Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * fs/f2fs/gc.c
0004  *
0005  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
0006  *             http://www.samsung.com/
0007  */
0008 #include <linux/fs.h>
0009 #include <linux/module.h>
0010 #include <linux/init.h>
0011 #include <linux/f2fs_fs.h>
0012 #include <linux/kthread.h>
0013 #include <linux/delay.h>
0014 #include <linux/freezer.h>
0015 #include <linux/sched/signal.h>
0016 #include <linux/random.h>
0017 #include <linux/sched/mm.h>
0018 
0019 #include "f2fs.h"
0020 #include "node.h"
0021 #include "segment.h"
0022 #include "gc.h"
0023 #include "iostat.h"
0024 #include <trace/events/f2fs.h>
0025 
0026 static struct kmem_cache *victim_entry_slab;
0027 
0028 static unsigned int count_bits(const unsigned long *addr,
0029                 unsigned int offset, unsigned int len);
0030 
0031 static int gc_thread_func(void *data)
0032 {
0033     struct f2fs_sb_info *sbi = data;
0034     struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
0035     wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
0036     wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
0037     unsigned int wait_ms;
0038     struct f2fs_gc_control gc_control = {
0039         .victim_segno = NULL_SEGNO,
0040         .should_migrate_blocks = false,
0041         .err_gc_skipped = false };
0042 
0043     wait_ms = gc_th->min_sleep_time;
0044 
0045     set_freezable();
0046     do {
0047         bool sync_mode, foreground = false;
0048 
0049         wait_event_interruptible_timeout(*wq,
0050                 kthread_should_stop() || freezing(current) ||
0051                 waitqueue_active(fggc_wq) ||
0052                 gc_th->gc_wake,
0053                 msecs_to_jiffies(wait_ms));
0054 
0055         if (test_opt(sbi, GC_MERGE) && waitqueue_active(fggc_wq))
0056             foreground = true;
0057 
0058         /* give it a try one time */
0059         if (gc_th->gc_wake)
0060             gc_th->gc_wake = 0;
0061 
0062         if (try_to_freeze()) {
0063             stat_other_skip_bggc_count(sbi);
0064             continue;
0065         }
0066         if (kthread_should_stop())
0067             break;
0068 
0069         if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
0070             increase_sleep_time(gc_th, &wait_ms);
0071             stat_other_skip_bggc_count(sbi);
0072             continue;
0073         }
0074 
0075         if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
0076             f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
0077             f2fs_stop_checkpoint(sbi, false);
0078         }
0079 
0080         if (!sb_start_write_trylock(sbi->sb)) {
0081             stat_other_skip_bggc_count(sbi);
0082             continue;
0083         }
0084 
0085         /*
0086          * [GC triggering condition]
0087          * 0. GC is not conducted currently.
0088          * 1. There are enough dirty segments.
0089          * 2. IO subsystem is idle by checking the # of writeback pages.
0090          * 3. IO subsystem is idle by checking the # of requests in
0091          *    bdev's request list.
0092          *
0093          * Note) We have to avoid triggering GCs frequently.
0094          * Because it is possible that some segments can be
0095          * invalidated soon after by user update or deletion.
0096          * So, I'd like to wait some time to collect dirty segments.
0097          */
0098         if (sbi->gc_mode == GC_URGENT_HIGH) {
0099             spin_lock(&sbi->gc_urgent_high_lock);
0100             if (sbi->gc_urgent_high_limited) {
0101                 if (!sbi->gc_urgent_high_remaining) {
0102                     sbi->gc_urgent_high_limited = false;
0103                     spin_unlock(&sbi->gc_urgent_high_lock);
0104                     sbi->gc_mode = GC_NORMAL;
0105                     continue;
0106                 }
0107                 sbi->gc_urgent_high_remaining--;
0108             }
0109             spin_unlock(&sbi->gc_urgent_high_lock);
0110         }
0111 
0112         if (sbi->gc_mode == GC_URGENT_HIGH ||
0113                 sbi->gc_mode == GC_URGENT_MID) {
0114             wait_ms = gc_th->urgent_sleep_time;
0115             f2fs_down_write(&sbi->gc_lock);
0116             goto do_gc;
0117         }
0118 
0119         if (foreground) {
0120             f2fs_down_write(&sbi->gc_lock);
0121             goto do_gc;
0122         } else if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
0123             stat_other_skip_bggc_count(sbi);
0124             goto next;
0125         }
0126 
0127         if (!is_idle(sbi, GC_TIME)) {
0128             increase_sleep_time(gc_th, &wait_ms);
0129             f2fs_up_write(&sbi->gc_lock);
0130             stat_io_skip_bggc_count(sbi);
0131             goto next;
0132         }
0133 
0134         if (has_enough_invalid_blocks(sbi))
0135             decrease_sleep_time(gc_th, &wait_ms);
0136         else
0137             increase_sleep_time(gc_th, &wait_ms);
0138 do_gc:
0139         if (!foreground)
0140             stat_inc_bggc_count(sbi->stat_info);
0141 
0142         sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
0143 
0144         /* foreground GC was been triggered via f2fs_balance_fs() */
0145         if (foreground)
0146             sync_mode = false;
0147 
0148         gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC;
0149         gc_control.no_bg_gc = foreground;
0150         gc_control.nr_free_secs = foreground ? 1 : 0;
0151 
0152         /* if return value is not zero, no victim was selected */
0153         if (f2fs_gc(sbi, &gc_control)) {
0154             /* don't bother wait_ms by foreground gc */
0155             if (!foreground)
0156                 wait_ms = gc_th->no_gc_sleep_time;
0157         }
0158 
0159         if (foreground)
0160             wake_up_all(&gc_th->fggc_wq);
0161 
0162         trace_f2fs_background_gc(sbi->sb, wait_ms,
0163                 prefree_segments(sbi), free_segments(sbi));
0164 
0165         /* balancing f2fs's metadata periodically */
0166         f2fs_balance_fs_bg(sbi, true);
0167 next:
0168         sb_end_write(sbi->sb);
0169 
0170     } while (!kthread_should_stop());
0171     return 0;
0172 }
0173 
0174 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
0175 {
0176     struct f2fs_gc_kthread *gc_th;
0177     dev_t dev = sbi->sb->s_bdev->bd_dev;
0178     int err = 0;
0179 
0180     gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
0181     if (!gc_th) {
0182         err = -ENOMEM;
0183         goto out;
0184     }
0185 
0186     gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
0187     gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
0188     gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
0189     gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
0190 
0191     gc_th->gc_wake = 0;
0192 
0193     sbi->gc_thread = gc_th;
0194     init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
0195     init_waitqueue_head(&sbi->gc_thread->fggc_wq);
0196     sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
0197             "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
0198     if (IS_ERR(gc_th->f2fs_gc_task)) {
0199         err = PTR_ERR(gc_th->f2fs_gc_task);
0200         kfree(gc_th);
0201         sbi->gc_thread = NULL;
0202     }
0203 out:
0204     return err;
0205 }
0206 
0207 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
0208 {
0209     struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
0210 
0211     if (!gc_th)
0212         return;
0213     kthread_stop(gc_th->f2fs_gc_task);
0214     wake_up_all(&gc_th->fggc_wq);
0215     kfree(gc_th);
0216     sbi->gc_thread = NULL;
0217 }
0218 
0219 static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
0220 {
0221     int gc_mode;
0222 
0223     if (gc_type == BG_GC) {
0224         if (sbi->am.atgc_enabled)
0225             gc_mode = GC_AT;
0226         else
0227             gc_mode = GC_CB;
0228     } else {
0229         gc_mode = GC_GREEDY;
0230     }
0231 
0232     switch (sbi->gc_mode) {
0233     case GC_IDLE_CB:
0234         gc_mode = GC_CB;
0235         break;
0236     case GC_IDLE_GREEDY:
0237     case GC_URGENT_HIGH:
0238         gc_mode = GC_GREEDY;
0239         break;
0240     case GC_IDLE_AT:
0241         gc_mode = GC_AT;
0242         break;
0243     }
0244 
0245     return gc_mode;
0246 }
0247 
0248 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
0249             int type, struct victim_sel_policy *p)
0250 {
0251     struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
0252 
0253     if (p->alloc_mode == SSR) {
0254         p->gc_mode = GC_GREEDY;
0255         p->dirty_bitmap = dirty_i->dirty_segmap[type];
0256         p->max_search = dirty_i->nr_dirty[type];
0257         p->ofs_unit = 1;
0258     } else if (p->alloc_mode == AT_SSR) {
0259         p->gc_mode = GC_GREEDY;
0260         p->dirty_bitmap = dirty_i->dirty_segmap[type];
0261         p->max_search = dirty_i->nr_dirty[type];
0262         p->ofs_unit = 1;
0263     } else {
0264         p->gc_mode = select_gc_type(sbi, gc_type);
0265         p->ofs_unit = sbi->segs_per_sec;
0266         if (__is_large_section(sbi)) {
0267             p->dirty_bitmap = dirty_i->dirty_secmap;
0268             p->max_search = count_bits(p->dirty_bitmap,
0269                         0, MAIN_SECS(sbi));
0270         } else {
0271             p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
0272             p->max_search = dirty_i->nr_dirty[DIRTY];
0273         }
0274     }
0275 
0276     /*
0277      * adjust candidates range, should select all dirty segments for
0278      * foreground GC and urgent GC cases.
0279      */
0280     if (gc_type != FG_GC &&
0281             (sbi->gc_mode != GC_URGENT_HIGH) &&
0282             (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
0283             p->max_search > sbi->max_victim_search)
0284         p->max_search = sbi->max_victim_search;
0285 
0286     /* let's select beginning hot/small space first in no_heap mode*/
0287     if (f2fs_need_rand_seg(sbi))
0288         p->offset = prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
0289     else if (test_opt(sbi, NOHEAP) &&
0290         (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
0291         p->offset = 0;
0292     else
0293         p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
0294 }
0295 
0296 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
0297                 struct victim_sel_policy *p)
0298 {
0299     /* SSR allocates in a segment unit */
0300     if (p->alloc_mode == SSR)
0301         return sbi->blocks_per_seg;
0302     else if (p->alloc_mode == AT_SSR)
0303         return UINT_MAX;
0304 
0305     /* LFS */
0306     if (p->gc_mode == GC_GREEDY)
0307         return 2 * sbi->blocks_per_seg * p->ofs_unit;
0308     else if (p->gc_mode == GC_CB)
0309         return UINT_MAX;
0310     else if (p->gc_mode == GC_AT)
0311         return UINT_MAX;
0312     else /* No other gc_mode */
0313         return 0;
0314 }
0315 
0316 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
0317 {
0318     struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
0319     unsigned int secno;
0320 
0321     /*
0322      * If the gc_type is FG_GC, we can select victim segments
0323      * selected by background GC before.
0324      * Those segments guarantee they have small valid blocks.
0325      */
0326     for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
0327         if (sec_usage_check(sbi, secno))
0328             continue;
0329         clear_bit(secno, dirty_i->victim_secmap);
0330         return GET_SEG_FROM_SEC(sbi, secno);
0331     }
0332     return NULL_SEGNO;
0333 }
0334 
0335 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
0336 {
0337     struct sit_info *sit_i = SIT_I(sbi);
0338     unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
0339     unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
0340     unsigned long long mtime = 0;
0341     unsigned int vblocks;
0342     unsigned char age = 0;
0343     unsigned char u;
0344     unsigned int i;
0345     unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
0346 
0347     for (i = 0; i < usable_segs_per_sec; i++)
0348         mtime += get_seg_entry(sbi, start + i)->mtime;
0349     vblocks = get_valid_blocks(sbi, segno, true);
0350 
0351     mtime = div_u64(mtime, usable_segs_per_sec);
0352     vblocks = div_u64(vblocks, usable_segs_per_sec);
0353 
0354     u = (vblocks * 100) >> sbi->log_blocks_per_seg;
0355 
0356     /* Handle if the system time has changed by the user */
0357     if (mtime < sit_i->min_mtime)
0358         sit_i->min_mtime = mtime;
0359     if (mtime > sit_i->max_mtime)
0360         sit_i->max_mtime = mtime;
0361     if (sit_i->max_mtime != sit_i->min_mtime)
0362         age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
0363                 sit_i->max_mtime - sit_i->min_mtime);
0364 
0365     return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
0366 }
0367 
0368 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
0369             unsigned int segno, struct victim_sel_policy *p)
0370 {
0371     if (p->alloc_mode == SSR)
0372         return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
0373 
0374     /* alloc_mode == LFS */
0375     if (p->gc_mode == GC_GREEDY)
0376         return get_valid_blocks(sbi, segno, true);
0377     else if (p->gc_mode == GC_CB)
0378         return get_cb_cost(sbi, segno);
0379 
0380     f2fs_bug_on(sbi, 1);
0381     return 0;
0382 }
0383 
0384 static unsigned int count_bits(const unsigned long *addr,
0385                 unsigned int offset, unsigned int len)
0386 {
0387     unsigned int end = offset + len, sum = 0;
0388 
0389     while (offset < end) {
0390         if (test_bit(offset++, addr))
0391             ++sum;
0392     }
0393     return sum;
0394 }
0395 
0396 static struct victim_entry *attach_victim_entry(struct f2fs_sb_info *sbi,
0397                 unsigned long long mtime, unsigned int segno,
0398                 struct rb_node *parent, struct rb_node **p,
0399                 bool left_most)
0400 {
0401     struct atgc_management *am = &sbi->am;
0402     struct victim_entry *ve;
0403 
0404     ve =  f2fs_kmem_cache_alloc(victim_entry_slab,
0405                 GFP_NOFS, true, NULL);
0406 
0407     ve->mtime = mtime;
0408     ve->segno = segno;
0409 
0410     rb_link_node(&ve->rb_node, parent, p);
0411     rb_insert_color_cached(&ve->rb_node, &am->root, left_most);
0412 
0413     list_add_tail(&ve->list, &am->victim_list);
0414 
0415     am->victim_count++;
0416 
0417     return ve;
0418 }
0419 
0420 static void insert_victim_entry(struct f2fs_sb_info *sbi,
0421                 unsigned long long mtime, unsigned int segno)
0422 {
0423     struct atgc_management *am = &sbi->am;
0424     struct rb_node **p;
0425     struct rb_node *parent = NULL;
0426     bool left_most = true;
0427 
0428     p = f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, mtime, &left_most);
0429     attach_victim_entry(sbi, mtime, segno, parent, p, left_most);
0430 }
0431 
0432 static void add_victim_entry(struct f2fs_sb_info *sbi,
0433                 struct victim_sel_policy *p, unsigned int segno)
0434 {
0435     struct sit_info *sit_i = SIT_I(sbi);
0436     unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
0437     unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
0438     unsigned long long mtime = 0;
0439     unsigned int i;
0440 
0441     if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
0442         if (p->gc_mode == GC_AT &&
0443             get_valid_blocks(sbi, segno, true) == 0)
0444             return;
0445     }
0446 
0447     for (i = 0; i < sbi->segs_per_sec; i++)
0448         mtime += get_seg_entry(sbi, start + i)->mtime;
0449     mtime = div_u64(mtime, sbi->segs_per_sec);
0450 
0451     /* Handle if the system time has changed by the user */
0452     if (mtime < sit_i->min_mtime)
0453         sit_i->min_mtime = mtime;
0454     if (mtime > sit_i->max_mtime)
0455         sit_i->max_mtime = mtime;
0456     if (mtime < sit_i->dirty_min_mtime)
0457         sit_i->dirty_min_mtime = mtime;
0458     if (mtime > sit_i->dirty_max_mtime)
0459         sit_i->dirty_max_mtime = mtime;
0460 
0461     /* don't choose young section as candidate */
0462     if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
0463         return;
0464 
0465     insert_victim_entry(sbi, mtime, segno);
0466 }
0467 
0468 static struct rb_node *lookup_central_victim(struct f2fs_sb_info *sbi,
0469                         struct victim_sel_policy *p)
0470 {
0471     struct atgc_management *am = &sbi->am;
0472     struct rb_node *parent = NULL;
0473     bool left_most;
0474 
0475     f2fs_lookup_rb_tree_ext(sbi, &am->root, &parent, p->age, &left_most);
0476 
0477     return parent;
0478 }
0479 
0480 static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
0481                         struct victim_sel_policy *p)
0482 {
0483     struct sit_info *sit_i = SIT_I(sbi);
0484     struct atgc_management *am = &sbi->am;
0485     struct rb_root_cached *root = &am->root;
0486     struct rb_node *node;
0487     struct rb_entry *re;
0488     struct victim_entry *ve;
0489     unsigned long long total_time;
0490     unsigned long long age, u, accu;
0491     unsigned long long max_mtime = sit_i->dirty_max_mtime;
0492     unsigned long long min_mtime = sit_i->dirty_min_mtime;
0493     unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi);
0494     unsigned int vblocks;
0495     unsigned int dirty_threshold = max(am->max_candidate_count,
0496                     am->candidate_ratio *
0497                     am->victim_count / 100);
0498     unsigned int age_weight = am->age_weight;
0499     unsigned int cost;
0500     unsigned int iter = 0;
0501 
0502     if (max_mtime < min_mtime)
0503         return;
0504 
0505     max_mtime += 1;
0506     total_time = max_mtime - min_mtime;
0507 
0508     accu = div64_u64(ULLONG_MAX, total_time);
0509     accu = min_t(unsigned long long, div_u64(accu, 100),
0510                     DEFAULT_ACCURACY_CLASS);
0511 
0512     node = rb_first_cached(root);
0513 next:
0514     re = rb_entry_safe(node, struct rb_entry, rb_node);
0515     if (!re)
0516         return;
0517 
0518     ve = (struct victim_entry *)re;
0519 
0520     if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
0521         goto skip;
0522 
0523     /* age = 10000 * x% * 60 */
0524     age = div64_u64(accu * (max_mtime - ve->mtime), total_time) *
0525                                 age_weight;
0526 
0527     vblocks = get_valid_blocks(sbi, ve->segno, true);
0528     f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
0529 
0530     /* u = 10000 * x% * 40 */
0531     u = div64_u64(accu * (sec_blocks - vblocks), sec_blocks) *
0532                             (100 - age_weight);
0533 
0534     f2fs_bug_on(sbi, age + u >= UINT_MAX);
0535 
0536     cost = UINT_MAX - (age + u);
0537     iter++;
0538 
0539     if (cost < p->min_cost ||
0540             (cost == p->min_cost && age > p->oldest_age)) {
0541         p->min_cost = cost;
0542         p->oldest_age = age;
0543         p->min_segno = ve->segno;
0544     }
0545 skip:
0546     if (iter < dirty_threshold) {
0547         node = rb_next(node);
0548         goto next;
0549     }
0550 }
0551 
0552 /*
0553  * select candidates around source section in range of
0554  * [target - dirty_threshold, target + dirty_threshold]
0555  */
0556 static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
0557                         struct victim_sel_policy *p)
0558 {
0559     struct sit_info *sit_i = SIT_I(sbi);
0560     struct atgc_management *am = &sbi->am;
0561     struct rb_node *node;
0562     struct rb_entry *re;
0563     struct victim_entry *ve;
0564     unsigned long long age;
0565     unsigned long long max_mtime = sit_i->dirty_max_mtime;
0566     unsigned long long min_mtime = sit_i->dirty_min_mtime;
0567     unsigned int seg_blocks = sbi->blocks_per_seg;
0568     unsigned int vblocks;
0569     unsigned int dirty_threshold = max(am->max_candidate_count,
0570                     am->candidate_ratio *
0571                     am->victim_count / 100);
0572     unsigned int cost;
0573     unsigned int iter = 0;
0574     int stage = 0;
0575 
0576     if (max_mtime < min_mtime)
0577         return;
0578     max_mtime += 1;
0579 next_stage:
0580     node = lookup_central_victim(sbi, p);
0581 next_node:
0582     re = rb_entry_safe(node, struct rb_entry, rb_node);
0583     if (!re) {
0584         if (stage == 0)
0585             goto skip_stage;
0586         return;
0587     }
0588 
0589     ve = (struct victim_entry *)re;
0590 
0591     if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
0592         goto skip_node;
0593 
0594     age = max_mtime - ve->mtime;
0595 
0596     vblocks = get_seg_entry(sbi, ve->segno)->ckpt_valid_blocks;
0597     f2fs_bug_on(sbi, !vblocks);
0598 
0599     /* rare case */
0600     if (vblocks == seg_blocks)
0601         goto skip_node;
0602 
0603     iter++;
0604 
0605     age = max_mtime - abs(p->age - age);
0606     cost = UINT_MAX - vblocks;
0607 
0608     if (cost < p->min_cost ||
0609             (cost == p->min_cost && age > p->oldest_age)) {
0610         p->min_cost = cost;
0611         p->oldest_age = age;
0612         p->min_segno = ve->segno;
0613     }
0614 skip_node:
0615     if (iter < dirty_threshold) {
0616         if (stage == 0)
0617             node = rb_prev(node);
0618         else if (stage == 1)
0619             node = rb_next(node);
0620         goto next_node;
0621     }
0622 skip_stage:
0623     if (stage < 1) {
0624         stage++;
0625         iter = 0;
0626         goto next_stage;
0627     }
0628 }
0629 static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
0630                         struct victim_sel_policy *p)
0631 {
0632     f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
0633                         &sbi->am.root, true));
0634 
0635     if (p->gc_mode == GC_AT)
0636         atgc_lookup_victim(sbi, p);
0637     else if (p->alloc_mode == AT_SSR)
0638         atssr_lookup_victim(sbi, p);
0639     else
0640         f2fs_bug_on(sbi, 1);
0641 }
0642 
0643 static void release_victim_entry(struct f2fs_sb_info *sbi)
0644 {
0645     struct atgc_management *am = &sbi->am;
0646     struct victim_entry *ve, *tmp;
0647 
0648     list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
0649         list_del(&ve->list);
0650         kmem_cache_free(victim_entry_slab, ve);
0651         am->victim_count--;
0652     }
0653 
0654     am->root = RB_ROOT_CACHED;
0655 
0656     f2fs_bug_on(sbi, am->victim_count);
0657     f2fs_bug_on(sbi, !list_empty(&am->victim_list));
0658 }
0659 
0660 static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
0661 {
0662     struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
0663     unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
0664 
0665     if (!dirty_i->enable_pin_section)
0666         return false;
0667     if (!test_and_set_bit(secno, dirty_i->pinned_secmap))
0668         dirty_i->pinned_secmap_cnt++;
0669     return true;
0670 }
0671 
0672 static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
0673 {
0674     return dirty_i->pinned_secmap_cnt;
0675 }
0676 
0677 static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
0678                         unsigned int secno)
0679 {
0680     return dirty_i->enable_pin_section &&
0681         f2fs_pinned_section_exists(dirty_i) &&
0682         test_bit(secno, dirty_i->pinned_secmap);
0683 }
0684 
0685 static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
0686 {
0687     unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
0688 
0689     if (f2fs_pinned_section_exists(DIRTY_I(sbi))) {
0690         memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
0691         DIRTY_I(sbi)->pinned_secmap_cnt = 0;
0692     }
0693     DIRTY_I(sbi)->enable_pin_section = enable;
0694 }
0695 
0696 static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
0697                             unsigned int segno)
0698 {
0699     if (!f2fs_is_pinned_file(inode))
0700         return 0;
0701     if (gc_type != FG_GC)
0702         return -EBUSY;
0703     if (!f2fs_pin_section(F2FS_I_SB(inode), segno))
0704         f2fs_pin_file_control(inode, true);
0705     return -EAGAIN;
0706 }
0707 
0708 /*
0709  * This function is called from two paths.
0710  * One is garbage collection and the other is SSR segment selection.
0711  * When it is called during GC, it just gets a victim segment
0712  * and it does not remove it from dirty seglist.
0713  * When it is called from SSR segment selection, it finds a segment
0714  * which has minimum valid blocks and removes it from dirty seglist.
0715  */
0716 static int get_victim_by_default(struct f2fs_sb_info *sbi,
0717             unsigned int *result, int gc_type, int type,
0718             char alloc_mode, unsigned long long age)
0719 {
0720     struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
0721     struct sit_info *sm = SIT_I(sbi);
0722     struct victim_sel_policy p;
0723     unsigned int secno, last_victim;
0724     unsigned int last_segment;
0725     unsigned int nsearched;
0726     bool is_atgc;
0727     int ret = 0;
0728 
0729     mutex_lock(&dirty_i->seglist_lock);
0730     last_segment = MAIN_SECS(sbi) * sbi->segs_per_sec;
0731 
0732     p.alloc_mode = alloc_mode;
0733     p.age = age;
0734     p.age_threshold = sbi->am.age_threshold;
0735 
0736 retry:
0737     select_policy(sbi, gc_type, type, &p);
0738     p.min_segno = NULL_SEGNO;
0739     p.oldest_age = 0;
0740     p.min_cost = get_max_cost(sbi, &p);
0741 
0742     is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
0743     nsearched = 0;
0744 
0745     if (is_atgc)
0746         SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
0747 
0748     if (*result != NULL_SEGNO) {
0749         if (!get_valid_blocks(sbi, *result, false)) {
0750             ret = -ENODATA;
0751             goto out;
0752         }
0753 
0754         if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
0755             ret = -EBUSY;
0756         else
0757             p.min_segno = *result;
0758         goto out;
0759     }
0760 
0761     ret = -ENODATA;
0762     if (p.max_search == 0)
0763         goto out;
0764 
0765     if (__is_large_section(sbi) && p.alloc_mode == LFS) {
0766         if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
0767             p.min_segno = sbi->next_victim_seg[BG_GC];
0768             *result = p.min_segno;
0769             sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
0770             goto got_result;
0771         }
0772         if (gc_type == FG_GC &&
0773                 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
0774             p.min_segno = sbi->next_victim_seg[FG_GC];
0775             *result = p.min_segno;
0776             sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
0777             goto got_result;
0778         }
0779     }
0780 
0781     last_victim = sm->last_victim[p.gc_mode];
0782     if (p.alloc_mode == LFS && gc_type == FG_GC) {
0783         p.min_segno = check_bg_victims(sbi);
0784         if (p.min_segno != NULL_SEGNO)
0785             goto got_it;
0786     }
0787 
0788     while (1) {
0789         unsigned long cost, *dirty_bitmap;
0790         unsigned int unit_no, segno;
0791 
0792         dirty_bitmap = p.dirty_bitmap;
0793         unit_no = find_next_bit(dirty_bitmap,
0794                 last_segment / p.ofs_unit,
0795                 p.offset / p.ofs_unit);
0796         segno = unit_no * p.ofs_unit;
0797         if (segno >= last_segment) {
0798             if (sm->last_victim[p.gc_mode]) {
0799                 last_segment =
0800                     sm->last_victim[p.gc_mode];
0801                 sm->last_victim[p.gc_mode] = 0;
0802                 p.offset = 0;
0803                 continue;
0804             }
0805             break;
0806         }
0807 
0808         p.offset = segno + p.ofs_unit;
0809         nsearched++;
0810 
0811 #ifdef CONFIG_F2FS_CHECK_FS
0812         /*
0813          * skip selecting the invalid segno (that is failed due to block
0814          * validity check failure during GC) to avoid endless GC loop in
0815          * such cases.
0816          */
0817         if (test_bit(segno, sm->invalid_segmap))
0818             goto next;
0819 #endif
0820 
0821         secno = GET_SEC_FROM_SEG(sbi, segno);
0822 
0823         if (sec_usage_check(sbi, secno))
0824             goto next;
0825 
0826         /* Don't touch checkpointed data */
0827         if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
0828             if (p.alloc_mode == LFS) {
0829                 /*
0830                  * LFS is set to find source section during GC.
0831                  * The victim should have no checkpointed data.
0832                  */
0833                 if (get_ckpt_valid_blocks(sbi, segno, true))
0834                     goto next;
0835             } else {
0836                 /*
0837                  * SSR | AT_SSR are set to find target segment
0838                  * for writes which can be full by checkpointed
0839                  * and newly written blocks.
0840                  */
0841                 if (!f2fs_segment_has_free_slot(sbi, segno))
0842                     goto next;
0843             }
0844         }
0845 
0846         if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
0847             goto next;
0848 
0849         if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
0850             goto next;
0851 
0852         if (is_atgc) {
0853             add_victim_entry(sbi, &p, segno);
0854             goto next;
0855         }
0856 
0857         cost = get_gc_cost(sbi, segno, &p);
0858 
0859         if (p.min_cost > cost) {
0860             p.min_segno = segno;
0861             p.min_cost = cost;
0862         }
0863 next:
0864         if (nsearched >= p.max_search) {
0865             if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
0866                 sm->last_victim[p.gc_mode] =
0867                     last_victim + p.ofs_unit;
0868             else
0869                 sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
0870             sm->last_victim[p.gc_mode] %=
0871                 (MAIN_SECS(sbi) * sbi->segs_per_sec);
0872             break;
0873         }
0874     }
0875 
0876     /* get victim for GC_AT/AT_SSR */
0877     if (is_atgc) {
0878         lookup_victim_by_age(sbi, &p);
0879         release_victim_entry(sbi);
0880     }
0881 
0882     if (is_atgc && p.min_segno == NULL_SEGNO &&
0883             sm->elapsed_time < p.age_threshold) {
0884         p.age_threshold = 0;
0885         goto retry;
0886     }
0887 
0888     if (p.min_segno != NULL_SEGNO) {
0889 got_it:
0890         *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
0891 got_result:
0892         if (p.alloc_mode == LFS) {
0893             secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
0894             if (gc_type == FG_GC)
0895                 sbi->cur_victim_sec = secno;
0896             else
0897                 set_bit(secno, dirty_i->victim_secmap);
0898         }
0899         ret = 0;
0900 
0901     }
0902 out:
0903     if (p.min_segno != NULL_SEGNO)
0904         trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
0905                 sbi->cur_victim_sec,
0906                 prefree_segments(sbi), free_segments(sbi));
0907     mutex_unlock(&dirty_i->seglist_lock);
0908 
0909     return ret;
0910 }
0911 
0912 static const struct victim_selection default_v_ops = {
0913     .get_victim = get_victim_by_default,
0914 };
0915 
0916 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
0917 {
0918     struct inode_entry *ie;
0919 
0920     ie = radix_tree_lookup(&gc_list->iroot, ino);
0921     if (ie)
0922         return ie->inode;
0923     return NULL;
0924 }
0925 
0926 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
0927 {
0928     struct inode_entry *new_ie;
0929 
0930     if (inode == find_gc_inode(gc_list, inode->i_ino)) {
0931         iput(inode);
0932         return;
0933     }
0934     new_ie = f2fs_kmem_cache_alloc(f2fs_inode_entry_slab,
0935                     GFP_NOFS, true, NULL);
0936     new_ie->inode = inode;
0937 
0938     f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
0939     list_add_tail(&new_ie->list, &gc_list->ilist);
0940 }
0941 
0942 static void put_gc_inode(struct gc_inode_list *gc_list)
0943 {
0944     struct inode_entry *ie, *next_ie;
0945 
0946     list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
0947         radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
0948         iput(ie->inode);
0949         list_del(&ie->list);
0950         kmem_cache_free(f2fs_inode_entry_slab, ie);
0951     }
0952 }
0953 
0954 static int check_valid_map(struct f2fs_sb_info *sbi,
0955                 unsigned int segno, int offset)
0956 {
0957     struct sit_info *sit_i = SIT_I(sbi);
0958     struct seg_entry *sentry;
0959     int ret;
0960 
0961     down_read(&sit_i->sentry_lock);
0962     sentry = get_seg_entry(sbi, segno);
0963     ret = f2fs_test_bit(offset, sentry->cur_valid_map);
0964     up_read(&sit_i->sentry_lock);
0965     return ret;
0966 }
0967 
0968 /*
0969  * This function compares node address got in summary with that in NAT.
0970  * On validity, copy that node with cold status, otherwise (invalid node)
0971  * ignore that.
0972  */
0973 static int gc_node_segment(struct f2fs_sb_info *sbi,
0974         struct f2fs_summary *sum, unsigned int segno, int gc_type)
0975 {
0976     struct f2fs_summary *entry;
0977     block_t start_addr;
0978     int off;
0979     int phase = 0;
0980     bool fggc = (gc_type == FG_GC);
0981     int submitted = 0;
0982     unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
0983 
0984     start_addr = START_BLOCK(sbi, segno);
0985 
0986 next_step:
0987     entry = sum;
0988 
0989     if (fggc && phase == 2)
0990         atomic_inc(&sbi->wb_sync_req[NODE]);
0991 
0992     for (off = 0; off < usable_blks_in_seg; off++, entry++) {
0993         nid_t nid = le32_to_cpu(entry->nid);
0994         struct page *node_page;
0995         struct node_info ni;
0996         int err;
0997 
0998         /* stop BG_GC if there is not enough free sections. */
0999         if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
1000             return submitted;
1001 
1002         if (check_valid_map(sbi, segno, off) == 0)
1003             continue;
1004 
1005         if (phase == 0) {
1006             f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1007                             META_NAT, true);
1008             continue;
1009         }
1010 
1011         if (phase == 1) {
1012             f2fs_ra_node_page(sbi, nid);
1013             continue;
1014         }
1015 
1016         /* phase == 2 */
1017         node_page = f2fs_get_node_page(sbi, nid);
1018         if (IS_ERR(node_page))
1019             continue;
1020 
1021         /* block may become invalid during f2fs_get_node_page */
1022         if (check_valid_map(sbi, segno, off) == 0) {
1023             f2fs_put_page(node_page, 1);
1024             continue;
1025         }
1026 
1027         if (f2fs_get_node_info(sbi, nid, &ni, false)) {
1028             f2fs_put_page(node_page, 1);
1029             continue;
1030         }
1031 
1032         if (ni.blk_addr != start_addr + off) {
1033             f2fs_put_page(node_page, 1);
1034             continue;
1035         }
1036 
1037         err = f2fs_move_node_page(node_page, gc_type);
1038         if (!err && gc_type == FG_GC)
1039             submitted++;
1040         stat_inc_node_blk_count(sbi, 1, gc_type);
1041     }
1042 
1043     if (++phase < 3)
1044         goto next_step;
1045 
1046     if (fggc)
1047         atomic_dec(&sbi->wb_sync_req[NODE]);
1048     return submitted;
1049 }
1050 
1051 /*
1052  * Calculate start block index indicating the given node offset.
1053  * Be careful, caller should give this node offset only indicating direct node
1054  * blocks. If any node offsets, which point the other types of node blocks such
1055  * as indirect or double indirect node blocks, are given, it must be a caller's
1056  * bug.
1057  */
1058 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1059 {
1060     unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1061     unsigned int bidx;
1062 
1063     if (node_ofs == 0)
1064         return 0;
1065 
1066     if (node_ofs <= 2) {
1067         bidx = node_ofs - 1;
1068     } else if (node_ofs <= indirect_blks) {
1069         int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1070 
1071         bidx = node_ofs - 2 - dec;
1072     } else {
1073         int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1074 
1075         bidx = node_ofs - 5 - dec;
1076     }
1077     return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1078 }
1079 
1080 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1081         struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1082 {
1083     struct page *node_page;
1084     nid_t nid;
1085     unsigned int ofs_in_node;
1086     block_t source_blkaddr;
1087 
1088     nid = le32_to_cpu(sum->nid);
1089     ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1090 
1091     node_page = f2fs_get_node_page(sbi, nid);
1092     if (IS_ERR(node_page))
1093         return false;
1094 
1095     if (f2fs_get_node_info(sbi, nid, dni, false)) {
1096         f2fs_put_page(node_page, 1);
1097         return false;
1098     }
1099 
1100     if (sum->version != dni->version) {
1101         f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1102               __func__);
1103         set_sbi_flag(sbi, SBI_NEED_FSCK);
1104     }
1105 
1106     if (f2fs_check_nid_range(sbi, dni->ino)) {
1107         f2fs_put_page(node_page, 1);
1108         return false;
1109     }
1110 
1111     *nofs = ofs_of_node(node_page);
1112     source_blkaddr = data_blkaddr(NULL, node_page, ofs_in_node);
1113     f2fs_put_page(node_page, 1);
1114 
1115     if (source_blkaddr != blkaddr) {
1116 #ifdef CONFIG_F2FS_CHECK_FS
1117         unsigned int segno = GET_SEGNO(sbi, blkaddr);
1118         unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1119 
1120         if (unlikely(check_valid_map(sbi, segno, offset))) {
1121             if (!test_and_set_bit(segno, SIT_I(sbi)->invalid_segmap)) {
1122                 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1123                      blkaddr, source_blkaddr, segno);
1124                 set_sbi_flag(sbi, SBI_NEED_FSCK);
1125             }
1126         }
1127 #endif
1128         return false;
1129     }
1130     return true;
1131 }
1132 
1133 static int ra_data_block(struct inode *inode, pgoff_t index)
1134 {
1135     struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1136     struct address_space *mapping = inode->i_mapping;
1137     struct dnode_of_data dn;
1138     struct page *page;
1139     struct extent_info ei = {0, 0, 0};
1140     struct f2fs_io_info fio = {
1141         .sbi = sbi,
1142         .ino = inode->i_ino,
1143         .type = DATA,
1144         .temp = COLD,
1145         .op = REQ_OP_READ,
1146         .op_flags = 0,
1147         .encrypted_page = NULL,
1148         .in_list = false,
1149         .retry = false,
1150     };
1151     int err;
1152 
1153     page = f2fs_grab_cache_page(mapping, index, true);
1154     if (!page)
1155         return -ENOMEM;
1156 
1157     if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1158         dn.data_blkaddr = ei.blk + index - ei.fofs;
1159         if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1160                         DATA_GENERIC_ENHANCE_READ))) {
1161             err = -EFSCORRUPTED;
1162             goto put_page;
1163         }
1164         goto got_it;
1165     }
1166 
1167     set_new_dnode(&dn, inode, NULL, NULL, 0);
1168     err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1169     if (err)
1170         goto put_page;
1171     f2fs_put_dnode(&dn);
1172 
1173     if (!__is_valid_data_blkaddr(dn.data_blkaddr)) {
1174         err = -ENOENT;
1175         goto put_page;
1176     }
1177     if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1178                         DATA_GENERIC_ENHANCE))) {
1179         err = -EFSCORRUPTED;
1180         goto put_page;
1181     }
1182 got_it:
1183     /* read page */
1184     fio.page = page;
1185     fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1186 
1187     /*
1188      * don't cache encrypted data into meta inode until previous dirty
1189      * data were writebacked to avoid racing between GC and flush.
1190      */
1191     f2fs_wait_on_page_writeback(page, DATA, true, true);
1192 
1193     f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1194 
1195     fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(sbi),
1196                     dn.data_blkaddr,
1197                     FGP_LOCK | FGP_CREAT, GFP_NOFS);
1198     if (!fio.encrypted_page) {
1199         err = -ENOMEM;
1200         goto put_page;
1201     }
1202 
1203     err = f2fs_submit_page_bio(&fio);
1204     if (err)
1205         goto put_encrypted_page;
1206     f2fs_put_page(fio.encrypted_page, 0);
1207     f2fs_put_page(page, 1);
1208 
1209     f2fs_update_iostat(sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1210     f2fs_update_iostat(sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1211 
1212     return 0;
1213 put_encrypted_page:
1214     f2fs_put_page(fio.encrypted_page, 1);
1215 put_page:
1216     f2fs_put_page(page, 1);
1217     return err;
1218 }
1219 
1220 /*
1221  * Move data block via META_MAPPING while keeping locked data page.
1222  * This can be used to move blocks, aka LBAs, directly on disk.
1223  */
1224 static int move_data_block(struct inode *inode, block_t bidx,
1225                 int gc_type, unsigned int segno, int off)
1226 {
1227     struct f2fs_io_info fio = {
1228         .sbi = F2FS_I_SB(inode),
1229         .ino = inode->i_ino,
1230         .type = DATA,
1231         .temp = COLD,
1232         .op = REQ_OP_READ,
1233         .op_flags = 0,
1234         .encrypted_page = NULL,
1235         .in_list = false,
1236         .retry = false,
1237     };
1238     struct dnode_of_data dn;
1239     struct f2fs_summary sum;
1240     struct node_info ni;
1241     struct page *page, *mpage;
1242     block_t newaddr;
1243     int err = 0;
1244     bool lfs_mode = f2fs_lfs_mode(fio.sbi);
1245     int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1246                 (fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1247                 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1248 
1249     /* do not read out */
1250     page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
1251     if (!page)
1252         return -ENOMEM;
1253 
1254     if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1255         err = -ENOENT;
1256         goto out;
1257     }
1258 
1259     err = f2fs_gc_pinned_control(inode, gc_type, segno);
1260     if (err)
1261         goto out;
1262 
1263     set_new_dnode(&dn, inode, NULL, NULL, 0);
1264     err = f2fs_get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
1265     if (err)
1266         goto out;
1267 
1268     if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1269         ClearPageUptodate(page);
1270         err = -ENOENT;
1271         goto put_out;
1272     }
1273 
1274     /*
1275      * don't cache encrypted data into meta inode until previous dirty
1276      * data were writebacked to avoid racing between GC and flush.
1277      */
1278     f2fs_wait_on_page_writeback(page, DATA, true, true);
1279 
1280     f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
1281 
1282     err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1283     if (err)
1284         goto put_out;
1285 
1286     /* read page */
1287     fio.page = page;
1288     fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1289 
1290     if (lfs_mode)
1291         f2fs_down_write(&fio.sbi->io_order_lock);
1292 
1293     mpage = f2fs_grab_cache_page(META_MAPPING(fio.sbi),
1294                     fio.old_blkaddr, false);
1295     if (!mpage) {
1296         err = -ENOMEM;
1297         goto up_out;
1298     }
1299 
1300     fio.encrypted_page = mpage;
1301 
1302     /* read source block in mpage */
1303     if (!PageUptodate(mpage)) {
1304         err = f2fs_submit_page_bio(&fio);
1305         if (err) {
1306             f2fs_put_page(mpage, 1);
1307             goto up_out;
1308         }
1309 
1310         f2fs_update_iostat(fio.sbi, FS_DATA_READ_IO, F2FS_BLKSIZE);
1311         f2fs_update_iostat(fio.sbi, FS_GDATA_READ_IO, F2FS_BLKSIZE);
1312 
1313         lock_page(mpage);
1314         if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1315                         !PageUptodate(mpage))) {
1316             err = -EIO;
1317             f2fs_put_page(mpage, 1);
1318             goto up_out;
1319         }
1320     }
1321 
1322     set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
1323 
1324     /* allocate block address */
1325     f2fs_allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
1326                 &sum, type, NULL);
1327 
1328     fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
1329                 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1330     if (!fio.encrypted_page) {
1331         err = -ENOMEM;
1332         f2fs_put_page(mpage, 1);
1333         goto recover_block;
1334     }
1335 
1336     /* write target block */
1337     f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true, true);
1338     memcpy(page_address(fio.encrypted_page),
1339                 page_address(mpage), PAGE_SIZE);
1340     f2fs_put_page(mpage, 1);
1341     invalidate_mapping_pages(META_MAPPING(fio.sbi),
1342                 fio.old_blkaddr, fio.old_blkaddr);
1343     f2fs_invalidate_compress_page(fio.sbi, fio.old_blkaddr);
1344 
1345     set_page_dirty(fio.encrypted_page);
1346     if (clear_page_dirty_for_io(fio.encrypted_page))
1347         dec_page_count(fio.sbi, F2FS_DIRTY_META);
1348 
1349     set_page_writeback(fio.encrypted_page);
1350     ClearPageError(page);
1351 
1352     fio.op = REQ_OP_WRITE;
1353     fio.op_flags = REQ_SYNC;
1354     fio.new_blkaddr = newaddr;
1355     f2fs_submit_page_write(&fio);
1356     if (fio.retry) {
1357         err = -EAGAIN;
1358         if (PageWriteback(fio.encrypted_page))
1359             end_page_writeback(fio.encrypted_page);
1360         goto put_page_out;
1361     }
1362 
1363     f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE);
1364 
1365     f2fs_update_data_blkaddr(&dn, newaddr);
1366     set_inode_flag(inode, FI_APPEND_WRITE);
1367     if (page->index == 0)
1368         set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1369 put_page_out:
1370     f2fs_put_page(fio.encrypted_page, 1);
1371 recover_block:
1372     if (err)
1373         f2fs_do_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
1374                             true, true, true);
1375 up_out:
1376     if (lfs_mode)
1377         f2fs_up_write(&fio.sbi->io_order_lock);
1378 put_out:
1379     f2fs_put_dnode(&dn);
1380 out:
1381     f2fs_put_page(page, 1);
1382     return err;
1383 }
1384 
1385 static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1386                             unsigned int segno, int off)
1387 {
1388     struct page *page;
1389     int err = 0;
1390 
1391     page = f2fs_get_lock_data_page(inode, bidx, true);
1392     if (IS_ERR(page))
1393         return PTR_ERR(page);
1394 
1395     if (!check_valid_map(F2FS_I_SB(inode), segno, off)) {
1396         err = -ENOENT;
1397         goto out;
1398     }
1399 
1400     err = f2fs_gc_pinned_control(inode, gc_type, segno);
1401     if (err)
1402         goto out;
1403 
1404     if (gc_type == BG_GC) {
1405         if (PageWriteback(page)) {
1406             err = -EAGAIN;
1407             goto out;
1408         }
1409         set_page_dirty(page);
1410         set_page_private_gcing(page);
1411     } else {
1412         struct f2fs_io_info fio = {
1413             .sbi = F2FS_I_SB(inode),
1414             .ino = inode->i_ino,
1415             .type = DATA,
1416             .temp = COLD,
1417             .op = REQ_OP_WRITE,
1418             .op_flags = REQ_SYNC,
1419             .old_blkaddr = NULL_ADDR,
1420             .page = page,
1421             .encrypted_page = NULL,
1422             .need_lock = LOCK_REQ,
1423             .io_type = FS_GC_DATA_IO,
1424         };
1425         bool is_dirty = PageDirty(page);
1426 
1427 retry:
1428         f2fs_wait_on_page_writeback(page, DATA, true, true);
1429 
1430         set_page_dirty(page);
1431         if (clear_page_dirty_for_io(page)) {
1432             inode_dec_dirty_pages(inode);
1433             f2fs_remove_dirty_inode(inode);
1434         }
1435 
1436         set_page_private_gcing(page);
1437 
1438         err = f2fs_do_write_data_page(&fio);
1439         if (err) {
1440             clear_page_private_gcing(page);
1441             if (err == -ENOMEM) {
1442                 memalloc_retry_wait(GFP_NOFS);
1443                 goto retry;
1444             }
1445             if (is_dirty)
1446                 set_page_dirty(page);
1447         }
1448     }
1449 out:
1450     f2fs_put_page(page, 1);
1451     return err;
1452 }
1453 
1454 /*
1455  * This function tries to get parent node of victim data block, and identifies
1456  * data block validity. If the block is valid, copy that with cold status and
1457  * modify parent node.
1458  * If the parent node is not valid or the data block address is different,
1459  * the victim data block is ignored.
1460  */
1461 static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1462         struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1463         bool force_migrate)
1464 {
1465     struct super_block *sb = sbi->sb;
1466     struct f2fs_summary *entry;
1467     block_t start_addr;
1468     int off;
1469     int phase = 0;
1470     int submitted = 0;
1471     unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1472 
1473     start_addr = START_BLOCK(sbi, segno);
1474 
1475 next_step:
1476     entry = sum;
1477 
1478     for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1479         struct page *data_page;
1480         struct inode *inode;
1481         struct node_info dni; /* dnode info for the data */
1482         unsigned int ofs_in_node, nofs;
1483         block_t start_bidx;
1484         nid_t nid = le32_to_cpu(entry->nid);
1485 
1486         /*
1487          * stop BG_GC if there is not enough free sections.
1488          * Or, stop GC if the segment becomes fully valid caused by
1489          * race condition along with SSR block allocation.
1490          */
1491         if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) ||
1492             (!force_migrate && get_valid_blocks(sbi, segno, true) ==
1493                             CAP_BLKS_PER_SEC(sbi)))
1494             return submitted;
1495 
1496         if (check_valid_map(sbi, segno, off) == 0)
1497             continue;
1498 
1499         if (phase == 0) {
1500             f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
1501                             META_NAT, true);
1502             continue;
1503         }
1504 
1505         if (phase == 1) {
1506             f2fs_ra_node_page(sbi, nid);
1507             continue;
1508         }
1509 
1510         /* Get an inode by ino with checking validity */
1511         if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
1512             continue;
1513 
1514         if (phase == 2) {
1515             f2fs_ra_node_page(sbi, dni.ino);
1516             continue;
1517         }
1518 
1519         ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1520 
1521         if (phase == 3) {
1522             int err;
1523 
1524             inode = f2fs_iget(sb, dni.ino);
1525             if (IS_ERR(inode) || is_bad_inode(inode) ||
1526                     special_file(inode->i_mode))
1527                 continue;
1528 
1529             err = f2fs_gc_pinned_control(inode, gc_type, segno);
1530             if (err == -EAGAIN) {
1531                 iput(inode);
1532                 return submitted;
1533             }
1534 
1535             if (!f2fs_down_write_trylock(
1536                 &F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1537                 iput(inode);
1538                 sbi->skipped_gc_rwsem++;
1539                 continue;
1540             }
1541 
1542             start_bidx = f2fs_start_bidx_of_node(nofs, inode) +
1543                                 ofs_in_node;
1544 
1545             if (f2fs_post_read_required(inode)) {
1546                 int err = ra_data_block(inode, start_bidx);
1547 
1548                 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1549                 if (err) {
1550                     iput(inode);
1551                     continue;
1552                 }
1553                 add_gc_inode(gc_list, inode);
1554                 continue;
1555             }
1556 
1557             data_page = f2fs_get_read_data_page(inode,
1558                         start_bidx, REQ_RAHEAD, true);
1559             f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1560             if (IS_ERR(data_page)) {
1561                 iput(inode);
1562                 continue;
1563             }
1564 
1565             f2fs_put_page(data_page, 0);
1566             add_gc_inode(gc_list, inode);
1567             continue;
1568         }
1569 
1570         /* phase 4 */
1571         inode = find_gc_inode(gc_list, dni.ino);
1572         if (inode) {
1573             struct f2fs_inode_info *fi = F2FS_I(inode);
1574             bool locked = false;
1575             int err;
1576 
1577             if (S_ISREG(inode->i_mode)) {
1578                 if (!f2fs_down_write_trylock(&fi->i_gc_rwsem[READ])) {
1579                     sbi->skipped_gc_rwsem++;
1580                     continue;
1581                 }
1582                 if (!f2fs_down_write_trylock(
1583                         &fi->i_gc_rwsem[WRITE])) {
1584                     sbi->skipped_gc_rwsem++;
1585                     f2fs_up_write(&fi->i_gc_rwsem[READ]);
1586                     continue;
1587                 }
1588                 locked = true;
1589 
1590                 /* wait for all inflight aio data */
1591                 inode_dio_wait(inode);
1592             }
1593 
1594             start_bidx = f2fs_start_bidx_of_node(nofs, inode)
1595                                 + ofs_in_node;
1596             if (f2fs_post_read_required(inode))
1597                 err = move_data_block(inode, start_bidx,
1598                             gc_type, segno, off);
1599             else
1600                 err = move_data_page(inode, start_bidx, gc_type,
1601                                 segno, off);
1602 
1603             if (!err && (gc_type == FG_GC ||
1604                     f2fs_post_read_required(inode)))
1605                 submitted++;
1606 
1607             if (locked) {
1608                 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1609                 f2fs_up_write(&fi->i_gc_rwsem[READ]);
1610             }
1611 
1612             stat_inc_data_blk_count(sbi, 1, gc_type);
1613         }
1614     }
1615 
1616     if (++phase < 5)
1617         goto next_step;
1618 
1619     return submitted;
1620 }
1621 
1622 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1623             int gc_type)
1624 {
1625     struct sit_info *sit_i = SIT_I(sbi);
1626     int ret;
1627 
1628     down_write(&sit_i->sentry_lock);
1629     ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
1630                           NO_CHECK_TYPE, LFS, 0);
1631     up_write(&sit_i->sentry_lock);
1632     return ret;
1633 }
1634 
1635 static int do_garbage_collect(struct f2fs_sb_info *sbi,
1636                 unsigned int start_segno,
1637                 struct gc_inode_list *gc_list, int gc_type,
1638                 bool force_migrate)
1639 {
1640     struct page *sum_page;
1641     struct f2fs_summary_block *sum;
1642     struct blk_plug plug;
1643     unsigned int segno = start_segno;
1644     unsigned int end_segno = start_segno + sbi->segs_per_sec;
1645     int seg_freed = 0, migrated = 0;
1646     unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1647                         SUM_TYPE_DATA : SUM_TYPE_NODE;
1648     int submitted = 0;
1649 
1650     if (__is_large_section(sbi))
1651         end_segno = rounddown(end_segno, sbi->segs_per_sec);
1652 
1653     /*
1654      * zone-capacity can be less than zone-size in zoned devices,
1655      * resulting in less than expected usable segments in the zone,
1656      * calculate the end segno in the zone which can be garbage collected
1657      */
1658     if (f2fs_sb_has_blkzoned(sbi))
1659         end_segno -= sbi->segs_per_sec -
1660                     f2fs_usable_segs_in_sec(sbi, segno);
1661 
1662     sanity_check_seg_type(sbi, get_seg_entry(sbi, segno)->type);
1663 
1664     /* readahead multi ssa blocks those have contiguous address */
1665     if (__is_large_section(sbi))
1666         f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1667                     end_segno - segno, META_SSA, true);
1668 
1669     /* reference all summary page */
1670     while (segno < end_segno) {
1671         sum_page = f2fs_get_sum_page(sbi, segno++);
1672         if (IS_ERR(sum_page)) {
1673             int err = PTR_ERR(sum_page);
1674 
1675             end_segno = segno - 1;
1676             for (segno = start_segno; segno < end_segno; segno++) {
1677                 sum_page = find_get_page(META_MAPPING(sbi),
1678                         GET_SUM_BLOCK(sbi, segno));
1679                 f2fs_put_page(sum_page, 0);
1680                 f2fs_put_page(sum_page, 0);
1681             }
1682             return err;
1683         }
1684         unlock_page(sum_page);
1685     }
1686 
1687     blk_start_plug(&plug);
1688 
1689     for (segno = start_segno; segno < end_segno; segno++) {
1690 
1691         /* find segment summary of victim */
1692         sum_page = find_get_page(META_MAPPING(sbi),
1693                     GET_SUM_BLOCK(sbi, segno));
1694         f2fs_put_page(sum_page, 0);
1695 
1696         if (get_valid_blocks(sbi, segno, false) == 0)
1697             goto freed;
1698         if (gc_type == BG_GC && __is_large_section(sbi) &&
1699                 migrated >= sbi->migration_granularity)
1700             goto skip;
1701         if (!PageUptodate(sum_page) || unlikely(f2fs_cp_error(sbi)))
1702             goto skip;
1703 
1704         sum = page_address(sum_page);
1705         if (type != GET_SUM_TYPE((&sum->footer))) {
1706             f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1707                  segno, type, GET_SUM_TYPE((&sum->footer)));
1708             set_sbi_flag(sbi, SBI_NEED_FSCK);
1709             f2fs_stop_checkpoint(sbi, false);
1710             goto skip;
1711         }
1712 
1713         /*
1714          * this is to avoid deadlock:
1715          * - lock_page(sum_page)         - f2fs_replace_block
1716          *  - check_valid_map()            - down_write(sentry_lock)
1717          *   - down_read(sentry_lock)     - change_curseg()
1718          *                                  - lock_page(sum_page)
1719          */
1720         if (type == SUM_TYPE_NODE)
1721             submitted += gc_node_segment(sbi, sum->entries, segno,
1722                                 gc_type);
1723         else
1724             submitted += gc_data_segment(sbi, sum->entries, gc_list,
1725                             segno, gc_type,
1726                             force_migrate);
1727 
1728         stat_inc_seg_count(sbi, type, gc_type);
1729         sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1730         migrated++;
1731 
1732 freed:
1733         if (gc_type == FG_GC &&
1734                 get_valid_blocks(sbi, segno, false) == 0)
1735             seg_freed++;
1736 
1737         if (__is_large_section(sbi) && segno + 1 < end_segno)
1738             sbi->next_victim_seg[gc_type] = segno + 1;
1739 skip:
1740         f2fs_put_page(sum_page, 0);
1741     }
1742 
1743     if (submitted)
1744         f2fs_submit_merged_write(sbi,
1745                 (type == SUM_TYPE_NODE) ? NODE : DATA);
1746 
1747     blk_finish_plug(&plug);
1748 
1749     stat_inc_call_count(sbi->stat_info);
1750 
1751     return seg_freed;
1752 }
1753 
1754 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control)
1755 {
1756     int gc_type = gc_control->init_gc_type;
1757     unsigned int segno = gc_control->victim_segno;
1758     int sec_freed = 0, seg_freed = 0, total_freed = 0;
1759     int ret = 0;
1760     struct cp_control cpc;
1761     struct gc_inode_list gc_list = {
1762         .ilist = LIST_HEAD_INIT(gc_list.ilist),
1763         .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1764     };
1765     unsigned int skipped_round = 0, round = 0;
1766 
1767     trace_f2fs_gc_begin(sbi->sb, gc_type, gc_control->no_bg_gc,
1768                 gc_control->nr_free_secs,
1769                 get_pages(sbi, F2FS_DIRTY_NODES),
1770                 get_pages(sbi, F2FS_DIRTY_DENTS),
1771                 get_pages(sbi, F2FS_DIRTY_IMETA),
1772                 free_sections(sbi),
1773                 free_segments(sbi),
1774                 reserved_segments(sbi),
1775                 prefree_segments(sbi));
1776 
1777     cpc.reason = __get_cp_reason(sbi);
1778     sbi->skipped_gc_rwsem = 0;
1779 gc_more:
1780     if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1781         ret = -EINVAL;
1782         goto stop;
1783     }
1784     if (unlikely(f2fs_cp_error(sbi))) {
1785         ret = -EIO;
1786         goto stop;
1787     }
1788 
1789     if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1790         /*
1791          * For example, if there are many prefree_segments below given
1792          * threshold, we can make them free by checkpoint. Then, we
1793          * secure free segments which doesn't need fggc any more.
1794          */
1795         if (prefree_segments(sbi)) {
1796             ret = f2fs_write_checkpoint(sbi, &cpc);
1797             if (ret)
1798                 goto stop;
1799         }
1800         if (has_not_enough_free_secs(sbi, 0, 0))
1801             gc_type = FG_GC;
1802     }
1803 
1804     /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1805     if (gc_type == BG_GC && gc_control->no_bg_gc) {
1806         ret = -EINVAL;
1807         goto stop;
1808     }
1809 retry:
1810     ret = __get_victim(sbi, &segno, gc_type);
1811     if (ret) {
1812         /* allow to search victim from sections has pinned data */
1813         if (ret == -ENODATA && gc_type == FG_GC &&
1814                 f2fs_pinned_section_exists(DIRTY_I(sbi))) {
1815             f2fs_unpin_all_sections(sbi, false);
1816             goto retry;
1817         }
1818         goto stop;
1819     }
1820 
1821     seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type,
1822                 gc_control->should_migrate_blocks);
1823     total_freed += seg_freed;
1824 
1825     if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno))
1826         sec_freed++;
1827 
1828     if (gc_type == FG_GC)
1829         sbi->cur_victim_sec = NULL_SEGNO;
1830 
1831     if (gc_control->init_gc_type == FG_GC ||
1832         !has_not_enough_free_secs(sbi,
1833                 (gc_type == FG_GC) ? sec_freed : 0, 0)) {
1834         if (gc_type == FG_GC && sec_freed < gc_control->nr_free_secs)
1835             goto go_gc_more;
1836         goto stop;
1837     }
1838 
1839     /* FG_GC stops GC by skip_count */
1840     if (gc_type == FG_GC) {
1841         if (sbi->skipped_gc_rwsem)
1842             skipped_round++;
1843         round++;
1844         if (skipped_round > MAX_SKIP_GC_COUNT &&
1845                 skipped_round * 2 >= round) {
1846             ret = f2fs_write_checkpoint(sbi, &cpc);
1847             goto stop;
1848         }
1849     }
1850 
1851     /* Write checkpoint to reclaim prefree segments */
1852     if (free_sections(sbi) < NR_CURSEG_PERSIST_TYPE &&
1853                 prefree_segments(sbi)) {
1854         ret = f2fs_write_checkpoint(sbi, &cpc);
1855         if (ret)
1856             goto stop;
1857     }
1858 go_gc_more:
1859     segno = NULL_SEGNO;
1860     goto gc_more;
1861 
1862 stop:
1863     SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1864     SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno;
1865 
1866     if (gc_type == FG_GC)
1867         f2fs_unpin_all_sections(sbi, true);
1868 
1869     trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1870                 get_pages(sbi, F2FS_DIRTY_NODES),
1871                 get_pages(sbi, F2FS_DIRTY_DENTS),
1872                 get_pages(sbi, F2FS_DIRTY_IMETA),
1873                 free_sections(sbi),
1874                 free_segments(sbi),
1875                 reserved_segments(sbi),
1876                 prefree_segments(sbi));
1877 
1878     f2fs_up_write(&sbi->gc_lock);
1879 
1880     put_gc_inode(&gc_list);
1881 
1882     if (gc_control->err_gc_skipped && !ret)
1883         ret = sec_freed ? 0 : -EAGAIN;
1884     return ret;
1885 }
1886 
1887 int __init f2fs_create_garbage_collection_cache(void)
1888 {
1889     victim_entry_slab = f2fs_kmem_cache_create("f2fs_victim_entry",
1890                     sizeof(struct victim_entry));
1891     if (!victim_entry_slab)
1892         return -ENOMEM;
1893     return 0;
1894 }
1895 
1896 void f2fs_destroy_garbage_collection_cache(void)
1897 {
1898     kmem_cache_destroy(victim_entry_slab);
1899 }
1900 
1901 static void init_atgc_management(struct f2fs_sb_info *sbi)
1902 {
1903     struct atgc_management *am = &sbi->am;
1904 
1905     if (test_opt(sbi, ATGC) &&
1906         SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1907         am->atgc_enabled = true;
1908 
1909     am->root = RB_ROOT_CACHED;
1910     INIT_LIST_HEAD(&am->victim_list);
1911     am->victim_count = 0;
1912 
1913     am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1914     am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1915     am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1916     am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1917 }
1918 
1919 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1920 {
1921     DIRTY_I(sbi)->v_ops = &default_v_ops;
1922 
1923     sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1924 
1925     /* give warm/cold data area from slower device */
1926     if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1927         SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1928                 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1929 
1930     init_atgc_management(sbi);
1931 }
1932 
1933 static int free_segment_range(struct f2fs_sb_info *sbi,
1934                 unsigned int secs, bool gc_only)
1935 {
1936     unsigned int segno, next_inuse, start, end;
1937     struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
1938     int gc_mode, gc_type;
1939     int err = 0;
1940     int type;
1941 
1942     /* Force block allocation for GC */
1943     MAIN_SECS(sbi) -= secs;
1944     start = MAIN_SECS(sbi) * sbi->segs_per_sec;
1945     end = MAIN_SEGS(sbi) - 1;
1946 
1947     mutex_lock(&DIRTY_I(sbi)->seglist_lock);
1948     for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
1949         if (SIT_I(sbi)->last_victim[gc_mode] >= start)
1950             SIT_I(sbi)->last_victim[gc_mode] = 0;
1951 
1952     for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
1953         if (sbi->next_victim_seg[gc_type] >= start)
1954             sbi->next_victim_seg[gc_type] = NULL_SEGNO;
1955     mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
1956 
1957     /* Move out cursegs from the target range */
1958     for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++)
1959         f2fs_allocate_segment_for_resize(sbi, type, start, end);
1960 
1961     /* do GC to move out valid blocks in the range */
1962     for (segno = start; segno <= end; segno += sbi->segs_per_sec) {
1963         struct gc_inode_list gc_list = {
1964             .ilist = LIST_HEAD_INIT(gc_list.ilist),
1965             .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1966         };
1967 
1968         do_garbage_collect(sbi, segno, &gc_list, FG_GC, true);
1969         put_gc_inode(&gc_list);
1970 
1971         if (!gc_only && get_valid_blocks(sbi, segno, true)) {
1972             err = -EAGAIN;
1973             goto out;
1974         }
1975         if (fatal_signal_pending(current)) {
1976             err = -ERESTARTSYS;
1977             goto out;
1978         }
1979     }
1980     if (gc_only)
1981         goto out;
1982 
1983     err = f2fs_write_checkpoint(sbi, &cpc);
1984     if (err)
1985         goto out;
1986 
1987     next_inuse = find_next_inuse(FREE_I(sbi), end + 1, start);
1988     if (next_inuse <= end) {
1989         f2fs_err(sbi, "segno %u should be free but still inuse!",
1990              next_inuse);
1991         f2fs_bug_on(sbi, 1);
1992     }
1993 out:
1994     MAIN_SECS(sbi) += secs;
1995     return err;
1996 }
1997 
1998 static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
1999 {
2000     struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2001     int section_count;
2002     int segment_count;
2003     int segment_count_main;
2004     long long block_count;
2005     int segs = secs * sbi->segs_per_sec;
2006 
2007     f2fs_down_write(&sbi->sb_lock);
2008 
2009     section_count = le32_to_cpu(raw_sb->section_count);
2010     segment_count = le32_to_cpu(raw_sb->segment_count);
2011     segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2012     block_count = le64_to_cpu(raw_sb->block_count);
2013 
2014     raw_sb->section_count = cpu_to_le32(section_count + secs);
2015     raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2016     raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2017     raw_sb->block_count = cpu_to_le64(block_count +
2018                     (long long)segs * sbi->blocks_per_seg);
2019     if (f2fs_is_multi_device(sbi)) {
2020         int last_dev = sbi->s_ndevs - 1;
2021         int dev_segs =
2022             le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2023 
2024         raw_sb->devs[last_dev].total_segments =
2025                         cpu_to_le32(dev_segs + segs);
2026     }
2027 
2028     f2fs_up_write(&sbi->sb_lock);
2029 }
2030 
2031 static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2032 {
2033     int segs = secs * sbi->segs_per_sec;
2034     long long blks = (long long)segs * sbi->blocks_per_seg;
2035     long long user_block_count =
2036                 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2037 
2038     SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2039     MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2040     MAIN_SECS(sbi) += secs;
2041     FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2042     FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2043     F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2044 
2045     if (f2fs_is_multi_device(sbi)) {
2046         int last_dev = sbi->s_ndevs - 1;
2047 
2048         FDEV(last_dev).total_segments =
2049                 (int)FDEV(last_dev).total_segments + segs;
2050         FDEV(last_dev).end_blk =
2051                 (long long)FDEV(last_dev).end_blk + blks;
2052 #ifdef CONFIG_BLK_DEV_ZONED
2053         FDEV(last_dev).nr_blkz = (int)FDEV(last_dev).nr_blkz +
2054                     (int)(blks >> sbi->log_blocks_per_blkz);
2055 #endif
2056     }
2057 }
2058 
2059 int f2fs_resize_fs(struct f2fs_sb_info *sbi, __u64 block_count)
2060 {
2061     __u64 old_block_count, shrunk_blocks;
2062     struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2063     unsigned int secs;
2064     int err = 0;
2065     __u32 rem;
2066 
2067     old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2068     if (block_count > old_block_count)
2069         return -EINVAL;
2070 
2071     if (f2fs_is_multi_device(sbi)) {
2072         int last_dev = sbi->s_ndevs - 1;
2073         __u64 last_segs = FDEV(last_dev).total_segments;
2074 
2075         if (block_count + last_segs * sbi->blocks_per_seg <=
2076                                 old_block_count)
2077             return -EINVAL;
2078     }
2079 
2080     /* new fs size should align to section size */
2081     div_u64_rem(block_count, BLKS_PER_SEC(sbi), &rem);
2082     if (rem)
2083         return -EINVAL;
2084 
2085     if (block_count == old_block_count)
2086         return 0;
2087 
2088     if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2089         f2fs_err(sbi, "Should run fsck to repair first.");
2090         return -EFSCORRUPTED;
2091     }
2092 
2093     if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2094         f2fs_err(sbi, "Checkpoint should be enabled.");
2095         return -EINVAL;
2096     }
2097 
2098     shrunk_blocks = old_block_count - block_count;
2099     secs = div_u64(shrunk_blocks, BLKS_PER_SEC(sbi));
2100 
2101     /* stop other GC */
2102     if (!f2fs_down_write_trylock(&sbi->gc_lock))
2103         return -EAGAIN;
2104 
2105     /* stop CP to protect MAIN_SEC in free_segment_range */
2106     f2fs_lock_op(sbi);
2107 
2108     spin_lock(&sbi->stat_lock);
2109     if (shrunk_blocks + valid_user_blocks(sbi) +
2110         sbi->current_reserved_blocks + sbi->unusable_block_count +
2111         F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2112         err = -ENOSPC;
2113     spin_unlock(&sbi->stat_lock);
2114 
2115     if (err)
2116         goto out_unlock;
2117 
2118     err = free_segment_range(sbi, secs, true);
2119 
2120 out_unlock:
2121     f2fs_unlock_op(sbi);
2122     f2fs_up_write(&sbi->gc_lock);
2123     if (err)
2124         return err;
2125 
2126     set_sbi_flag(sbi, SBI_IS_RESIZEFS);
2127 
2128     freeze_super(sbi->sb);
2129     f2fs_down_write(&sbi->gc_lock);
2130     f2fs_down_write(&sbi->cp_global_sem);
2131 
2132     spin_lock(&sbi->stat_lock);
2133     if (shrunk_blocks + valid_user_blocks(sbi) +
2134         sbi->current_reserved_blocks + sbi->unusable_block_count +
2135         F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2136         err = -ENOSPC;
2137     else
2138         sbi->user_block_count -= shrunk_blocks;
2139     spin_unlock(&sbi->stat_lock);
2140     if (err)
2141         goto out_err;
2142 
2143     err = free_segment_range(sbi, secs, false);
2144     if (err)
2145         goto recover_out;
2146 
2147     update_sb_metadata(sbi, -secs);
2148 
2149     err = f2fs_commit_super(sbi, false);
2150     if (err) {
2151         update_sb_metadata(sbi, secs);
2152         goto recover_out;
2153     }
2154 
2155     update_fs_metadata(sbi, -secs);
2156     clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2157     set_sbi_flag(sbi, SBI_IS_DIRTY);
2158 
2159     err = f2fs_write_checkpoint(sbi, &cpc);
2160     if (err) {
2161         update_fs_metadata(sbi, secs);
2162         update_sb_metadata(sbi, secs);
2163         f2fs_commit_super(sbi, false);
2164     }
2165 recover_out:
2166     if (err) {
2167         set_sbi_flag(sbi, SBI_NEED_FSCK);
2168         f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2169 
2170         spin_lock(&sbi->stat_lock);
2171         sbi->user_block_count += shrunk_blocks;
2172         spin_unlock(&sbi->stat_lock);
2173     }
2174 out_err:
2175     f2fs_up_write(&sbi->cp_global_sem);
2176     f2fs_up_write(&sbi->gc_lock);
2177     thaw_super(sbi->sb);
2178     clear_sbi_flag(sbi, SBI_IS_RESIZEFS);
2179     return err;
2180 }