Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  * f2fs extent cache support
0004  *
0005  * Copyright (c) 2015 Motorola Mobility
0006  * Copyright (c) 2015 Samsung Electronics
0007  * Authors: Jaegeuk Kim <jaegeuk@kernel.org>
0008  *          Chao Yu <chao2.yu@samsung.com>
0009  */
0010 
0011 #include <linux/fs.h>
0012 #include <linux/f2fs_fs.h>
0013 
0014 #include "f2fs.h"
0015 #include "node.h"
0016 #include <trace/events/f2fs.h>
0017 
0018 static struct rb_entry *__lookup_rb_tree_fast(struct rb_entry *cached_re,
0019                             unsigned int ofs)
0020 {
0021     if (cached_re) {
0022         if (cached_re->ofs <= ofs &&
0023                 cached_re->ofs + cached_re->len > ofs) {
0024             return cached_re;
0025         }
0026     }
0027     return NULL;
0028 }
0029 
0030 static struct rb_entry *__lookup_rb_tree_slow(struct rb_root_cached *root,
0031                             unsigned int ofs)
0032 {
0033     struct rb_node *node = root->rb_root.rb_node;
0034     struct rb_entry *re;
0035 
0036     while (node) {
0037         re = rb_entry(node, struct rb_entry, rb_node);
0038 
0039         if (ofs < re->ofs)
0040             node = node->rb_left;
0041         else if (ofs >= re->ofs + re->len)
0042             node = node->rb_right;
0043         else
0044             return re;
0045     }
0046     return NULL;
0047 }
0048 
0049 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
0050                 struct rb_entry *cached_re, unsigned int ofs)
0051 {
0052     struct rb_entry *re;
0053 
0054     re = __lookup_rb_tree_fast(cached_re, ofs);
0055     if (!re)
0056         return __lookup_rb_tree_slow(root, ofs);
0057 
0058     return re;
0059 }
0060 
0061 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
0062                     struct rb_root_cached *root,
0063                     struct rb_node **parent,
0064                     unsigned long long key, bool *leftmost)
0065 {
0066     struct rb_node **p = &root->rb_root.rb_node;
0067     struct rb_entry *re;
0068 
0069     while (*p) {
0070         *parent = *p;
0071         re = rb_entry(*parent, struct rb_entry, rb_node);
0072 
0073         if (key < re->key) {
0074             p = &(*p)->rb_left;
0075         } else {
0076             p = &(*p)->rb_right;
0077             *leftmost = false;
0078         }
0079     }
0080 
0081     return p;
0082 }
0083 
0084 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
0085                 struct rb_root_cached *root,
0086                 struct rb_node **parent,
0087                 unsigned int ofs, bool *leftmost)
0088 {
0089     struct rb_node **p = &root->rb_root.rb_node;
0090     struct rb_entry *re;
0091 
0092     while (*p) {
0093         *parent = *p;
0094         re = rb_entry(*parent, struct rb_entry, rb_node);
0095 
0096         if (ofs < re->ofs) {
0097             p = &(*p)->rb_left;
0098         } else if (ofs >= re->ofs + re->len) {
0099             p = &(*p)->rb_right;
0100             *leftmost = false;
0101         } else {
0102             f2fs_bug_on(sbi, 1);
0103         }
0104     }
0105 
0106     return p;
0107 }
0108 
0109 /*
0110  * lookup rb entry in position of @ofs in rb-tree,
0111  * if hit, return the entry, otherwise, return NULL
0112  * @prev_ex: extent before ofs
0113  * @next_ex: extent after ofs
0114  * @insert_p: insert point for new extent at ofs
0115  * in order to simpfy the insertion after.
0116  * tree must stay unchanged between lookup and insertion.
0117  */
0118 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
0119                 struct rb_entry *cached_re,
0120                 unsigned int ofs,
0121                 struct rb_entry **prev_entry,
0122                 struct rb_entry **next_entry,
0123                 struct rb_node ***insert_p,
0124                 struct rb_node **insert_parent,
0125                 bool force, bool *leftmost)
0126 {
0127     struct rb_node **pnode = &root->rb_root.rb_node;
0128     struct rb_node *parent = NULL, *tmp_node;
0129     struct rb_entry *re = cached_re;
0130 
0131     *insert_p = NULL;
0132     *insert_parent = NULL;
0133     *prev_entry = NULL;
0134     *next_entry = NULL;
0135 
0136     if (RB_EMPTY_ROOT(&root->rb_root))
0137         return NULL;
0138 
0139     if (re) {
0140         if (re->ofs <= ofs && re->ofs + re->len > ofs)
0141             goto lookup_neighbors;
0142     }
0143 
0144     if (leftmost)
0145         *leftmost = true;
0146 
0147     while (*pnode) {
0148         parent = *pnode;
0149         re = rb_entry(*pnode, struct rb_entry, rb_node);
0150 
0151         if (ofs < re->ofs) {
0152             pnode = &(*pnode)->rb_left;
0153         } else if (ofs >= re->ofs + re->len) {
0154             pnode = &(*pnode)->rb_right;
0155             if (leftmost)
0156                 *leftmost = false;
0157         } else {
0158             goto lookup_neighbors;
0159         }
0160     }
0161 
0162     *insert_p = pnode;
0163     *insert_parent = parent;
0164 
0165     re = rb_entry(parent, struct rb_entry, rb_node);
0166     tmp_node = parent;
0167     if (parent && ofs > re->ofs)
0168         tmp_node = rb_next(parent);
0169     *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
0170 
0171     tmp_node = parent;
0172     if (parent && ofs < re->ofs)
0173         tmp_node = rb_prev(parent);
0174     *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
0175     return NULL;
0176 
0177 lookup_neighbors:
0178     if (ofs == re->ofs || force) {
0179         /* lookup prev node for merging backward later */
0180         tmp_node = rb_prev(&re->rb_node);
0181         *prev_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
0182     }
0183     if (ofs == re->ofs + re->len - 1 || force) {
0184         /* lookup next node for merging frontward later */
0185         tmp_node = rb_next(&re->rb_node);
0186         *next_entry = rb_entry_safe(tmp_node, struct rb_entry, rb_node);
0187     }
0188     return re;
0189 }
0190 
0191 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
0192                 struct rb_root_cached *root, bool check_key)
0193 {
0194 #ifdef CONFIG_F2FS_CHECK_FS
0195     struct rb_node *cur = rb_first_cached(root), *next;
0196     struct rb_entry *cur_re, *next_re;
0197 
0198     if (!cur)
0199         return true;
0200 
0201     while (cur) {
0202         next = rb_next(cur);
0203         if (!next)
0204             return true;
0205 
0206         cur_re = rb_entry(cur, struct rb_entry, rb_node);
0207         next_re = rb_entry(next, struct rb_entry, rb_node);
0208 
0209         if (check_key) {
0210             if (cur_re->key > next_re->key) {
0211                 f2fs_info(sbi, "inconsistent rbtree, "
0212                     "cur(%llu) next(%llu)",
0213                     cur_re->key, next_re->key);
0214                 return false;
0215             }
0216             goto next;
0217         }
0218 
0219         if (cur_re->ofs + cur_re->len > next_re->ofs) {
0220             f2fs_info(sbi, "inconsistent rbtree, cur(%u, %u) next(%u, %u)",
0221                   cur_re->ofs, cur_re->len,
0222                   next_re->ofs, next_re->len);
0223             return false;
0224         }
0225 next:
0226         cur = next;
0227     }
0228 #endif
0229     return true;
0230 }
0231 
0232 static struct kmem_cache *extent_tree_slab;
0233 static struct kmem_cache *extent_node_slab;
0234 
0235 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
0236                 struct extent_tree *et, struct extent_info *ei,
0237                 struct rb_node *parent, struct rb_node **p,
0238                 bool leftmost)
0239 {
0240     struct extent_node *en;
0241 
0242     en = f2fs_kmem_cache_alloc(extent_node_slab, GFP_ATOMIC, false, sbi);
0243     if (!en)
0244         return NULL;
0245 
0246     en->ei = *ei;
0247     INIT_LIST_HEAD(&en->list);
0248     en->et = et;
0249 
0250     rb_link_node(&en->rb_node, parent, p);
0251     rb_insert_color_cached(&en->rb_node, &et->root, leftmost);
0252     atomic_inc(&et->node_cnt);
0253     atomic_inc(&sbi->total_ext_node);
0254     return en;
0255 }
0256 
0257 static void __detach_extent_node(struct f2fs_sb_info *sbi,
0258                 struct extent_tree *et, struct extent_node *en)
0259 {
0260     rb_erase_cached(&en->rb_node, &et->root);
0261     atomic_dec(&et->node_cnt);
0262     atomic_dec(&sbi->total_ext_node);
0263 
0264     if (et->cached_en == en)
0265         et->cached_en = NULL;
0266     kmem_cache_free(extent_node_slab, en);
0267 }
0268 
0269 /*
0270  * Flow to release an extent_node:
0271  * 1. list_del_init
0272  * 2. __detach_extent_node
0273  * 3. kmem_cache_free.
0274  */
0275 static void __release_extent_node(struct f2fs_sb_info *sbi,
0276             struct extent_tree *et, struct extent_node *en)
0277 {
0278     spin_lock(&sbi->extent_lock);
0279     f2fs_bug_on(sbi, list_empty(&en->list));
0280     list_del_init(&en->list);
0281     spin_unlock(&sbi->extent_lock);
0282 
0283     __detach_extent_node(sbi, et, en);
0284 }
0285 
0286 static struct extent_tree *__grab_extent_tree(struct inode *inode)
0287 {
0288     struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0289     struct extent_tree *et;
0290     nid_t ino = inode->i_ino;
0291 
0292     mutex_lock(&sbi->extent_tree_lock);
0293     et = radix_tree_lookup(&sbi->extent_tree_root, ino);
0294     if (!et) {
0295         et = f2fs_kmem_cache_alloc(extent_tree_slab,
0296                     GFP_NOFS, true, NULL);
0297         f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
0298         memset(et, 0, sizeof(struct extent_tree));
0299         et->ino = ino;
0300         et->root = RB_ROOT_CACHED;
0301         et->cached_en = NULL;
0302         rwlock_init(&et->lock);
0303         INIT_LIST_HEAD(&et->list);
0304         atomic_set(&et->node_cnt, 0);
0305         atomic_inc(&sbi->total_ext_tree);
0306     } else {
0307         atomic_dec(&sbi->total_zombie_tree);
0308         list_del_init(&et->list);
0309     }
0310     mutex_unlock(&sbi->extent_tree_lock);
0311 
0312     /* never died until evict_inode */
0313     F2FS_I(inode)->extent_tree = et;
0314 
0315     return et;
0316 }
0317 
0318 static struct extent_node *__init_extent_tree(struct f2fs_sb_info *sbi,
0319                 struct extent_tree *et, struct extent_info *ei)
0320 {
0321     struct rb_node **p = &et->root.rb_root.rb_node;
0322     struct extent_node *en;
0323 
0324     en = __attach_extent_node(sbi, et, ei, NULL, p, true);
0325     if (!en)
0326         return NULL;
0327 
0328     et->largest = en->ei;
0329     et->cached_en = en;
0330     return en;
0331 }
0332 
0333 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
0334                     struct extent_tree *et)
0335 {
0336     struct rb_node *node, *next;
0337     struct extent_node *en;
0338     unsigned int count = atomic_read(&et->node_cnt);
0339 
0340     node = rb_first_cached(&et->root);
0341     while (node) {
0342         next = rb_next(node);
0343         en = rb_entry(node, struct extent_node, rb_node);
0344         __release_extent_node(sbi, et, en);
0345         node = next;
0346     }
0347 
0348     return count - atomic_read(&et->node_cnt);
0349 }
0350 
0351 static void __drop_largest_extent(struct extent_tree *et,
0352                     pgoff_t fofs, unsigned int len)
0353 {
0354     if (fofs < et->largest.fofs + et->largest.len &&
0355             fofs + len > et->largest.fofs) {
0356         et->largest.len = 0;
0357         et->largest_updated = true;
0358     }
0359 }
0360 
0361 /* return true, if inode page is changed */
0362 static void __f2fs_init_extent_tree(struct inode *inode, struct page *ipage)
0363 {
0364     struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0365     struct f2fs_extent *i_ext = ipage ? &F2FS_INODE(ipage)->i_ext : NULL;
0366     struct extent_tree *et;
0367     struct extent_node *en;
0368     struct extent_info ei;
0369 
0370     if (!f2fs_may_extent_tree(inode)) {
0371         /* drop largest extent */
0372         if (i_ext && i_ext->len) {
0373             f2fs_wait_on_page_writeback(ipage, NODE, true, true);
0374             i_ext->len = 0;
0375             set_page_dirty(ipage);
0376             return;
0377         }
0378         return;
0379     }
0380 
0381     et = __grab_extent_tree(inode);
0382 
0383     if (!i_ext || !i_ext->len)
0384         return;
0385 
0386     get_extent_info(&ei, i_ext);
0387 
0388     write_lock(&et->lock);
0389     if (atomic_read(&et->node_cnt))
0390         goto out;
0391 
0392     en = __init_extent_tree(sbi, et, &ei);
0393     if (en) {
0394         spin_lock(&sbi->extent_lock);
0395         list_add_tail(&en->list, &sbi->extent_list);
0396         spin_unlock(&sbi->extent_lock);
0397     }
0398 out:
0399     write_unlock(&et->lock);
0400 }
0401 
0402 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage)
0403 {
0404     __f2fs_init_extent_tree(inode, ipage);
0405 
0406     if (!F2FS_I(inode)->extent_tree)
0407         set_inode_flag(inode, FI_NO_EXTENT);
0408 }
0409 
0410 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
0411                             struct extent_info *ei)
0412 {
0413     struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0414     struct extent_tree *et = F2FS_I(inode)->extent_tree;
0415     struct extent_node *en;
0416     bool ret = false;
0417 
0418     f2fs_bug_on(sbi, !et);
0419 
0420     trace_f2fs_lookup_extent_tree_start(inode, pgofs);
0421 
0422     read_lock(&et->lock);
0423 
0424     if (et->largest.fofs <= pgofs &&
0425             et->largest.fofs + et->largest.len > pgofs) {
0426         *ei = et->largest;
0427         ret = true;
0428         stat_inc_largest_node_hit(sbi);
0429         goto out;
0430     }
0431 
0432     en = (struct extent_node *)f2fs_lookup_rb_tree(&et->root,
0433                 (struct rb_entry *)et->cached_en, pgofs);
0434     if (!en)
0435         goto out;
0436 
0437     if (en == et->cached_en)
0438         stat_inc_cached_node_hit(sbi);
0439     else
0440         stat_inc_rbtree_node_hit(sbi);
0441 
0442     *ei = en->ei;
0443     spin_lock(&sbi->extent_lock);
0444     if (!list_empty(&en->list)) {
0445         list_move_tail(&en->list, &sbi->extent_list);
0446         et->cached_en = en;
0447     }
0448     spin_unlock(&sbi->extent_lock);
0449     ret = true;
0450 out:
0451     stat_inc_total_hit(sbi);
0452     read_unlock(&et->lock);
0453 
0454     trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
0455     return ret;
0456 }
0457 
0458 static struct extent_node *__try_merge_extent_node(struct f2fs_sb_info *sbi,
0459                 struct extent_tree *et, struct extent_info *ei,
0460                 struct extent_node *prev_ex,
0461                 struct extent_node *next_ex)
0462 {
0463     struct extent_node *en = NULL;
0464 
0465     if (prev_ex && __is_back_mergeable(ei, &prev_ex->ei)) {
0466         prev_ex->ei.len += ei->len;
0467         ei = &prev_ex->ei;
0468         en = prev_ex;
0469     }
0470 
0471     if (next_ex && __is_front_mergeable(ei, &next_ex->ei)) {
0472         next_ex->ei.fofs = ei->fofs;
0473         next_ex->ei.blk = ei->blk;
0474         next_ex->ei.len += ei->len;
0475         if (en)
0476             __release_extent_node(sbi, et, prev_ex);
0477 
0478         en = next_ex;
0479     }
0480 
0481     if (!en)
0482         return NULL;
0483 
0484     __try_update_largest_extent(et, en);
0485 
0486     spin_lock(&sbi->extent_lock);
0487     if (!list_empty(&en->list)) {
0488         list_move_tail(&en->list, &sbi->extent_list);
0489         et->cached_en = en;
0490     }
0491     spin_unlock(&sbi->extent_lock);
0492     return en;
0493 }
0494 
0495 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
0496                 struct extent_tree *et, struct extent_info *ei,
0497                 struct rb_node **insert_p,
0498                 struct rb_node *insert_parent,
0499                 bool leftmost)
0500 {
0501     struct rb_node **p;
0502     struct rb_node *parent = NULL;
0503     struct extent_node *en = NULL;
0504 
0505     if (insert_p && insert_parent) {
0506         parent = insert_parent;
0507         p = insert_p;
0508         goto do_insert;
0509     }
0510 
0511     leftmost = true;
0512 
0513     p = f2fs_lookup_rb_tree_for_insert(sbi, &et->root, &parent,
0514                         ei->fofs, &leftmost);
0515 do_insert:
0516     en = __attach_extent_node(sbi, et, ei, parent, p, leftmost);
0517     if (!en)
0518         return NULL;
0519 
0520     __try_update_largest_extent(et, en);
0521 
0522     /* update in global extent list */
0523     spin_lock(&sbi->extent_lock);
0524     list_add_tail(&en->list, &sbi->extent_list);
0525     et->cached_en = en;
0526     spin_unlock(&sbi->extent_lock);
0527     return en;
0528 }
0529 
0530 static void f2fs_update_extent_tree_range(struct inode *inode,
0531                 pgoff_t fofs, block_t blkaddr, unsigned int len)
0532 {
0533     struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0534     struct extent_tree *et = F2FS_I(inode)->extent_tree;
0535     struct extent_node *en = NULL, *en1 = NULL;
0536     struct extent_node *prev_en = NULL, *next_en = NULL;
0537     struct extent_info ei, dei, prev;
0538     struct rb_node **insert_p = NULL, *insert_parent = NULL;
0539     unsigned int end = fofs + len;
0540     unsigned int pos = (unsigned int)fofs;
0541     bool updated = false;
0542     bool leftmost = false;
0543 
0544     if (!et)
0545         return;
0546 
0547     trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, len);
0548 
0549     write_lock(&et->lock);
0550 
0551     if (is_inode_flag_set(inode, FI_NO_EXTENT)) {
0552         write_unlock(&et->lock);
0553         return;
0554     }
0555 
0556     prev = et->largest;
0557     dei.len = 0;
0558 
0559     /*
0560      * drop largest extent before lookup, in case it's already
0561      * been shrunk from extent tree
0562      */
0563     __drop_largest_extent(et, fofs, len);
0564 
0565     /* 1. lookup first extent node in range [fofs, fofs + len - 1] */
0566     en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
0567                     (struct rb_entry *)et->cached_en, fofs,
0568                     (struct rb_entry **)&prev_en,
0569                     (struct rb_entry **)&next_en,
0570                     &insert_p, &insert_parent, false,
0571                     &leftmost);
0572     if (!en)
0573         en = next_en;
0574 
0575     /* 2. invlidate all extent nodes in range [fofs, fofs + len - 1] */
0576     while (en && en->ei.fofs < end) {
0577         unsigned int org_end;
0578         int parts = 0;  /* # of parts current extent split into */
0579 
0580         next_en = en1 = NULL;
0581 
0582         dei = en->ei;
0583         org_end = dei.fofs + dei.len;
0584         f2fs_bug_on(sbi, pos >= org_end);
0585 
0586         if (pos > dei.fofs &&   pos - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
0587             en->ei.len = pos - en->ei.fofs;
0588             prev_en = en;
0589             parts = 1;
0590         }
0591 
0592         if (end < org_end && org_end - end >= F2FS_MIN_EXTENT_LEN) {
0593             if (parts) {
0594                 set_extent_info(&ei, end,
0595                         end - dei.fofs + dei.blk,
0596                         org_end - end);
0597                 en1 = __insert_extent_tree(sbi, et, &ei,
0598                             NULL, NULL, true);
0599                 next_en = en1;
0600             } else {
0601                 en->ei.fofs = end;
0602                 en->ei.blk += end - dei.fofs;
0603                 en->ei.len -= end - dei.fofs;
0604                 next_en = en;
0605             }
0606             parts++;
0607         }
0608 
0609         if (!next_en) {
0610             struct rb_node *node = rb_next(&en->rb_node);
0611 
0612             next_en = rb_entry_safe(node, struct extent_node,
0613                         rb_node);
0614         }
0615 
0616         if (parts)
0617             __try_update_largest_extent(et, en);
0618         else
0619             __release_extent_node(sbi, et, en);
0620 
0621         /*
0622          * if original extent is split into zero or two parts, extent
0623          * tree has been altered by deletion or insertion, therefore
0624          * invalidate pointers regard to tree.
0625          */
0626         if (parts != 1) {
0627             insert_p = NULL;
0628             insert_parent = NULL;
0629         }
0630         en = next_en;
0631     }
0632 
0633     /* 3. update extent in extent cache */
0634     if (blkaddr) {
0635 
0636         set_extent_info(&ei, fofs, blkaddr, len);
0637         if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
0638             __insert_extent_tree(sbi, et, &ei,
0639                     insert_p, insert_parent, leftmost);
0640 
0641         /* give up extent_cache, if split and small updates happen */
0642         if (dei.len >= 1 &&
0643                 prev.len < F2FS_MIN_EXTENT_LEN &&
0644                 et->largest.len < F2FS_MIN_EXTENT_LEN) {
0645             et->largest.len = 0;
0646             et->largest_updated = true;
0647             set_inode_flag(inode, FI_NO_EXTENT);
0648         }
0649     }
0650 
0651     if (is_inode_flag_set(inode, FI_NO_EXTENT))
0652         __free_extent_tree(sbi, et);
0653 
0654     if (et->largest_updated) {
0655         et->largest_updated = false;
0656         updated = true;
0657     }
0658 
0659     write_unlock(&et->lock);
0660 
0661     if (updated)
0662         f2fs_mark_inode_dirty_sync(inode, true);
0663 }
0664 
0665 #ifdef CONFIG_F2FS_FS_COMPRESSION
0666 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
0667                 pgoff_t fofs, block_t blkaddr, unsigned int llen,
0668                 unsigned int c_len)
0669 {
0670     struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0671     struct extent_tree *et = F2FS_I(inode)->extent_tree;
0672     struct extent_node *en = NULL;
0673     struct extent_node *prev_en = NULL, *next_en = NULL;
0674     struct extent_info ei;
0675     struct rb_node **insert_p = NULL, *insert_parent = NULL;
0676     bool leftmost = false;
0677 
0678     trace_f2fs_update_extent_tree_range(inode, fofs, blkaddr, llen);
0679 
0680     /* it is safe here to check FI_NO_EXTENT w/o et->lock in ro image */
0681     if (is_inode_flag_set(inode, FI_NO_EXTENT))
0682         return;
0683 
0684     write_lock(&et->lock);
0685 
0686     en = (struct extent_node *)f2fs_lookup_rb_tree_ret(&et->root,
0687                 (struct rb_entry *)et->cached_en, fofs,
0688                 (struct rb_entry **)&prev_en,
0689                 (struct rb_entry **)&next_en,
0690                 &insert_p, &insert_parent, false,
0691                 &leftmost);
0692     if (en)
0693         goto unlock_out;
0694 
0695     set_extent_info(&ei, fofs, blkaddr, llen);
0696     ei.c_len = c_len;
0697 
0698     if (!__try_merge_extent_node(sbi, et, &ei, prev_en, next_en))
0699         __insert_extent_tree(sbi, et, &ei,
0700                 insert_p, insert_parent, leftmost);
0701 unlock_out:
0702     write_unlock(&et->lock);
0703 }
0704 #endif
0705 
0706 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
0707 {
0708     struct extent_tree *et, *next;
0709     struct extent_node *en;
0710     unsigned int node_cnt = 0, tree_cnt = 0;
0711     int remained;
0712 
0713     if (!test_opt(sbi, EXTENT_CACHE))
0714         return 0;
0715 
0716     if (!atomic_read(&sbi->total_zombie_tree))
0717         goto free_node;
0718 
0719     if (!mutex_trylock(&sbi->extent_tree_lock))
0720         goto out;
0721 
0722     /* 1. remove unreferenced extent tree */
0723     list_for_each_entry_safe(et, next, &sbi->zombie_list, list) {
0724         if (atomic_read(&et->node_cnt)) {
0725             write_lock(&et->lock);
0726             node_cnt += __free_extent_tree(sbi, et);
0727             write_unlock(&et->lock);
0728         }
0729         f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
0730         list_del_init(&et->list);
0731         radix_tree_delete(&sbi->extent_tree_root, et->ino);
0732         kmem_cache_free(extent_tree_slab, et);
0733         atomic_dec(&sbi->total_ext_tree);
0734         atomic_dec(&sbi->total_zombie_tree);
0735         tree_cnt++;
0736 
0737         if (node_cnt + tree_cnt >= nr_shrink)
0738             goto unlock_out;
0739         cond_resched();
0740     }
0741     mutex_unlock(&sbi->extent_tree_lock);
0742 
0743 free_node:
0744     /* 2. remove LRU extent entries */
0745     if (!mutex_trylock(&sbi->extent_tree_lock))
0746         goto out;
0747 
0748     remained = nr_shrink - (node_cnt + tree_cnt);
0749 
0750     spin_lock(&sbi->extent_lock);
0751     for (; remained > 0; remained--) {
0752         if (list_empty(&sbi->extent_list))
0753             break;
0754         en = list_first_entry(&sbi->extent_list,
0755                     struct extent_node, list);
0756         et = en->et;
0757         if (!write_trylock(&et->lock)) {
0758             /* refresh this extent node's position in extent list */
0759             list_move_tail(&en->list, &sbi->extent_list);
0760             continue;
0761         }
0762 
0763         list_del_init(&en->list);
0764         spin_unlock(&sbi->extent_lock);
0765 
0766         __detach_extent_node(sbi, et, en);
0767 
0768         write_unlock(&et->lock);
0769         node_cnt++;
0770         spin_lock(&sbi->extent_lock);
0771     }
0772     spin_unlock(&sbi->extent_lock);
0773 
0774 unlock_out:
0775     mutex_unlock(&sbi->extent_tree_lock);
0776 out:
0777     trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
0778 
0779     return node_cnt + tree_cnt;
0780 }
0781 
0782 unsigned int f2fs_destroy_extent_node(struct inode *inode)
0783 {
0784     struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0785     struct extent_tree *et = F2FS_I(inode)->extent_tree;
0786     unsigned int node_cnt = 0;
0787 
0788     if (!et || !atomic_read(&et->node_cnt))
0789         return 0;
0790 
0791     write_lock(&et->lock);
0792     node_cnt = __free_extent_tree(sbi, et);
0793     write_unlock(&et->lock);
0794 
0795     return node_cnt;
0796 }
0797 
0798 void f2fs_drop_extent_tree(struct inode *inode)
0799 {
0800     struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0801     struct extent_tree *et = F2FS_I(inode)->extent_tree;
0802     bool updated = false;
0803 
0804     if (!f2fs_may_extent_tree(inode))
0805         return;
0806 
0807     set_inode_flag(inode, FI_NO_EXTENT);
0808 
0809     write_lock(&et->lock);
0810     __free_extent_tree(sbi, et);
0811     if (et->largest.len) {
0812         et->largest.len = 0;
0813         updated = true;
0814     }
0815     write_unlock(&et->lock);
0816     if (updated)
0817         f2fs_mark_inode_dirty_sync(inode, true);
0818 }
0819 
0820 void f2fs_destroy_extent_tree(struct inode *inode)
0821 {
0822     struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
0823     struct extent_tree *et = F2FS_I(inode)->extent_tree;
0824     unsigned int node_cnt = 0;
0825 
0826     if (!et)
0827         return;
0828 
0829     if (inode->i_nlink && !is_bad_inode(inode) &&
0830                     atomic_read(&et->node_cnt)) {
0831         mutex_lock(&sbi->extent_tree_lock);
0832         list_add_tail(&et->list, &sbi->zombie_list);
0833         atomic_inc(&sbi->total_zombie_tree);
0834         mutex_unlock(&sbi->extent_tree_lock);
0835         return;
0836     }
0837 
0838     /* free all extent info belong to this extent tree */
0839     node_cnt = f2fs_destroy_extent_node(inode);
0840 
0841     /* delete extent tree entry in radix tree */
0842     mutex_lock(&sbi->extent_tree_lock);
0843     f2fs_bug_on(sbi, atomic_read(&et->node_cnt));
0844     radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
0845     kmem_cache_free(extent_tree_slab, et);
0846     atomic_dec(&sbi->total_ext_tree);
0847     mutex_unlock(&sbi->extent_tree_lock);
0848 
0849     F2FS_I(inode)->extent_tree = NULL;
0850 
0851     trace_f2fs_destroy_extent_tree(inode, node_cnt);
0852 }
0853 
0854 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
0855                     struct extent_info *ei)
0856 {
0857     if (!f2fs_may_extent_tree(inode))
0858         return false;
0859 
0860     return f2fs_lookup_extent_tree(inode, pgofs, ei);
0861 }
0862 
0863 void f2fs_update_extent_cache(struct dnode_of_data *dn)
0864 {
0865     pgoff_t fofs;
0866     block_t blkaddr;
0867 
0868     if (!f2fs_may_extent_tree(dn->inode))
0869         return;
0870 
0871     if (dn->data_blkaddr == NEW_ADDR)
0872         blkaddr = NULL_ADDR;
0873     else
0874         blkaddr = dn->data_blkaddr;
0875 
0876     fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
0877                                 dn->ofs_in_node;
0878     f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, 1);
0879 }
0880 
0881 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
0882                 pgoff_t fofs, block_t blkaddr, unsigned int len)
0883 
0884 {
0885     if (!f2fs_may_extent_tree(dn->inode))
0886         return;
0887 
0888     f2fs_update_extent_tree_range(dn->inode, fofs, blkaddr, len);
0889 }
0890 
0891 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi)
0892 {
0893     INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
0894     mutex_init(&sbi->extent_tree_lock);
0895     INIT_LIST_HEAD(&sbi->extent_list);
0896     spin_lock_init(&sbi->extent_lock);
0897     atomic_set(&sbi->total_ext_tree, 0);
0898     INIT_LIST_HEAD(&sbi->zombie_list);
0899     atomic_set(&sbi->total_zombie_tree, 0);
0900     atomic_set(&sbi->total_ext_node, 0);
0901 }
0902 
0903 int __init f2fs_create_extent_cache(void)
0904 {
0905     extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
0906             sizeof(struct extent_tree));
0907     if (!extent_tree_slab)
0908         return -ENOMEM;
0909     extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
0910             sizeof(struct extent_node));
0911     if (!extent_node_slab) {
0912         kmem_cache_destroy(extent_tree_slab);
0913         return -ENOMEM;
0914     }
0915     return 0;
0916 }
0917 
0918 void f2fs_destroy_extent_cache(void)
0919 {
0920     kmem_cache_destroy(extent_node_slab);
0921     kmem_cache_destroy(extent_tree_slab);
0922 }