135 err = truncate_partial_nodes(&dn, ri, offset, level);
1136 if (err < 0 && err != -ENOENT)
1137 goto fail;
1138 break;
1139 default:
1140 BUG();
1141 }
1142
1143 skip_partial:
1144 while (cont) {
1145 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1146 switch (offset[0]) {
1147 case NODE_DIR1_BLOCK:
1148 case NODE_DIR2_BLOCK:
1149 err = truncate_dnode(&dn);
1150 break;
1151
1152 case NODE_IND1_BLOCK:
1153 case NODE_IND2_BLOCK:
1154 err = truncate_nodes(&dn, nofs, offset[1], 2);
1155 break;
1156
1157 case NODE_DIND_BLOCK:
1158 err = truncate_nodes(&dn, nofs, offset[1], 3);
1159 cont = 0;
1160 break;
1161
1162 default:
1163 BUG();
1164 }
1165 if (err < 0 && err != -ENOENT)
1166 goto fail;
1167 if (offset[1] == 0 &&
1168 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1169 lock_page(page);
1170 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1171 f2fs_wait_on_page_writeback(page, NODE, true, true);
1172 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1173 set_page_dirty(page);
1174 unlock_page(page);
1175 }
1176 offset[1] = 0;
1177 offset[0]++;
1178 nofs += err;
1179 }
1180 fail:
1181 f2fs_put_page(page, 0);
1182 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1183 return err > 0 ? 0 : err;
1184 }
1185
1186
1187 int f2fs_truncate_xattr_node(struct inode *inode)
1188 {
1189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1190 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1191 struct dnode_of_data dn;
1192 struct page *npage;
1193 int err;
1194
1195 if (!nid)
1196 return 0;
1197
1198 npage = f2fs_get_node_page(sbi, nid);
1199 if (IS_ERR(npage))
1200 return PTR_ERR(npage);
1201
1202 set_new_dnode(&dn, inode, NULL, npage, nid);
1203 err = truncate_node(&dn);
1204 if (err) {
1205 f2fs_put_page(npage, 1);
1206 return err;
1207 }
1208
1209 f2fs_i_xnid_write(inode, 0);
1210
1211 return 0;
1212 }
1213
1214
1215
1216
1217
1218 int f2fs_remove_inode_page(struct inode *inode)
1219 {
1220 struct dnode_of_data dn;
1221 int err;
1222
1223 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1224 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1225 if (err)
1226 return err;
1227
1228 err = f2fs_truncate_xattr_node(inode);
1229 if (err) {
1230 f2fs_put_dnode(&dn);
1231 return err;
1232 }
1233
1234
1235 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1236 S_ISLNK(inode->i_mode))
1237 f2fs_truncate_data_blocks_range(&dn, 1);
1238
1239
1240 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1241 f2fs_put_dnode(&dn);
1242 return -EIO;
1243 }
1244
1245 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1246 f2fs_warn(F2FS_I_SB(inode),
1247 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1248 inode->i_ino, (unsigned long long)inode->i_blocks);
1249 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1250 }
1251
1252
1253 err = truncate_node(&dn);
1254 if (err) {
1255 f2fs_put_dnode(&dn);
1256 return err;
1257 }
1258 return 0;
1259 }
1260
1261 struct page *f2fs_new_inode_page(struct inode *inode)
1262 {
1263 struct dnode_of_data dn;
1264
1265
1266 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1267
1268
1269 return f2fs_new_node_page(&dn, 0);
1270 }
1271
1272 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1273 {
1274 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1275 struct node_info new_ni;
1276 struct page *page;
1277 int err;
1278
1279 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1280 return ERR_PTR(-EPERM);
1281
1282 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1283 if (!page)
1284 return ERR_PTR(-ENOMEM);
1285
1286 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1287 goto fail;
1288
1289 #ifdef CONFIG_F2FS_CHECK_FS
1290 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1291 if (err) {
1292 dec_valid_node_count(sbi, dn->inode, !ofs);
1293 goto fail;
1294 }
1295 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1296 err = -EFSCORRUPTED;
1297 set_sbi_flag(sbi, SBI_NEED_FSCK);
1298 goto fail;
1299 }
1300 #endif
1301 new_ni.nid = dn->nid;
1302 new_ni.ino = dn->inode->i_ino;
1303 new_ni.blk_addr = NULL_ADDR;
1304 new_ni.flag = 0;
1305 new_ni.version = 0;
1306 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1307
1308 f2fs_wait_on_page_writeback(page, NODE, true, true);
1309 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1310 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1311 if (!PageUptodate(page))
1312 SetPageUptodate(page);
1313 if (set_page_dirty(page))
1314 dn->node_changed = true;
1315
1316 if (f2fs_has_xattr_block(ofs))
1317 f2fs_i_xnid_write(dn->inode, dn->nid);
1318
1319 if (ofs == 0)
1320 inc_valid_inode_count(sbi);
1321 return page;
1322
1323 fail:
1324 clear_node_page_dirty(page);
1325 f2fs_put_page(page, 1);
1326 return ERR_PTR(err);
1327 }
1328
1329
1330
1331
1332
1333
1334 static int read_node_page(struct page *page, blk_opf_t op_flags)
1335 {
1336 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1337 struct node_info ni;
1338 struct f2fs_io_info fio = {
1339 .sbi = sbi,
1340 .type = NODE,
1341 .op = REQ_OP_READ,
1342 .op_flags = op_flags,
1343 .page = page,
1344 .encrypted_page = NULL,
1345 };
1346 int err;
1347
1348 if (PageUptodate(page)) {
1349 if (!f2fs_inode_chksum_verify(sbi, page)) {
1350 ClearPageUptodate(page);
1351 return -EFSBADCRC;
1352 }
1353 return LOCKED_PAGE;
1354 }
1355
1356 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1357 if (err)
1358 return err;
1359
1360
1361 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR) ||
1362 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1363 ClearPageUptodate(page);
1364 return -ENOENT;
1365 }
1366
1367 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1368
1369 err = f2fs_submit_page_bio(&fio);
1370
1371 if (!err)
1372 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1373
1374 return err;
1375 }
1376
1377
1378
1379
1380 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1381 {
1382 struct page *apage;
1383 int err;
1384
1385 if (!nid)
1386 return;
1387 if (f2fs_check_nid_range(sbi, nid))
1388 return;
1389
1390 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1391 if (apage)
1392 return;
1393
1394 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1395 if (!apage)
1396 return;
1397
1398 err = read_node_page(apage, REQ_RAHEAD);
1399 f2fs_put_page(apage, err ? 1 : 0);
1400 }
1401
1402 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1403 struct page *parent, int start)
1404 {
1405 struct page *page;
1406 int err;
1407
1408 if (!nid)
1409 return ERR_PTR(-ENOENT);
1410 if (f2fs_check_nid_range(sbi, nid))
1411 return ERR_PTR(-EINVAL);
1412 repeat:
1413 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1414 if (!page)
1415 return ERR_PTR(-ENOMEM);
1416
1417 err = read_node_page(page, 0);
1418 if (err < 0) {
1419 goto out_put_err;
1420 } else if (err == LOCKED_PAGE) {
1421 err = 0;
1422 goto page_hit;
1423 }
1424
1425 if (parent)
1426 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1427
1428 lock_page(page);
1429
1430 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1431 f2fs_put_page(page, 1);
1432 goto repeat;
1433 }
1434
1435 if (unlikely(!PageUptodate(page))) {
1436 err = -EIO;
1437 goto out_err;
1438 }
1439
1440 if (!f2fs_inode_chksum_verify(sbi, page)) {
1441 err = -EFSBADCRC;
1442 goto out_err;
1443 }
1444 page_hit:
1445 if (likely(nid == nid_of_node(page)))
1446 return page;
1447
1448 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1449 nid, nid_of_node(page), ino_of_node(page),
1450 ofs_of_node(page), cpver_of_node(page),
1451 next_blkaddr_of_node(page));
1452 set_sbi_flag(sbi, SBI_NEED_FSCK);
1453 err = -EINVAL;
1454 out_err:
1455 ClearPageUptodate(page);
1456 out_put_err:
1457
1458 if (err != -ENOENT)
1459 f2fs_handle_page_eio(sbi, page->index, NODE);
1460 f2fs_put_page(page, 1);
1461 return ERR_PTR(err);
1462 }
1463
1464 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1465 {
1466 return __get_node_page(sbi, nid, NULL, 0);
1467 }
1468
1469 struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1470 {
1471 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1472 nid_t nid = get_nid(parent, start, false);
1473
1474 return __get_node_page(sbi, nid, parent, start);
1475 }
1476
1477 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1478 {
1479 struct inode *inode;
1480 struct page *page;
1481 int ret;
1482
1483
1484 inode = ilookup(sbi->sb, ino);
1485 if (!inode)
1486 return;
1487
1488 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1489 FGP_LOCK|FGP_NOWAIT, 0);
1490 if (!page)
1491 goto iput_out;
1492
1493 if (!PageUptodate(page))
1494 goto page_out;
1495
1496 if (!PageDirty(page))
1497 goto page_out;
1498
1499 if (!clear_page_dirty_for_io(page))
1500 goto page_out;
1501
1502 ret = f2fs_write_inline_data(inode, page);
1503 inode_dec_dirty_pages(inode);
1504 f2fs_remove_dirty_inode(inode);
1505 if (ret)
1506 set_page_dirty(page);
1507 page_out:
1508 f2fs_put_page(page, 1);
1509 iput_out:
1510 iput(inode);
1511 }
1512
1513 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1514 {
1515 pgoff_t index;
1516 struct pagevec pvec;
1517 struct page *last_page = NULL;
1518 int nr_pages;
1519
1520 pagevec_init(&pvec);
1521 index = 0;
1522
1523 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1524 PAGECACHE_TAG_DIRTY))) {
1525 int i;
1526
1527 for (i = 0; i < nr_pages; i++) {
1528 struct page *page = pvec.pages[i];
1529
1530 if (unlikely(f2fs_cp_error(sbi))) {
1531 f2fs_put_page(last_page, 0);
1532 pagevec_release(&pvec);
1533 return ERR_PTR(-EIO);
1534 }
1535
1536 if (!IS_DNODE(page) || !is_cold_node(page))
1537 continue;
1538 if (ino_of_node(page) != ino)
1539 continue;
1540
1541 lock_page(page);
1542
1543 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1544 continue_unlock:
1545 unlock_page(page);
1546 continue;
1547 }
1548 if (ino_of_node(page) != ino)
1549 goto continue_unlock;
1550
1551 if (!PageDirty(page)) {
1552
1553 goto continue_unlock;
1554 }
1555
1556 if (last_page)
1557 f2fs_put_page(last_page, 0);
1558
1559 get_page(page);
1560 last_page = page;
1561 unlock_page(page);
1562 }
1563 pagevec_release(&pvec);
1564 cond_resched();
1565 }
1566 return last_page;
1567 }
1568
1569 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1570 struct writeback_control *wbc, bool do_balance,
1571 enum iostat_type io_type, unsigned int *seq_id)
1572 {
1573 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1574 nid_t nid;
1575 struct node_info ni;
1576 struct f2fs_io_info fio = {
1577 .sbi = sbi,
1578 .ino = ino_of_node(page),
1579 .type = NODE,
1580 .op = REQ_OP_WRITE,
1581 .op_flags = wbc_to_write_flags(wbc),
1582 .page = page,
1583 .encrypted_page = NULL,
1584 .submitted = false,
1585 .io_type = io_type,
1586 .io_wbc = wbc,
1587 };
1588 unsigned int seq;
1589
1590 trace_f2fs_writepage(page, NODE);
1591
1592 if (unlikely(f2fs_cp_error(sbi))) {
1593 ClearPageUptodate(page);
1594 dec_page_count(sbi, F2FS_DIRTY_NODES);
1595 unlock_page(page);
1596 return 0;
1597 }
1598
1599 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1600 goto redirty_out;
1601
1602 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1603 wbc->sync_mode == WB_SYNC_NONE &&
1604 IS_DNODE(page) && is_cold_node(page))
1605 goto redirty_out;
1606
1607
1608 nid = nid_of_node(page);
1609 f2fs_bug_on(sbi, page->index != nid);
1610
1611 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1612 goto redirty_out;
1613
1614 if (wbc->for_reclaim) {
1615 if (!f2fs_down_read_trylock(&sbi->node_write))
1616 goto redirty_out;
1617 } else {
1618 f2fs_down_read(&sbi->node_write);
1619 }
1620
1621
1622 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1623 ClearPageUptodate(page);
1624 dec_page_count(sbi, F2FS_DIRTY_NODES);
1625 f2fs_up_read(&sbi->node_write);
1626 unlock_page(page);
1627 return 0;
1628 }
1629
1630 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1631 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1632 DATA_GENERIC_ENHANCE)) {
1633 f2fs_up_read(&sbi->node_write);
1634 goto redirty_out;
1635 }
1636
1637 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1638 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1639
1640
1641 if (f2fs_in_warm_node_list(sbi, page)) {
1642 seq = f2fs_add_fsync_node_entry(sbi, page);
1643 if (seq_id)
1644 *seq_id = seq;
1645 }
1646
1647 set_page_writeback(page);
1648 ClearPageError(page);
1649
1650 fio.old_blkaddr = ni.blk_addr;
1651 f2fs_do_write_node_page(nid, &fio);
1652 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1653 dec_page_count(sbi, F2FS_DIRTY_NODES);
1654 f2fs_up_read(&sbi->node_write);
1655
1656 if (wbc->for_reclaim) {
1657 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1658 submitted = NULL;
1659 }
1660
1661 unlock_page(page);
1662
1663 if (unlikely(f2fs_cp_error(sbi))) {
1664 f2fs_submit_merged_write(sbi, NODE);
1665 submitted = NULL;
1666 }
1667 if (submitted)
1668 *submitted = fio.submitted;
1669
1670 if (do_balance)
1671 f2fs_balance_fs(sbi, false);
1672 return 0;
1673
1674 redirty_out:
1675 redirty_page_for_writepage(wbc, page);
1676 return AOP_WRITEPAGE_ACTIVATE;
1677 }
1678
1679 int f2fs_move_node_page(struct page *node_page, int gc_type)
1680 {
1681 int err = 0;
1682
1683 if (gc_type == FG_GC) {
1684 struct writeback_control wbc = {
1685 .sync_mode = WB_SYNC_ALL,
1686 .nr_to_write = 1,
1687 .for_reclaim = 0,
1688 };
1689
1690 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1691
1692 set_page_dirty(node_page);
1693
1694 if (!clear_page_dirty_for_io(node_page)) {
1695 err = -EAGAIN;
1696 goto out_page;
1697 }
1698
1699 if (__write_node_page(node_page, false, NULL,
1700 &wbc, false, FS_GC_NODE_IO, NULL)) {
1701 err = -EAGAIN;
1702 unlock_page(node_page);
1703 }
1704 goto release_page;
1705 } else {
1706
1707 if (!PageWriteback(node_page))
1708 set_page_dirty(node_page);
1709 }
1710 out_page:
1711 unlock_page(node_page);
1712 release_page:
1713 f2fs_put_page(node_page, 0);
1714 return err;
1715 }
1716
1717 static int f2fs_write_node_page(struct page *page,
1718 struct writeback_control *wbc)
1719 {
1720 return __write_node_page(page, false, NULL, wbc, false,
1721 FS_NODE_IO, NULL);
1722 }
1723
1724 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1725 struct writeback_control *wbc, bool atomic,
1726 unsigned int *seq_id)
1727 {
1728 pgoff_t index;
1729 struct pagevec pvec;
1730 int ret = 0;
1731 struct page *last_page = NULL;
1732 bool marked = false;
1733 nid_t ino = inode->i_ino;
1734 int nr_pages;
1735 int nwritten = 0;
1736
1737 if (atomic) {
1738 last_page = last_fsync_dnode(sbi, ino);
1739 if (IS_ERR_OR_NULL(last_page))
1740 return PTR_ERR_OR_ZERO(last_page);
1741 }
1742 retry:
1743 pagevec_init(&pvec);
1744 index = 0;
1745
1746 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1747 PAGECACHE_TAG_DIRTY))) {
1748 int i;
1749
1750 for (i = 0; i < nr_pages; i++) {
1751 struct page *page = pvec.pages[i];
1752 bool submitted = false;
1753
1754 if (unlikely(f2fs_cp_error(sbi))) {
1755 f2fs_put_page(last_page, 0);
1756 pagevec_release(&pvec);
1757 ret = -EIO;
1758 goto out;
1759 }
1760
1761 if (!IS_DNODE(page) || !is_cold_node(page))
1762 continue;
1763 if (ino_of_node(page) != ino)
1764 continue;
1765
1766 lock_page(page);
1767
1768 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1769 continue_unlock:
1770 unlock_page(page);
1771 continue;
1772 }
1773 if (ino_of_node(page) != ino)
1774 goto continue_unlock;
1775
1776 if (!PageDirty(page) && page != last_page) {
1777
1778 goto continue_unlock;
1779 }
1780
1781 f2fs_wait_on_page_writeback(page, NODE, true, true);
1782
1783 set_fsync_mark(page, 0);
1784 set_dentry_mark(page, 0);
1785
1786 if (!atomic || page == last_page) {
1787 set_fsync_mark(page, 1);
1788 percpu_counter_inc(&sbi->rf_node_block_count);
1789 if (IS_INODE(page)) {
1790 if (is_inode_flag_set(inode,
1791 FI_DIRTY_INODE))
1792 f2fs_update_inode(inode, page);
1793 set_dentry_mark(page,
1794 f2fs_need_dentry_mark(sbi, ino));
1795 }
1796
1797 if (!PageDirty(page))
1798 set_page_dirty(page);
1799 }
1800
1801 if (!clear_page_dirty_for_io(page))
1802 goto continue_unlock;
1803
1804 ret = __write_node_page(page, atomic &&
1805 page == last_page,
1806 &submitted, wbc, true,
1807 FS_NODE_IO, seq_id);
1808 if (ret) {
1809 unlock_page(page);
1810 f2fs_put_page(last_page, 0);
1811 break;
1812 } else if (submitted) {
1813 nwritten++;
1814 }
1815
1816 if (page == last_page) {
1817 f2fs_put_page(page, 0);
1818 marked = true;
1819 break;
1820 }
1821 }
1822 pagevec_release(&pvec);
1823 cond_resched();
1824
1825 if (ret || marked)
1826 break;
1827 }
1828 if (!ret && atomic && !marked) {
1829 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1830 ino, last_page->index);
1831 lock_page(last_page);
1832 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1833 set_page_dirty(last_page);
1834 unlock_page(last_page);
1835 goto retry;
1836 }
1837 out:
1838 if (nwritten)
1839 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1840 return ret ? -EIO : 0;
1841 }
1842
1843 static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1844 {
1845 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1846 bool clean;
1847
1848 if (inode->i_ino != ino)
1849 return 0;
1850
1851 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1852 return 0;
1853
1854 spin_lock(&sbi->inode_lock[DIRTY_META]);
1855 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1856 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1857
1858 if (clean)
1859 return 0;
1860
1861 inode = igrab(inode);
1862 if (!inode)
1863 return 0;
1864 return 1;
1865 }
1866
1867 static bool flush_dirty_inode(struct page *page)
1868 {
1869 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1870 struct inode *inode;
1871 nid_t ino = ino_of_node(page);
1872
1873 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1874 if (!inode)
1875 return false;
1876
1877 f2fs_update_inode(inode, page);
1878 unlock_page(page);
1879
1880 iput(inode);
1881 return true;
1882 }
1883
1884 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1885 {
1886 pgoff_t index = 0;
1887 struct pagevec pvec;
1888 int nr_pages;
1889
1890 pagevec_init(&pvec);
1891
1892 while ((nr_pages = pagevec_lookup_tag(&pvec,
1893 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1894 int i;
1895
1896 for (i = 0; i < nr_pages; i++) {
1897 struct page *page = pvec.pages[i];
1898
1899 if (!IS_DNODE(page))
1900 continue;
1901
1902 lock_page(page);
1903
1904 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1905 continue_unlock:
1906 unlock_page(page);
1907 continue;
1908 }
1909
1910 if (!PageDirty(page)) {
1911
1912 goto continue_unlock;
1913 }
1914
1915
1916 if (page_private_inline(page)) {
1917 clear_page_private_inline(page);
1918 unlock_page(page);
1919 flush_inline_data(sbi, ino_of_node(page));
1920 continue;
1921 }
1922 unlock_page(page);
1923 }
1924 pagevec_release(&pvec);
1925 cond_resched();
1926 }
1927 }
1928
1929 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1930 struct writeback_control *wbc,
1931 bool do_balance, enum iostat_type io_type)
1932 {
1933 pgoff_t index;
1934 struct pagevec pvec;
1935 int step = 0;
1936 int nwritten = 0;
1937 int ret = 0;
1938 int nr_pages, done = 0;
1939
1940 pagevec_init(&pvec);
1941
1942 next_step:
1943 index = 0;
1944
1945 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1946 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1947 int i;
1948
1949 for (i = 0; i < nr_pages; i++) {
1950 struct page *page = pvec.pages[i];
1951 bool submitted = false;
1952
1953
1954 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1955 wbc->sync_mode == WB_SYNC_NONE) {
1956 done = 1;
1957 break;
1958 }
1959
1960
1961
1962
1963
1964
1965
1966 if (step == 0 && IS_DNODE(page))
1967 continue;
1968 if (step == 1 && (!IS_DNODE(page) ||
1969 is_cold_node(page)))
1970 continue;
1971 if (step == 2 && (!IS_DNODE(page) ||
1972 !is_cold_node(page)))
1973 continue;
1974 lock_node:
1975 if (wbc->sync_mode == WB_SYNC_ALL)
1976 lock_page(page);
1977 else if (!trylock_page(page))
1978 continue;
1979
1980 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1981 continue_unlock:
1982 unlock_page(page);
1983 continue;
1984 }
1985
1986 if (!PageDirty(page)) {
1987
1988 goto continue_unlock;
1989 }
1990
1991
1992 if (!do_balance)
1993 goto write_node;
1994
1995
1996 if (page_private_inline(page)) {
1997 clear_page_private_inline(page);
1998 unlock_page(page);
1999 flush_inline_data(sbi, ino_of_node(page));
2000 goto lock_node;
2001 }
2002
2003
2004 if (IS_INODE(page) && flush_dirty_inode(page))
2005 goto lock_node;
2006 write_node:
2007 f2fs_wait_on_page_writeback(page, NODE, true, true);
2008
2009 if (!clear_page_dirty_for_io(page))
2010 goto continue_unlock;
2011
2012 set_fsync_mark(page, 0);
2013 set_dentry_mark(page, 0);
2014
2015 ret = __write_node_page(page, false, &submitted,
2016 wbc, do_balance, io_type, NULL);
2017 if (ret)
2018 unlock_page(page);
2019 else if (submitted)
2020 nwritten++;
2021
2022 if (--wbc->nr_to_write == 0)
2023 break;
2024 }
2025 pagevec_release(&pvec);
2026 cond_resched();
2027
2028 if (wbc->nr_to_write == 0) {
2029 step = 2;
2030 break;
2031 }
2032 }
2033
2034 if (step < 2) {
2035 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2036 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2037 goto out;
2038 step++;
2039 goto next_step;
2040 }
2041 out:
2042 if (nwritten)
2043 f2fs_submit_merged_write(sbi, NODE);
2044
2045 if (unlikely(f2fs_cp_error(sbi)))
2046 return -EIO;
2047 return ret;
2048 }
2049
2050 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2051 unsigned int seq_id)
2052 {
2053 struct fsync_node_entry *fn;
2054 struct page *page;
2055 struct list_head *head = &sbi->fsync_node_list;
2056 unsigned long flags;
2057 unsigned int cur_seq_id = 0;
2058 int ret2, ret = 0;
2059
2060 while (seq_id && cur_seq_id < seq_id) {
2061 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2062 if (list_empty(head)) {
2063 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2064 break;
2065 }
2066 fn = list_first_entry(head, struct fsync_node_entry, list);
2067 if (fn->seq_id > seq_id) {
2068 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2069 break;
2070 }
2071 cur_seq_id = fn->seq_id;
2072 page = fn->page;
2073 get_page(page);
2074 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2075
2076 f2fs_wait_on_page_writeback(page, NODE, true, false);
2077 if (TestClearPageError(page))
2078 ret = -EIO;
2079
2080 put_page(page);
2081
2082 if (ret)
2083 break;
2084 }
2085
2086 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2087 if (!ret)
2088 ret = ret2;
2089
2090 return ret;
2091 }
2092
2093 static int f2fs_write_node_pages(struct address_space *mapping,
2094 struct writeback_control *wbc)
2095 {
2096 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2097 struct blk_plug plug;
2098 long diff;
2099
2100 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2101 goto skip_write;
2102
2103
2104 f2fs_balance_fs_bg(sbi, true);
2105
2106
2107 if (wbc->sync_mode != WB_SYNC_ALL &&
2108 get_pages(sbi, F2FS_DIRTY_NODES) <
2109 nr_pages_to_skip(sbi, NODE))
2110 goto skip_write;
2111
2112 if (wbc->sync_mode == WB_SYNC_ALL)
2113 atomic_inc(&sbi->wb_sync_req[NODE]);
2114 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2115
2116 if (current->plug)
2117 blk_finish_plug(current->plug);
2118 goto skip_write;
2119 }
2120
2121 trace_f2fs_writepages(mapping->host, wbc, NODE);
2122
2123 diff = nr_pages_to_write(sbi, NODE, wbc);
2124 blk_start_plug(&plug);
2125 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2126 blk_finish_plug(&plug);
2127 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2128
2129 if (wbc->sync_mode == WB_SYNC_ALL)
2130 atomic_dec(&sbi->wb_sync_req[NODE]);
2131 return 0;
2132
2133 skip_write:
2134 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2135 trace_f2fs_writepages(mapping->host, wbc, NODE);
2136 return 0;
2137 }
2138
2139 static bool f2fs_dirty_node_folio(struct address_space *mapping,
2140 struct folio *folio)
2141 {
2142 trace_f2fs_set_page_dirty(&folio->page, NODE);
2143
2144 if (!folio_test_uptodate(folio))
2145 folio_mark_uptodate(folio);
2146 #ifdef CONFIG_F2FS_CHECK_FS
2147 if (IS_INODE(&folio->page))
2148 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2149 #endif
2150 if (!folio_test_dirty(folio)) {
2151 filemap_dirty_folio(mapping, folio);
2152 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2153 set_page_private_reference(&folio->page);
2154 return true;
2155 }
2156 return false;
2157 }
2158
2159
2160
2161
2162 const struct address_space_operations f2fs_node_aops = {
2163 .writepage = f2fs_write_node_page,
2164 .writepages = f2fs_write_node_pages,
2165 .dirty_folio = f2fs_dirty_node_folio,
2166 .invalidate_folio = f2fs_invalidate_folio,
2167 .release_folio = f2fs_release_folio,
2168 .migrate_folio = filemap_migrate_folio,
2169 };
2170
2171 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2172 nid_t n)
2173 {
2174 return radix_tree_lookup(&nm_i->free_nid_root, n);
2175 }
2176
2177 static int __insert_free_nid(struct f2fs_sb_info *sbi,
2178 struct free_nid *i)
2179 {
2180 struct f2fs_nm_info *nm_i = NM_I(sbi);
2181 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2182
2183 if (err)
2184 return err;
2185
2186 nm_i->nid_cnt[FREE_NID]++;
2187 list_add_tail(&i->list, &nm_i->free_nid_list);
2188 return 0;
2189 }
2190
2191 static void __remove_free_nid(struct f2fs_sb_info *sbi,
2192 struct free_nid *i, enum nid_state state)
2193 {
2194 struct f2fs_nm_info *nm_i = NM_I(sbi);
2195
2196 f2fs_bug_on(sbi, state != i->state);
2197 nm_i->nid_cnt[state]--;
2198 if (state == FREE_NID)
2199 list_del(&i->list);
2200 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2201 }
2202
2203 static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2204 enum nid_state org_state, enum nid_state dst_state)
2205 {
2206 struct f2fs_nm_info *nm_i = NM_I(sbi);
2207
2208 f2fs_bug_on(sbi, org_state != i->state);
2209 i->state = dst_state;
2210 nm_i->nid_cnt[org_state]--;
2211 nm_i->nid_cnt[dst_state]++;
2212
2213 switch (dst_state) {
2214 case PREALLOC_NID:
2215 list_del(&i->list);
2216 break;
2217 case FREE_NID:
2218 list_add_tail(&i->list, &nm_i->free_nid_list);
2219 break;
2220 default:
2221 BUG_ON(1);
2222 }
2223 }
2224
2225 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2226 {
2227 struct f2fs_nm_info *nm_i = NM_I(sbi);
2228 unsigned int i;
2229 bool ret = true;
2230
2231 f2fs_down_read(&nm_i->nat_tree_lock);
2232 for (i = 0; i < nm_i->nat_blocks; i++) {
2233 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2234 ret = false;
2235 break;
2236 }
2237 }
2238 f2fs_up_read(&nm_i->nat_tree_lock);
2239
2240 return ret;
2241 }
2242
2243 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2244 bool set, bool build)
2245 {
2246 struct f2fs_nm_info *nm_i = NM_I(sbi);
2247 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2248 unsigned int nid_ofs = nid - START_NID(nid);
2249
2250 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2251 return;
2252
2253 if (set) {
2254 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2255 return;
2256 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2257 nm_i->free_nid_count[nat_ofs]++;
2258 } else {
2259 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2260 return;
2261 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2262 if (!build)
2263 nm_i->free_nid_count[nat_ofs]--;
2264 }
2265 }
2266
2267
2268 static bool add_free_nid(struct f2fs_sb_info *sbi,
2269 nid_t nid, bool build, bool update)
2270 {
2271 struct f2fs_nm_info *nm_i = NM_I(sbi);
2272 struct free_nid *i, *e;
2273 struct nat_entry *ne;
2274 int err = -EINVAL;
2275 bool ret = false;
2276
2277
2278 if (unlikely(nid == 0))
2279 return false;
2280
2281 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2282 return false;
2283
2284 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2285 i->nid = nid;
2286 i->state = FREE_NID;
2287
2288 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2289
2290 spin_lock(&nm_i->nid_list_lock);
2291
2292 if (build) {
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314 ne = __lookup_nat_cache(nm_i, nid);
2315 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2316 nat_get_blkaddr(ne) != NULL_ADDR))
2317 goto err_out;
2318
2319 e = __lookup_free_nid_list(nm_i, nid);
2320 if (e) {
2321 if (e->state == FREE_NID)
2322 ret = true;
2323 goto err_out;
2324 }
2325 }
2326 ret = true;
2327 err = __insert_free_nid(sbi, i);
2328 err_out:
2329 if (update) {
2330 update_free_nid_bitmap(sbi, nid, ret, build);
2331 if (!build)
2332 nm_i->available_nids++;
2333 }
2334 spin_unlock(&nm_i->nid_list_lock);
2335 radix_tree_preload_end();
2336
2337 if (err)
2338 kmem_cache_free(free_nid_slab, i);
2339 return ret;
2340 }
2341
2342 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2343 {
2344 struct f2fs_nm_info *nm_i = NM_I(sbi);
2345 struct free_nid *i;
2346 bool need_free = false;
2347
2348 spin_lock(&nm_i->nid_list_lock);
2349 i = __lookup_free_nid_list(nm_i, nid);
2350 if (i && i->state == FREE_NID) {
2351 __remove_free_nid(sbi, i, FREE_NID);
2352 need_free = true;
2353 }
2354 spin_unlock(&nm_i->nid_list_lock);
2355
2356 if (need_free)
2357 kmem_cache_free(free_nid_slab, i);
2358 }
2359
2360 static int scan_nat_page(struct f2fs_sb_info *sbi,
2361 struct page *nat_page, nid_t start_nid)
2362 {
2363 struct f2fs_nm_info *nm_i = NM_I(sbi);
2364 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2365 block_t blk_addr;
2366 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2367 int i;
2368
2369 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2370
2371 i = start_nid % NAT_ENTRY_PER_BLOCK;
2372
2373 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2374 if (unlikely(start_nid >= nm_i->max_nid))
2375 break;
2376
2377 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2378
2379 if (blk_addr == NEW_ADDR)
2380 return -EINVAL;
2381
2382 if (blk_addr == NULL_ADDR) {
2383 add_free_nid(sbi, start_nid, true, true);
2384 } else {
2385 spin_lock(&NM_I(sbi)->nid_list_lock);
2386 update_free_nid_bitmap(sbi, start_nid, false, true);
2387 spin_unlock(&NM_I(sbi)->nid_list_lock);
2388 }
2389 }
2390
2391 return 0;
2392 }
2393
2394 static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2395 {
2396 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2397 struct f2fs_journal *journal = curseg->journal;
2398 int i;
2399
2400 down_read(&curseg->journal_rwsem);
2401 for (i = 0; i < nats_in_cursum(journal); i++) {
2402 block_t addr;
2403 nid_t nid;
2404
2405 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2406 nid = le32_to_cpu(nid_in_journal(journal, i));
2407 if (addr == NULL_ADDR)
2408 add_free_nid(sbi, nid, true, false);
2409 else
2410 remove_free_nid(sbi, nid);
2411 }
2412 up_read(&curseg->journal_rwsem);
2413 }
2414
2415 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2416 {
2417 struct f2fs_nm_info *nm_i = NM_I(sbi);
2418 unsigned int i, idx;
2419 nid_t nid;
2420
2421 f2fs_down_read(&nm_i->nat_tree_lock);
2422
2423 for (i = 0; i < nm_i->nat_blocks; i++) {
2424 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2425 continue;
2426 if (!nm_i->free_nid_count[i])
2427 continue;
2428 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2429 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2430 NAT_ENTRY_PER_BLOCK, idx);
2431 if (idx >= NAT_ENTRY_PER_BLOCK)
2432 break;
2433
2434 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2435 add_free_nid(sbi, nid, true, false);
2436
2437 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2438 goto out;
2439 }
2440 }
2441 out:
2442 scan_curseg_cache(sbi);
2443
2444 f2fs_up_read(&nm_i->nat_tree_lock);
2445 }
2446
2447 static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2448 bool sync, bool mount)
2449 {
2450 struct f2fs_nm_info *nm_i = NM_I(sbi);
2451 int i = 0, ret;
2452 nid_t nid = nm_i->next_scan_nid;
2453
2454 if (unlikely(nid >= nm_i->max_nid))
2455 nid = 0;
2456
2457 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2458 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2459
2460
2461 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2462 return 0;
2463
2464 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2465 return 0;
2466
2467 if (!mount) {
2468
2469 scan_free_nid_bits(sbi);
2470
2471 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2472 return 0;
2473 }
2474
2475
2476 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2477 META_NAT, true);
2478
2479 f2fs_down_read(&nm_i->nat_tree_lock);
2480
2481 while (1) {
2482 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2483 nm_i->nat_block_bitmap)) {
2484 struct page *page = get_current_nat_page(sbi, nid);
2485
2486 if (IS_ERR(page)) {
2487 ret = PTR_ERR(page);
2488 } else {
2489 ret = scan_nat_page(sbi, page, nid);
2490 f2fs_put_page(page, 1);
2491 }
2492
2493 if (ret) {
2494 f2fs_up_read(&nm_i->nat_tree_lock);
2495 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2496 return ret;
2497 }
2498 }
2499
2500 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2501 if (unlikely(nid >= nm_i->max_nid))
2502 nid = 0;
2503
2504 if (++i >= FREE_NID_PAGES)
2505 break;
2506 }
2507
2508
2509 nm_i->next_scan_nid = nid;
2510
2511
2512 scan_curseg_cache(sbi);
2513
2514 f2fs_up_read(&nm_i->nat_tree_lock);
2515
2516 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2517 nm_i->ra_nid_pages, META_NAT, false);
2518
2519 return 0;
2520 }
2521
2522 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2523 {
2524 int ret;
2525
2526 mutex_lock(&NM_I(sbi)->build_lock);
2527 ret = __f2fs_build_free_nids(sbi, sync, mount);
2528 mutex_unlock(&NM_I(sbi)->build_lock);
2529
2530 return ret;
2531 }
2532
2533
2534
2535
2536
2537
2538 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2539 {
2540 struct f2fs_nm_info *nm_i = NM_I(sbi);
2541 struct free_nid *i = NULL;
2542 retry:
2543 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2544 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2545 return false;
2546 }
2547
2548 spin_lock(&nm_i->nid_list_lock);
2549
2550 if (unlikely(nm_i->available_nids == 0)) {
2551 spin_unlock(&nm_i->nid_list_lock);
2552 return false;
2553 }
2554
2555
2556 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2557 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2558 i = list_first_entry(&nm_i->free_nid_list,
2559 struct free_nid, list);
2560 *nid = i->nid;
2561
2562 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2563 nm_i->available_nids--;
2564
2565 update_free_nid_bitmap(sbi, *nid, false, false);
2566
2567 spin_unlock(&nm_i->nid_list_lock);
2568 return true;
2569 }
2570 spin_unlock(&nm_i->nid_list_lock);
2571
2572
2573 if (!f2fs_build_free_nids(sbi, true, false))
2574 goto retry;
2575 return false;
2576 }
2577
2578
2579
2580
2581 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2582 {
2583 struct f2fs_nm_info *nm_i = NM_I(sbi);
2584 struct free_nid *i;
2585
2586 spin_lock(&nm_i->nid_list_lock);
2587 i = __lookup_free_nid_list(nm_i, nid);
2588 f2fs_bug_on(sbi, !i);
2589 __remove_free_nid(sbi, i, PREALLOC_NID);
2590 spin_unlock(&nm_i->nid_list_lock);
2591
2592 kmem_cache_free(free_nid_slab, i);
2593 }
2594
2595
2596
2597
2598 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2599 {
2600 struct f2fs_nm_info *nm_i = NM_I(sbi);
2601 struct free_nid *i;
2602 bool need_free = false;
2603
2604 if (!nid)
2605 return;
2606
2607 spin_lock(&nm_i->nid_list_lock);
2608 i = __lookup_free_nid_list(nm_i, nid);
2609 f2fs_bug_on(sbi, !i);
2610
2611 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2612 __remove_free_nid(sbi, i, PREALLOC_NID);
2613 need_free = true;
2614 } else {
2615 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2616 }
2617
2618 nm_i->available_nids++;
2619
2620 update_free_nid_bitmap(sbi, nid, true, false);
2621
2622 spin_unlock(&nm_i->nid_list_lock);
2623
2624 if (need_free)
2625 kmem_cache_free(free_nid_slab, i);
2626 }
2627
2628 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2629 {
2630 struct f2fs_nm_info *nm_i = NM_I(sbi);
2631 int nr = nr_shrink;
2632
2633 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2634 return 0;
2635
2636 if (!mutex_trylock(&nm_i->build_lock))
2637 return 0;
2638
2639 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2640 struct free_nid *i, *next;
2641 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2642
2643 spin_lock(&nm_i->nid_list_lock);
2644 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2645 if (!nr_shrink || !batch ||
2646 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2647 break;
2648 __remove_free_nid(sbi, i, FREE_NID);
2649 kmem_cache_free(free_nid_slab, i);
2650 nr_shrink--;
2651 batch--;
2652 }
2653 spin_unlock(&nm_i->nid_list_lock);
2654 }
2655
2656 mutex_unlock(&nm_i->build_lock);
2657
2658 return nr - nr_shrink;
2659 }
2660
2661 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2662 {
2663 void *src_addr, *dst_addr;
2664 size_t inline_size;
2665 struct page *ipage;
2666 struct f2fs_inode *ri;
2667
2668 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2669 if (IS_ERR(ipage))
2670 return PTR_ERR(ipage);
2671
2672 ri = F2FS_INODE(page);
2673 if (ri->i_inline & F2FS_INLINE_XATTR) {
2674 if (!f2fs_has_inline_xattr(inode)) {
2675 set_inode_flag(inode, FI_INLINE_XATTR);
2676 stat_inc_inline_xattr(inode);
2677 }
2678 } else {
2679 if (f2fs_has_inline_xattr(inode)) {
2680 stat_dec_inline_xattr(inode);
2681 clear_inode_flag(inode, FI_INLINE_XATTR);
2682 }
2683 goto update_inode;
2684 }
2685
2686 dst_addr = inline_xattr_addr(inode, ipage);
2687 src_addr = inline_xattr_addr(inode, page);
2688 inline_size = inline_xattr_size(inode);
2689
2690 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2691 memcpy(dst_addr, src_addr, inline_size);
2692 update_inode:
2693 f2fs_update_inode(inode, ipage);
2694 f2fs_put_page(ipage, 1);
2695 return 0;
2696 }
2697
2698 int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2699 {
2700 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2701 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2702 nid_t new_xnid;
2703 struct dnode_of_data dn;
2704 struct node_info ni;
2705 struct page *xpage;
2706 int err;
2707
2708 if (!prev_xnid)
2709 goto recover_xnid;
2710
2711
2712 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2713 if (err)
2714 return err;
2715
2716 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2717 dec_valid_node_count(sbi, inode, false);
2718 set_node_addr(sbi, &ni, NULL_ADDR, false);
2719
2720 recover_xnid:
2721
2722 if (!f2fs_alloc_nid(sbi, &new_xnid))
2723 return -ENOSPC;
2724
2725 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2726 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2727 if (IS_ERR(xpage)) {
2728 f2fs_alloc_nid_failed(sbi, new_xnid);
2729 return PTR_ERR(xpage);
2730 }
2731
2732 f2fs_alloc_nid_done(sbi, new_xnid);
2733 f2fs_update_inode_page(inode);
2734
2735
2736 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2737
2738 set_page_dirty(xpage);
2739 f2fs_put_page(xpage, 1);
2740
2741 return 0;
2742 }
2743
2744 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2745 {
2746 struct f2fs_inode *src, *dst;
2747 nid_t ino = ino_of_node(page);
2748 struct node_info old_ni, new_ni;
2749 struct page *ipage;
2750 int err;
2751
2752 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2753 if (err)
2754 return err;
2755
2756 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2757 return -EINVAL;
2758 retry:
2759 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2760 if (!ipage) {
2761 memalloc_retry_wait(GFP_NOFS);
2762 goto retry;
2763 }
2764
2765
2766 remove_free_nid(sbi, ino);
2767
2768 if (!PageUptodate(ipage))
2769 SetPageUptodate(ipage);
2770 fill_node_footer(ipage, ino, ino, 0, true);
2771 set_cold_node(ipage, false);
2772
2773 src = F2FS_INODE(page);
2774 dst = F2FS_INODE(ipage);
2775
2776 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2777 dst->i_size = 0;
2778 dst->i_blocks = cpu_to_le64(1);
2779 dst->i_links = cpu_to_le32(1);
2780 dst->i_xattr_nid = 0;
2781 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2782 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2783 dst->i_extra_isize = src->i_extra_isize;
2784
2785 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2786 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2787 i_inline_xattr_size))
2788 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2789
2790 if (f2fs_sb_has_project_quota(sbi) &&
2791 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2792 i_projid))
2793 dst->i_projid = src->i_projid;
2794
2795 if (f2fs_sb_has_inode_crtime(sbi) &&
2796 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2797 i_crtime_nsec)) {
2798 dst->i_crtime = src->i_crtime;
2799 dst->i_crtime_nsec = src->i_crtime_nsec;
2800 }
2801 }
2802
2803 new_ni = old_ni;
2804 new_ni.ino = ino;
2805
2806 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2807 WARN_ON(1);
2808 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2809 inc_valid_inode_count(sbi);
2810 set_page_dirty(ipage);
2811 f2fs_put_page(ipage, 1);
2812 return 0;
2813 }
2814
2815 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2816 unsigned int segno, struct f2fs_summary_block *sum)
2817 {
2818 struct f2fs_node *rn;
2819 struct f2fs_summary *sum_entry;
2820 block_t addr;
2821 int i, idx, last_offset, nrpages;
2822
2823
2824 last_offset = sbi->blocks_per_seg;
2825 addr = START_BLOCK(sbi, segno);
2826 sum_entry = &sum->entries[0];
2827
2828 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2829 nrpages = bio_max_segs(last_offset - i);
2830
2831
2832 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2833
2834 for (idx = addr; idx < addr + nrpages; idx++) {
2835 struct page *page = f2fs_get_tmp_page(sbi, idx);
2836
2837 if (IS_ERR(page))
2838 return PTR_ERR(page);
2839
2840 rn = F2FS_NODE(page);
2841 sum_entry->nid = rn->footer.nid;
2842 sum_entry->version = 0;
2843 sum_entry->ofs_in_node = 0;
2844 sum_entry++;
2845 f2fs_put_page(page, 1);
2846 }
2847
2848 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2849 addr + nrpages);
2850 }
2851 return 0;
2852 }
2853
2854 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2855 {
2856 struct f2fs_nm_info *nm_i = NM_I(sbi);
2857 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2858 struct f2fs_journal *journal = curseg->journal;
2859 int i;
2860
2861 down_write(&curseg->journal_rwsem);
2862 for (i = 0; i < nats_in_cursum(journal); i++) {
2863 struct nat_entry *ne;
2864 struct f2fs_nat_entry raw_ne;
2865 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2866
2867 if (f2fs_check_nid_range(sbi, nid))
2868 continue;
2869
2870 raw_ne = nat_in_journal(journal, i);
2871
2872 ne = __lookup_nat_cache(nm_i, nid);
2873 if (!ne) {
2874 ne = __alloc_nat_entry(sbi, nid, true);
2875 __init_nat_entry(nm_i, ne, &raw_ne, true);
2876 }
2877
2878
2879
2880
2881
2882
2883 if (!get_nat_flag(ne, IS_DIRTY) &&
2884 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2885 spin_lock(&nm_i->nid_list_lock);
2886 nm_i->available_nids--;
2887 spin_unlock(&nm_i->nid_list_lock);
2888 }
2889
2890 __set_nat_cache_dirty(nm_i, ne);
2891 }
2892 update_nats_in_cursum(journal, -i);
2893 up_write(&curseg->journal_rwsem);
2894 }
2895
2896 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2897 struct list_head *head, int max)
2898 {
2899 struct nat_entry_set *cur;
2900
2901 if (nes->entry_cnt >= max)
2902 goto add_out;
2903
2904 list_for_each_entry(cur, head, set_list) {
2905 if (cur->entry_cnt >= nes->entry_cnt) {
2906 list_add(&nes->set_list, cur->set_list.prev);
2907 return;
2908 }
2909 }
2910 add_out:
2911 list_add_tail(&nes->set_list, head);
2912 }
2913
2914 static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2915 unsigned int valid)
2916 {
2917 if (valid == 0) {
2918 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2919 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2920 return;
2921 }
2922
2923 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2924 if (valid == NAT_ENTRY_PER_BLOCK)
2925 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2926 else
2927 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2928 }
2929
2930 static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2931 struct page *page)
2932 {
2933 struct f2fs_nm_info *nm_i = NM_I(sbi);
2934 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2935 struct f2fs_nat_block *nat_blk = page_address(page);
2936 int valid = 0;
2937 int i = 0;
2938
2939 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2940 return;
2941
2942 if (nat_index == 0) {
2943 valid = 1;
2944 i = 1;
2945 }
2946 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2947 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2948 valid++;
2949 }
2950
2951 __update_nat_bits(nm_i, nat_index, valid);
2952 }
2953
2954 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2955 {
2956 struct f2fs_nm_info *nm_i = NM_I(sbi);
2957 unsigned int nat_ofs;
2958
2959 f2fs_down_read(&nm_i->nat_tree_lock);
2960
2961 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2962 unsigned int valid = 0, nid_ofs = 0;
2963
2964
2965 if (unlikely(nat_ofs == 0)) {
2966 valid = 1;
2967 nid_ofs = 1;
2968 }
2969
2970 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2971 if (!test_bit_le(nid_ofs,
2972 nm_i->free_nid_bitmap[nat_ofs]))
2973 valid++;
2974 }
2975
2976 __update_nat_bits(nm_i, nat_ofs, valid);
2977 }
2978
2979 f2fs_up_read(&nm_i->nat_tree_lock);
2980 }
2981
2982 static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2983 struct nat_entry_set *set, struct cp_control *cpc)
2984 {
2985 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2986 struct f2fs_journal *journal = curseg->journal;
2987 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2988 bool to_journal = true;
2989 struct f2fs_nat_block *nat_blk;
2990 struct nat_entry *ne, *cur;
2991 struct page *page = NULL;
2992
2993
2994
2995
2996
2997
2998 if ((cpc->reason & CP_UMOUNT) ||
2999 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3000 to_journal = false;
3001
3002 if (to_journal) {
3003 down_write(&curseg->journal_rwsem);
3004 } else {
3005 page = get_next_nat_page(sbi, start_nid);
3006 if (IS_ERR(page))
3007 return PTR_ERR(page);
3008
3009 nat_blk = page_address(page);
3010 f2fs_bug_on(sbi, !nat_blk);
3011 }
3012
3013
3014 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3015 struct f2fs_nat_entry *raw_ne;
3016 nid_t nid = nat_get_nid(ne);
3017 int offset;
3018
3019 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3020
3021 if (to_journal) {
3022 offset = f2fs_lookup_journal_in_cursum(journal,
3023 NAT_JOURNAL, nid, 1);
3024 f2fs_bug_on(sbi, offset < 0);
3025 raw_ne = &nat_in_journal(journal, offset);
3026 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3027 } else {
3028 raw_ne = &nat_blk->entries[nid - start_nid];
3029 }
3030 raw_nat_from_node_info(raw_ne, &ne->ni);
3031 nat_reset_flag(ne);
3032 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3033 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3034 add_free_nid(sbi, nid, false, true);
3035 } else {
3036 spin_lock(&NM_I(sbi)->nid_list_lock);
3037 update_free_nid_bitmap(sbi, nid, false, false);
3038 spin_unlock(&NM_I(sbi)->nid_list_lock);
3039 }
3040 }
3041
3042 if (to_journal) {
3043 up_write(&curseg->journal_rwsem);
3044 } else {
3045 update_nat_bits(sbi, start_nid, page);
3046 f2fs_put_page(page, 1);
3047 }
3048
3049
3050 if (!set->entry_cnt) {
3051 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3052 kmem_cache_free(nat_entry_set_slab, set);
3053 }
3054 return 0;
3055 }
3056
3057
3058
3059
3060 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3061 {
3062 struct f2fs_nm_info *nm_i = NM_I(sbi);
3063 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3064 struct f2fs_journal *journal = curseg->journal;
3065 struct nat_entry_set *setvec[SETVEC_SIZE];
3066 struct nat_entry_set *set, *tmp;
3067 unsigned int found;
3068 nid_t set_idx = 0;
3069 LIST_HEAD(sets);
3070 int err = 0;
3071
3072
3073
3074
3075
3076 if (cpc->reason & CP_UMOUNT) {
3077 f2fs_down_write(&nm_i->nat_tree_lock);
3078 remove_nats_in_journal(sbi);
3079 f2fs_up_write(&nm_i->nat_tree_lock);
3080 }
3081
3082 if (!nm_i->nat_cnt[DIRTY_NAT])
3083 return 0;
3084
3085 f2fs_down_write(&nm_i->nat_tree_lock);
3086
3087
3088
3089
3090
3091
3092 if (cpc->reason & CP_UMOUNT ||
3093 !__has_cursum_space(journal,
3094 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3095 remove_nats_in_journal(sbi);
3096
3097 while ((found = __gang_lookup_nat_set(nm_i,
3098 set_idx, SETVEC_SIZE, setvec))) {
3099 unsigned idx;
3100
3101 set_idx = setvec[found - 1]->set + 1;
3102 for (idx = 0; idx < found; idx++)
3103 __adjust_nat_entry_set(setvec[idx], &sets,
3104 MAX_NAT_JENTRIES(journal));
3105 }
3106
3107
3108 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3109 err = __flush_nat_entry_set(sbi, set, cpc);
3110 if (err)
3111 break;
3112 }
3113
3114 f2fs_up_write(&nm_i->nat_tree_lock);
3115
3116
3117 return err;
3118 }
3119
3120 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3121 {
3122 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3123 struct f2fs_nm_info *nm_i = NM_I(sbi);
3124 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3125 unsigned int i;
3126 __u64 cp_ver = cur_cp_version(ckpt);
3127 block_t nat_bits_addr;
3128
3129 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3130 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3131 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3132 if (!nm_i->nat_bits)
3133 return -ENOMEM;
3134
3135 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3136 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3137
3138 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3139 return 0;
3140
3141 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3142 nm_i->nat_bits_blocks;
3143 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3144 struct page *page;
3145
3146 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3147 if (IS_ERR(page))
3148 return PTR_ERR(page);
3149
3150 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3151 page_address(page), F2FS_BLKSIZE);
3152 f2fs_put_page(page, 1);
3153 }
3154
3155 cp_ver |= (cur_cp_crc(ckpt) << 32);
3156 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3157 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3158 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3159 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3160 return 0;
3161 }
3162
3163 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3164 return 0;
3165 }
3166
3167 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3168 {
3169 struct f2fs_nm_info *nm_i = NM_I(sbi);
3170 unsigned int i = 0;
3171 nid_t nid, last_nid;
3172
3173 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3174 return;
3175
3176 for (i = 0; i < nm_i->nat_blocks; i++) {
3177 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3178 if (i >= nm_i->nat_blocks)
3179 break;
3180
3181 __set_bit_le(i, nm_i->nat_block_bitmap);
3182
3183 nid = i * NAT_ENTRY_PER_BLOCK;
3184 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3185
3186 spin_lock(&NM_I(sbi)->nid_list_lock);
3187 for (; nid < last_nid; nid++)
3188 update_free_nid_bitmap(sbi, nid, true, true);
3189 spin_unlock(&NM_I(sbi)->nid_list_lock);
3190 }
3191
3192 for (i = 0; i < nm_i->nat_blocks; i++) {
3193 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3194 if (i >= nm_i->nat_blocks)
3195 break;
3196
3197 __set_bit_le(i, nm_i->nat_block_bitmap);
3198 }
3199 }
3200
3201 static int init_node_manager(struct f2fs_sb_info *sbi)
3202 {
3203 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3204 struct f2fs_nm_info *nm_i = NM_I(sbi);
3205 unsigned char *version_bitmap;
3206 unsigned int nat_segs;
3207 int err;
3208
3209 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3210
3211
3212 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3213 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3214 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3215
3216
3217 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3218 F2FS_RESERVED_NODE_NUM;
3219 nm_i->nid_cnt[FREE_NID] = 0;
3220 nm_i->nid_cnt[PREALLOC_NID] = 0;
3221 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3222 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3223 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3224 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3225
3226 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3227 INIT_LIST_HEAD(&nm_i->free_nid_list);
3228 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3229 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3230 INIT_LIST_HEAD(&nm_i->nat_entries);
3231 spin_lock_init(&nm_i->nat_list_lock);
3232
3233 mutex_init(&nm_i->build_lock);
3234 spin_lock_init(&nm_i->nid_list_lock);
3235 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3236
3237 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3238 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3239 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3240 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3241 GFP_KERNEL);
3242 if (!nm_i->nat_bitmap)
3243 return -ENOMEM;
3244
3245 err = __get_nat_bitmaps(sbi);
3246 if (err)
3247 return err;
3248
3249 #ifdef CONFIG_F2FS_CHECK_FS
3250 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3251 GFP_KERNEL);
3252 if (!nm_i->nat_bitmap_mir)
3253 return -ENOMEM;
3254 #endif
3255
3256 return 0;
3257 }
3258
3259 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3260 {
3261 struct f2fs_nm_info *nm_i = NM_I(sbi);
3262 int i;
3263
3264 nm_i->free_nid_bitmap =
3265 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3266 nm_i->nat_blocks),
3267 GFP_KERNEL);
3268 if (!nm_i->free_nid_bitmap)
3269 return -ENOMEM;
3270
3271 for (i = 0; i < nm_i->nat_blocks; i++) {
3272 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3273 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3274 if (!nm_i->free_nid_bitmap[i])
3275 return -ENOMEM;
3276 }
3277
3278 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3279 GFP_KERNEL);
3280 if (!nm_i->nat_block_bitmap)
3281 return -ENOMEM;
3282
3283 nm_i->free_nid_count =
3284 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3285 nm_i->nat_blocks),
3286 GFP_KERNEL);
3287 if (!nm_i->free_nid_count)
3288 return -ENOMEM;
3289 return 0;
3290 }
3291
3292 int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3293 {
3294 int err;
3295
3296 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3297 GFP_KERNEL);
3298 if (!sbi->nm_info)
3299 return -ENOMEM;
3300
3301 err = init_node_manager(sbi);
3302 if (err)
3303 return err;
3304
3305 err = init_free_nid_cache(sbi);
3306 if (err)
3307 return err;
3308
3309
3310 load_free_nid_bitmap(sbi);
3311
3312 return f2fs_build_free_nids(sbi, true, true);
3313 }
3314
3315 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3316 {
3317 struct f2fs_nm_info *nm_i = NM_I(sbi);
3318 struct free_nid *i, *next_i;
3319 struct nat_entry *natvec[NATVEC_SIZE];
3320 struct nat_entry_set *setvec[SETVEC_SIZE];
3321 nid_t nid = 0;
3322 unsigned int found;
3323
3324 if (!nm_i)
3325 return;
3326
3327
3328 spin_lock(&nm_i->nid_list_lock);
3329 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3330 __remove_free_nid(sbi, i, FREE_NID);
3331 spin_unlock(&nm_i->nid_list_lock);
3332 kmem_cache_free(free_nid_slab, i);
3333 spin_lock(&nm_i->nid_list_lock);
3334 }
3335 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3336 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3337 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3338 spin_unlock(&nm_i->nid_list_lock);
3339
3340
3341 f2fs_down_write(&nm_i->nat_tree_lock);
3342 while ((found = __gang_lookup_nat_cache(nm_i,
3343 nid, NATVEC_SIZE, natvec))) {
3344 unsigned idx;
3345
3346 nid = nat_get_nid(natvec[found - 1]) + 1;
3347 for (idx = 0; idx < found; idx++) {
3348 spin_lock(&nm_i->nat_list_lock);
3349 list_del(&natvec[idx]->list);
3350 spin_unlock(&nm_i->nat_list_lock);
3351
3352 __del_from_nat_cache(nm_i, natvec[idx]);
3353 }
3354 }
3355 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3356
3357
3358 nid = 0;
3359 while ((found = __gang_lookup_nat_set(nm_i,
3360 nid, SETVEC_SIZE, setvec))) {
3361 unsigned idx;
3362
3363 nid = setvec[found - 1]->set + 1;
3364 for (idx = 0; idx < found; idx++) {
3365
3366 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3367 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3368 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3369 }
3370 }
3371 f2fs_up_write(&nm_i->nat_tree_lock);
3372
3373 kvfree(nm_i->nat_block_bitmap);
3374 if (nm_i->free_nid_bitmap) {
3375 int i;
3376
3377 for (i = 0; i < nm_i->nat_blocks; i++)
3378 kvfree(nm_i->free_nid_bitmap[i]);
3379 kvfree(nm_i->free_nid_bitmap);
3380 }
3381 kvfree(nm_i->free_nid_count);
3382
3383 kvfree(nm_i->nat_bitmap);
3384 kvfree(nm_i->nat_bits);
3385 #ifdef CONFIG_F2FS_CHECK_FS
3386 kvfree(nm_i->nat_bitmap_mir);
3387 #endif
3388 sbi->nm_info = NULL;
3389 kfree(nm_i);
3390 }
3391
3392 int __init f2fs_create_node_manager_caches(void)
3393 {
3394 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3395 sizeof(struct nat_entry));
3396 if (!nat_entry_slab)
3397 goto fail;
3398
3399 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3400 sizeof(struct free_nid));
3401 if (!free_nid_slab)
3402 goto destroy_nat_entry;
3403
3404 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3405 sizeof(struct nat_entry_set));
3406 if (!nat_entry_set_slab)
3407 goto destroy_free_nid;
3408
3409 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3410 sizeof(struct fsync_node_entry));
3411 if (!fsync_node_entry_slab)
3412 goto destroy_nat_entry_set;
3413 return 0;
3414
3415 destroy_nat_entry_set:
3416 kmem_cache_destroy(nat_entry_set_slab);
3417 destroy_free_nid:
3418 kmem_cache_destroy(free_nid_slab);
3419 destroy_nat_entry:
3420 kmem_cache_destroy(nat_entry_slab);
3421 fail:
3422 return -ENOMEM;
3423 }
3424
3425 void f2fs_destroy_node_manager_caches(void)
3426 {
3427 kmem_cache_destroy(fsync_node_entry_slab);
3428 kmem_cache_destroy(nat_entry_set_slab);
3429 kmem_cache_destroy(free_nid_slab);
3430 kmem_cache_destroy(nat_entry_slab);
3431 }