Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  *  linux/fs/ext4/inode.c
0004  *
0005  * Copyright (C) 1992, 1993, 1994, 1995
0006  * Remy Card (card@masi.ibp.fr)
0007  * Laboratoire MASI - Institut Blaise Pascal
0008  * Universite Pierre et Marie Curie (Paris VI)
0009  *
0010  *  from
0011  *
0012  *  linux/fs/minix/inode.c
0013  *
0014  *  Copyright (C) 1991, 1992  Linus Torvalds
0015  *
0016  *  64-bit file support on 64-bit platforms by Jakub Jelinek
0017  *  (jj@sunsite.ms.mff.cuni.cz)
0018  *
0019  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
0020  */
0021 
0022 #include <linux/fs.h>
0023 #include <linux/mount.h>
0024 #include <linux/time.h>
0025 #include <linux/highuid.h>
0026 #include <linux/pagemap.h>
0027 #include <linux/dax.h>
0028 #include <linux/quotaops.h>
0029 #include <linux/string.h>
0030 #include <linux/buffer_head.h>
0031 #include <linux/writeback.h>
0032 #include <linux/pagevec.h>
0033 #include <linux/mpage.h>
0034 #include <linux/namei.h>
0035 #include <linux/uio.h>
0036 #include <linux/bio.h>
0037 #include <linux/workqueue.h>
0038 #include <linux/kernel.h>
0039 #include <linux/printk.h>
0040 #include <linux/slab.h>
0041 #include <linux/bitops.h>
0042 #include <linux/iomap.h>
0043 #include <linux/iversion.h>
0044 
0045 #include "ext4_jbd2.h"
0046 #include "xattr.h"
0047 #include "acl.h"
0048 #include "truncate.h"
0049 
0050 #include <trace/events/ext4.h>
0051 
0052 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
0053                   struct ext4_inode_info *ei)
0054 {
0055     struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0056     __u32 csum;
0057     __u16 dummy_csum = 0;
0058     int offset = offsetof(struct ext4_inode, i_checksum_lo);
0059     unsigned int csum_size = sizeof(dummy_csum);
0060 
0061     csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
0062     csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
0063     offset += csum_size;
0064     csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
0065                EXT4_GOOD_OLD_INODE_SIZE - offset);
0066 
0067     if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
0068         offset = offsetof(struct ext4_inode, i_checksum_hi);
0069         csum = ext4_chksum(sbi, csum, (__u8 *)raw +
0070                    EXT4_GOOD_OLD_INODE_SIZE,
0071                    offset - EXT4_GOOD_OLD_INODE_SIZE);
0072         if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
0073             csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
0074                        csum_size);
0075             offset += csum_size;
0076         }
0077         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
0078                    EXT4_INODE_SIZE(inode->i_sb) - offset);
0079     }
0080 
0081     return csum;
0082 }
0083 
0084 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
0085                   struct ext4_inode_info *ei)
0086 {
0087     __u32 provided, calculated;
0088 
0089     if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
0090         cpu_to_le32(EXT4_OS_LINUX) ||
0091         !ext4_has_metadata_csum(inode->i_sb))
0092         return 1;
0093 
0094     provided = le16_to_cpu(raw->i_checksum_lo);
0095     calculated = ext4_inode_csum(inode, raw, ei);
0096     if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
0097         EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
0098         provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
0099     else
0100         calculated &= 0xFFFF;
0101 
0102     return provided == calculated;
0103 }
0104 
0105 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
0106              struct ext4_inode_info *ei)
0107 {
0108     __u32 csum;
0109 
0110     if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
0111         cpu_to_le32(EXT4_OS_LINUX) ||
0112         !ext4_has_metadata_csum(inode->i_sb))
0113         return;
0114 
0115     csum = ext4_inode_csum(inode, raw, ei);
0116     raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
0117     if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
0118         EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
0119         raw->i_checksum_hi = cpu_to_le16(csum >> 16);
0120 }
0121 
0122 static inline int ext4_begin_ordered_truncate(struct inode *inode,
0123                           loff_t new_size)
0124 {
0125     trace_ext4_begin_ordered_truncate(inode, new_size);
0126     /*
0127      * If jinode is zero, then we never opened the file for
0128      * writing, so there's no need to call
0129      * jbd2_journal_begin_ordered_truncate() since there's no
0130      * outstanding writes we need to flush.
0131      */
0132     if (!EXT4_I(inode)->jinode)
0133         return 0;
0134     return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
0135                            EXT4_I(inode)->jinode,
0136                            new_size);
0137 }
0138 
0139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
0140 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
0141                   int pextents);
0142 
0143 /*
0144  * Test whether an inode is a fast symlink.
0145  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
0146  */
0147 int ext4_inode_is_fast_symlink(struct inode *inode)
0148 {
0149     if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
0150         int ea_blocks = EXT4_I(inode)->i_file_acl ?
0151                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
0152 
0153         if (ext4_has_inline_data(inode))
0154             return 0;
0155 
0156         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
0157     }
0158     return S_ISLNK(inode->i_mode) && inode->i_size &&
0159            (inode->i_size < EXT4_N_BLOCKS * 4);
0160 }
0161 
0162 /*
0163  * Called at the last iput() if i_nlink is zero.
0164  */
0165 void ext4_evict_inode(struct inode *inode)
0166 {
0167     handle_t *handle;
0168     int err;
0169     /*
0170      * Credits for final inode cleanup and freeing:
0171      * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
0172      * (xattr block freeing), bitmap, group descriptor (inode freeing)
0173      */
0174     int extra_credits = 6;
0175     struct ext4_xattr_inode_array *ea_inode_array = NULL;
0176     bool freeze_protected = false;
0177 
0178     trace_ext4_evict_inode(inode);
0179 
0180     if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
0181         ext4_evict_ea_inode(inode);
0182     if (inode->i_nlink) {
0183         /*
0184          * When journalling data dirty buffers are tracked only in the
0185          * journal. So although mm thinks everything is clean and
0186          * ready for reaping the inode might still have some pages to
0187          * write in the running transaction or waiting to be
0188          * checkpointed. Thus calling jbd2_journal_invalidate_folio()
0189          * (via truncate_inode_pages()) to discard these buffers can
0190          * cause data loss. Also even if we did not discard these
0191          * buffers, we would have no way to find them after the inode
0192          * is reaped and thus user could see stale data if he tries to
0193          * read them before the transaction is checkpointed. So be
0194          * careful and force everything to disk here... We use
0195          * ei->i_datasync_tid to store the newest transaction
0196          * containing inode's data.
0197          *
0198          * Note that directories do not have this problem because they
0199          * don't use page cache.
0200          */
0201         if (inode->i_ino != EXT4_JOURNAL_INO &&
0202             ext4_should_journal_data(inode) &&
0203             S_ISREG(inode->i_mode) && inode->i_data.nrpages) {
0204             journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
0205             tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
0206 
0207             jbd2_complete_transaction(journal, commit_tid);
0208             filemap_write_and_wait(&inode->i_data);
0209         }
0210         truncate_inode_pages_final(&inode->i_data);
0211 
0212         goto no_delete;
0213     }
0214 
0215     if (is_bad_inode(inode))
0216         goto no_delete;
0217     dquot_initialize(inode);
0218 
0219     if (ext4_should_order_data(inode))
0220         ext4_begin_ordered_truncate(inode, 0);
0221     truncate_inode_pages_final(&inode->i_data);
0222 
0223     /*
0224      * For inodes with journalled data, transaction commit could have
0225      * dirtied the inode. Flush worker is ignoring it because of I_FREEING
0226      * flag but we still need to remove the inode from the writeback lists.
0227      */
0228     if (!list_empty_careful(&inode->i_io_list)) {
0229         WARN_ON_ONCE(!ext4_should_journal_data(inode));
0230         inode_io_list_del(inode);
0231     }
0232 
0233     /*
0234      * Protect us against freezing - iput() caller didn't have to have any
0235      * protection against it. When we are in a running transaction though,
0236      * we are already protected against freezing and we cannot grab further
0237      * protection due to lock ordering constraints.
0238      */
0239     if (!ext4_journal_current_handle()) {
0240         sb_start_intwrite(inode->i_sb);
0241         freeze_protected = true;
0242     }
0243 
0244     if (!IS_NOQUOTA(inode))
0245         extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
0246 
0247     /*
0248      * Block bitmap, group descriptor, and inode are accounted in both
0249      * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
0250      */
0251     handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
0252              ext4_blocks_for_truncate(inode) + extra_credits - 3);
0253     if (IS_ERR(handle)) {
0254         ext4_std_error(inode->i_sb, PTR_ERR(handle));
0255         /*
0256          * If we're going to skip the normal cleanup, we still need to
0257          * make sure that the in-core orphan linked list is properly
0258          * cleaned up.
0259          */
0260         ext4_orphan_del(NULL, inode);
0261         if (freeze_protected)
0262             sb_end_intwrite(inode->i_sb);
0263         goto no_delete;
0264     }
0265 
0266     if (IS_SYNC(inode))
0267         ext4_handle_sync(handle);
0268 
0269     /*
0270      * Set inode->i_size to 0 before calling ext4_truncate(). We need
0271      * special handling of symlinks here because i_size is used to
0272      * determine whether ext4_inode_info->i_data contains symlink data or
0273      * block mappings. Setting i_size to 0 will remove its fast symlink
0274      * status. Erase i_data so that it becomes a valid empty block map.
0275      */
0276     if (ext4_inode_is_fast_symlink(inode))
0277         memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
0278     inode->i_size = 0;
0279     err = ext4_mark_inode_dirty(handle, inode);
0280     if (err) {
0281         ext4_warning(inode->i_sb,
0282                  "couldn't mark inode dirty (err %d)", err);
0283         goto stop_handle;
0284     }
0285     if (inode->i_blocks) {
0286         err = ext4_truncate(inode);
0287         if (err) {
0288             ext4_error_err(inode->i_sb, -err,
0289                        "couldn't truncate inode %lu (err %d)",
0290                        inode->i_ino, err);
0291             goto stop_handle;
0292         }
0293     }
0294 
0295     /* Remove xattr references. */
0296     err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
0297                       extra_credits);
0298     if (err) {
0299         ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
0300 stop_handle:
0301         ext4_journal_stop(handle);
0302         ext4_orphan_del(NULL, inode);
0303         if (freeze_protected)
0304             sb_end_intwrite(inode->i_sb);
0305         ext4_xattr_inode_array_free(ea_inode_array);
0306         goto no_delete;
0307     }
0308 
0309     /*
0310      * Kill off the orphan record which ext4_truncate created.
0311      * AKPM: I think this can be inside the above `if'.
0312      * Note that ext4_orphan_del() has to be able to cope with the
0313      * deletion of a non-existent orphan - this is because we don't
0314      * know if ext4_truncate() actually created an orphan record.
0315      * (Well, we could do this if we need to, but heck - it works)
0316      */
0317     ext4_orphan_del(handle, inode);
0318     EXT4_I(inode)->i_dtime  = (__u32)ktime_get_real_seconds();
0319 
0320     /*
0321      * One subtle ordering requirement: if anything has gone wrong
0322      * (transaction abort, IO errors, whatever), then we can still
0323      * do these next steps (the fs will already have been marked as
0324      * having errors), but we can't free the inode if the mark_dirty
0325      * fails.
0326      */
0327     if (ext4_mark_inode_dirty(handle, inode))
0328         /* If that failed, just do the required in-core inode clear. */
0329         ext4_clear_inode(inode);
0330     else
0331         ext4_free_inode(handle, inode);
0332     ext4_journal_stop(handle);
0333     if (freeze_protected)
0334         sb_end_intwrite(inode->i_sb);
0335     ext4_xattr_inode_array_free(ea_inode_array);
0336     return;
0337 no_delete:
0338     if (!list_empty(&EXT4_I(inode)->i_fc_list))
0339         ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
0340     ext4_clear_inode(inode);    /* We must guarantee clearing of inode... */
0341 }
0342 
0343 #ifdef CONFIG_QUOTA
0344 qsize_t *ext4_get_reserved_space(struct inode *inode)
0345 {
0346     return &EXT4_I(inode)->i_reserved_quota;
0347 }
0348 #endif
0349 
0350 /*
0351  * Called with i_data_sem down, which is important since we can call
0352  * ext4_discard_preallocations() from here.
0353  */
0354 void ext4_da_update_reserve_space(struct inode *inode,
0355                     int used, int quota_claim)
0356 {
0357     struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0358     struct ext4_inode_info *ei = EXT4_I(inode);
0359 
0360     spin_lock(&ei->i_block_reservation_lock);
0361     trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0362     if (unlikely(used > ei->i_reserved_data_blocks)) {
0363         ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
0364              "with only %d reserved data blocks",
0365              __func__, inode->i_ino, used,
0366              ei->i_reserved_data_blocks);
0367         WARN_ON(1);
0368         used = ei->i_reserved_data_blocks;
0369     }
0370 
0371     /* Update per-inode reservations */
0372     ei->i_reserved_data_blocks -= used;
0373     percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
0374 
0375     spin_unlock(&ei->i_block_reservation_lock);
0376 
0377     /* Update quota subsystem for data blocks */
0378     if (quota_claim)
0379         dquot_claim_block(inode, EXT4_C2B(sbi, used));
0380     else {
0381         /*
0382          * We did fallocate with an offset that is already delayed
0383          * allocated. So on delayed allocated writeback we should
0384          * not re-claim the quota for fallocated blocks.
0385          */
0386         dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
0387     }
0388 
0389     /*
0390      * If we have done all the pending block allocations and if
0391      * there aren't any writers on the inode, we can discard the
0392      * inode's preallocations.
0393      */
0394     if ((ei->i_reserved_data_blocks == 0) &&
0395         !inode_is_open_for_write(inode))
0396         ext4_discard_preallocations(inode, 0);
0397 }
0398 
0399 static int __check_block_validity(struct inode *inode, const char *func,
0400                 unsigned int line,
0401                 struct ext4_map_blocks *map)
0402 {
0403     if (ext4_has_feature_journal(inode->i_sb) &&
0404         (inode->i_ino ==
0405          le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
0406         return 0;
0407     if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
0408         ext4_error_inode(inode, func, line, map->m_pblk,
0409                  "lblock %lu mapped to illegal pblock %llu "
0410                  "(length %d)", (unsigned long) map->m_lblk,
0411                  map->m_pblk, map->m_len);
0412         return -EFSCORRUPTED;
0413     }
0414     return 0;
0415 }
0416 
0417 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
0418                ext4_lblk_t len)
0419 {
0420     int ret;
0421 
0422     if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
0423         return fscrypt_zeroout_range(inode, lblk, pblk, len);
0424 
0425     ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
0426     if (ret > 0)
0427         ret = 0;
0428 
0429     return ret;
0430 }
0431 
0432 #define check_block_validity(inode, map)    \
0433     __check_block_validity((inode), __func__, __LINE__, (map))
0434 
0435 #ifdef ES_AGGRESSIVE_TEST
0436 static void ext4_map_blocks_es_recheck(handle_t *handle,
0437                        struct inode *inode,
0438                        struct ext4_map_blocks *es_map,
0439                        struct ext4_map_blocks *map,
0440                        int flags)
0441 {
0442     int retval;
0443 
0444     map->m_flags = 0;
0445     /*
0446      * There is a race window that the result is not the same.
0447      * e.g. xfstests #223 when dioread_nolock enables.  The reason
0448      * is that we lookup a block mapping in extent status tree with
0449      * out taking i_data_sem.  So at the time the unwritten extent
0450      * could be converted.
0451      */
0452     down_read(&EXT4_I(inode)->i_data_sem);
0453     if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
0454         retval = ext4_ext_map_blocks(handle, inode, map, 0);
0455     } else {
0456         retval = ext4_ind_map_blocks(handle, inode, map, 0);
0457     }
0458     up_read((&EXT4_I(inode)->i_data_sem));
0459 
0460     /*
0461      * We don't check m_len because extent will be collpased in status
0462      * tree.  So the m_len might not equal.
0463      */
0464     if (es_map->m_lblk != map->m_lblk ||
0465         es_map->m_flags != map->m_flags ||
0466         es_map->m_pblk != map->m_pblk) {
0467         printk("ES cache assertion failed for inode: %lu "
0468                "es_cached ex [%d/%d/%llu/%x] != "
0469                "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
0470                inode->i_ino, es_map->m_lblk, es_map->m_len,
0471                es_map->m_pblk, es_map->m_flags, map->m_lblk,
0472                map->m_len, map->m_pblk, map->m_flags,
0473                retval, flags);
0474     }
0475 }
0476 #endif /* ES_AGGRESSIVE_TEST */
0477 
0478 /*
0479  * The ext4_map_blocks() function tries to look up the requested blocks,
0480  * and returns if the blocks are already mapped.
0481  *
0482  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
0483  * and store the allocated blocks in the result buffer head and mark it
0484  * mapped.
0485  *
0486  * If file type is extents based, it will call ext4_ext_map_blocks(),
0487  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
0488  * based files
0489  *
0490  * On success, it returns the number of blocks being mapped or allocated.  if
0491  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
0492  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
0493  *
0494  * It returns 0 if plain look up failed (blocks have not been allocated), in
0495  * that case, @map is returned as unmapped but we still do fill map->m_len to
0496  * indicate the length of a hole starting at map->m_lblk.
0497  *
0498  * It returns the error in case of allocation failure.
0499  */
0500 int ext4_map_blocks(handle_t *handle, struct inode *inode,
0501             struct ext4_map_blocks *map, int flags)
0502 {
0503     struct extent_status es;
0504     int retval;
0505     int ret = 0;
0506 #ifdef ES_AGGRESSIVE_TEST
0507     struct ext4_map_blocks orig_map;
0508 
0509     memcpy(&orig_map, map, sizeof(*map));
0510 #endif
0511 
0512     map->m_flags = 0;
0513     ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
0514           flags, map->m_len, (unsigned long) map->m_lblk);
0515 
0516     /*
0517      * ext4_map_blocks returns an int, and m_len is an unsigned int
0518      */
0519     if (unlikely(map->m_len > INT_MAX))
0520         map->m_len = INT_MAX;
0521 
0522     /* We can handle the block number less than EXT_MAX_BLOCKS */
0523     if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
0524         return -EFSCORRUPTED;
0525 
0526     /* Lookup extent status tree firstly */
0527     if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
0528         ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
0529         if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
0530             map->m_pblk = ext4_es_pblock(&es) +
0531                     map->m_lblk - es.es_lblk;
0532             map->m_flags |= ext4_es_is_written(&es) ?
0533                     EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
0534             retval = es.es_len - (map->m_lblk - es.es_lblk);
0535             if (retval > map->m_len)
0536                 retval = map->m_len;
0537             map->m_len = retval;
0538         } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
0539             map->m_pblk = 0;
0540             retval = es.es_len - (map->m_lblk - es.es_lblk);
0541             if (retval > map->m_len)
0542                 retval = map->m_len;
0543             map->m_len = retval;
0544             retval = 0;
0545         } else {
0546             BUG();
0547         }
0548 
0549         if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
0550             return retval;
0551 #ifdef ES_AGGRESSIVE_TEST
0552         ext4_map_blocks_es_recheck(handle, inode, map,
0553                        &orig_map, flags);
0554 #endif
0555         goto found;
0556     }
0557     /*
0558      * In the query cache no-wait mode, nothing we can do more if we
0559      * cannot find extent in the cache.
0560      */
0561     if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
0562         return 0;
0563 
0564     /*
0565      * Try to see if we can get the block without requesting a new
0566      * file system block.
0567      */
0568     down_read(&EXT4_I(inode)->i_data_sem);
0569     if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
0570         retval = ext4_ext_map_blocks(handle, inode, map, 0);
0571     } else {
0572         retval = ext4_ind_map_blocks(handle, inode, map, 0);
0573     }
0574     if (retval > 0) {
0575         unsigned int status;
0576 
0577         if (unlikely(retval != map->m_len)) {
0578             ext4_warning(inode->i_sb,
0579                      "ES len assertion failed for inode "
0580                      "%lu: retval %d != map->m_len %d",
0581                      inode->i_ino, retval, map->m_len);
0582             WARN_ON(1);
0583         }
0584 
0585         status = map->m_flags & EXT4_MAP_UNWRITTEN ?
0586                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
0587         if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
0588             !(status & EXTENT_STATUS_WRITTEN) &&
0589             ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
0590                        map->m_lblk + map->m_len - 1))
0591             status |= EXTENT_STATUS_DELAYED;
0592         ret = ext4_es_insert_extent(inode, map->m_lblk,
0593                         map->m_len, map->m_pblk, status);
0594         if (ret < 0)
0595             retval = ret;
0596     }
0597     up_read((&EXT4_I(inode)->i_data_sem));
0598 
0599 found:
0600     if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
0601         ret = check_block_validity(inode, map);
0602         if (ret != 0)
0603             return ret;
0604     }
0605 
0606     /* If it is only a block(s) look up */
0607     if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
0608         return retval;
0609 
0610     /*
0611      * Returns if the blocks have already allocated
0612      *
0613      * Note that if blocks have been preallocated
0614      * ext4_ext_get_block() returns the create = 0
0615      * with buffer head unmapped.
0616      */
0617     if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
0618         /*
0619          * If we need to convert extent to unwritten
0620          * we continue and do the actual work in
0621          * ext4_ext_map_blocks()
0622          */
0623         if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
0624             return retval;
0625 
0626     /*
0627      * Here we clear m_flags because after allocating an new extent,
0628      * it will be set again.
0629      */
0630     map->m_flags &= ~EXT4_MAP_FLAGS;
0631 
0632     /*
0633      * New blocks allocate and/or writing to unwritten extent
0634      * will possibly result in updating i_data, so we take
0635      * the write lock of i_data_sem, and call get_block()
0636      * with create == 1 flag.
0637      */
0638     down_write(&EXT4_I(inode)->i_data_sem);
0639 
0640     /*
0641      * We need to check for EXT4 here because migrate
0642      * could have changed the inode type in between
0643      */
0644     if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
0645         retval = ext4_ext_map_blocks(handle, inode, map, flags);
0646     } else {
0647         retval = ext4_ind_map_blocks(handle, inode, map, flags);
0648 
0649         if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
0650             /*
0651              * We allocated new blocks which will result in
0652              * i_data's format changing.  Force the migrate
0653              * to fail by clearing migrate flags
0654              */
0655             ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
0656         }
0657 
0658         /*
0659          * Update reserved blocks/metadata blocks after successful
0660          * block allocation which had been deferred till now. We don't
0661          * support fallocate for non extent files. So we can update
0662          * reserve space here.
0663          */
0664         if ((retval > 0) &&
0665             (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
0666             ext4_da_update_reserve_space(inode, retval, 1);
0667     }
0668 
0669     if (retval > 0) {
0670         unsigned int status;
0671 
0672         if (unlikely(retval != map->m_len)) {
0673             ext4_warning(inode->i_sb,
0674                      "ES len assertion failed for inode "
0675                      "%lu: retval %d != map->m_len %d",
0676                      inode->i_ino, retval, map->m_len);
0677             WARN_ON(1);
0678         }
0679 
0680         /*
0681          * We have to zeroout blocks before inserting them into extent
0682          * status tree. Otherwise someone could look them up there and
0683          * use them before they are really zeroed. We also have to
0684          * unmap metadata before zeroing as otherwise writeback can
0685          * overwrite zeros with stale data from block device.
0686          */
0687         if (flags & EXT4_GET_BLOCKS_ZERO &&
0688             map->m_flags & EXT4_MAP_MAPPED &&
0689             map->m_flags & EXT4_MAP_NEW) {
0690             ret = ext4_issue_zeroout(inode, map->m_lblk,
0691                          map->m_pblk, map->m_len);
0692             if (ret) {
0693                 retval = ret;
0694                 goto out_sem;
0695             }
0696         }
0697 
0698         /*
0699          * If the extent has been zeroed out, we don't need to update
0700          * extent status tree.
0701          */
0702         if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
0703             ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
0704             if (ext4_es_is_written(&es))
0705                 goto out_sem;
0706         }
0707         status = map->m_flags & EXT4_MAP_UNWRITTEN ?
0708                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
0709         if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
0710             !(status & EXTENT_STATUS_WRITTEN) &&
0711             ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
0712                        map->m_lblk + map->m_len - 1))
0713             status |= EXTENT_STATUS_DELAYED;
0714         ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
0715                         map->m_pblk, status);
0716         if (ret < 0) {
0717             retval = ret;
0718             goto out_sem;
0719         }
0720     }
0721 
0722 out_sem:
0723     up_write((&EXT4_I(inode)->i_data_sem));
0724     if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
0725         ret = check_block_validity(inode, map);
0726         if (ret != 0)
0727             return ret;
0728 
0729         /*
0730          * Inodes with freshly allocated blocks where contents will be
0731          * visible after transaction commit must be on transaction's
0732          * ordered data list.
0733          */
0734         if (map->m_flags & EXT4_MAP_NEW &&
0735             !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
0736             !(flags & EXT4_GET_BLOCKS_ZERO) &&
0737             !ext4_is_quota_file(inode) &&
0738             ext4_should_order_data(inode)) {
0739             loff_t start_byte =
0740                 (loff_t)map->m_lblk << inode->i_blkbits;
0741             loff_t length = (loff_t)map->m_len << inode->i_blkbits;
0742 
0743             if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
0744                 ret = ext4_jbd2_inode_add_wait(handle, inode,
0745                         start_byte, length);
0746             else
0747                 ret = ext4_jbd2_inode_add_write(handle, inode,
0748                         start_byte, length);
0749             if (ret)
0750                 return ret;
0751         }
0752     }
0753     if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
0754                 map->m_flags & EXT4_MAP_MAPPED))
0755         ext4_fc_track_range(handle, inode, map->m_lblk,
0756                     map->m_lblk + map->m_len - 1);
0757     if (retval < 0)
0758         ext_debug(inode, "failed with err %d\n", retval);
0759     return retval;
0760 }
0761 
0762 /*
0763  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
0764  * we have to be careful as someone else may be manipulating b_state as well.
0765  */
0766 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
0767 {
0768     unsigned long old_state;
0769     unsigned long new_state;
0770 
0771     flags &= EXT4_MAP_FLAGS;
0772 
0773     /* Dummy buffer_head? Set non-atomically. */
0774     if (!bh->b_page) {
0775         bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
0776         return;
0777     }
0778     /*
0779      * Someone else may be modifying b_state. Be careful! This is ugly but
0780      * once we get rid of using bh as a container for mapping information
0781      * to pass to / from get_block functions, this can go away.
0782      */
0783     do {
0784         old_state = READ_ONCE(bh->b_state);
0785         new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
0786     } while (unlikely(
0787          cmpxchg(&bh->b_state, old_state, new_state) != old_state));
0788 }
0789 
0790 static int _ext4_get_block(struct inode *inode, sector_t iblock,
0791                struct buffer_head *bh, int flags)
0792 {
0793     struct ext4_map_blocks map;
0794     int ret = 0;
0795 
0796     if (ext4_has_inline_data(inode))
0797         return -ERANGE;
0798 
0799     map.m_lblk = iblock;
0800     map.m_len = bh->b_size >> inode->i_blkbits;
0801 
0802     ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
0803                   flags);
0804     if (ret > 0) {
0805         map_bh(bh, inode->i_sb, map.m_pblk);
0806         ext4_update_bh_state(bh, map.m_flags);
0807         bh->b_size = inode->i_sb->s_blocksize * map.m_len;
0808         ret = 0;
0809     } else if (ret == 0) {
0810         /* hole case, need to fill in bh->b_size */
0811         bh->b_size = inode->i_sb->s_blocksize * map.m_len;
0812     }
0813     return ret;
0814 }
0815 
0816 int ext4_get_block(struct inode *inode, sector_t iblock,
0817            struct buffer_head *bh, int create)
0818 {
0819     return _ext4_get_block(inode, iblock, bh,
0820                    create ? EXT4_GET_BLOCKS_CREATE : 0);
0821 }
0822 
0823 /*
0824  * Get block function used when preparing for buffered write if we require
0825  * creating an unwritten extent if blocks haven't been allocated.  The extent
0826  * will be converted to written after the IO is complete.
0827  */
0828 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
0829                  struct buffer_head *bh_result, int create)
0830 {
0831     ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
0832            inode->i_ino, create);
0833     return _ext4_get_block(inode, iblock, bh_result,
0834                    EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
0835 }
0836 
0837 /* Maximum number of blocks we map for direct IO at once. */
0838 #define DIO_MAX_BLOCKS 4096
0839 
0840 /*
0841  * `handle' can be NULL if create is zero
0842  */
0843 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
0844                 ext4_lblk_t block, int map_flags)
0845 {
0846     struct ext4_map_blocks map;
0847     struct buffer_head *bh;
0848     int create = map_flags & EXT4_GET_BLOCKS_CREATE;
0849     bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
0850     int err;
0851 
0852     ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
0853             || handle != NULL || create == 0);
0854     ASSERT(create == 0 || !nowait);
0855 
0856     map.m_lblk = block;
0857     map.m_len = 1;
0858     err = ext4_map_blocks(handle, inode, &map, map_flags);
0859 
0860     if (err == 0)
0861         return create ? ERR_PTR(-ENOSPC) : NULL;
0862     if (err < 0)
0863         return ERR_PTR(err);
0864 
0865     if (nowait)
0866         return sb_find_get_block(inode->i_sb, map.m_pblk);
0867 
0868     bh = sb_getblk(inode->i_sb, map.m_pblk);
0869     if (unlikely(!bh))
0870         return ERR_PTR(-ENOMEM);
0871     if (map.m_flags & EXT4_MAP_NEW) {
0872         ASSERT(create != 0);
0873         ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
0874                 || (handle != NULL));
0875 
0876         /*
0877          * Now that we do not always journal data, we should
0878          * keep in mind whether this should always journal the
0879          * new buffer as metadata.  For now, regular file
0880          * writes use ext4_get_block instead, so it's not a
0881          * problem.
0882          */
0883         lock_buffer(bh);
0884         BUFFER_TRACE(bh, "call get_create_access");
0885         err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
0886                              EXT4_JTR_NONE);
0887         if (unlikely(err)) {
0888             unlock_buffer(bh);
0889             goto errout;
0890         }
0891         if (!buffer_uptodate(bh)) {
0892             memset(bh->b_data, 0, inode->i_sb->s_blocksize);
0893             set_buffer_uptodate(bh);
0894         }
0895         unlock_buffer(bh);
0896         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
0897         err = ext4_handle_dirty_metadata(handle, inode, bh);
0898         if (unlikely(err))
0899             goto errout;
0900     } else
0901         BUFFER_TRACE(bh, "not a new buffer");
0902     return bh;
0903 errout:
0904     brelse(bh);
0905     return ERR_PTR(err);
0906 }
0907 
0908 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
0909                    ext4_lblk_t block, int map_flags)
0910 {
0911     struct buffer_head *bh;
0912     int ret;
0913 
0914     bh = ext4_getblk(handle, inode, block, map_flags);
0915     if (IS_ERR(bh))
0916         return bh;
0917     if (!bh || ext4_buffer_uptodate(bh))
0918         return bh;
0919 
0920     ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
0921     if (ret) {
0922         put_bh(bh);
0923         return ERR_PTR(ret);
0924     }
0925     return bh;
0926 }
0927 
0928 /* Read a contiguous batch of blocks. */
0929 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
0930              bool wait, struct buffer_head **bhs)
0931 {
0932     int i, err;
0933 
0934     for (i = 0; i < bh_count; i++) {
0935         bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
0936         if (IS_ERR(bhs[i])) {
0937             err = PTR_ERR(bhs[i]);
0938             bh_count = i;
0939             goto out_brelse;
0940         }
0941     }
0942 
0943     for (i = 0; i < bh_count; i++)
0944         /* Note that NULL bhs[i] is valid because of holes. */
0945         if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
0946             ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
0947 
0948     if (!wait)
0949         return 0;
0950 
0951     for (i = 0; i < bh_count; i++)
0952         if (bhs[i])
0953             wait_on_buffer(bhs[i]);
0954 
0955     for (i = 0; i < bh_count; i++) {
0956         if (bhs[i] && !buffer_uptodate(bhs[i])) {
0957             err = -EIO;
0958             goto out_brelse;
0959         }
0960     }
0961     return 0;
0962 
0963 out_brelse:
0964     for (i = 0; i < bh_count; i++) {
0965         brelse(bhs[i]);
0966         bhs[i] = NULL;
0967     }
0968     return err;
0969 }
0970 
0971 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
0972                struct buffer_head *head,
0973                unsigned from,
0974                unsigned to,
0975                int *partial,
0976                int (*fn)(handle_t *handle, struct inode *inode,
0977                      struct buffer_head *bh))
0978 {
0979     struct buffer_head *bh;
0980     unsigned block_start, block_end;
0981     unsigned blocksize = head->b_size;
0982     int err, ret = 0;
0983     struct buffer_head *next;
0984 
0985     for (bh = head, block_start = 0;
0986          ret == 0 && (bh != head || !block_start);
0987          block_start = block_end, bh = next) {
0988         next = bh->b_this_page;
0989         block_end = block_start + blocksize;
0990         if (block_end <= from || block_start >= to) {
0991             if (partial && !buffer_uptodate(bh))
0992                 *partial = 1;
0993             continue;
0994         }
0995         err = (*fn)(handle, inode, bh);
0996         if (!ret)
0997             ret = err;
0998     }
0999     return ret;
1000 }
1001 
1002 /*
1003  * To preserve ordering, it is essential that the hole instantiation and
1004  * the data write be encapsulated in a single transaction.  We cannot
1005  * close off a transaction and start a new one between the ext4_get_block()
1006  * and the commit_write().  So doing the jbd2_journal_start at the start of
1007  * prepare_write() is the right place.
1008  *
1009  * Also, this function can nest inside ext4_writepage().  In that case, we
1010  * *know* that ext4_writepage() has generated enough buffer credits to do the
1011  * whole page.  So we won't block on the journal in that case, which is good,
1012  * because the caller may be PF_MEMALLOC.
1013  *
1014  * By accident, ext4 can be reentered when a transaction is open via
1015  * quota file writes.  If we were to commit the transaction while thus
1016  * reentered, there can be a deadlock - we would be holding a quota
1017  * lock, and the commit would never complete if another thread had a
1018  * transaction open and was blocking on the quota lock - a ranking
1019  * violation.
1020  *
1021  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1022  * will _not_ run commit under these circumstances because handle->h_ref
1023  * is elevated.  We'll still have enough credits for the tiny quotafile
1024  * write.
1025  */
1026 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1027                 struct buffer_head *bh)
1028 {
1029     int dirty = buffer_dirty(bh);
1030     int ret;
1031 
1032     if (!buffer_mapped(bh) || buffer_freed(bh))
1033         return 0;
1034     /*
1035      * __block_write_begin() could have dirtied some buffers. Clean
1036      * the dirty bit as jbd2_journal_get_write_access() could complain
1037      * otherwise about fs integrity issues. Setting of the dirty bit
1038      * by __block_write_begin() isn't a real problem here as we clear
1039      * the bit before releasing a page lock and thus writeback cannot
1040      * ever write the buffer.
1041      */
1042     if (dirty)
1043         clear_buffer_dirty(bh);
1044     BUFFER_TRACE(bh, "get write access");
1045     ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1046                         EXT4_JTR_NONE);
1047     if (!ret && dirty)
1048         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1049     return ret;
1050 }
1051 
1052 #ifdef CONFIG_FS_ENCRYPTION
1053 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1054                   get_block_t *get_block)
1055 {
1056     unsigned from = pos & (PAGE_SIZE - 1);
1057     unsigned to = from + len;
1058     struct inode *inode = page->mapping->host;
1059     unsigned block_start, block_end;
1060     sector_t block;
1061     int err = 0;
1062     unsigned blocksize = inode->i_sb->s_blocksize;
1063     unsigned bbits;
1064     struct buffer_head *bh, *head, *wait[2];
1065     int nr_wait = 0;
1066     int i;
1067 
1068     BUG_ON(!PageLocked(page));
1069     BUG_ON(from > PAGE_SIZE);
1070     BUG_ON(to > PAGE_SIZE);
1071     BUG_ON(from > to);
1072 
1073     if (!page_has_buffers(page))
1074         create_empty_buffers(page, blocksize, 0);
1075     head = page_buffers(page);
1076     bbits = ilog2(blocksize);
1077     block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1078 
1079     for (bh = head, block_start = 0; bh != head || !block_start;
1080         block++, block_start = block_end, bh = bh->b_this_page) {
1081         block_end = block_start + blocksize;
1082         if (block_end <= from || block_start >= to) {
1083             if (PageUptodate(page)) {
1084                 set_buffer_uptodate(bh);
1085             }
1086             continue;
1087         }
1088         if (buffer_new(bh))
1089             clear_buffer_new(bh);
1090         if (!buffer_mapped(bh)) {
1091             WARN_ON(bh->b_size != blocksize);
1092             err = get_block(inode, block, bh, 1);
1093             if (err)
1094                 break;
1095             if (buffer_new(bh)) {
1096                 if (PageUptodate(page)) {
1097                     clear_buffer_new(bh);
1098                     set_buffer_uptodate(bh);
1099                     mark_buffer_dirty(bh);
1100                     continue;
1101                 }
1102                 if (block_end > to || block_start < from)
1103                     zero_user_segments(page, to, block_end,
1104                                block_start, from);
1105                 continue;
1106             }
1107         }
1108         if (PageUptodate(page)) {
1109             set_buffer_uptodate(bh);
1110             continue;
1111         }
1112         if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1113             !buffer_unwritten(bh) &&
1114             (block_start < from || block_end > to)) {
1115             ext4_read_bh_lock(bh, 0, false);
1116             wait[nr_wait++] = bh;
1117         }
1118     }
1119     /*
1120      * If we issued read requests, let them complete.
1121      */
1122     for (i = 0; i < nr_wait; i++) {
1123         wait_on_buffer(wait[i]);
1124         if (!buffer_uptodate(wait[i]))
1125             err = -EIO;
1126     }
1127     if (unlikely(err)) {
1128         page_zero_new_buffers(page, from, to);
1129     } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1130         for (i = 0; i < nr_wait; i++) {
1131             int err2;
1132 
1133             err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1134                                 bh_offset(wait[i]));
1135             if (err2) {
1136                 clear_buffer_uptodate(wait[i]);
1137                 err = err2;
1138             }
1139         }
1140     }
1141 
1142     return err;
1143 }
1144 #endif
1145 
1146 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1147                 loff_t pos, unsigned len,
1148                 struct page **pagep, void **fsdata)
1149 {
1150     struct inode *inode = mapping->host;
1151     int ret, needed_blocks;
1152     handle_t *handle;
1153     int retries = 0;
1154     struct page *page;
1155     pgoff_t index;
1156     unsigned from, to;
1157 
1158     if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1159         return -EIO;
1160 
1161     trace_ext4_write_begin(inode, pos, len);
1162     /*
1163      * Reserve one block more for addition to orphan list in case
1164      * we allocate blocks but write fails for some reason
1165      */
1166     needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1167     index = pos >> PAGE_SHIFT;
1168     from = pos & (PAGE_SIZE - 1);
1169     to = from + len;
1170 
1171     if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1172         ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1173                             pagep);
1174         if (ret < 0)
1175             return ret;
1176         if (ret == 1)
1177             return 0;
1178     }
1179 
1180     /*
1181      * grab_cache_page_write_begin() can take a long time if the
1182      * system is thrashing due to memory pressure, or if the page
1183      * is being written back.  So grab it first before we start
1184      * the transaction handle.  This also allows us to allocate
1185      * the page (if needed) without using GFP_NOFS.
1186      */
1187 retry_grab:
1188     page = grab_cache_page_write_begin(mapping, index);
1189     if (!page)
1190         return -ENOMEM;
1191     unlock_page(page);
1192 
1193 retry_journal:
1194     handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1195     if (IS_ERR(handle)) {
1196         put_page(page);
1197         return PTR_ERR(handle);
1198     }
1199 
1200     lock_page(page);
1201     if (page->mapping != mapping) {
1202         /* The page got truncated from under us */
1203         unlock_page(page);
1204         put_page(page);
1205         ext4_journal_stop(handle);
1206         goto retry_grab;
1207     }
1208     /* In case writeback began while the page was unlocked */
1209     wait_for_stable_page(page);
1210 
1211 #ifdef CONFIG_FS_ENCRYPTION
1212     if (ext4_should_dioread_nolock(inode))
1213         ret = ext4_block_write_begin(page, pos, len,
1214                          ext4_get_block_unwritten);
1215     else
1216         ret = ext4_block_write_begin(page, pos, len,
1217                          ext4_get_block);
1218 #else
1219     if (ext4_should_dioread_nolock(inode))
1220         ret = __block_write_begin(page, pos, len,
1221                       ext4_get_block_unwritten);
1222     else
1223         ret = __block_write_begin(page, pos, len, ext4_get_block);
1224 #endif
1225     if (!ret && ext4_should_journal_data(inode)) {
1226         ret = ext4_walk_page_buffers(handle, inode,
1227                          page_buffers(page), from, to, NULL,
1228                          do_journal_get_write_access);
1229     }
1230 
1231     if (ret) {
1232         bool extended = (pos + len > inode->i_size) &&
1233                 !ext4_verity_in_progress(inode);
1234 
1235         unlock_page(page);
1236         /*
1237          * __block_write_begin may have instantiated a few blocks
1238          * outside i_size.  Trim these off again. Don't need
1239          * i_size_read because we hold i_rwsem.
1240          *
1241          * Add inode to orphan list in case we crash before
1242          * truncate finishes
1243          */
1244         if (extended && ext4_can_truncate(inode))
1245             ext4_orphan_add(handle, inode);
1246 
1247         ext4_journal_stop(handle);
1248         if (extended) {
1249             ext4_truncate_failed_write(inode);
1250             /*
1251              * If truncate failed early the inode might
1252              * still be on the orphan list; we need to
1253              * make sure the inode is removed from the
1254              * orphan list in that case.
1255              */
1256             if (inode->i_nlink)
1257                 ext4_orphan_del(NULL, inode);
1258         }
1259 
1260         if (ret == -ENOSPC &&
1261             ext4_should_retry_alloc(inode->i_sb, &retries))
1262             goto retry_journal;
1263         put_page(page);
1264         return ret;
1265     }
1266     *pagep = page;
1267     return ret;
1268 }
1269 
1270 /* For write_end() in data=journal mode */
1271 static int write_end_fn(handle_t *handle, struct inode *inode,
1272             struct buffer_head *bh)
1273 {
1274     int ret;
1275     if (!buffer_mapped(bh) || buffer_freed(bh))
1276         return 0;
1277     set_buffer_uptodate(bh);
1278     ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1279     clear_buffer_meta(bh);
1280     clear_buffer_prio(bh);
1281     return ret;
1282 }
1283 
1284 /*
1285  * We need to pick up the new inode size which generic_commit_write gave us
1286  * `file' can be NULL - eg, when called from page_symlink().
1287  *
1288  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1289  * buffers are managed internally.
1290  */
1291 static int ext4_write_end(struct file *file,
1292               struct address_space *mapping,
1293               loff_t pos, unsigned len, unsigned copied,
1294               struct page *page, void *fsdata)
1295 {
1296     handle_t *handle = ext4_journal_current_handle();
1297     struct inode *inode = mapping->host;
1298     loff_t old_size = inode->i_size;
1299     int ret = 0, ret2;
1300     int i_size_changed = 0;
1301     bool verity = ext4_verity_in_progress(inode);
1302 
1303     trace_ext4_write_end(inode, pos, len, copied);
1304 
1305     if (ext4_has_inline_data(inode))
1306         return ext4_write_inline_data_end(inode, pos, len, copied, page);
1307 
1308     copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1309     /*
1310      * it's important to update i_size while still holding page lock:
1311      * page writeout could otherwise come in and zero beyond i_size.
1312      *
1313      * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1314      * blocks are being written past EOF, so skip the i_size update.
1315      */
1316     if (!verity)
1317         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1318     unlock_page(page);
1319     put_page(page);
1320 
1321     if (old_size < pos && !verity)
1322         pagecache_isize_extended(inode, old_size, pos);
1323     /*
1324      * Don't mark the inode dirty under page lock. First, it unnecessarily
1325      * makes the holding time of page lock longer. Second, it forces lock
1326      * ordering of page lock and transaction start for journaling
1327      * filesystems.
1328      */
1329     if (i_size_changed)
1330         ret = ext4_mark_inode_dirty(handle, inode);
1331 
1332     if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1333         /* if we have allocated more blocks and copied
1334          * less. We will have blocks allocated outside
1335          * inode->i_size. So truncate them
1336          */
1337         ext4_orphan_add(handle, inode);
1338 
1339     ret2 = ext4_journal_stop(handle);
1340     if (!ret)
1341         ret = ret2;
1342 
1343     if (pos + len > inode->i_size && !verity) {
1344         ext4_truncate_failed_write(inode);
1345         /*
1346          * If truncate failed early the inode might still be
1347          * on the orphan list; we need to make sure the inode
1348          * is removed from the orphan list in that case.
1349          */
1350         if (inode->i_nlink)
1351             ext4_orphan_del(NULL, inode);
1352     }
1353 
1354     return ret ? ret : copied;
1355 }
1356 
1357 /*
1358  * This is a private version of page_zero_new_buffers() which doesn't
1359  * set the buffer to be dirty, since in data=journalled mode we need
1360  * to call ext4_handle_dirty_metadata() instead.
1361  */
1362 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1363                         struct inode *inode,
1364                         struct page *page,
1365                         unsigned from, unsigned to)
1366 {
1367     unsigned int block_start = 0, block_end;
1368     struct buffer_head *head, *bh;
1369 
1370     bh = head = page_buffers(page);
1371     do {
1372         block_end = block_start + bh->b_size;
1373         if (buffer_new(bh)) {
1374             if (block_end > from && block_start < to) {
1375                 if (!PageUptodate(page)) {
1376                     unsigned start, size;
1377 
1378                     start = max(from, block_start);
1379                     size = min(to, block_end) - start;
1380 
1381                     zero_user(page, start, size);
1382                     write_end_fn(handle, inode, bh);
1383                 }
1384                 clear_buffer_new(bh);
1385             }
1386         }
1387         block_start = block_end;
1388         bh = bh->b_this_page;
1389     } while (bh != head);
1390 }
1391 
1392 static int ext4_journalled_write_end(struct file *file,
1393                      struct address_space *mapping,
1394                      loff_t pos, unsigned len, unsigned copied,
1395                      struct page *page, void *fsdata)
1396 {
1397     handle_t *handle = ext4_journal_current_handle();
1398     struct inode *inode = mapping->host;
1399     loff_t old_size = inode->i_size;
1400     int ret = 0, ret2;
1401     int partial = 0;
1402     unsigned from, to;
1403     int size_changed = 0;
1404     bool verity = ext4_verity_in_progress(inode);
1405 
1406     trace_ext4_journalled_write_end(inode, pos, len, copied);
1407     from = pos & (PAGE_SIZE - 1);
1408     to = from + len;
1409 
1410     BUG_ON(!ext4_handle_valid(handle));
1411 
1412     if (ext4_has_inline_data(inode))
1413         return ext4_write_inline_data_end(inode, pos, len, copied, page);
1414 
1415     if (unlikely(copied < len) && !PageUptodate(page)) {
1416         copied = 0;
1417         ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
1418     } else {
1419         if (unlikely(copied < len))
1420             ext4_journalled_zero_new_buffers(handle, inode, page,
1421                              from + copied, to);
1422         ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1423                          from, from + copied, &partial,
1424                          write_end_fn);
1425         if (!partial)
1426             SetPageUptodate(page);
1427     }
1428     if (!verity)
1429         size_changed = ext4_update_inode_size(inode, pos + copied);
1430     ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1431     EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432     unlock_page(page);
1433     put_page(page);
1434 
1435     if (old_size < pos && !verity)
1436         pagecache_isize_extended(inode, old_size, pos);
1437 
1438     if (size_changed) {
1439         ret2 = ext4_mark_inode_dirty(handle, inode);
1440         if (!ret)
1441             ret = ret2;
1442     }
1443 
1444     if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1445         /* if we have allocated more blocks and copied
1446          * less. We will have blocks allocated outside
1447          * inode->i_size. So truncate them
1448          */
1449         ext4_orphan_add(handle, inode);
1450 
1451     ret2 = ext4_journal_stop(handle);
1452     if (!ret)
1453         ret = ret2;
1454     if (pos + len > inode->i_size && !verity) {
1455         ext4_truncate_failed_write(inode);
1456         /*
1457          * If truncate failed early the inode might still be
1458          * on the orphan list; we need to make sure the inode
1459          * is removed from the orphan list in that case.
1460          */
1461         if (inode->i_nlink)
1462             ext4_orphan_del(NULL, inode);
1463     }
1464 
1465     return ret ? ret : copied;
1466 }
1467 
1468 /*
1469  * Reserve space for a single cluster
1470  */
1471 static int ext4_da_reserve_space(struct inode *inode)
1472 {
1473     struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1474     struct ext4_inode_info *ei = EXT4_I(inode);
1475     int ret;
1476 
1477     /*
1478      * We will charge metadata quota at writeout time; this saves
1479      * us from metadata over-estimation, though we may go over by
1480      * a small amount in the end.  Here we just reserve for data.
1481      */
1482     ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1483     if (ret)
1484         return ret;
1485 
1486     spin_lock(&ei->i_block_reservation_lock);
1487     if (ext4_claim_free_clusters(sbi, 1, 0)) {
1488         spin_unlock(&ei->i_block_reservation_lock);
1489         dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1490         return -ENOSPC;
1491     }
1492     ei->i_reserved_data_blocks++;
1493     trace_ext4_da_reserve_space(inode);
1494     spin_unlock(&ei->i_block_reservation_lock);
1495 
1496     return 0;       /* success */
1497 }
1498 
1499 void ext4_da_release_space(struct inode *inode, int to_free)
1500 {
1501     struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1502     struct ext4_inode_info *ei = EXT4_I(inode);
1503 
1504     if (!to_free)
1505         return;     /* Nothing to release, exit */
1506 
1507     spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1508 
1509     trace_ext4_da_release_space(inode, to_free);
1510     if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1511         /*
1512          * if there aren't enough reserved blocks, then the
1513          * counter is messed up somewhere.  Since this
1514          * function is called from invalidate page, it's
1515          * harmless to return without any action.
1516          */
1517         ext4_warning(inode->i_sb, "ext4_da_release_space: "
1518              "ino %lu, to_free %d with only %d reserved "
1519              "data blocks", inode->i_ino, to_free,
1520              ei->i_reserved_data_blocks);
1521         WARN_ON(1);
1522         to_free = ei->i_reserved_data_blocks;
1523     }
1524     ei->i_reserved_data_blocks -= to_free;
1525 
1526     /* update fs dirty data blocks counter */
1527     percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1528 
1529     spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1530 
1531     dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1532 }
1533 
1534 /*
1535  * Delayed allocation stuff
1536  */
1537 
1538 struct mpage_da_data {
1539     struct inode *inode;
1540     struct writeback_control *wbc;
1541 
1542     pgoff_t first_page; /* The first page to write */
1543     pgoff_t next_page;  /* Current page to examine */
1544     pgoff_t last_page;  /* Last page to examine */
1545     /*
1546      * Extent to map - this can be after first_page because that can be
1547      * fully mapped. We somewhat abuse m_flags to store whether the extent
1548      * is delalloc or unwritten.
1549      */
1550     struct ext4_map_blocks map;
1551     struct ext4_io_submit io_submit;    /* IO submission data */
1552     unsigned int do_map:1;
1553     unsigned int scanned_until_end:1;
1554 };
1555 
1556 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1557                        bool invalidate)
1558 {
1559     unsigned nr, i;
1560     pgoff_t index, end;
1561     struct folio_batch fbatch;
1562     struct inode *inode = mpd->inode;
1563     struct address_space *mapping = inode->i_mapping;
1564 
1565     /* This is necessary when next_page == 0. */
1566     if (mpd->first_page >= mpd->next_page)
1567         return;
1568 
1569     mpd->scanned_until_end = 0;
1570     index = mpd->first_page;
1571     end   = mpd->next_page - 1;
1572     if (invalidate) {
1573         ext4_lblk_t start, last;
1574         start = index << (PAGE_SHIFT - inode->i_blkbits);
1575         last = end << (PAGE_SHIFT - inode->i_blkbits);
1576 
1577         /*
1578          * avoid racing with extent status tree scans made by
1579          * ext4_insert_delayed_block()
1580          */
1581         down_write(&EXT4_I(inode)->i_data_sem);
1582         ext4_es_remove_extent(inode, start, last - start + 1);
1583         up_write(&EXT4_I(inode)->i_data_sem);
1584     }
1585 
1586     folio_batch_init(&fbatch);
1587     while (index <= end) {
1588         nr = filemap_get_folios(mapping, &index, end, &fbatch);
1589         if (nr == 0)
1590             break;
1591         for (i = 0; i < nr; i++) {
1592             struct folio *folio = fbatch.folios[i];
1593 
1594             if (folio->index < mpd->first_page)
1595                 continue;
1596             if (folio->index + folio_nr_pages(folio) - 1 > end)
1597                 continue;
1598             BUG_ON(!folio_test_locked(folio));
1599             BUG_ON(folio_test_writeback(folio));
1600             if (invalidate) {
1601                 if (folio_mapped(folio))
1602                     folio_clear_dirty_for_io(folio);
1603                 block_invalidate_folio(folio, 0,
1604                         folio_size(folio));
1605                 folio_clear_uptodate(folio);
1606             }
1607             folio_unlock(folio);
1608         }
1609         folio_batch_release(&fbatch);
1610     }
1611 }
1612 
1613 static void ext4_print_free_blocks(struct inode *inode)
1614 {
1615     struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1616     struct super_block *sb = inode->i_sb;
1617     struct ext4_inode_info *ei = EXT4_I(inode);
1618 
1619     ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1620            EXT4_C2B(EXT4_SB(inode->i_sb),
1621             ext4_count_free_clusters(sb)));
1622     ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1623     ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1624            (long long) EXT4_C2B(EXT4_SB(sb),
1625         percpu_counter_sum(&sbi->s_freeclusters_counter)));
1626     ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1627            (long long) EXT4_C2B(EXT4_SB(sb),
1628         percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1629     ext4_msg(sb, KERN_CRIT, "Block reservation details");
1630     ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1631          ei->i_reserved_data_blocks);
1632     return;
1633 }
1634 
1635 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1636                       struct buffer_head *bh)
1637 {
1638     return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1639 }
1640 
1641 /*
1642  * ext4_insert_delayed_block - adds a delayed block to the extents status
1643  *                             tree, incrementing the reserved cluster/block
1644  *                             count or making a pending reservation
1645  *                             where needed
1646  *
1647  * @inode - file containing the newly added block
1648  * @lblk - logical block to be added
1649  *
1650  * Returns 0 on success, negative error code on failure.
1651  */
1652 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1653 {
1654     struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1655     int ret;
1656     bool allocated = false;
1657     bool reserved = false;
1658 
1659     /*
1660      * If the cluster containing lblk is shared with a delayed,
1661      * written, or unwritten extent in a bigalloc file system, it's
1662      * already been accounted for and does not need to be reserved.
1663      * A pending reservation must be made for the cluster if it's
1664      * shared with a written or unwritten extent and doesn't already
1665      * have one.  Written and unwritten extents can be purged from the
1666      * extents status tree if the system is under memory pressure, so
1667      * it's necessary to examine the extent tree if a search of the
1668      * extents status tree doesn't get a match.
1669      */
1670     if (sbi->s_cluster_ratio == 1) {
1671         ret = ext4_da_reserve_space(inode);
1672         if (ret != 0)   /* ENOSPC */
1673             goto errout;
1674         reserved = true;
1675     } else {   /* bigalloc */
1676         if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1677             if (!ext4_es_scan_clu(inode,
1678                           &ext4_es_is_mapped, lblk)) {
1679                 ret = ext4_clu_mapped(inode,
1680                               EXT4_B2C(sbi, lblk));
1681                 if (ret < 0)
1682                     goto errout;
1683                 if (ret == 0) {
1684                     ret = ext4_da_reserve_space(inode);
1685                     if (ret != 0)   /* ENOSPC */
1686                         goto errout;
1687                     reserved = true;
1688                 } else {
1689                     allocated = true;
1690                 }
1691             } else {
1692                 allocated = true;
1693             }
1694         }
1695     }
1696 
1697     ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1698     if (ret && reserved)
1699         ext4_da_release_space(inode, 1);
1700 
1701 errout:
1702     return ret;
1703 }
1704 
1705 /*
1706  * This function is grabs code from the very beginning of
1707  * ext4_map_blocks, but assumes that the caller is from delayed write
1708  * time. This function looks up the requested blocks and sets the
1709  * buffer delay bit under the protection of i_data_sem.
1710  */
1711 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1712                   struct ext4_map_blocks *map,
1713                   struct buffer_head *bh)
1714 {
1715     struct extent_status es;
1716     int retval;
1717     sector_t invalid_block = ~((sector_t) 0xffff);
1718 #ifdef ES_AGGRESSIVE_TEST
1719     struct ext4_map_blocks orig_map;
1720 
1721     memcpy(&orig_map, map, sizeof(*map));
1722 #endif
1723 
1724     if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1725         invalid_block = ~0;
1726 
1727     map->m_flags = 0;
1728     ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1729           (unsigned long) map->m_lblk);
1730 
1731     /* Lookup extent status tree firstly */
1732     if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1733         if (ext4_es_is_hole(&es)) {
1734             retval = 0;
1735             down_read(&EXT4_I(inode)->i_data_sem);
1736             goto add_delayed;
1737         }
1738 
1739         /*
1740          * Delayed extent could be allocated by fallocate.
1741          * So we need to check it.
1742          */
1743         if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1744             map_bh(bh, inode->i_sb, invalid_block);
1745             set_buffer_new(bh);
1746             set_buffer_delay(bh);
1747             return 0;
1748         }
1749 
1750         map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1751         retval = es.es_len - (iblock - es.es_lblk);
1752         if (retval > map->m_len)
1753             retval = map->m_len;
1754         map->m_len = retval;
1755         if (ext4_es_is_written(&es))
1756             map->m_flags |= EXT4_MAP_MAPPED;
1757         else if (ext4_es_is_unwritten(&es))
1758             map->m_flags |= EXT4_MAP_UNWRITTEN;
1759         else
1760             BUG();
1761 
1762 #ifdef ES_AGGRESSIVE_TEST
1763         ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1764 #endif
1765         return retval;
1766     }
1767 
1768     /*
1769      * Try to see if we can get the block without requesting a new
1770      * file system block.
1771      */
1772     down_read(&EXT4_I(inode)->i_data_sem);
1773     if (ext4_has_inline_data(inode))
1774         retval = 0;
1775     else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1776         retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1777     else
1778         retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1779 
1780 add_delayed:
1781     if (retval == 0) {
1782         int ret;
1783 
1784         /*
1785          * XXX: __block_prepare_write() unmaps passed block,
1786          * is it OK?
1787          */
1788 
1789         ret = ext4_insert_delayed_block(inode, map->m_lblk);
1790         if (ret != 0) {
1791             retval = ret;
1792             goto out_unlock;
1793         }
1794 
1795         map_bh(bh, inode->i_sb, invalid_block);
1796         set_buffer_new(bh);
1797         set_buffer_delay(bh);
1798     } else if (retval > 0) {
1799         int ret;
1800         unsigned int status;
1801 
1802         if (unlikely(retval != map->m_len)) {
1803             ext4_warning(inode->i_sb,
1804                      "ES len assertion failed for inode "
1805                      "%lu: retval %d != map->m_len %d",
1806                      inode->i_ino, retval, map->m_len);
1807             WARN_ON(1);
1808         }
1809 
1810         status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1811                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1812         ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1813                         map->m_pblk, status);
1814         if (ret != 0)
1815             retval = ret;
1816     }
1817 
1818 out_unlock:
1819     up_read((&EXT4_I(inode)->i_data_sem));
1820 
1821     return retval;
1822 }
1823 
1824 /*
1825  * This is a special get_block_t callback which is used by
1826  * ext4_da_write_begin().  It will either return mapped block or
1827  * reserve space for a single block.
1828  *
1829  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1830  * We also have b_blocknr = -1 and b_bdev initialized properly
1831  *
1832  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1833  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1834  * initialized properly.
1835  */
1836 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1837                struct buffer_head *bh, int create)
1838 {
1839     struct ext4_map_blocks map;
1840     int ret = 0;
1841 
1842     BUG_ON(create == 0);
1843     BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1844 
1845     map.m_lblk = iblock;
1846     map.m_len = 1;
1847 
1848     /*
1849      * first, we need to know whether the block is allocated already
1850      * preallocated blocks are unmapped but should treated
1851      * the same as allocated blocks.
1852      */
1853     ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1854     if (ret <= 0)
1855         return ret;
1856 
1857     map_bh(bh, inode->i_sb, map.m_pblk);
1858     ext4_update_bh_state(bh, map.m_flags);
1859 
1860     if (buffer_unwritten(bh)) {
1861         /* A delayed write to unwritten bh should be marked
1862          * new and mapped.  Mapped ensures that we don't do
1863          * get_block multiple times when we write to the same
1864          * offset and new ensures that we do proper zero out
1865          * for partial write.
1866          */
1867         set_buffer_new(bh);
1868         set_buffer_mapped(bh);
1869     }
1870     return 0;
1871 }
1872 
1873 static int __ext4_journalled_writepage(struct page *page,
1874                        unsigned int len)
1875 {
1876     struct address_space *mapping = page->mapping;
1877     struct inode *inode = mapping->host;
1878     handle_t *handle = NULL;
1879     int ret = 0, err = 0;
1880     int inline_data = ext4_has_inline_data(inode);
1881     struct buffer_head *inode_bh = NULL;
1882     loff_t size;
1883 
1884     ClearPageChecked(page);
1885 
1886     if (inline_data) {
1887         BUG_ON(page->index != 0);
1888         BUG_ON(len > ext4_get_max_inline_size(inode));
1889         inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1890         if (inode_bh == NULL)
1891             goto out;
1892     }
1893     /*
1894      * We need to release the page lock before we start the
1895      * journal, so grab a reference so the page won't disappear
1896      * out from under us.
1897      */
1898     get_page(page);
1899     unlock_page(page);
1900 
1901     handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1902                     ext4_writepage_trans_blocks(inode));
1903     if (IS_ERR(handle)) {
1904         ret = PTR_ERR(handle);
1905         put_page(page);
1906         goto out_no_pagelock;
1907     }
1908     BUG_ON(!ext4_handle_valid(handle));
1909 
1910     lock_page(page);
1911     put_page(page);
1912     size = i_size_read(inode);
1913     if (page->mapping != mapping || page_offset(page) > size) {
1914         /* The page got truncated from under us */
1915         ext4_journal_stop(handle);
1916         ret = 0;
1917         goto out;
1918     }
1919 
1920     if (inline_data) {
1921         ret = ext4_mark_inode_dirty(handle, inode);
1922     } else {
1923         struct buffer_head *page_bufs = page_buffers(page);
1924 
1925         if (page->index == size >> PAGE_SHIFT)
1926             len = size & ~PAGE_MASK;
1927         else
1928             len = PAGE_SIZE;
1929 
1930         ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1931                          NULL, do_journal_get_write_access);
1932 
1933         err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1934                          NULL, write_end_fn);
1935     }
1936     if (ret == 0)
1937         ret = err;
1938     err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
1939     if (ret == 0)
1940         ret = err;
1941     EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1942     err = ext4_journal_stop(handle);
1943     if (!ret)
1944         ret = err;
1945 
1946     ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1947 out:
1948     unlock_page(page);
1949 out_no_pagelock:
1950     brelse(inode_bh);
1951     return ret;
1952 }
1953 
1954 /*
1955  * Note that we don't need to start a transaction unless we're journaling data
1956  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957  * need to file the inode to the transaction's list in ordered mode because if
1958  * we are writing back data added by write(), the inode is already there and if
1959  * we are writing back data modified via mmap(), no one guarantees in which
1960  * transaction the data will hit the disk. In case we are journaling data, we
1961  * cannot start transaction directly because transaction start ranks above page
1962  * lock so we have to do some magic.
1963  *
1964  * This function can get called via...
1965  *   - ext4_writepages after taking page lock (have journal handle)
1966  *   - journal_submit_inode_data_buffers (no journal handle)
1967  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1968  *   - grab_page_cache when doing write_begin (have journal handle)
1969  *
1970  * We don't do any block allocation in this function. If we have page with
1971  * multiple blocks we need to write those buffer_heads that are mapped. This
1972  * is important for mmaped based write. So if we do with blocksize 1K
1973  * truncate(f, 1024);
1974  * a = mmap(f, 0, 4096);
1975  * a[0] = 'a';
1976  * truncate(f, 4096);
1977  * we have in the page first buffer_head mapped via page_mkwrite call back
1978  * but other buffer_heads would be unmapped but dirty (dirty done via the
1979  * do_wp_page). So writepage should write the first block. If we modify
1980  * the mmap area beyond 1024 we will again get a page_fault and the
1981  * page_mkwrite callback will do the block allocation and mark the
1982  * buffer_heads mapped.
1983  *
1984  * We redirty the page if we have any buffer_heads that is either delay or
1985  * unwritten in the page.
1986  *
1987  * We can get recursively called as show below.
1988  *
1989  *  ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1990  *      ext4_writepage()
1991  *
1992  * But since we don't do any block allocation we should not deadlock.
1993  * Page also have the dirty flag cleared so we don't get recurive page_lock.
1994  */
1995 static int ext4_writepage(struct page *page,
1996               struct writeback_control *wbc)
1997 {
1998     struct folio *folio = page_folio(page);
1999     int ret = 0;
2000     loff_t size;
2001     unsigned int len;
2002     struct buffer_head *page_bufs = NULL;
2003     struct inode *inode = page->mapping->host;
2004     struct ext4_io_submit io_submit;
2005     bool keep_towrite = false;
2006 
2007     if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2008         folio_invalidate(folio, 0, folio_size(folio));
2009         folio_unlock(folio);
2010         return -EIO;
2011     }
2012 
2013     trace_ext4_writepage(page);
2014     size = i_size_read(inode);
2015     if (page->index == size >> PAGE_SHIFT &&
2016         !ext4_verity_in_progress(inode))
2017         len = size & ~PAGE_MASK;
2018     else
2019         len = PAGE_SIZE;
2020 
2021     /* Should never happen but for bugs in other kernel subsystems */
2022     if (!page_has_buffers(page)) {
2023         ext4_warning_inode(inode,
2024            "page %lu does not have buffers attached", page->index);
2025         ClearPageDirty(page);
2026         unlock_page(page);
2027         return 0;
2028     }
2029 
2030     page_bufs = page_buffers(page);
2031     /*
2032      * We cannot do block allocation or other extent handling in this
2033      * function. If there are buffers needing that, we have to redirty
2034      * the page. But we may reach here when we do a journal commit via
2035      * journal_submit_inode_data_buffers() and in that case we must write
2036      * allocated buffers to achieve data=ordered mode guarantees.
2037      *
2038      * Also, if there is only one buffer per page (the fs block
2039      * size == the page size), if one buffer needs block
2040      * allocation or needs to modify the extent tree to clear the
2041      * unwritten flag, we know that the page can't be written at
2042      * all, so we might as well refuse the write immediately.
2043      * Unfortunately if the block size != page size, we can't as
2044      * easily detect this case using ext4_walk_page_buffers(), but
2045      * for the extremely common case, this is an optimization that
2046      * skips a useless round trip through ext4_bio_write_page().
2047      */
2048     if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
2049                    ext4_bh_delay_or_unwritten)) {
2050         redirty_page_for_writepage(wbc, page);
2051         if ((current->flags & PF_MEMALLOC) ||
2052             (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2053             /*
2054              * For memory cleaning there's no point in writing only
2055              * some buffers. So just bail out. Warn if we came here
2056              * from direct reclaim.
2057              */
2058             WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2059                             == PF_MEMALLOC);
2060             unlock_page(page);
2061             return 0;
2062         }
2063         keep_towrite = true;
2064     }
2065 
2066     if (PageChecked(page) && ext4_should_journal_data(inode))
2067         /*
2068          * It's mmapped pagecache.  Add buffers and journal it.  There
2069          * doesn't seem much point in redirtying the page here.
2070          */
2071         return __ext4_journalled_writepage(page, len);
2072 
2073     ext4_io_submit_init(&io_submit, wbc);
2074     io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2075     if (!io_submit.io_end) {
2076         redirty_page_for_writepage(wbc, page);
2077         unlock_page(page);
2078         return -ENOMEM;
2079     }
2080     ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
2081     ext4_io_submit(&io_submit);
2082     /* Drop io_end reference we got from init */
2083     ext4_put_io_end_defer(io_submit.io_end);
2084     return ret;
2085 }
2086 
2087 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2088 {
2089     int len;
2090     loff_t size;
2091     int err;
2092 
2093     BUG_ON(page->index != mpd->first_page);
2094     clear_page_dirty_for_io(page);
2095     /*
2096      * We have to be very careful here!  Nothing protects writeback path
2097      * against i_size changes and the page can be writeably mapped into
2098      * page tables. So an application can be growing i_size and writing
2099      * data through mmap while writeback runs. clear_page_dirty_for_io()
2100      * write-protects our page in page tables and the page cannot get
2101      * written to again until we release page lock. So only after
2102      * clear_page_dirty_for_io() we are safe to sample i_size for
2103      * ext4_bio_write_page() to zero-out tail of the written page. We rely
2104      * on the barrier provided by TestClearPageDirty in
2105      * clear_page_dirty_for_io() to make sure i_size is really sampled only
2106      * after page tables are updated.
2107      */
2108     size = i_size_read(mpd->inode);
2109     if (page->index == size >> PAGE_SHIFT &&
2110         !ext4_verity_in_progress(mpd->inode))
2111         len = size & ~PAGE_MASK;
2112     else
2113         len = PAGE_SIZE;
2114     err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
2115     if (!err)
2116         mpd->wbc->nr_to_write--;
2117     mpd->first_page++;
2118 
2119     return err;
2120 }
2121 
2122 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
2123 
2124 /*
2125  * mballoc gives us at most this number of blocks...
2126  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2127  * The rest of mballoc seems to handle chunks up to full group size.
2128  */
2129 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2130 
2131 /*
2132  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2133  *
2134  * @mpd - extent of blocks
2135  * @lblk - logical number of the block in the file
2136  * @bh - buffer head we want to add to the extent
2137  *
2138  * The function is used to collect contig. blocks in the same state. If the
2139  * buffer doesn't require mapping for writeback and we haven't started the
2140  * extent of buffers to map yet, the function returns 'true' immediately - the
2141  * caller can write the buffer right away. Otherwise the function returns true
2142  * if the block has been added to the extent, false if the block couldn't be
2143  * added.
2144  */
2145 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2146                    struct buffer_head *bh)
2147 {
2148     struct ext4_map_blocks *map = &mpd->map;
2149 
2150     /* Buffer that doesn't need mapping for writeback? */
2151     if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2152         (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2153         /* So far no extent to map => we write the buffer right away */
2154         if (map->m_len == 0)
2155             return true;
2156         return false;
2157     }
2158 
2159     /* First block in the extent? */
2160     if (map->m_len == 0) {
2161         /* We cannot map unless handle is started... */
2162         if (!mpd->do_map)
2163             return false;
2164         map->m_lblk = lblk;
2165         map->m_len = 1;
2166         map->m_flags = bh->b_state & BH_FLAGS;
2167         return true;
2168     }
2169 
2170     /* Don't go larger than mballoc is willing to allocate */
2171     if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2172         return false;
2173 
2174     /* Can we merge the block to our big extent? */
2175     if (lblk == map->m_lblk + map->m_len &&
2176         (bh->b_state & BH_FLAGS) == map->m_flags) {
2177         map->m_len++;
2178         return true;
2179     }
2180     return false;
2181 }
2182 
2183 /*
2184  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2185  *
2186  * @mpd - extent of blocks for mapping
2187  * @head - the first buffer in the page
2188  * @bh - buffer we should start processing from
2189  * @lblk - logical number of the block in the file corresponding to @bh
2190  *
2191  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2192  * the page for IO if all buffers in this page were mapped and there's no
2193  * accumulated extent of buffers to map or add buffers in the page to the
2194  * extent of buffers to map. The function returns 1 if the caller can continue
2195  * by processing the next page, 0 if it should stop adding buffers to the
2196  * extent to map because we cannot extend it anymore. It can also return value
2197  * < 0 in case of error during IO submission.
2198  */
2199 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2200                    struct buffer_head *head,
2201                    struct buffer_head *bh,
2202                    ext4_lblk_t lblk)
2203 {
2204     struct inode *inode = mpd->inode;
2205     int err;
2206     ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2207                             >> inode->i_blkbits;
2208 
2209     if (ext4_verity_in_progress(inode))
2210         blocks = EXT_MAX_BLOCKS;
2211 
2212     do {
2213         BUG_ON(buffer_locked(bh));
2214 
2215         if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2216             /* Found extent to map? */
2217             if (mpd->map.m_len)
2218                 return 0;
2219             /* Buffer needs mapping and handle is not started? */
2220             if (!mpd->do_map)
2221                 return 0;
2222             /* Everything mapped so far and we hit EOF */
2223             break;
2224         }
2225     } while (lblk++, (bh = bh->b_this_page) != head);
2226     /* So far everything mapped? Submit the page for IO. */
2227     if (mpd->map.m_len == 0) {
2228         err = mpage_submit_page(mpd, head->b_page);
2229         if (err < 0)
2230             return err;
2231     }
2232     if (lblk >= blocks) {
2233         mpd->scanned_until_end = 1;
2234         return 0;
2235     }
2236     return 1;
2237 }
2238 
2239 /*
2240  * mpage_process_page - update page buffers corresponding to changed extent and
2241  *             may submit fully mapped page for IO
2242  *
2243  * @mpd     - description of extent to map, on return next extent to map
2244  * @m_lblk  - logical block mapping.
2245  * @m_pblk  - corresponding physical mapping.
2246  * @map_bh  - determines on return whether this page requires any further
2247  *        mapping or not.
2248  * Scan given page buffers corresponding to changed extent and update buffer
2249  * state according to new extent state.
2250  * We map delalloc buffers to their physical location, clear unwritten bits.
2251  * If the given page is not fully mapped, we update @map to the next extent in
2252  * the given page that needs mapping & return @map_bh as true.
2253  */
2254 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2255                   ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2256                   bool *map_bh)
2257 {
2258     struct buffer_head *head, *bh;
2259     ext4_io_end_t *io_end = mpd->io_submit.io_end;
2260     ext4_lblk_t lblk = *m_lblk;
2261     ext4_fsblk_t pblock = *m_pblk;
2262     int err = 0;
2263     int blkbits = mpd->inode->i_blkbits;
2264     ssize_t io_end_size = 0;
2265     struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2266 
2267     bh = head = page_buffers(page);
2268     do {
2269         if (lblk < mpd->map.m_lblk)
2270             continue;
2271         if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2272             /*
2273              * Buffer after end of mapped extent.
2274              * Find next buffer in the page to map.
2275              */
2276             mpd->map.m_len = 0;
2277             mpd->map.m_flags = 0;
2278             io_end_vec->size += io_end_size;
2279 
2280             err = mpage_process_page_bufs(mpd, head, bh, lblk);
2281             if (err > 0)
2282                 err = 0;
2283             if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2284                 io_end_vec = ext4_alloc_io_end_vec(io_end);
2285                 if (IS_ERR(io_end_vec)) {
2286                     err = PTR_ERR(io_end_vec);
2287                     goto out;
2288                 }
2289                 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2290             }
2291             *map_bh = true;
2292             goto out;
2293         }
2294         if (buffer_delay(bh)) {
2295             clear_buffer_delay(bh);
2296             bh->b_blocknr = pblock++;
2297         }
2298         clear_buffer_unwritten(bh);
2299         io_end_size += (1 << blkbits);
2300     } while (lblk++, (bh = bh->b_this_page) != head);
2301 
2302     io_end_vec->size += io_end_size;
2303     *map_bh = false;
2304 out:
2305     *m_lblk = lblk;
2306     *m_pblk = pblock;
2307     return err;
2308 }
2309 
2310 /*
2311  * mpage_map_buffers - update buffers corresponding to changed extent and
2312  *             submit fully mapped pages for IO
2313  *
2314  * @mpd - description of extent to map, on return next extent to map
2315  *
2316  * Scan buffers corresponding to changed extent (we expect corresponding pages
2317  * to be already locked) and update buffer state according to new extent state.
2318  * We map delalloc buffers to their physical location, clear unwritten bits,
2319  * and mark buffers as uninit when we perform writes to unwritten extents
2320  * and do extent conversion after IO is finished. If the last page is not fully
2321  * mapped, we update @map to the next extent in the last page that needs
2322  * mapping. Otherwise we submit the page for IO.
2323  */
2324 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2325 {
2326     struct folio_batch fbatch;
2327     unsigned nr, i;
2328     struct inode *inode = mpd->inode;
2329     int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2330     pgoff_t start, end;
2331     ext4_lblk_t lblk;
2332     ext4_fsblk_t pblock;
2333     int err;
2334     bool map_bh = false;
2335 
2336     start = mpd->map.m_lblk >> bpp_bits;
2337     end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2338     lblk = start << bpp_bits;
2339     pblock = mpd->map.m_pblk;
2340 
2341     folio_batch_init(&fbatch);
2342     while (start <= end) {
2343         nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2344         if (nr == 0)
2345             break;
2346         for (i = 0; i < nr; i++) {
2347             struct page *page = &fbatch.folios[i]->page;
2348 
2349             err = mpage_process_page(mpd, page, &lblk, &pblock,
2350                          &map_bh);
2351             /*
2352              * If map_bh is true, means page may require further bh
2353              * mapping, or maybe the page was submitted for IO.
2354              * So we return to call further extent mapping.
2355              */
2356             if (err < 0 || map_bh)
2357                 goto out;
2358             /* Page fully mapped - let IO run! */
2359             err = mpage_submit_page(mpd, page);
2360             if (err < 0)
2361                 goto out;
2362         }
2363         folio_batch_release(&fbatch);
2364     }
2365     /* Extent fully mapped and matches with page boundary. We are done. */
2366     mpd->map.m_len = 0;
2367     mpd->map.m_flags = 0;
2368     return 0;
2369 out:
2370     folio_batch_release(&fbatch);
2371     return err;
2372 }
2373 
2374 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2375 {
2376     struct inode *inode = mpd->inode;
2377     struct ext4_map_blocks *map = &mpd->map;
2378     int get_blocks_flags;
2379     int err, dioread_nolock;
2380 
2381     trace_ext4_da_write_pages_extent(inode, map);
2382     /*
2383      * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2384      * to convert an unwritten extent to be initialized (in the case
2385      * where we have written into one or more preallocated blocks).  It is
2386      * possible that we're going to need more metadata blocks than
2387      * previously reserved. However we must not fail because we're in
2388      * writeback and there is nothing we can do about it so it might result
2389      * in data loss.  So use reserved blocks to allocate metadata if
2390      * possible.
2391      *
2392      * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2393      * the blocks in question are delalloc blocks.  This indicates
2394      * that the blocks and quotas has already been checked when
2395      * the data was copied into the page cache.
2396      */
2397     get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2398                EXT4_GET_BLOCKS_METADATA_NOFAIL |
2399                EXT4_GET_BLOCKS_IO_SUBMIT;
2400     dioread_nolock = ext4_should_dioread_nolock(inode);
2401     if (dioread_nolock)
2402         get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2403     if (map->m_flags & BIT(BH_Delay))
2404         get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2405 
2406     err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2407     if (err < 0)
2408         return err;
2409     if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2410         if (!mpd->io_submit.io_end->handle &&
2411             ext4_handle_valid(handle)) {
2412             mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2413             handle->h_rsv_handle = NULL;
2414         }
2415         ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2416     }
2417 
2418     BUG_ON(map->m_len == 0);
2419     return 0;
2420 }
2421 
2422 /*
2423  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2424  *               mpd->len and submit pages underlying it for IO
2425  *
2426  * @handle - handle for journal operations
2427  * @mpd - extent to map
2428  * @give_up_on_write - we set this to true iff there is a fatal error and there
2429  *                     is no hope of writing the data. The caller should discard
2430  *                     dirty pages to avoid infinite loops.
2431  *
2432  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2433  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2434  * them to initialized or split the described range from larger unwritten
2435  * extent. Note that we need not map all the described range since allocation
2436  * can return less blocks or the range is covered by more unwritten extents. We
2437  * cannot map more because we are limited by reserved transaction credits. On
2438  * the other hand we always make sure that the last touched page is fully
2439  * mapped so that it can be written out (and thus forward progress is
2440  * guaranteed). After mapping we submit all mapped pages for IO.
2441  */
2442 static int mpage_map_and_submit_extent(handle_t *handle,
2443                        struct mpage_da_data *mpd,
2444                        bool *give_up_on_write)
2445 {
2446     struct inode *inode = mpd->inode;
2447     struct ext4_map_blocks *map = &mpd->map;
2448     int err;
2449     loff_t disksize;
2450     int progress = 0;
2451     ext4_io_end_t *io_end = mpd->io_submit.io_end;
2452     struct ext4_io_end_vec *io_end_vec;
2453 
2454     io_end_vec = ext4_alloc_io_end_vec(io_end);
2455     if (IS_ERR(io_end_vec))
2456         return PTR_ERR(io_end_vec);
2457     io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2458     do {
2459         err = mpage_map_one_extent(handle, mpd);
2460         if (err < 0) {
2461             struct super_block *sb = inode->i_sb;
2462 
2463             if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2464                 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
2465                 goto invalidate_dirty_pages;
2466             /*
2467              * Let the uper layers retry transient errors.
2468              * In the case of ENOSPC, if ext4_count_free_blocks()
2469              * is non-zero, a commit should free up blocks.
2470              */
2471             if ((err == -ENOMEM) ||
2472                 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2473                 if (progress)
2474                     goto update_disksize;
2475                 return err;
2476             }
2477             ext4_msg(sb, KERN_CRIT,
2478                  "Delayed block allocation failed for "
2479                  "inode %lu at logical offset %llu with"
2480                  " max blocks %u with error %d",
2481                  inode->i_ino,
2482                  (unsigned long long)map->m_lblk,
2483                  (unsigned)map->m_len, -err);
2484             ext4_msg(sb, KERN_CRIT,
2485                  "This should not happen!! Data will "
2486                  "be lost\n");
2487             if (err == -ENOSPC)
2488                 ext4_print_free_blocks(inode);
2489         invalidate_dirty_pages:
2490             *give_up_on_write = true;
2491             return err;
2492         }
2493         progress = 1;
2494         /*
2495          * Update buffer state, submit mapped pages, and get us new
2496          * extent to map
2497          */
2498         err = mpage_map_and_submit_buffers(mpd);
2499         if (err < 0)
2500             goto update_disksize;
2501     } while (map->m_len);
2502 
2503 update_disksize:
2504     /*
2505      * Update on-disk size after IO is submitted.  Races with
2506      * truncate are avoided by checking i_size under i_data_sem.
2507      */
2508     disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2509     if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2510         int err2;
2511         loff_t i_size;
2512 
2513         down_write(&EXT4_I(inode)->i_data_sem);
2514         i_size = i_size_read(inode);
2515         if (disksize > i_size)
2516             disksize = i_size;
2517         if (disksize > EXT4_I(inode)->i_disksize)
2518             EXT4_I(inode)->i_disksize = disksize;
2519         up_write(&EXT4_I(inode)->i_data_sem);
2520         err2 = ext4_mark_inode_dirty(handle, inode);
2521         if (err2) {
2522             ext4_error_err(inode->i_sb, -err2,
2523                        "Failed to mark inode %lu dirty",
2524                        inode->i_ino);
2525         }
2526         if (!err)
2527             err = err2;
2528     }
2529     return err;
2530 }
2531 
2532 /*
2533  * Calculate the total number of credits to reserve for one writepages
2534  * iteration. This is called from ext4_writepages(). We map an extent of
2535  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2536  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2537  * bpp - 1 blocks in bpp different extents.
2538  */
2539 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2540 {
2541     int bpp = ext4_journal_blocks_per_page(inode);
2542 
2543     return ext4_meta_trans_blocks(inode,
2544                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2545 }
2546 
2547 /*
2548  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2549  *               and underlying extent to map
2550  *
2551  * @mpd - where to look for pages
2552  *
2553  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2554  * IO immediately. When we find a page which isn't mapped we start accumulating
2555  * extent of buffers underlying these pages that needs mapping (formed by
2556  * either delayed or unwritten buffers). We also lock the pages containing
2557  * these buffers. The extent found is returned in @mpd structure (starting at
2558  * mpd->lblk with length mpd->len blocks).
2559  *
2560  * Note that this function can attach bios to one io_end structure which are
2561  * neither logically nor physically contiguous. Although it may seem as an
2562  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2563  * case as we need to track IO to all buffers underlying a page in one io_end.
2564  */
2565 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2566 {
2567     struct address_space *mapping = mpd->inode->i_mapping;
2568     struct pagevec pvec;
2569     unsigned int nr_pages;
2570     long left = mpd->wbc->nr_to_write;
2571     pgoff_t index = mpd->first_page;
2572     pgoff_t end = mpd->last_page;
2573     xa_mark_t tag;
2574     int i, err = 0;
2575     int blkbits = mpd->inode->i_blkbits;
2576     ext4_lblk_t lblk;
2577     struct buffer_head *head;
2578 
2579     if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2580         tag = PAGECACHE_TAG_TOWRITE;
2581     else
2582         tag = PAGECACHE_TAG_DIRTY;
2583 
2584     pagevec_init(&pvec);
2585     mpd->map.m_len = 0;
2586     mpd->next_page = index;
2587     while (index <= end) {
2588         nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2589                 tag);
2590         if (nr_pages == 0)
2591             break;
2592 
2593         for (i = 0; i < nr_pages; i++) {
2594             struct page *page = pvec.pages[i];
2595 
2596             /*
2597              * Accumulated enough dirty pages? This doesn't apply
2598              * to WB_SYNC_ALL mode. For integrity sync we have to
2599              * keep going because someone may be concurrently
2600              * dirtying pages, and we might have synced a lot of
2601              * newly appeared dirty pages, but have not synced all
2602              * of the old dirty pages.
2603              */
2604             if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2605                 goto out;
2606 
2607             /* If we can't merge this page, we are done. */
2608             if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2609                 goto out;
2610 
2611             lock_page(page);
2612             /*
2613              * If the page is no longer dirty, or its mapping no
2614              * longer corresponds to inode we are writing (which
2615              * means it has been truncated or invalidated), or the
2616              * page is already under writeback and we are not doing
2617              * a data integrity writeback, skip the page
2618              */
2619             if (!PageDirty(page) ||
2620                 (PageWriteback(page) &&
2621                  (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2622                 unlikely(page->mapping != mapping)) {
2623                 unlock_page(page);
2624                 continue;
2625             }
2626 
2627             wait_on_page_writeback(page);
2628             BUG_ON(PageWriteback(page));
2629 
2630             /*
2631              * Should never happen but for buggy code in
2632              * other subsystems that call
2633              * set_page_dirty() without properly warning
2634              * the file system first.  See [1] for more
2635              * information.
2636              *
2637              * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2638              */
2639             if (!page_has_buffers(page)) {
2640                 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2641                 ClearPageDirty(page);
2642                 unlock_page(page);
2643                 continue;
2644             }
2645 
2646             if (mpd->map.m_len == 0)
2647                 mpd->first_page = page->index;
2648             mpd->next_page = page->index + 1;
2649             /* Add all dirty buffers to mpd */
2650             lblk = ((ext4_lblk_t)page->index) <<
2651                 (PAGE_SHIFT - blkbits);
2652             head = page_buffers(page);
2653             err = mpage_process_page_bufs(mpd, head, head, lblk);
2654             if (err <= 0)
2655                 goto out;
2656             err = 0;
2657             left--;
2658         }
2659         pagevec_release(&pvec);
2660         cond_resched();
2661     }
2662     mpd->scanned_until_end = 1;
2663     return 0;
2664 out:
2665     pagevec_release(&pvec);
2666     return err;
2667 }
2668 
2669 static int ext4_writepages(struct address_space *mapping,
2670                struct writeback_control *wbc)
2671 {
2672     pgoff_t writeback_index = 0;
2673     long nr_to_write = wbc->nr_to_write;
2674     int range_whole = 0;
2675     int cycled = 1;
2676     handle_t *handle = NULL;
2677     struct mpage_da_data mpd;
2678     struct inode *inode = mapping->host;
2679     int needed_blocks, rsv_blocks = 0, ret = 0;
2680     struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2681     struct blk_plug plug;
2682     bool give_up_on_write = false;
2683 
2684     if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2685         return -EIO;
2686 
2687     percpu_down_read(&sbi->s_writepages_rwsem);
2688     trace_ext4_writepages(inode, wbc);
2689 
2690     /*
2691      * No pages to write? This is mainly a kludge to avoid starting
2692      * a transaction for special inodes like journal inode on last iput()
2693      * because that could violate lock ordering on umount
2694      */
2695     if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2696         goto out_writepages;
2697 
2698     if (ext4_should_journal_data(inode)) {
2699         ret = generic_writepages(mapping, wbc);
2700         goto out_writepages;
2701     }
2702 
2703     /*
2704      * If the filesystem has aborted, it is read-only, so return
2705      * right away instead of dumping stack traces later on that
2706      * will obscure the real source of the problem.  We test
2707      * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2708      * the latter could be true if the filesystem is mounted
2709      * read-only, and in that case, ext4_writepages should
2710      * *never* be called, so if that ever happens, we would want
2711      * the stack trace.
2712      */
2713     if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2714              ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
2715         ret = -EROFS;
2716         goto out_writepages;
2717     }
2718 
2719     /*
2720      * If we have inline data and arrive here, it means that
2721      * we will soon create the block for the 1st page, so
2722      * we'd better clear the inline data here.
2723      */
2724     if (ext4_has_inline_data(inode)) {
2725         /* Just inode will be modified... */
2726         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2727         if (IS_ERR(handle)) {
2728             ret = PTR_ERR(handle);
2729             goto out_writepages;
2730         }
2731         BUG_ON(ext4_test_inode_state(inode,
2732                 EXT4_STATE_MAY_INLINE_DATA));
2733         ext4_destroy_inline_data(handle, inode);
2734         ext4_journal_stop(handle);
2735     }
2736 
2737     if (ext4_should_dioread_nolock(inode)) {
2738         /*
2739          * We may need to convert up to one extent per block in
2740          * the page and we may dirty the inode.
2741          */
2742         rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2743                         PAGE_SIZE >> inode->i_blkbits);
2744     }
2745 
2746     if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2747         range_whole = 1;
2748 
2749     if (wbc->range_cyclic) {
2750         writeback_index = mapping->writeback_index;
2751         if (writeback_index)
2752             cycled = 0;
2753         mpd.first_page = writeback_index;
2754         mpd.last_page = -1;
2755     } else {
2756         mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2757         mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2758     }
2759 
2760     mpd.inode = inode;
2761     mpd.wbc = wbc;
2762     ext4_io_submit_init(&mpd.io_submit, wbc);
2763 retry:
2764     if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2765         tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2766     blk_start_plug(&plug);
2767 
2768     /*
2769      * First writeback pages that don't need mapping - we can avoid
2770      * starting a transaction unnecessarily and also avoid being blocked
2771      * in the block layer on device congestion while having transaction
2772      * started.
2773      */
2774     mpd.do_map = 0;
2775     mpd.scanned_until_end = 0;
2776     mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2777     if (!mpd.io_submit.io_end) {
2778         ret = -ENOMEM;
2779         goto unplug;
2780     }
2781     ret = mpage_prepare_extent_to_map(&mpd);
2782     /* Unlock pages we didn't use */
2783     mpage_release_unused_pages(&mpd, false);
2784     /* Submit prepared bio */
2785     ext4_io_submit(&mpd.io_submit);
2786     ext4_put_io_end_defer(mpd.io_submit.io_end);
2787     mpd.io_submit.io_end = NULL;
2788     if (ret < 0)
2789         goto unplug;
2790 
2791     while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
2792         /* For each extent of pages we use new io_end */
2793         mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2794         if (!mpd.io_submit.io_end) {
2795             ret = -ENOMEM;
2796             break;
2797         }
2798 
2799         /*
2800          * We have two constraints: We find one extent to map and we
2801          * must always write out whole page (makes a difference when
2802          * blocksize < pagesize) so that we don't block on IO when we
2803          * try to write out the rest of the page. Journalled mode is
2804          * not supported by delalloc.
2805          */
2806         BUG_ON(ext4_should_journal_data(inode));
2807         needed_blocks = ext4_da_writepages_trans_blocks(inode);
2808 
2809         /* start a new transaction */
2810         handle = ext4_journal_start_with_reserve(inode,
2811                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2812         if (IS_ERR(handle)) {
2813             ret = PTR_ERR(handle);
2814             ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2815                    "%ld pages, ino %lu; err %d", __func__,
2816                 wbc->nr_to_write, inode->i_ino, ret);
2817             /* Release allocated io_end */
2818             ext4_put_io_end(mpd.io_submit.io_end);
2819             mpd.io_submit.io_end = NULL;
2820             break;
2821         }
2822         mpd.do_map = 1;
2823 
2824         trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2825         ret = mpage_prepare_extent_to_map(&mpd);
2826         if (!ret && mpd.map.m_len)
2827             ret = mpage_map_and_submit_extent(handle, &mpd,
2828                     &give_up_on_write);
2829         /*
2830          * Caution: If the handle is synchronous,
2831          * ext4_journal_stop() can wait for transaction commit
2832          * to finish which may depend on writeback of pages to
2833          * complete or on page lock to be released.  In that
2834          * case, we have to wait until after we have
2835          * submitted all the IO, released page locks we hold,
2836          * and dropped io_end reference (for extent conversion
2837          * to be able to complete) before stopping the handle.
2838          */
2839         if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2840             ext4_journal_stop(handle);
2841             handle = NULL;
2842             mpd.do_map = 0;
2843         }
2844         /* Unlock pages we didn't use */
2845         mpage_release_unused_pages(&mpd, give_up_on_write);
2846         /* Submit prepared bio */
2847         ext4_io_submit(&mpd.io_submit);
2848 
2849         /*
2850          * Drop our io_end reference we got from init. We have
2851          * to be careful and use deferred io_end finishing if
2852          * we are still holding the transaction as we can
2853          * release the last reference to io_end which may end
2854          * up doing unwritten extent conversion.
2855          */
2856         if (handle) {
2857             ext4_put_io_end_defer(mpd.io_submit.io_end);
2858             ext4_journal_stop(handle);
2859         } else
2860             ext4_put_io_end(mpd.io_submit.io_end);
2861         mpd.io_submit.io_end = NULL;
2862 
2863         if (ret == -ENOSPC && sbi->s_journal) {
2864             /*
2865              * Commit the transaction which would
2866              * free blocks released in the transaction
2867              * and try again
2868              */
2869             jbd2_journal_force_commit_nested(sbi->s_journal);
2870             ret = 0;
2871             continue;
2872         }
2873         /* Fatal error - ENOMEM, EIO... */
2874         if (ret)
2875             break;
2876     }
2877 unplug:
2878     blk_finish_plug(&plug);
2879     if (!ret && !cycled && wbc->nr_to_write > 0) {
2880         cycled = 1;
2881         mpd.last_page = writeback_index - 1;
2882         mpd.first_page = 0;
2883         goto retry;
2884     }
2885 
2886     /* Update index */
2887     if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2888         /*
2889          * Set the writeback_index so that range_cyclic
2890          * mode will write it back later
2891          */
2892         mapping->writeback_index = mpd.first_page;
2893 
2894 out_writepages:
2895     trace_ext4_writepages_result(inode, wbc, ret,
2896                      nr_to_write - wbc->nr_to_write);
2897     percpu_up_read(&sbi->s_writepages_rwsem);
2898     return ret;
2899 }
2900 
2901 static int ext4_dax_writepages(struct address_space *mapping,
2902                    struct writeback_control *wbc)
2903 {
2904     int ret;
2905     long nr_to_write = wbc->nr_to_write;
2906     struct inode *inode = mapping->host;
2907     struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2908 
2909     if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2910         return -EIO;
2911 
2912     percpu_down_read(&sbi->s_writepages_rwsem);
2913     trace_ext4_writepages(inode, wbc);
2914 
2915     ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
2916     trace_ext4_writepages_result(inode, wbc, ret,
2917                      nr_to_write - wbc->nr_to_write);
2918     percpu_up_read(&sbi->s_writepages_rwsem);
2919     return ret;
2920 }
2921 
2922 static int ext4_nonda_switch(struct super_block *sb)
2923 {
2924     s64 free_clusters, dirty_clusters;
2925     struct ext4_sb_info *sbi = EXT4_SB(sb);
2926 
2927     /*
2928      * switch to non delalloc mode if we are running low
2929      * on free block. The free block accounting via percpu
2930      * counters can get slightly wrong with percpu_counter_batch getting
2931      * accumulated on each CPU without updating global counters
2932      * Delalloc need an accurate free block accounting. So switch
2933      * to non delalloc when we are near to error range.
2934      */
2935     free_clusters =
2936         percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2937     dirty_clusters =
2938         percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2939     /*
2940      * Start pushing delalloc when 1/2 of free blocks are dirty.
2941      */
2942     if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2943         try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2944 
2945     if (2 * free_clusters < 3 * dirty_clusters ||
2946         free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2947         /*
2948          * free block count is less than 150% of dirty blocks
2949          * or free blocks is less than watermark
2950          */
2951         return 1;
2952     }
2953     return 0;
2954 }
2955 
2956 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2957                    loff_t pos, unsigned len,
2958                    struct page **pagep, void **fsdata)
2959 {
2960     int ret, retries = 0;
2961     struct page *page;
2962     pgoff_t index;
2963     struct inode *inode = mapping->host;
2964 
2965     if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2966         return -EIO;
2967 
2968     index = pos >> PAGE_SHIFT;
2969 
2970     if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2971         *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2972         return ext4_write_begin(file, mapping, pos,
2973                     len, pagep, fsdata);
2974     }
2975     *fsdata = (void *)0;
2976     trace_ext4_da_write_begin(inode, pos, len);
2977 
2978     if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2979         ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2980                               pagep, fsdata);
2981         if (ret < 0)
2982             return ret;
2983         if (ret == 1)
2984             return 0;
2985     }
2986 
2987 retry:
2988     page = grab_cache_page_write_begin(mapping, index);
2989     if (!page)
2990         return -ENOMEM;
2991 
2992     /* In case writeback began while the page was unlocked */
2993     wait_for_stable_page(page);
2994 
2995 #ifdef CONFIG_FS_ENCRYPTION
2996     ret = ext4_block_write_begin(page, pos, len,
2997                      ext4_da_get_block_prep);
2998 #else
2999     ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3000 #endif
3001     if (ret < 0) {
3002         unlock_page(page);
3003         put_page(page);
3004         /*
3005          * block_write_begin may have instantiated a few blocks
3006          * outside i_size.  Trim these off again. Don't need
3007          * i_size_read because we hold inode lock.
3008          */
3009         if (pos + len > inode->i_size)
3010             ext4_truncate_failed_write(inode);
3011 
3012         if (ret == -ENOSPC &&
3013             ext4_should_retry_alloc(inode->i_sb, &retries))
3014             goto retry;
3015         return ret;
3016     }
3017 
3018     *pagep = page;
3019     return ret;
3020 }
3021 
3022 /*
3023  * Check if we should update i_disksize
3024  * when write to the end of file but not require block allocation
3025  */
3026 static int ext4_da_should_update_i_disksize(struct page *page,
3027                         unsigned long offset)
3028 {
3029     struct buffer_head *bh;
3030     struct inode *inode = page->mapping->host;
3031     unsigned int idx;
3032     int i;
3033 
3034     bh = page_buffers(page);
3035     idx = offset >> inode->i_blkbits;
3036 
3037     for (i = 0; i < idx; i++)
3038         bh = bh->b_this_page;
3039 
3040     if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3041         return 0;
3042     return 1;
3043 }
3044 
3045 static int ext4_da_write_end(struct file *file,
3046                  struct address_space *mapping,
3047                  loff_t pos, unsigned len, unsigned copied,
3048                  struct page *page, void *fsdata)
3049 {
3050     struct inode *inode = mapping->host;
3051     loff_t new_i_size;
3052     unsigned long start, end;
3053     int write_mode = (int)(unsigned long)fsdata;
3054 
3055     if (write_mode == FALL_BACK_TO_NONDELALLOC)
3056         return ext4_write_end(file, mapping, pos,
3057                       len, copied, page, fsdata);
3058 
3059     trace_ext4_da_write_end(inode, pos, len, copied);
3060 
3061     if (write_mode != CONVERT_INLINE_DATA &&
3062         ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3063         ext4_has_inline_data(inode))
3064         return ext4_write_inline_data_end(inode, pos, len, copied, page);
3065 
3066     start = pos & (PAGE_SIZE - 1);
3067     end = start + copied - 1;
3068 
3069     /*
3070      * Since we are holding inode lock, we are sure i_disksize <=
3071      * i_size. We also know that if i_disksize < i_size, there are
3072      * delalloc writes pending in the range upto i_size. If the end of
3073      * the current write is <= i_size, there's no need to touch
3074      * i_disksize since writeback will push i_disksize upto i_size
3075      * eventually. If the end of the current write is > i_size and
3076      * inside an allocated block (ext4_da_should_update_i_disksize()
3077      * check), we need to update i_disksize here as neither
3078      * ext4_writepage() nor certain ext4_writepages() paths not
3079      * allocating blocks update i_disksize.
3080      *
3081      * Note that we defer inode dirtying to generic_write_end() /
3082      * ext4_da_write_inline_data_end().
3083      */
3084     new_i_size = pos + copied;
3085     if (copied && new_i_size > inode->i_size &&
3086         ext4_da_should_update_i_disksize(page, end))
3087         ext4_update_i_disksize(inode, new_i_size);
3088 
3089     return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
3090 }
3091 
3092 /*
3093  * Force all delayed allocation blocks to be allocated for a given inode.
3094  */
3095 int ext4_alloc_da_blocks(struct inode *inode)
3096 {
3097     trace_ext4_alloc_da_blocks(inode);
3098 
3099     if (!EXT4_I(inode)->i_reserved_data_blocks)
3100         return 0;
3101 
3102     /*
3103      * We do something simple for now.  The filemap_flush() will
3104      * also start triggering a write of the data blocks, which is
3105      * not strictly speaking necessary (and for users of
3106      * laptop_mode, not even desirable).  However, to do otherwise
3107      * would require replicating code paths in:
3108      *
3109      * ext4_writepages() ->
3110      *    write_cache_pages() ---> (via passed in callback function)
3111      *        __mpage_da_writepage() -->
3112      *           mpage_add_bh_to_extent()
3113      *           mpage_da_map_blocks()
3114      *
3115      * The problem is that write_cache_pages(), located in
3116      * mm/page-writeback.c, marks pages clean in preparation for
3117      * doing I/O, which is not desirable if we're not planning on
3118      * doing I/O at all.
3119      *
3120      * We could call write_cache_pages(), and then redirty all of
3121      * the pages by calling redirty_page_for_writepage() but that
3122      * would be ugly in the extreme.  So instead we would need to
3123      * replicate parts of the code in the above functions,
3124      * simplifying them because we wouldn't actually intend to
3125      * write out the pages, but rather only collect contiguous
3126      * logical block extents, call the multi-block allocator, and
3127      * then update the buffer heads with the block allocations.
3128      *
3129      * For now, though, we'll cheat by calling filemap_flush(),
3130      * which will map the blocks, and start the I/O, but not
3131      * actually wait for the I/O to complete.
3132      */
3133     return filemap_flush(inode->i_mapping);
3134 }
3135 
3136 /*
3137  * bmap() is special.  It gets used by applications such as lilo and by
3138  * the swapper to find the on-disk block of a specific piece of data.
3139  *
3140  * Naturally, this is dangerous if the block concerned is still in the
3141  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3142  * filesystem and enables swap, then they may get a nasty shock when the
3143  * data getting swapped to that swapfile suddenly gets overwritten by
3144  * the original zero's written out previously to the journal and
3145  * awaiting writeback in the kernel's buffer cache.
3146  *
3147  * So, if we see any bmap calls here on a modified, data-journaled file,
3148  * take extra steps to flush any blocks which might be in the cache.
3149  */
3150 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3151 {
3152     struct inode *inode = mapping->host;
3153     journal_t *journal;
3154     sector_t ret = 0;
3155     int err;
3156 
3157     inode_lock_shared(inode);
3158     /*
3159      * We can get here for an inline file via the FIBMAP ioctl
3160      */
3161     if (ext4_has_inline_data(inode))
3162         goto out;
3163 
3164     if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3165             test_opt(inode->i_sb, DELALLOC)) {
3166         /*
3167          * With delalloc we want to sync the file
3168          * so that we can make sure we allocate
3169          * blocks for file
3170          */
3171         filemap_write_and_wait(mapping);
3172     }
3173 
3174     if (EXT4_JOURNAL(inode) &&
3175         ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3176         /*
3177          * This is a REALLY heavyweight approach, but the use of
3178          * bmap on dirty files is expected to be extremely rare:
3179          * only if we run lilo or swapon on a freshly made file
3180          * do we expect this to happen.
3181          *
3182          * (bmap requires CAP_SYS_RAWIO so this does not
3183          * represent an unprivileged user DOS attack --- we'd be
3184          * in trouble if mortal users could trigger this path at
3185          * will.)
3186          *
3187          * NB. EXT4_STATE_JDATA is not set on files other than
3188          * regular files.  If somebody wants to bmap a directory
3189          * or symlink and gets confused because the buffer
3190          * hasn't yet been flushed to disk, they deserve
3191          * everything they get.
3192          */
3193 
3194         ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3195         journal = EXT4_JOURNAL(inode);
3196         jbd2_journal_lock_updates(journal);
3197         err = jbd2_journal_flush(journal, 0);
3198         jbd2_journal_unlock_updates(journal);
3199 
3200         if (err)
3201             goto out;
3202     }
3203 
3204     ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3205 
3206 out:
3207     inode_unlock_shared(inode);
3208     return ret;
3209 }
3210 
3211 static int ext4_read_folio(struct file *file, struct folio *folio)
3212 {
3213     struct page *page = &folio->page;
3214     int ret = -EAGAIN;
3215     struct inode *inode = page->mapping->host;
3216 
3217     trace_ext4_readpage(page);
3218 
3219     if (ext4_has_inline_data(inode))
3220         ret = ext4_readpage_inline(inode, page);
3221 
3222     if (ret == -EAGAIN)
3223         return ext4_mpage_readpages(inode, NULL, page);
3224 
3225     return ret;
3226 }
3227 
3228 static void ext4_readahead(struct readahead_control *rac)
3229 {
3230     struct inode *inode = rac->mapping->host;
3231 
3232     /* If the file has inline data, no need to do readahead. */
3233     if (ext4_has_inline_data(inode))
3234         return;
3235 
3236     ext4_mpage_readpages(inode, rac, NULL);
3237 }
3238 
3239 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3240                 size_t length)
3241 {
3242     trace_ext4_invalidate_folio(folio, offset, length);
3243 
3244     /* No journalling happens on data buffers when this function is used */
3245     WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3246 
3247     block_invalidate_folio(folio, offset, length);
3248 }
3249 
3250 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3251                         size_t offset, size_t length)
3252 {
3253     journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3254 
3255     trace_ext4_journalled_invalidate_folio(folio, offset, length);
3256 
3257     /*
3258      * If it's a full truncate we just forget about the pending dirtying
3259      */
3260     if (offset == 0 && length == folio_size(folio))
3261         folio_clear_checked(folio);
3262 
3263     return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3264 }
3265 
3266 /* Wrapper for aops... */
3267 static void ext4_journalled_invalidate_folio(struct folio *folio,
3268                        size_t offset,
3269                        size_t length)
3270 {
3271     WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3272 }
3273 
3274 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3275 {
3276     journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3277 
3278     trace_ext4_releasepage(&folio->page);
3279 
3280     /* Page has dirty journalled data -> cannot release */
3281     if (folio_test_checked(folio))
3282         return false;
3283     if (journal)
3284         return jbd2_journal_try_to_free_buffers(journal, folio);
3285     else
3286         return try_to_free_buffers(folio);
3287 }
3288 
3289 static bool ext4_inode_datasync_dirty(struct inode *inode)
3290 {
3291     journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3292 
3293     if (journal) {
3294         if (jbd2_transaction_committed(journal,
3295             EXT4_I(inode)->i_datasync_tid))
3296             return false;
3297         if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3298             return !list_empty(&EXT4_I(inode)->i_fc_list);
3299         return true;
3300     }
3301 
3302     /* Any metadata buffers to write? */
3303     if (!list_empty(&inode->i_mapping->private_list))
3304         return true;
3305     return inode->i_state & I_DIRTY_DATASYNC;
3306 }
3307 
3308 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3309                struct ext4_map_blocks *map, loff_t offset,
3310                loff_t length, unsigned int flags)
3311 {
3312     u8 blkbits = inode->i_blkbits;
3313 
3314     /*
3315      * Writes that span EOF might trigger an I/O size update on completion,
3316      * so consider them to be dirty for the purpose of O_DSYNC, even if
3317      * there is no other metadata changes being made or are pending.
3318      */
3319     iomap->flags = 0;
3320     if (ext4_inode_datasync_dirty(inode) ||
3321         offset + length > i_size_read(inode))
3322         iomap->flags |= IOMAP_F_DIRTY;
3323 
3324     if (map->m_flags & EXT4_MAP_NEW)
3325         iomap->flags |= IOMAP_F_NEW;
3326 
3327     if (flags & IOMAP_DAX)
3328         iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3329     else
3330         iomap->bdev = inode->i_sb->s_bdev;
3331     iomap->offset = (u64) map->m_lblk << blkbits;
3332     iomap->length = (u64) map->m_len << blkbits;
3333 
3334     if ((map->m_flags & EXT4_MAP_MAPPED) &&
3335         !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3336         iomap->flags |= IOMAP_F_MERGED;
3337 
3338     /*
3339      * Flags passed to ext4_map_blocks() for direct I/O writes can result
3340      * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3341      * set. In order for any allocated unwritten extents to be converted
3342      * into written extents correctly within the ->end_io() handler, we
3343      * need to ensure that the iomap->type is set appropriately. Hence, the
3344      * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3345      * been set first.
3346      */
3347     if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3348         iomap->type = IOMAP_UNWRITTEN;
3349         iomap->addr = (u64) map->m_pblk << blkbits;
3350         if (flags & IOMAP_DAX)
3351             iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3352     } else if (map->m_flags & EXT4_MAP_MAPPED) {
3353         iomap->type = IOMAP_MAPPED;
3354         iomap->addr = (u64) map->m_pblk << blkbits;
3355         if (flags & IOMAP_DAX)
3356             iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3357     } else {
3358         iomap->type = IOMAP_HOLE;
3359         iomap->addr = IOMAP_NULL_ADDR;
3360     }
3361 }
3362 
3363 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3364                 unsigned int flags)
3365 {
3366     handle_t *handle;
3367     u8 blkbits = inode->i_blkbits;
3368     int ret, dio_credits, m_flags = 0, retries = 0;
3369 
3370     /*
3371      * Trim the mapping request to the maximum value that we can map at
3372      * once for direct I/O.
3373      */
3374     if (map->m_len > DIO_MAX_BLOCKS)
3375         map->m_len = DIO_MAX_BLOCKS;
3376     dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3377 
3378 retry:
3379     /*
3380      * Either we allocate blocks and then don't get an unwritten extent, so
3381      * in that case we have reserved enough credits. Or, the blocks are
3382      * already allocated and unwritten. In that case, the extent conversion
3383      * fits into the credits as well.
3384      */
3385     handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3386     if (IS_ERR(handle))
3387         return PTR_ERR(handle);
3388 
3389     /*
3390      * DAX and direct I/O are the only two operations that are currently
3391      * supported with IOMAP_WRITE.
3392      */
3393     WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3394     if (flags & IOMAP_DAX)
3395         m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3396     /*
3397      * We use i_size instead of i_disksize here because delalloc writeback
3398      * can complete at any point during the I/O and subsequently push the
3399      * i_disksize out to i_size. This could be beyond where direct I/O is
3400      * happening and thus expose allocated blocks to direct I/O reads.
3401      */
3402     else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3403         m_flags = EXT4_GET_BLOCKS_CREATE;
3404     else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3405         m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3406 
3407     ret = ext4_map_blocks(handle, inode, map, m_flags);
3408 
3409     /*
3410      * We cannot fill holes in indirect tree based inodes as that could
3411      * expose stale data in the case of a crash. Use the magic error code
3412      * to fallback to buffered I/O.
3413      */
3414     if (!m_flags && !ret)
3415         ret = -ENOTBLK;
3416 
3417     ext4_journal_stop(handle);
3418     if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3419         goto retry;
3420 
3421     return ret;
3422 }
3423 
3424 
3425 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3426         unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3427 {
3428     int ret;
3429     struct ext4_map_blocks map;
3430     u8 blkbits = inode->i_blkbits;
3431 
3432     if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3433         return -EINVAL;
3434 
3435     if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3436         return -ERANGE;
3437 
3438     /*
3439      * Calculate the first and last logical blocks respectively.
3440      */
3441     map.m_lblk = offset >> blkbits;
3442     map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3443               EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3444 
3445     if (flags & IOMAP_WRITE) {
3446         /*
3447          * We check here if the blocks are already allocated, then we
3448          * don't need to start a journal txn and we can directly return
3449          * the mapping information. This could boost performance
3450          * especially in multi-threaded overwrite requests.
3451          */
3452         if (offset + length <= i_size_read(inode)) {
3453             ret = ext4_map_blocks(NULL, inode, &map, 0);
3454             if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3455                 goto out;
3456         }
3457         ret = ext4_iomap_alloc(inode, &map, flags);
3458     } else {
3459         ret = ext4_map_blocks(NULL, inode, &map, 0);
3460     }
3461 
3462     if (ret < 0)
3463         return ret;
3464 out:
3465     /*
3466      * When inline encryption is enabled, sometimes I/O to an encrypted file
3467      * has to be broken up to guarantee DUN contiguity.  Handle this by
3468      * limiting the length of the mapping returned.
3469      */
3470     map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3471 
3472     ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3473 
3474     return 0;
3475 }
3476 
3477 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3478         loff_t length, unsigned flags, struct iomap *iomap,
3479         struct iomap *srcmap)
3480 {
3481     int ret;
3482 
3483     /*
3484      * Even for writes we don't need to allocate blocks, so just pretend
3485      * we are reading to save overhead of starting a transaction.
3486      */
3487     flags &= ~IOMAP_WRITE;
3488     ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3489     WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3490     return ret;
3491 }
3492 
3493 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3494               ssize_t written, unsigned flags, struct iomap *iomap)
3495 {
3496     /*
3497      * Check to see whether an error occurred while writing out the data to
3498      * the allocated blocks. If so, return the magic error code so that we
3499      * fallback to buffered I/O and attempt to complete the remainder of
3500      * the I/O. Any blocks that may have been allocated in preparation for
3501      * the direct I/O will be reused during buffered I/O.
3502      */
3503     if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3504         return -ENOTBLK;
3505 
3506     return 0;
3507 }
3508 
3509 const struct iomap_ops ext4_iomap_ops = {
3510     .iomap_begin        = ext4_iomap_begin,
3511     .iomap_end      = ext4_iomap_end,
3512 };
3513 
3514 const struct iomap_ops ext4_iomap_overwrite_ops = {
3515     .iomap_begin        = ext4_iomap_overwrite_begin,
3516     .iomap_end      = ext4_iomap_end,
3517 };
3518 
3519 static bool ext4_iomap_is_delalloc(struct inode *inode,
3520                    struct ext4_map_blocks *map)
3521 {
3522     struct extent_status es;
3523     ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3524 
3525     ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3526                   map->m_lblk, end, &es);
3527 
3528     if (!es.es_len || es.es_lblk > end)
3529         return false;
3530 
3531     if (es.es_lblk > map->m_lblk) {
3532         map->m_len = es.es_lblk - map->m_lblk;
3533         return false;
3534     }
3535 
3536     offset = map->m_lblk - es.es_lblk;
3537     map->m_len = es.es_len - offset;
3538 
3539     return true;
3540 }
3541 
3542 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3543                    loff_t length, unsigned int flags,
3544                    struct iomap *iomap, struct iomap *srcmap)
3545 {
3546     int ret;
3547     bool delalloc = false;
3548     struct ext4_map_blocks map;
3549     u8 blkbits = inode->i_blkbits;
3550 
3551     if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3552         return -EINVAL;
3553 
3554     if (ext4_has_inline_data(inode)) {
3555         ret = ext4_inline_data_iomap(inode, iomap);
3556         if (ret != -EAGAIN) {
3557             if (ret == 0 && offset >= iomap->length)
3558                 ret = -ENOENT;
3559             return ret;
3560         }
3561     }
3562 
3563     /*
3564      * Calculate the first and last logical block respectively.
3565      */
3566     map.m_lblk = offset >> blkbits;
3567     map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3568               EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3569 
3570     /*
3571      * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3572      * So handle it here itself instead of querying ext4_map_blocks().
3573      * Since ext4_map_blocks() will warn about it and will return
3574      * -EIO error.
3575      */
3576     if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3577         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3578 
3579         if (offset >= sbi->s_bitmap_maxbytes) {
3580             map.m_flags = 0;
3581             goto set_iomap;
3582         }
3583     }
3584 
3585     ret = ext4_map_blocks(NULL, inode, &map, 0);
3586     if (ret < 0)
3587         return ret;
3588     if (ret == 0)
3589         delalloc = ext4_iomap_is_delalloc(inode, &map);
3590 
3591 set_iomap:
3592     ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3593     if (delalloc && iomap->type == IOMAP_HOLE)
3594         iomap->type = IOMAP_DELALLOC;
3595 
3596     return 0;
3597 }
3598 
3599 const struct iomap_ops ext4_iomap_report_ops = {
3600     .iomap_begin = ext4_iomap_begin_report,
3601 };
3602 
3603 /*
3604  * Whenever the folio is being dirtied, corresponding buffers should already
3605  * be attached to the transaction (we take care of this in ext4_page_mkwrite()
3606  * and ext4_write_begin()). However we cannot move buffers to dirty transaction
3607  * lists here because ->dirty_folio is called under VFS locks and the folio
3608  * is not necessarily locked.
3609  *
3610  * We cannot just dirty the folio and leave attached buffers clean, because the
3611  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3612  * or jbddirty because all the journalling code will explode.
3613  *
3614  * So what we do is to mark the folio "pending dirty" and next time writepage
3615  * is called, propagate that into the buffers appropriately.
3616  */
3617 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3618         struct folio *folio)
3619 {
3620     WARN_ON_ONCE(!folio_buffers(folio));
3621     folio_set_checked(folio);
3622     return filemap_dirty_folio(mapping, folio);
3623 }
3624 
3625 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3626 {
3627     WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3628     WARN_ON_ONCE(!folio_buffers(folio));
3629     return block_dirty_folio(mapping, folio);
3630 }
3631 
3632 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3633                     struct file *file, sector_t *span)
3634 {
3635     return iomap_swapfile_activate(sis, file, span,
3636                        &ext4_iomap_report_ops);
3637 }
3638 
3639 static const struct address_space_operations ext4_aops = {
3640     .read_folio     = ext4_read_folio,
3641     .readahead      = ext4_readahead,
3642     .writepage      = ext4_writepage,
3643     .writepages     = ext4_writepages,
3644     .write_begin        = ext4_write_begin,
3645     .write_end      = ext4_write_end,
3646     .dirty_folio        = ext4_dirty_folio,
3647     .bmap           = ext4_bmap,
3648     .invalidate_folio   = ext4_invalidate_folio,
3649     .release_folio      = ext4_release_folio,
3650     .direct_IO      = noop_direct_IO,
3651     .migrate_folio      = buffer_migrate_folio,
3652     .is_partially_uptodate  = block_is_partially_uptodate,
3653     .error_remove_page  = generic_error_remove_page,
3654     .swap_activate      = ext4_iomap_swap_activate,
3655 };
3656 
3657 static const struct address_space_operations ext4_journalled_aops = {
3658     .read_folio     = ext4_read_folio,
3659     .readahead      = ext4_readahead,
3660     .writepage      = ext4_writepage,
3661     .writepages     = ext4_writepages,
3662     .write_begin        = ext4_write_begin,
3663     .write_end      = ext4_journalled_write_end,
3664     .dirty_folio        = ext4_journalled_dirty_folio,
3665     .bmap           = ext4_bmap,
3666     .invalidate_folio   = ext4_journalled_invalidate_folio,
3667     .release_folio      = ext4_release_folio,
3668     .direct_IO      = noop_direct_IO,
3669     .is_partially_uptodate  = block_is_partially_uptodate,
3670     .error_remove_page  = generic_error_remove_page,
3671     .swap_activate      = ext4_iomap_swap_activate,
3672 };
3673 
3674 static const struct address_space_operations ext4_da_aops = {
3675     .read_folio     = ext4_read_folio,
3676     .readahead      = ext4_readahead,
3677     .writepage      = ext4_writepage,
3678     .writepages     = ext4_writepages,
3679     .write_begin        = ext4_da_write_begin,
3680     .write_end      = ext4_da_write_end,
3681     .dirty_folio        = ext4_dirty_folio,
3682     .bmap           = ext4_bmap,
3683     .invalidate_folio   = ext4_invalidate_folio,
3684     .release_folio      = ext4_release_folio,
3685     .direct_IO      = noop_direct_IO,
3686     .migrate_folio      = buffer_migrate_folio,
3687     .is_partially_uptodate  = block_is_partially_uptodate,
3688     .error_remove_page  = generic_error_remove_page,
3689     .swap_activate      = ext4_iomap_swap_activate,
3690 };
3691 
3692 static const struct address_space_operations ext4_dax_aops = {
3693     .writepages     = ext4_dax_writepages,
3694     .direct_IO      = noop_direct_IO,
3695     .dirty_folio        = noop_dirty_folio,
3696     .bmap           = ext4_bmap,
3697     .swap_activate      = ext4_iomap_swap_activate,
3698 };
3699 
3700 void ext4_set_aops(struct inode *inode)
3701 {
3702     switch (ext4_inode_journal_mode(inode)) {
3703     case EXT4_INODE_ORDERED_DATA_MODE:
3704     case EXT4_INODE_WRITEBACK_DATA_MODE:
3705         break;
3706     case EXT4_INODE_JOURNAL_DATA_MODE:
3707         inode->i_mapping->a_ops = &ext4_journalled_aops;
3708         return;
3709     default:
3710         BUG();
3711     }
3712     if (IS_DAX(inode))
3713         inode->i_mapping->a_ops = &ext4_dax_aops;
3714     else if (test_opt(inode->i_sb, DELALLOC))
3715         inode->i_mapping->a_ops = &ext4_da_aops;
3716     else
3717         inode->i_mapping->a_ops = &ext4_aops;
3718 }
3719 
3720 static int __ext4_block_zero_page_range(handle_t *handle,
3721         struct address_space *mapping, loff_t from, loff_t length)
3722 {
3723     ext4_fsblk_t index = from >> PAGE_SHIFT;
3724     unsigned offset = from & (PAGE_SIZE-1);
3725     unsigned blocksize, pos;
3726     ext4_lblk_t iblock;
3727     struct inode *inode = mapping->host;
3728     struct buffer_head *bh;
3729     struct page *page;
3730     int err = 0;
3731 
3732     page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3733                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3734     if (!page)
3735         return -ENOMEM;
3736 
3737     blocksize = inode->i_sb->s_blocksize;
3738 
3739     iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3740 
3741     if (!page_has_buffers(page))
3742         create_empty_buffers(page, blocksize, 0);
3743 
3744     /* Find the buffer that contains "offset" */
3745     bh = page_buffers(page);
3746     pos = blocksize;
3747     while (offset >= pos) {
3748         bh = bh->b_this_page;
3749         iblock++;
3750         pos += blocksize;
3751     }
3752     if (buffer_freed(bh)) {
3753         BUFFER_TRACE(bh, "freed: skip");
3754         goto unlock;
3755     }
3756     if (!buffer_mapped(bh)) {
3757         BUFFER_TRACE(bh, "unmapped");
3758         ext4_get_block(inode, iblock, bh, 0);
3759         /* unmapped? It's a hole - nothing to do */
3760         if (!buffer_mapped(bh)) {
3761             BUFFER_TRACE(bh, "still unmapped");
3762             goto unlock;
3763         }
3764     }
3765 
3766     /* Ok, it's mapped. Make sure it's up-to-date */
3767     if (PageUptodate(page))
3768         set_buffer_uptodate(bh);
3769 
3770     if (!buffer_uptodate(bh)) {
3771         err = ext4_read_bh_lock(bh, 0, true);
3772         if (err)
3773             goto unlock;
3774         if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3775             /* We expect the key to be set. */
3776             BUG_ON(!fscrypt_has_encryption_key(inode));
3777             err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3778                                    bh_offset(bh));
3779             if (err) {
3780                 clear_buffer_uptodate(bh);
3781                 goto unlock;
3782             }
3783         }
3784     }
3785     if (ext4_should_journal_data(inode)) {
3786         BUFFER_TRACE(bh, "get write access");
3787         err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3788                             EXT4_JTR_NONE);
3789         if (err)
3790             goto unlock;
3791     }
3792     zero_user(page, offset, length);
3793     BUFFER_TRACE(bh, "zeroed end of block");
3794 
3795     if (ext4_should_journal_data(inode)) {
3796         err = ext4_handle_dirty_metadata(handle, inode, bh);
3797     } else {
3798         err = 0;
3799         mark_buffer_dirty(bh);
3800         if (ext4_should_order_data(inode))
3801             err = ext4_jbd2_inode_add_write(handle, inode, from,
3802                     length);
3803     }
3804 
3805 unlock:
3806     unlock_page(page);
3807     put_page(page);
3808     return err;
3809 }
3810 
3811 /*
3812  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3813  * starting from file offset 'from'.  The range to be zero'd must
3814  * be contained with in one block.  If the specified range exceeds
3815  * the end of the block it will be shortened to end of the block
3816  * that corresponds to 'from'
3817  */
3818 static int ext4_block_zero_page_range(handle_t *handle,
3819         struct address_space *mapping, loff_t from, loff_t length)
3820 {
3821     struct inode *inode = mapping->host;
3822     unsigned offset = from & (PAGE_SIZE-1);
3823     unsigned blocksize = inode->i_sb->s_blocksize;
3824     unsigned max = blocksize - (offset & (blocksize - 1));
3825 
3826     /*
3827      * correct length if it does not fall between
3828      * 'from' and the end of the block
3829      */
3830     if (length > max || length < 0)
3831         length = max;
3832 
3833     if (IS_DAX(inode)) {
3834         return dax_zero_range(inode, from, length, NULL,
3835                       &ext4_iomap_ops);
3836     }
3837     return __ext4_block_zero_page_range(handle, mapping, from, length);
3838 }
3839 
3840 /*
3841  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3842  * up to the end of the block which corresponds to `from'.
3843  * This required during truncate. We need to physically zero the tail end
3844  * of that block so it doesn't yield old data if the file is later grown.
3845  */
3846 static int ext4_block_truncate_page(handle_t *handle,
3847         struct address_space *mapping, loff_t from)
3848 {
3849     unsigned offset = from & (PAGE_SIZE-1);
3850     unsigned length;
3851     unsigned blocksize;
3852     struct inode *inode = mapping->host;
3853 
3854     /* If we are processing an encrypted inode during orphan list handling */
3855     if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3856         return 0;
3857 
3858     blocksize = inode->i_sb->s_blocksize;
3859     length = blocksize - (offset & (blocksize - 1));
3860 
3861     return ext4_block_zero_page_range(handle, mapping, from, length);
3862 }
3863 
3864 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3865                  loff_t lstart, loff_t length)
3866 {
3867     struct super_block *sb = inode->i_sb;
3868     struct address_space *mapping = inode->i_mapping;
3869     unsigned partial_start, partial_end;
3870     ext4_fsblk_t start, end;
3871     loff_t byte_end = (lstart + length - 1);
3872     int err = 0;
3873 
3874     partial_start = lstart & (sb->s_blocksize - 1);
3875     partial_end = byte_end & (sb->s_blocksize - 1);
3876 
3877     start = lstart >> sb->s_blocksize_bits;
3878     end = byte_end >> sb->s_blocksize_bits;
3879 
3880     /* Handle partial zero within the single block */
3881     if (start == end &&
3882         (partial_start || (partial_end != sb->s_blocksize - 1))) {
3883         err = ext4_block_zero_page_range(handle, mapping,
3884                          lstart, length);
3885         return err;
3886     }
3887     /* Handle partial zero out on the start of the range */
3888     if (partial_start) {
3889         err = ext4_block_zero_page_range(handle, mapping,
3890                          lstart, sb->s_blocksize);
3891         if (err)
3892             return err;
3893     }
3894     /* Handle partial zero out on the end of the range */
3895     if (partial_end != sb->s_blocksize - 1)
3896         err = ext4_block_zero_page_range(handle, mapping,
3897                          byte_end - partial_end,
3898                          partial_end + 1);
3899     return err;
3900 }
3901 
3902 int ext4_can_truncate(struct inode *inode)
3903 {
3904     if (S_ISREG(inode->i_mode))
3905         return 1;
3906     if (S_ISDIR(inode->i_mode))
3907         return 1;
3908     if (S_ISLNK(inode->i_mode))
3909         return !ext4_inode_is_fast_symlink(inode);
3910     return 0;
3911 }
3912 
3913 /*
3914  * We have to make sure i_disksize gets properly updated before we truncate
3915  * page cache due to hole punching or zero range. Otherwise i_disksize update
3916  * can get lost as it may have been postponed to submission of writeback but
3917  * that will never happen after we truncate page cache.
3918  */
3919 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3920                       loff_t len)
3921 {
3922     handle_t *handle;
3923     int ret;
3924 
3925     loff_t size = i_size_read(inode);
3926 
3927     WARN_ON(!inode_is_locked(inode));
3928     if (offset > size || offset + len < size)
3929         return 0;
3930 
3931     if (EXT4_I(inode)->i_disksize >= size)
3932         return 0;
3933 
3934     handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3935     if (IS_ERR(handle))
3936         return PTR_ERR(handle);
3937     ext4_update_i_disksize(inode, size);
3938     ret = ext4_mark_inode_dirty(handle, inode);
3939     ext4_journal_stop(handle);
3940 
3941     return ret;
3942 }
3943 
3944 static void ext4_wait_dax_page(struct inode *inode)
3945 {
3946     filemap_invalidate_unlock(inode->i_mapping);
3947     schedule();
3948     filemap_invalidate_lock(inode->i_mapping);
3949 }
3950 
3951 int ext4_break_layouts(struct inode *inode)
3952 {
3953     struct page *page;
3954     int error;
3955 
3956     if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3957         return -EINVAL;
3958 
3959     do {
3960         page = dax_layout_busy_page(inode->i_mapping);
3961         if (!page)
3962             return 0;
3963 
3964         error = ___wait_var_event(&page->_refcount,
3965                 atomic_read(&page->_refcount) == 1,
3966                 TASK_INTERRUPTIBLE, 0, 0,
3967                 ext4_wait_dax_page(inode));
3968     } while (error == 0);
3969 
3970     return error;
3971 }
3972 
3973 /*
3974  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3975  * associated with the given offset and length
3976  *
3977  * @inode:  File inode
3978  * @offset: The offset where the hole will begin
3979  * @len:    The length of the hole
3980  *
3981  * Returns: 0 on success or negative on failure
3982  */
3983 
3984 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3985 {
3986     struct inode *inode = file_inode(file);
3987     struct super_block *sb = inode->i_sb;
3988     ext4_lblk_t first_block, stop_block;
3989     struct address_space *mapping = inode->i_mapping;
3990     loff_t first_block_offset, last_block_offset, max_length;
3991     struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3992     handle_t *handle;
3993     unsigned int credits;
3994     int ret = 0, ret2 = 0;
3995 
3996     trace_ext4_punch_hole(inode, offset, length, 0);
3997 
3998     /*
3999      * Write out all dirty pages to avoid race conditions
4000      * Then release them.
4001      */
4002     if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4003         ret = filemap_write_and_wait_range(mapping, offset,
4004                            offset + length - 1);
4005         if (ret)
4006             return ret;
4007     }
4008 
4009     inode_lock(inode);
4010 
4011     /* No need to punch hole beyond i_size */
4012     if (offset >= inode->i_size)
4013         goto out_mutex;
4014 
4015     /*
4016      * If the hole extends beyond i_size, set the hole
4017      * to end after the page that contains i_size
4018      */
4019     if (offset + length > inode->i_size) {
4020         length = inode->i_size +
4021            PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4022            offset;
4023     }
4024 
4025     /*
4026      * For punch hole the length + offset needs to be within one block
4027      * before last range. Adjust the length if it goes beyond that limit.
4028      */
4029     max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
4030     if (offset + length > max_length)
4031         length = max_length - offset;
4032 
4033     if (offset & (sb->s_blocksize - 1) ||
4034         (offset + length) & (sb->s_blocksize - 1)) {
4035         /*
4036          * Attach jinode to inode for jbd2 if we do any zeroing of
4037          * partial block
4038          */
4039         ret = ext4_inode_attach_jinode(inode);
4040         if (ret < 0)
4041             goto out_mutex;
4042 
4043     }
4044 
4045     /* Wait all existing dio workers, newcomers will block on i_rwsem */
4046     inode_dio_wait(inode);
4047 
4048     ret = file_modified(file);
4049     if (ret)
4050         goto out_mutex;
4051 
4052     /*
4053      * Prevent page faults from reinstantiating pages we have released from
4054      * page cache.
4055      */
4056     filemap_invalidate_lock(mapping);
4057 
4058     ret = ext4_break_layouts(inode);
4059     if (ret)
4060         goto out_dio;
4061 
4062     first_block_offset = round_up(offset, sb->s_blocksize);
4063     last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4064 
4065     /* Now release the pages and zero block aligned part of pages*/
4066     if (last_block_offset > first_block_offset) {
4067         ret = ext4_update_disksize_before_punch(inode, offset, length);
4068         if (ret)
4069             goto out_dio;
4070         truncate_pagecache_range(inode, first_block_offset,
4071                      last_block_offset);
4072     }
4073 
4074     if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4075         credits = ext4_writepage_trans_blocks(inode);
4076     else
4077         credits = ext4_blocks_for_truncate(inode);
4078     handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4079     if (IS_ERR(handle)) {
4080         ret = PTR_ERR(handle);
4081         ext4_std_error(sb, ret);
4082         goto out_dio;
4083     }
4084 
4085     ret = ext4_zero_partial_blocks(handle, inode, offset,
4086                        length);
4087     if (ret)
4088         goto out_stop;
4089 
4090     first_block = (offset + sb->s_blocksize - 1) >>
4091         EXT4_BLOCK_SIZE_BITS(sb);
4092     stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4093 
4094     /* If there are blocks to remove, do it */
4095     if (stop_block > first_block) {
4096 
4097         down_write(&EXT4_I(inode)->i_data_sem);
4098         ext4_discard_preallocations(inode, 0);
4099 
4100         ret = ext4_es_remove_extent(inode, first_block,
4101                         stop_block - first_block);
4102         if (ret) {
4103             up_write(&EXT4_I(inode)->i_data_sem);
4104             goto out_stop;
4105         }
4106 
4107         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4108             ret = ext4_ext_remove_space(inode, first_block,
4109                             stop_block - 1);
4110         else
4111             ret = ext4_ind_remove_space(handle, inode, first_block,
4112                             stop_block);
4113 
4114         up_write(&EXT4_I(inode)->i_data_sem);
4115     }
4116     ext4_fc_track_range(handle, inode, first_block, stop_block);
4117     if (IS_SYNC(inode))
4118         ext4_handle_sync(handle);
4119 
4120     inode->i_mtime = inode->i_ctime = current_time(inode);
4121     ret2 = ext4_mark_inode_dirty(handle, inode);
4122     if (unlikely(ret2))
4123         ret = ret2;
4124     if (ret >= 0)
4125         ext4_update_inode_fsync_trans(handle, inode, 1);
4126 out_stop:
4127     ext4_journal_stop(handle);
4128 out_dio:
4129     filemap_invalidate_unlock(mapping);
4130 out_mutex:
4131     inode_unlock(inode);
4132     return ret;
4133 }
4134 
4135 int ext4_inode_attach_jinode(struct inode *inode)
4136 {
4137     struct ext4_inode_info *ei = EXT4_I(inode);
4138     struct jbd2_inode *jinode;
4139 
4140     if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4141         return 0;
4142 
4143     jinode = jbd2_alloc_inode(GFP_KERNEL);
4144     spin_lock(&inode->i_lock);
4145     if (!ei->jinode) {
4146         if (!jinode) {
4147             spin_unlock(&inode->i_lock);
4148             return -ENOMEM;
4149         }
4150         ei->jinode = jinode;
4151         jbd2_journal_init_jbd_inode(ei->jinode, inode);
4152         jinode = NULL;
4153     }
4154     spin_unlock(&inode->i_lock);
4155     if (unlikely(jinode != NULL))
4156         jbd2_free_inode(jinode);
4157     return 0;
4158 }
4159 
4160 /*
4161  * ext4_truncate()
4162  *
4163  * We block out ext4_get_block() block instantiations across the entire
4164  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4165  * simultaneously on behalf of the same inode.
4166  *
4167  * As we work through the truncate and commit bits of it to the journal there
4168  * is one core, guiding principle: the file's tree must always be consistent on
4169  * disk.  We must be able to restart the truncate after a crash.
4170  *
4171  * The file's tree may be transiently inconsistent in memory (although it
4172  * probably isn't), but whenever we close off and commit a journal transaction,
4173  * the contents of (the filesystem + the journal) must be consistent and
4174  * restartable.  It's pretty simple, really: bottom up, right to left (although
4175  * left-to-right works OK too).
4176  *
4177  * Note that at recovery time, journal replay occurs *before* the restart of
4178  * truncate against the orphan inode list.
4179  *
4180  * The committed inode has the new, desired i_size (which is the same as
4181  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4182  * that this inode's truncate did not complete and it will again call
4183  * ext4_truncate() to have another go.  So there will be instantiated blocks
4184  * to the right of the truncation point in a crashed ext4 filesystem.  But
4185  * that's fine - as long as they are linked from the inode, the post-crash
4186  * ext4_truncate() run will find them and release them.
4187  */
4188 int ext4_truncate(struct inode *inode)
4189 {
4190     struct ext4_inode_info *ei = EXT4_I(inode);
4191     unsigned int credits;
4192     int err = 0, err2;
4193     handle_t *handle;
4194     struct address_space *mapping = inode->i_mapping;
4195 
4196     /*
4197      * There is a possibility that we're either freeing the inode
4198      * or it's a completely new inode. In those cases we might not
4199      * have i_rwsem locked because it's not necessary.
4200      */
4201     if (!(inode->i_state & (I_NEW|I_FREEING)))
4202         WARN_ON(!inode_is_locked(inode));
4203     trace_ext4_truncate_enter(inode);
4204 
4205     if (!ext4_can_truncate(inode))
4206         goto out_trace;
4207 
4208     if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4209         ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4210 
4211     if (ext4_has_inline_data(inode)) {
4212         int has_inline = 1;
4213 
4214         err = ext4_inline_data_truncate(inode, &has_inline);
4215         if (err || has_inline)
4216             goto out_trace;
4217     }
4218 
4219     /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4220     if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4221         if (ext4_inode_attach_jinode(inode) < 0)
4222             goto out_trace;
4223     }
4224 
4225     if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4226         credits = ext4_writepage_trans_blocks(inode);
4227     else
4228         credits = ext4_blocks_for_truncate(inode);
4229 
4230     handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4231     if (IS_ERR(handle)) {
4232         err = PTR_ERR(handle);
4233         goto out_trace;
4234     }
4235 
4236     if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4237         ext4_block_truncate_page(handle, mapping, inode->i_size);
4238 
4239     /*
4240      * We add the inode to the orphan list, so that if this
4241      * truncate spans multiple transactions, and we crash, we will
4242      * resume the truncate when the filesystem recovers.  It also
4243      * marks the inode dirty, to catch the new size.
4244      *
4245      * Implication: the file must always be in a sane, consistent
4246      * truncatable state while each transaction commits.
4247      */
4248     err = ext4_orphan_add(handle, inode);
4249     if (err)
4250         goto out_stop;
4251 
4252     down_write(&EXT4_I(inode)->i_data_sem);
4253 
4254     ext4_discard_preallocations(inode, 0);
4255 
4256     if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4257         err = ext4_ext_truncate(handle, inode);
4258     else
4259         ext4_ind_truncate(handle, inode);
4260 
4261     up_write(&ei->i_data_sem);
4262     if (err)
4263         goto out_stop;
4264 
4265     if (IS_SYNC(inode))
4266         ext4_handle_sync(handle);
4267 
4268 out_stop:
4269     /*
4270      * If this was a simple ftruncate() and the file will remain alive,
4271      * then we need to clear up the orphan record which we created above.
4272      * However, if this was a real unlink then we were called by
4273      * ext4_evict_inode(), and we allow that function to clean up the
4274      * orphan info for us.
4275      */
4276     if (inode->i_nlink)
4277         ext4_orphan_del(handle, inode);
4278 
4279     inode->i_mtime = inode->i_ctime = current_time(inode);
4280     err2 = ext4_mark_inode_dirty(handle, inode);
4281     if (unlikely(err2 && !err))
4282         err = err2;
4283     ext4_journal_stop(handle);
4284 
4285 out_trace:
4286     trace_ext4_truncate_exit(inode);
4287     return err;
4288 }
4289 
4290 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4291 {
4292     if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4293         return inode_peek_iversion_raw(inode);
4294     else
4295         return inode_peek_iversion(inode);
4296 }
4297 
4298 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4299                  struct ext4_inode_info *ei)
4300 {
4301     struct inode *inode = &(ei->vfs_inode);
4302     u64 i_blocks = READ_ONCE(inode->i_blocks);
4303     struct super_block *sb = inode->i_sb;
4304 
4305     if (i_blocks <= ~0U) {
4306         /*
4307          * i_blocks can be represented in a 32 bit variable
4308          * as multiple of 512 bytes
4309          */
4310         raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4311         raw_inode->i_blocks_high = 0;
4312         ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4313         return 0;
4314     }
4315 
4316     /*
4317      * This should never happen since sb->s_maxbytes should not have
4318      * allowed this, sb->s_maxbytes was set according to the huge_file
4319      * feature in ext4_fill_super().
4320      */
4321     if (!ext4_has_feature_huge_file(sb))
4322         return -EFSCORRUPTED;
4323 
4324     if (i_blocks <= 0xffffffffffffULL) {
4325         /*
4326          * i_blocks can be represented in a 48 bit variable
4327          * as multiple of 512 bytes
4328          */
4329         raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4330         raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4331         ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4332     } else {
4333         ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4334         /* i_block is stored in file system block size */
4335         i_blocks = i_blocks >> (inode->i_blkbits - 9);
4336         raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4337         raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4338     }
4339     return 0;
4340 }
4341 
4342 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4343 {
4344     struct ext4_inode_info *ei = EXT4_I(inode);
4345     uid_t i_uid;
4346     gid_t i_gid;
4347     projid_t i_projid;
4348     int block;
4349     int err;
4350 
4351     err = ext4_inode_blocks_set(raw_inode, ei);
4352 
4353     raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4354     i_uid = i_uid_read(inode);
4355     i_gid = i_gid_read(inode);
4356     i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4357     if (!(test_opt(inode->i_sb, NO_UID32))) {
4358         raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4359         raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4360         /*
4361          * Fix up interoperability with old kernels. Otherwise,
4362          * old inodes get re-used with the upper 16 bits of the
4363          * uid/gid intact.
4364          */
4365         if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4366             raw_inode->i_uid_high = 0;
4367             raw_inode->i_gid_high = 0;
4368         } else {
4369             raw_inode->i_uid_high =
4370                 cpu_to_le16(high_16_bits(i_uid));
4371             raw_inode->i_gid_high =
4372                 cpu_to_le16(high_16_bits(i_gid));
4373         }
4374     } else {
4375         raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4376         raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4377         raw_inode->i_uid_high = 0;
4378         raw_inode->i_gid_high = 0;
4379     }
4380     raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4381 
4382     EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4383     EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4384     EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4385     EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4386 
4387     raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4388     raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4389     if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4390         raw_inode->i_file_acl_high =
4391             cpu_to_le16(ei->i_file_acl >> 32);
4392     raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4393     ext4_isize_set(raw_inode, ei->i_disksize);
4394 
4395     raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4396     if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4397         if (old_valid_dev(inode->i_rdev)) {
4398             raw_inode->i_block[0] =
4399                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4400             raw_inode->i_block[1] = 0;
4401         } else {
4402             raw_inode->i_block[0] = 0;
4403             raw_inode->i_block[1] =
4404                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4405             raw_inode->i_block[2] = 0;
4406         }
4407     } else if (!ext4_has_inline_data(inode)) {
4408         for (block = 0; block < EXT4_N_BLOCKS; block++)
4409             raw_inode->i_block[block] = ei->i_data[block];
4410     }
4411 
4412     if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4413         u64 ivers = ext4_inode_peek_iversion(inode);
4414 
4415         raw_inode->i_disk_version = cpu_to_le32(ivers);
4416         if (ei->i_extra_isize) {
4417             if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4418                 raw_inode->i_version_hi =
4419                     cpu_to_le32(ivers >> 32);
4420             raw_inode->i_extra_isize =
4421                 cpu_to_le16(ei->i_extra_isize);
4422         }
4423     }
4424 
4425     if (i_projid != EXT4_DEF_PROJID &&
4426         !ext4_has_feature_project(inode->i_sb))
4427         err = err ?: -EFSCORRUPTED;
4428 
4429     if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4430         EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4431         raw_inode->i_projid = cpu_to_le32(i_projid);
4432 
4433     ext4_inode_csum_set(inode, raw_inode, ei);
4434     return err;
4435 }
4436 
4437 /*
4438  * ext4_get_inode_loc returns with an extra refcount against the inode's
4439  * underlying buffer_head on success. If we pass 'inode' and it does not
4440  * have in-inode xattr, we have all inode data in memory that is needed
4441  * to recreate the on-disk version of this inode.
4442  */
4443 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4444                 struct inode *inode, struct ext4_iloc *iloc,
4445                 ext4_fsblk_t *ret_block)
4446 {
4447     struct ext4_group_desc  *gdp;
4448     struct buffer_head  *bh;
4449     ext4_fsblk_t        block;
4450     struct blk_plug     plug;
4451     int         inodes_per_block, inode_offset;
4452 
4453     iloc->bh = NULL;
4454     if (ino < EXT4_ROOT_INO ||
4455         ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4456         return -EFSCORRUPTED;
4457 
4458     iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4459     gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4460     if (!gdp)
4461         return -EIO;
4462 
4463     /*
4464      * Figure out the offset within the block group inode table
4465      */
4466     inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4467     inode_offset = ((ino - 1) %
4468             EXT4_INODES_PER_GROUP(sb));
4469     block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4470     iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4471 
4472     bh = sb_getblk(sb, block);
4473     if (unlikely(!bh))
4474         return -ENOMEM;
4475     if (ext4_buffer_uptodate(bh))
4476         goto has_buffer;
4477 
4478     lock_buffer(bh);
4479     if (ext4_buffer_uptodate(bh)) {
4480         /* Someone brought it uptodate while we waited */
4481         unlock_buffer(bh);
4482         goto has_buffer;
4483     }
4484 
4485     /*
4486      * If we have all information of the inode in memory and this
4487      * is the only valid inode in the block, we need not read the
4488      * block.
4489      */
4490     if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4491         struct buffer_head *bitmap_bh;
4492         int i, start;
4493 
4494         start = inode_offset & ~(inodes_per_block - 1);
4495 
4496         /* Is the inode bitmap in cache? */
4497         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4498         if (unlikely(!bitmap_bh))
4499             goto make_io;
4500 
4501         /*
4502          * If the inode bitmap isn't in cache then the
4503          * optimisation may end up performing two reads instead
4504          * of one, so skip it.
4505          */
4506         if (!buffer_uptodate(bitmap_bh)) {
4507             brelse(bitmap_bh);
4508             goto make_io;
4509         }
4510         for (i = start; i < start + inodes_per_block; i++) {
4511             if (i == inode_offset)
4512                 continue;
4513             if (ext4_test_bit(i, bitmap_bh->b_data))
4514                 break;
4515         }
4516         brelse(bitmap_bh);
4517         if (i == start + inodes_per_block) {
4518             struct ext4_inode *raw_inode =
4519                 (struct ext4_inode *) (bh->b_data + iloc->offset);
4520 
4521             /* all other inodes are free, so skip I/O */
4522             memset(bh->b_data, 0, bh->b_size);
4523             if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4524                 ext4_fill_raw_inode(inode, raw_inode);
4525             set_buffer_uptodate(bh);
4526             unlock_buffer(bh);
4527             goto has_buffer;
4528         }
4529     }
4530 
4531 make_io:
4532     /*
4533      * If we need to do any I/O, try to pre-readahead extra
4534      * blocks from the inode table.
4535      */
4536     blk_start_plug(&plug);
4537     if (EXT4_SB(sb)->s_inode_readahead_blks) {
4538         ext4_fsblk_t b, end, table;
4539         unsigned num;
4540         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4541 
4542         table = ext4_inode_table(sb, gdp);
4543         /* s_inode_readahead_blks is always a power of 2 */
4544         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4545         if (table > b)
4546             b = table;
4547         end = b + ra_blks;
4548         num = EXT4_INODES_PER_GROUP(sb);
4549         if (ext4_has_group_desc_csum(sb))
4550             num -= ext4_itable_unused_count(sb, gdp);
4551         table += num / inodes_per_block;
4552         if (end > table)
4553             end = table;
4554         while (b <= end)
4555             ext4_sb_breadahead_unmovable(sb, b++);
4556     }
4557 
4558     /*
4559      * There are other valid inodes in the buffer, this inode
4560      * has in-inode xattrs, or we don't have this inode in memory.
4561      * Read the block from disk.
4562      */
4563     trace_ext4_load_inode(sb, ino);
4564     ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4565     blk_finish_plug(&plug);
4566     wait_on_buffer(bh);
4567     ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4568     if (!buffer_uptodate(bh)) {
4569         if (ret_block)
4570             *ret_block = block;
4571         brelse(bh);
4572         return -EIO;
4573     }
4574 has_buffer:
4575     iloc->bh = bh;
4576     return 0;
4577 }
4578 
4579 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4580                     struct ext4_iloc *iloc)
4581 {
4582     ext4_fsblk_t err_blk = 0;
4583     int ret;
4584 
4585     ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4586                     &err_blk);
4587 
4588     if (ret == -EIO)
4589         ext4_error_inode_block(inode, err_blk, EIO,
4590                     "unable to read itable block");
4591 
4592     return ret;
4593 }
4594 
4595 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4596 {
4597     ext4_fsblk_t err_blk = 0;
4598     int ret;
4599 
4600     ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4601                     &err_blk);
4602 
4603     if (ret == -EIO)
4604         ext4_error_inode_block(inode, err_blk, EIO,
4605                     "unable to read itable block");
4606 
4607     return ret;
4608 }
4609 
4610 
4611 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4612               struct ext4_iloc *iloc)
4613 {
4614     return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4615 }
4616 
4617 static bool ext4_should_enable_dax(struct inode *inode)
4618 {
4619     struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4620 
4621     if (test_opt2(inode->i_sb, DAX_NEVER))
4622         return false;
4623     if (!S_ISREG(inode->i_mode))
4624         return false;
4625     if (ext4_should_journal_data(inode))
4626         return false;
4627     if (ext4_has_inline_data(inode))
4628         return false;
4629     if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4630         return false;
4631     if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4632         return false;
4633     if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4634         return false;
4635     if (test_opt(inode->i_sb, DAX_ALWAYS))
4636         return true;
4637 
4638     return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4639 }
4640 
4641 void ext4_set_inode_flags(struct inode *inode, bool init)
4642 {
4643     unsigned int flags = EXT4_I(inode)->i_flags;
4644     unsigned int new_fl = 0;
4645 
4646     WARN_ON_ONCE(IS_DAX(inode) && init);
4647 
4648     if (flags & EXT4_SYNC_FL)
4649         new_fl |= S_SYNC;
4650     if (flags & EXT4_APPEND_FL)
4651         new_fl |= S_APPEND;
4652     if (flags & EXT4_IMMUTABLE_FL)
4653         new_fl |= S_IMMUTABLE;
4654     if (flags & EXT4_NOATIME_FL)
4655         new_fl |= S_NOATIME;
4656     if (flags & EXT4_DIRSYNC_FL)
4657         new_fl |= S_DIRSYNC;
4658 
4659     /* Because of the way inode_set_flags() works we must preserve S_DAX
4660      * here if already set. */
4661     new_fl |= (inode->i_flags & S_DAX);
4662     if (init && ext4_should_enable_dax(inode))
4663         new_fl |= S_DAX;
4664 
4665     if (flags & EXT4_ENCRYPT_FL)
4666         new_fl |= S_ENCRYPTED;
4667     if (flags & EXT4_CASEFOLD_FL)
4668         new_fl |= S_CASEFOLD;
4669     if (flags & EXT4_VERITY_FL)
4670         new_fl |= S_VERITY;
4671     inode_set_flags(inode, new_fl,
4672             S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4673             S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4674 }
4675 
4676 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4677                   struct ext4_inode_info *ei)
4678 {
4679     blkcnt_t i_blocks ;
4680     struct inode *inode = &(ei->vfs_inode);
4681     struct super_block *sb = inode->i_sb;
4682 
4683     if (ext4_has_feature_huge_file(sb)) {
4684         /* we are using combined 48 bit field */
4685         i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4686                     le32_to_cpu(raw_inode->i_blocks_lo);
4687         if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4688             /* i_blocks represent file system block size */
4689             return i_blocks  << (inode->i_blkbits - 9);
4690         } else {
4691             return i_blocks;
4692         }
4693     } else {
4694         return le32_to_cpu(raw_inode->i_blocks_lo);
4695     }
4696 }
4697 
4698 static inline int ext4_iget_extra_inode(struct inode *inode,
4699                      struct ext4_inode *raw_inode,
4700                      struct ext4_inode_info *ei)
4701 {
4702     __le32 *magic = (void *)raw_inode +
4703             EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4704 
4705     if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4706         *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4707         ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4708         return ext4_find_inline_data_nolock(inode);
4709     } else
4710         EXT4_I(inode)->i_inline_off = 0;
4711     return 0;
4712 }
4713 
4714 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4715 {
4716     if (!ext4_has_feature_project(inode->i_sb))
4717         return -EOPNOTSUPP;
4718     *projid = EXT4_I(inode)->i_projid;
4719     return 0;
4720 }
4721 
4722 /*
4723  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4724  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4725  * set.
4726  */
4727 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4728 {
4729     if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4730         inode_set_iversion_raw(inode, val);
4731     else
4732         inode_set_iversion_queried(inode, val);
4733 }
4734 
4735 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4736               ext4_iget_flags flags, const char *function,
4737               unsigned int line)
4738 {
4739     struct ext4_iloc iloc;
4740     struct ext4_inode *raw_inode;
4741     struct ext4_inode_info *ei;
4742     struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4743     struct inode *inode;
4744     journal_t *journal = EXT4_SB(sb)->s_journal;
4745     long ret;
4746     loff_t size;
4747     int block;
4748     uid_t i_uid;
4749     gid_t i_gid;
4750     projid_t i_projid;
4751 
4752     if ((!(flags & EXT4_IGET_SPECIAL) &&
4753          ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4754           ino == le32_to_cpu(es->s_usr_quota_inum) ||
4755           ino == le32_to_cpu(es->s_grp_quota_inum) ||
4756           ino == le32_to_cpu(es->s_prj_quota_inum) ||
4757           ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4758         (ino < EXT4_ROOT_INO) ||
4759         (ino > le32_to_cpu(es->s_inodes_count))) {
4760         if (flags & EXT4_IGET_HANDLE)
4761             return ERR_PTR(-ESTALE);
4762         __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4763                  "inode #%lu: comm %s: iget: illegal inode #",
4764                  ino, current->comm);
4765         return ERR_PTR(-EFSCORRUPTED);
4766     }
4767 
4768     inode = iget_locked(sb, ino);
4769     if (!inode)
4770         return ERR_PTR(-ENOMEM);
4771     if (!(inode->i_state & I_NEW))
4772         return inode;
4773 
4774     ei = EXT4_I(inode);
4775     iloc.bh = NULL;
4776 
4777     ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4778     if (ret < 0)
4779         goto bad_inode;
4780     raw_inode = ext4_raw_inode(&iloc);
4781 
4782     if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4783         ext4_error_inode(inode, function, line, 0,
4784                  "iget: root inode unallocated");
4785         ret = -EFSCORRUPTED;
4786         goto bad_inode;
4787     }
4788 
4789     if ((flags & EXT4_IGET_HANDLE) &&
4790         (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4791         ret = -ESTALE;
4792         goto bad_inode;
4793     }
4794 
4795     if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4796         ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4797         if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4798             EXT4_INODE_SIZE(inode->i_sb) ||
4799             (ei->i_extra_isize & 3)) {
4800             ext4_error_inode(inode, function, line, 0,
4801                      "iget: bad extra_isize %u "
4802                      "(inode size %u)",
4803                      ei->i_extra_isize,
4804                      EXT4_INODE_SIZE(inode->i_sb));
4805             ret = -EFSCORRUPTED;
4806             goto bad_inode;
4807         }
4808     } else
4809         ei->i_extra_isize = 0;
4810 
4811     /* Precompute checksum seed for inode metadata */
4812     if (ext4_has_metadata_csum(sb)) {
4813         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4814         __u32 csum;
4815         __le32 inum = cpu_to_le32(inode->i_ino);
4816         __le32 gen = raw_inode->i_generation;
4817         csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4818                    sizeof(inum));
4819         ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4820                           sizeof(gen));
4821     }
4822 
4823     if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4824         ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4825          (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4826         ext4_error_inode_err(inode, function, line, 0,
4827                 EFSBADCRC, "iget: checksum invalid");
4828         ret = -EFSBADCRC;
4829         goto bad_inode;
4830     }
4831 
4832     inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4833     i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4834     i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4835     if (ext4_has_feature_project(sb) &&
4836         EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4837         EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4838         i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4839     else
4840         i_projid = EXT4_DEF_PROJID;
4841 
4842     if (!(test_opt(inode->i_sb, NO_UID32))) {
4843         i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4844         i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4845     }
4846     i_uid_write(inode, i_uid);
4847     i_gid_write(inode, i_gid);
4848     ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4849     set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4850 
4851     ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4852     ei->i_inline_off = 0;
4853     ei->i_dir_start_lookup = 0;
4854     ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4855     /* We now have enough fields to check if the inode was active or not.
4856      * This is needed because nfsd might try to access dead inodes
4857      * the test is that same one that e2fsck uses
4858      * NeilBrown 1999oct15
4859      */
4860     if (inode->i_nlink == 0) {
4861         if ((inode->i_mode == 0 ||
4862              !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4863             ino != EXT4_BOOT_LOADER_INO) {
4864             /* this inode is deleted */
4865             ret = -ESTALE;
4866             goto bad_inode;
4867         }
4868         /* The only unlinked inodes we let through here have
4869          * valid i_mode and are being read by the orphan
4870          * recovery code: that's fine, we're about to complete
4871          * the process of deleting those.
4872          * OR it is the EXT4_BOOT_LOADER_INO which is
4873          * not initialized on a new filesystem. */
4874     }
4875     ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4876     ext4_set_inode_flags(inode, true);
4877     inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4878     ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4879     if (ext4_has_feature_64bit(sb))
4880         ei->i_file_acl |=
4881             ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4882     inode->i_size = ext4_isize(sb, raw_inode);
4883     if ((size = i_size_read(inode)) < 0) {
4884         ext4_error_inode(inode, function, line, 0,
4885                  "iget: bad i_size value: %lld", size);
4886         ret = -EFSCORRUPTED;
4887         goto bad_inode;
4888     }
4889     /*
4890      * If dir_index is not enabled but there's dir with INDEX flag set,
4891      * we'd normally treat htree data as empty space. But with metadata
4892      * checksumming that corrupts checksums so forbid that.
4893      */
4894     if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4895         ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4896         ext4_error_inode(inode, function, line, 0,
4897              "iget: Dir with htree data on filesystem without dir_index feature.");
4898         ret = -EFSCORRUPTED;
4899         goto bad_inode;
4900     }
4901     ei->i_disksize = inode->i_size;
4902 #ifdef CONFIG_QUOTA
4903     ei->i_reserved_quota = 0;
4904 #endif
4905     inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4906     ei->i_block_group = iloc.block_group;
4907     ei->i_last_alloc_group = ~0;
4908     /*
4909      * NOTE! The in-memory inode i_data array is in little-endian order
4910      * even on big-endian machines: we do NOT byteswap the block numbers!
4911      */
4912     for (block = 0; block < EXT4_N_BLOCKS; block++)
4913         ei->i_data[block] = raw_inode->i_block[block];
4914     INIT_LIST_HEAD(&ei->i_orphan);
4915     ext4_fc_init_inode(&ei->vfs_inode);
4916 
4917     /*
4918      * Set transaction id's of transactions that have to be committed
4919      * to finish f[data]sync. We set them to currently running transaction
4920      * as we cannot be sure that the inode or some of its metadata isn't
4921      * part of the transaction - the inode could have been reclaimed and
4922      * now it is reread from disk.
4923      */
4924     if (journal) {
4925         transaction_t *transaction;
4926         tid_t tid;
4927 
4928         read_lock(&journal->j_state_lock);
4929         if (journal->j_running_transaction)
4930             transaction = journal->j_running_transaction;
4931         else
4932             transaction = journal->j_committing_transaction;
4933         if (transaction)
4934             tid = transaction->t_tid;
4935         else
4936             tid = journal->j_commit_sequence;
4937         read_unlock(&journal->j_state_lock);
4938         ei->i_sync_tid = tid;
4939         ei->i_datasync_tid = tid;
4940     }
4941 
4942     if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4943         if (ei->i_extra_isize == 0) {
4944             /* The extra space is currently unused. Use it. */
4945             BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4946             ei->i_extra_isize = sizeof(struct ext4_inode) -
4947                         EXT4_GOOD_OLD_INODE_SIZE;
4948         } else {
4949             ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4950             if (ret)
4951                 goto bad_inode;
4952         }
4953     }
4954 
4955     EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4956     EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4957     EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4958     EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4959 
4960     if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4961         u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4962 
4963         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4964             if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4965                 ivers |=
4966             (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4967         }
4968         ext4_inode_set_iversion_queried(inode, ivers);
4969     }
4970 
4971     ret = 0;
4972     if (ei->i_file_acl &&
4973         !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4974         ext4_error_inode(inode, function, line, 0,
4975                  "iget: bad extended attribute block %llu",
4976                  ei->i_file_acl);
4977         ret = -EFSCORRUPTED;
4978         goto bad_inode;
4979     } else if (!ext4_has_inline_data(inode)) {
4980         /* validate the block references in the inode */
4981         if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4982             (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4983             (S_ISLNK(inode->i_mode) &&
4984             !ext4_inode_is_fast_symlink(inode)))) {
4985             if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4986                 ret = ext4_ext_check_inode(inode);
4987             else
4988                 ret = ext4_ind_check_inode(inode);
4989         }
4990     }
4991     if (ret)
4992         goto bad_inode;
4993 
4994     if (S_ISREG(inode->i_mode)) {
4995         inode->i_op = &ext4_file_inode_operations;
4996         inode->i_fop = &ext4_file_operations;
4997         ext4_set_aops(inode);
4998     } else if (S_ISDIR(inode->i_mode)) {
4999         inode->i_op = &ext4_dir_inode_operations;
5000         inode->i_fop = &ext4_dir_operations;
5001     } else if (S_ISLNK(inode->i_mode)) {
5002         /* VFS does not allow setting these so must be corruption */
5003         if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5004             ext4_error_inode(inode, function, line, 0,
5005                      "iget: immutable or append flags "
5006                      "not allowed on symlinks");
5007             ret = -EFSCORRUPTED;
5008             goto bad_inode;
5009         }
5010         if (IS_ENCRYPTED(inode)) {
5011             inode->i_op = &ext4_encrypted_symlink_inode_operations;
5012         } else if (ext4_inode_is_fast_symlink(inode)) {
5013             inode->i_link = (char *)ei->i_data;
5014             inode->i_op = &ext4_fast_symlink_inode_operations;
5015             nd_terminate_link(ei->i_data, inode->i_size,
5016                 sizeof(ei->i_data) - 1);
5017         } else {
5018             inode->i_op = &ext4_symlink_inode_operations;
5019         }
5020     } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5021           S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5022         inode->i_op = &ext4_special_inode_operations;
5023         if (raw_inode->i_block[0])
5024             init_special_inode(inode, inode->i_mode,
5025                old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5026         else
5027             init_special_inode(inode, inode->i_mode,
5028                new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5029     } else if (ino == EXT4_BOOT_LOADER_INO) {
5030         make_bad_inode(inode);
5031     } else {
5032         ret = -EFSCORRUPTED;
5033         ext4_error_inode(inode, function, line, 0,
5034                  "iget: bogus i_mode (%o)", inode->i_mode);
5035         goto bad_inode;
5036     }
5037     if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5038         ext4_error_inode(inode, function, line, 0,
5039                  "casefold flag without casefold feature");
5040     brelse(iloc.bh);
5041 
5042     unlock_new_inode(inode);
5043     return inode;
5044 
5045 bad_inode:
5046     brelse(iloc.bh);
5047     iget_failed(inode);
5048     return ERR_PTR(ret);
5049 }
5050 
5051 static void __ext4_update_other_inode_time(struct super_block *sb,
5052                        unsigned long orig_ino,
5053                        unsigned long ino,
5054                        struct ext4_inode *raw_inode)
5055 {
5056     struct inode *inode;
5057 
5058     inode = find_inode_by_ino_rcu(sb, ino);
5059     if (!inode)
5060         return;
5061 
5062     if (!inode_is_dirtytime_only(inode))
5063         return;
5064 
5065     spin_lock(&inode->i_lock);
5066     if (inode_is_dirtytime_only(inode)) {
5067         struct ext4_inode_info  *ei = EXT4_I(inode);
5068 
5069         inode->i_state &= ~I_DIRTY_TIME;
5070         spin_unlock(&inode->i_lock);
5071 
5072         spin_lock(&ei->i_raw_lock);
5073         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5074         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5075         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5076         ext4_inode_csum_set(inode, raw_inode, ei);
5077         spin_unlock(&ei->i_raw_lock);
5078         trace_ext4_other_inode_update_time(inode, orig_ino);
5079         return;
5080     }
5081     spin_unlock(&inode->i_lock);
5082 }
5083 
5084 /*
5085  * Opportunistically update the other time fields for other inodes in
5086  * the same inode table block.
5087  */
5088 static void ext4_update_other_inodes_time(struct super_block *sb,
5089                       unsigned long orig_ino, char *buf)
5090 {
5091     unsigned long ino;
5092     int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5093     int inode_size = EXT4_INODE_SIZE(sb);
5094 
5095     /*
5096      * Calculate the first inode in the inode table block.  Inode
5097      * numbers are one-based.  That is, the first inode in a block
5098      * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5099      */
5100     ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5101     rcu_read_lock();
5102     for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5103         if (ino == orig_ino)
5104             continue;
5105         __ext4_update_other_inode_time(sb, orig_ino, ino,
5106                            (struct ext4_inode *)buf);
5107     }
5108     rcu_read_unlock();
5109 }
5110 
5111 /*
5112  * Post the struct inode info into an on-disk inode location in the
5113  * buffer-cache.  This gobbles the caller's reference to the
5114  * buffer_head in the inode location struct.
5115  *
5116  * The caller must have write access to iloc->bh.
5117  */
5118 static int ext4_do_update_inode(handle_t *handle,
5119                 struct inode *inode,
5120                 struct ext4_iloc *iloc)
5121 {
5122     struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5123     struct ext4_inode_info *ei = EXT4_I(inode);
5124     struct buffer_head *bh = iloc->bh;
5125     struct super_block *sb = inode->i_sb;
5126     int err;
5127     int need_datasync = 0, set_large_file = 0;
5128 
5129     spin_lock(&ei->i_raw_lock);
5130 
5131     /*
5132      * For fields not tracked in the in-memory inode, initialise them
5133      * to zero for new inodes.
5134      */
5135     if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5136         memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5137 
5138     if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5139         need_datasync = 1;
5140     if (ei->i_disksize > 0x7fffffffULL) {
5141         if (!ext4_has_feature_large_file(sb) ||
5142             EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5143             set_large_file = 1;
5144     }
5145 
5146     err = ext4_fill_raw_inode(inode, raw_inode);
5147     spin_unlock(&ei->i_raw_lock);
5148     if (err) {
5149         EXT4_ERROR_INODE(inode, "corrupted inode contents");
5150         goto out_brelse;
5151     }
5152 
5153     if (inode->i_sb->s_flags & SB_LAZYTIME)
5154         ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5155                           bh->b_data);
5156 
5157     BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5158     err = ext4_handle_dirty_metadata(handle, NULL, bh);
5159     if (err)
5160         goto out_error;
5161     ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5162     if (set_large_file) {
5163         BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5164         err = ext4_journal_get_write_access(handle, sb,
5165                             EXT4_SB(sb)->s_sbh,
5166                             EXT4_JTR_NONE);
5167         if (err)
5168             goto out_error;
5169         lock_buffer(EXT4_SB(sb)->s_sbh);
5170         ext4_set_feature_large_file(sb);
5171         ext4_superblock_csum_set(sb);
5172         unlock_buffer(EXT4_SB(sb)->s_sbh);
5173         ext4_handle_sync(handle);
5174         err = ext4_handle_dirty_metadata(handle, NULL,
5175                          EXT4_SB(sb)->s_sbh);
5176     }
5177     ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5178 out_error:
5179     ext4_std_error(inode->i_sb, err);
5180 out_brelse:
5181     brelse(bh);
5182     return err;
5183 }
5184 
5185 /*
5186  * ext4_write_inode()
5187  *
5188  * We are called from a few places:
5189  *
5190  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5191  *   Here, there will be no transaction running. We wait for any running
5192  *   transaction to commit.
5193  *
5194  * - Within flush work (sys_sync(), kupdate and such).
5195  *   We wait on commit, if told to.
5196  *
5197  * - Within iput_final() -> write_inode_now()
5198  *   We wait on commit, if told to.
5199  *
5200  * In all cases it is actually safe for us to return without doing anything,
5201  * because the inode has been copied into a raw inode buffer in
5202  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5203  * writeback.
5204  *
5205  * Note that we are absolutely dependent upon all inode dirtiers doing the
5206  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5207  * which we are interested.
5208  *
5209  * It would be a bug for them to not do this.  The code:
5210  *
5211  *  mark_inode_dirty(inode)
5212  *  stuff();
5213  *  inode->i_size = expr;
5214  *
5215  * is in error because write_inode() could occur while `stuff()' is running,
5216  * and the new i_size will be lost.  Plus the inode will no longer be on the
5217  * superblock's dirty inode list.
5218  */
5219 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5220 {
5221     int err;
5222 
5223     if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5224         sb_rdonly(inode->i_sb))
5225         return 0;
5226 
5227     if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5228         return -EIO;
5229 
5230     if (EXT4_SB(inode->i_sb)->s_journal) {
5231         if (ext4_journal_current_handle()) {
5232             ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5233             dump_stack();
5234             return -EIO;
5235         }
5236 
5237         /*
5238          * No need to force transaction in WB_SYNC_NONE mode. Also
5239          * ext4_sync_fs() will force the commit after everything is
5240          * written.
5241          */
5242         if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5243             return 0;
5244 
5245         err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5246                         EXT4_I(inode)->i_sync_tid);
5247     } else {
5248         struct ext4_iloc iloc;
5249 
5250         err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5251         if (err)
5252             return err;
5253         /*
5254          * sync(2) will flush the whole buffer cache. No need to do
5255          * it here separately for each inode.
5256          */
5257         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5258             sync_dirty_buffer(iloc.bh);
5259         if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5260             ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5261                            "IO error syncing inode");
5262             err = -EIO;
5263         }
5264         brelse(iloc.bh);
5265     }
5266     return err;
5267 }
5268 
5269 /*
5270  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5271  * buffers that are attached to a folio straddling i_size and are undergoing
5272  * commit. In that case we have to wait for commit to finish and try again.
5273  */
5274 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5275 {
5276     unsigned offset;
5277     journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5278     tid_t commit_tid = 0;
5279     int ret;
5280 
5281     offset = inode->i_size & (PAGE_SIZE - 1);
5282     /*
5283      * If the folio is fully truncated, we don't need to wait for any commit
5284      * (and we even should not as __ext4_journalled_invalidate_folio() may
5285      * strip all buffers from the folio but keep the folio dirty which can then
5286      * confuse e.g. concurrent ext4_writepage() seeing dirty folio without
5287      * buffers). Also we don't need to wait for any commit if all buffers in
5288      * the folio remain valid. This is most beneficial for the common case of
5289      * blocksize == PAGESIZE.
5290      */
5291     if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5292         return;
5293     while (1) {
5294         struct folio *folio = filemap_lock_folio(inode->i_mapping,
5295                       inode->i_size >> PAGE_SHIFT);
5296         if (!folio)
5297             return;
5298         ret = __ext4_journalled_invalidate_folio(folio, offset,
5299                         folio_size(folio) - offset);
5300         folio_unlock(folio);
5301         folio_put(folio);
5302         if (ret != -EBUSY)
5303             return;
5304         commit_tid = 0;
5305         read_lock(&journal->j_state_lock);
5306         if (journal->j_committing_transaction)
5307             commit_tid = journal->j_committing_transaction->t_tid;
5308         read_unlock(&journal->j_state_lock);
5309         if (commit_tid)
5310             jbd2_log_wait_commit(journal, commit_tid);
5311     }
5312 }
5313 
5314 /*
5315  * ext4_setattr()
5316  *
5317  * Called from notify_change.
5318  *
5319  * We want to trap VFS attempts to truncate the file as soon as
5320  * possible.  In particular, we want to make sure that when the VFS
5321  * shrinks i_size, we put the inode on the orphan list and modify
5322  * i_disksize immediately, so that during the subsequent flushing of
5323  * dirty pages and freeing of disk blocks, we can guarantee that any
5324  * commit will leave the blocks being flushed in an unused state on
5325  * disk.  (On recovery, the inode will get truncated and the blocks will
5326  * be freed, so we have a strong guarantee that no future commit will
5327  * leave these blocks visible to the user.)
5328  *
5329  * Another thing we have to assure is that if we are in ordered mode
5330  * and inode is still attached to the committing transaction, we must
5331  * we start writeout of all the dirty pages which are being truncated.
5332  * This way we are sure that all the data written in the previous
5333  * transaction are already on disk (truncate waits for pages under
5334  * writeback).
5335  *
5336  * Called with inode->i_rwsem down.
5337  */
5338 int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5339          struct iattr *attr)
5340 {
5341     struct inode *inode = d_inode(dentry);
5342     int error, rc = 0;
5343     int orphan = 0;
5344     const unsigned int ia_valid = attr->ia_valid;
5345 
5346     if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5347         return -EIO;
5348 
5349     if (unlikely(IS_IMMUTABLE(inode)))
5350         return -EPERM;
5351 
5352     if (unlikely(IS_APPEND(inode) &&
5353              (ia_valid & (ATTR_MODE | ATTR_UID |
5354                   ATTR_GID | ATTR_TIMES_SET))))
5355         return -EPERM;
5356 
5357     error = setattr_prepare(mnt_userns, dentry, attr);
5358     if (error)
5359         return error;
5360 
5361     error = fscrypt_prepare_setattr(dentry, attr);
5362     if (error)
5363         return error;
5364 
5365     error = fsverity_prepare_setattr(dentry, attr);
5366     if (error)
5367         return error;
5368 
5369     if (is_quota_modification(mnt_userns, inode, attr)) {
5370         error = dquot_initialize(inode);
5371         if (error)
5372             return error;
5373     }
5374 
5375     if (i_uid_needs_update(mnt_userns, attr, inode) ||
5376         i_gid_needs_update(mnt_userns, attr, inode)) {
5377         handle_t *handle;
5378 
5379         /* (user+group)*(old+new) structure, inode write (sb,
5380          * inode block, ? - but truncate inode update has it) */
5381         handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5382             (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5383              EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5384         if (IS_ERR(handle)) {
5385             error = PTR_ERR(handle);
5386             goto err_out;
5387         }
5388 
5389         /* dquot_transfer() calls back ext4_get_inode_usage() which
5390          * counts xattr inode references.
5391          */
5392         down_read(&EXT4_I(inode)->xattr_sem);
5393         error = dquot_transfer(mnt_userns, inode, attr);
5394         up_read(&EXT4_I(inode)->xattr_sem);
5395 
5396         if (error) {
5397             ext4_journal_stop(handle);
5398             return error;
5399         }
5400         /* Update corresponding info in inode so that everything is in
5401          * one transaction */
5402         i_uid_update(mnt_userns, attr, inode);
5403         i_gid_update(mnt_userns, attr, inode);
5404         error = ext4_mark_inode_dirty(handle, inode);
5405         ext4_journal_stop(handle);
5406         if (unlikely(error)) {
5407             return error;
5408         }
5409     }
5410 
5411     if (attr->ia_valid & ATTR_SIZE) {
5412         handle_t *handle;
5413         loff_t oldsize = inode->i_size;
5414         loff_t old_disksize;
5415         int shrink = (attr->ia_size < inode->i_size);
5416 
5417         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5418             struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5419 
5420             if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5421                 return -EFBIG;
5422             }
5423         }
5424         if (!S_ISREG(inode->i_mode)) {
5425             return -EINVAL;
5426         }
5427 
5428         if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5429             inode_inc_iversion(inode);
5430 
5431         if (shrink) {
5432             if (ext4_should_order_data(inode)) {
5433                 error = ext4_begin_ordered_truncate(inode,
5434                                 attr->ia_size);
5435                 if (error)
5436                     goto err_out;
5437             }
5438             /*
5439              * Blocks are going to be removed from the inode. Wait
5440              * for dio in flight.
5441              */
5442             inode_dio_wait(inode);
5443         }
5444 
5445         filemap_invalidate_lock(inode->i_mapping);
5446 
5447         rc = ext4_break_layouts(inode);
5448         if (rc) {
5449             filemap_invalidate_unlock(inode->i_mapping);
5450             goto err_out;
5451         }
5452 
5453         if (attr->ia_size != inode->i_size) {
5454             handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5455             if (IS_ERR(handle)) {
5456                 error = PTR_ERR(handle);
5457                 goto out_mmap_sem;
5458             }
5459             if (ext4_handle_valid(handle) && shrink) {
5460                 error = ext4_orphan_add(handle, inode);
5461                 orphan = 1;
5462             }
5463             /*
5464              * Update c/mtime on truncate up, ext4_truncate() will
5465              * update c/mtime in shrink case below
5466              */
5467             if (!shrink) {
5468                 inode->i_mtime = current_time(inode);
5469                 inode->i_ctime = inode->i_mtime;
5470             }
5471 
5472             if (shrink)
5473                 ext4_fc_track_range(handle, inode,
5474                     (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5475                     inode->i_sb->s_blocksize_bits,
5476                     EXT_MAX_BLOCKS - 1);
5477             else
5478                 ext4_fc_track_range(
5479                     handle, inode,
5480                     (oldsize > 0 ? oldsize - 1 : oldsize) >>
5481                     inode->i_sb->s_blocksize_bits,
5482                     (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5483                     inode->i_sb->s_blocksize_bits);
5484 
5485             down_write(&EXT4_I(inode)->i_data_sem);
5486             old_disksize = EXT4_I(inode)->i_disksize;
5487             EXT4_I(inode)->i_disksize = attr->ia_size;
5488             rc = ext4_mark_inode_dirty(handle, inode);
5489             if (!error)
5490                 error = rc;
5491             /*
5492              * We have to update i_size under i_data_sem together
5493              * with i_disksize to avoid races with writeback code
5494              * running ext4_wb_update_i_disksize().
5495              */
5496             if (!error)
5497                 i_size_write(inode, attr->ia_size);
5498             else
5499                 EXT4_I(inode)->i_disksize = old_disksize;
5500             up_write(&EXT4_I(inode)->i_data_sem);
5501             ext4_journal_stop(handle);
5502             if (error)
5503                 goto out_mmap_sem;
5504             if (!shrink) {
5505                 pagecache_isize_extended(inode, oldsize,
5506                              inode->i_size);
5507             } else if (ext4_should_journal_data(inode)) {
5508                 ext4_wait_for_tail_page_commit(inode);
5509             }
5510         }
5511 
5512         /*
5513          * Truncate pagecache after we've waited for commit
5514          * in data=journal mode to make pages freeable.
5515          */
5516         truncate_pagecache(inode, inode->i_size);
5517         /*
5518          * Call ext4_truncate() even if i_size didn't change to
5519          * truncate possible preallocated blocks.
5520          */
5521         if (attr->ia_size <= oldsize) {
5522             rc = ext4_truncate(inode);
5523             if (rc)
5524                 error = rc;
5525         }
5526 out_mmap_sem:
5527         filemap_invalidate_unlock(inode->i_mapping);
5528     }
5529 
5530     if (!error) {
5531         setattr_copy(mnt_userns, inode, attr);
5532         mark_inode_dirty(inode);
5533     }
5534 
5535     /*
5536      * If the call to ext4_truncate failed to get a transaction handle at
5537      * all, we need to clean up the in-core orphan list manually.
5538      */
5539     if (orphan && inode->i_nlink)
5540         ext4_orphan_del(NULL, inode);
5541 
5542     if (!error && (ia_valid & ATTR_MODE))
5543         rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
5544 
5545 err_out:
5546     if  (error)
5547         ext4_std_error(inode->i_sb, error);
5548     if (!error)
5549         error = rc;
5550     return error;
5551 }
5552 
5553 int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5554          struct kstat *stat, u32 request_mask, unsigned int query_flags)
5555 {
5556     struct inode *inode = d_inode(path->dentry);
5557     struct ext4_inode *raw_inode;
5558     struct ext4_inode_info *ei = EXT4_I(inode);
5559     unsigned int flags;
5560 
5561     if ((request_mask & STATX_BTIME) &&
5562         EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5563         stat->result_mask |= STATX_BTIME;
5564         stat->btime.tv_sec = ei->i_crtime.tv_sec;
5565         stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5566     }
5567 
5568     flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5569     if (flags & EXT4_APPEND_FL)
5570         stat->attributes |= STATX_ATTR_APPEND;
5571     if (flags & EXT4_COMPR_FL)
5572         stat->attributes |= STATX_ATTR_COMPRESSED;
5573     if (flags & EXT4_ENCRYPT_FL)
5574         stat->attributes |= STATX_ATTR_ENCRYPTED;
5575     if (flags & EXT4_IMMUTABLE_FL)
5576         stat->attributes |= STATX_ATTR_IMMUTABLE;
5577     if (flags & EXT4_NODUMP_FL)
5578         stat->attributes |= STATX_ATTR_NODUMP;
5579     if (flags & EXT4_VERITY_FL)
5580         stat->attributes |= STATX_ATTR_VERITY;
5581 
5582     stat->attributes_mask |= (STATX_ATTR_APPEND |
5583                   STATX_ATTR_COMPRESSED |
5584                   STATX_ATTR_ENCRYPTED |
5585                   STATX_ATTR_IMMUTABLE |
5586                   STATX_ATTR_NODUMP |
5587                   STATX_ATTR_VERITY);
5588 
5589     generic_fillattr(mnt_userns, inode, stat);
5590     return 0;
5591 }
5592 
5593 int ext4_file_getattr(struct user_namespace *mnt_userns,
5594               const struct path *path, struct kstat *stat,
5595               u32 request_mask, unsigned int query_flags)
5596 {
5597     struct inode *inode = d_inode(path->dentry);
5598     u64 delalloc_blocks;
5599 
5600     ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
5601 
5602     /*
5603      * If there is inline data in the inode, the inode will normally not
5604      * have data blocks allocated (it may have an external xattr block).
5605      * Report at least one sector for such files, so tools like tar, rsync,
5606      * others don't incorrectly think the file is completely sparse.
5607      */
5608     if (unlikely(ext4_has_inline_data(inode)))
5609         stat->blocks += (stat->size + 511) >> 9;
5610 
5611     /*
5612      * We can't update i_blocks if the block allocation is delayed
5613      * otherwise in the case of system crash before the real block
5614      * allocation is done, we will have i_blocks inconsistent with
5615      * on-disk file blocks.
5616      * We always keep i_blocks updated together with real
5617      * allocation. But to not confuse with user, stat
5618      * will return the blocks that include the delayed allocation
5619      * blocks for this file.
5620      */
5621     delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5622                    EXT4_I(inode)->i_reserved_data_blocks);
5623     stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5624     return 0;
5625 }
5626 
5627 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5628                    int pextents)
5629 {
5630     if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5631         return ext4_ind_trans_blocks(inode, lblocks);
5632     return ext4_ext_index_trans_blocks(inode, pextents);
5633 }
5634 
5635 /*
5636  * Account for index blocks, block groups bitmaps and block group
5637  * descriptor blocks if modify datablocks and index blocks
5638  * worse case, the indexs blocks spread over different block groups
5639  *
5640  * If datablocks are discontiguous, they are possible to spread over
5641  * different block groups too. If they are contiguous, with flexbg,
5642  * they could still across block group boundary.
5643  *
5644  * Also account for superblock, inode, quota and xattr blocks
5645  */
5646 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5647                   int pextents)
5648 {
5649     ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5650     int gdpblocks;
5651     int idxblocks;
5652     int ret = 0;
5653 
5654     /*
5655      * How many index blocks need to touch to map @lblocks logical blocks
5656      * to @pextents physical extents?
5657      */
5658     idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5659 
5660     ret = idxblocks;
5661 
5662     /*
5663      * Now let's see how many group bitmaps and group descriptors need
5664      * to account
5665      */
5666     groups = idxblocks + pextents;
5667     gdpblocks = groups;
5668     if (groups > ngroups)
5669         groups = ngroups;
5670     if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5671         gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5672 
5673     /* bitmaps and block group descriptor blocks */
5674     ret += groups + gdpblocks;
5675 
5676     /* Blocks for super block, inode, quota and xattr blocks */
5677     ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5678 
5679     return ret;
5680 }
5681 
5682 /*
5683  * Calculate the total number of credits to reserve to fit
5684  * the modification of a single pages into a single transaction,
5685  * which may include multiple chunks of block allocations.
5686  *
5687  * This could be called via ext4_write_begin()
5688  *
5689  * We need to consider the worse case, when
5690  * one new block per extent.
5691  */
5692 int ext4_writepage_trans_blocks(struct inode *inode)
5693 {
5694     int bpp = ext4_journal_blocks_per_page(inode);
5695     int ret;
5696 
5697     ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5698 
5699     /* Account for data blocks for journalled mode */
5700     if (ext4_should_journal_data(inode))
5701         ret += bpp;
5702     return ret;
5703 }
5704 
5705 /*
5706  * Calculate the journal credits for a chunk of data modification.
5707  *
5708  * This is called from DIO, fallocate or whoever calling
5709  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5710  *
5711  * journal buffers for data blocks are not included here, as DIO
5712  * and fallocate do no need to journal data buffers.
5713  */
5714 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5715 {
5716     return ext4_meta_trans_blocks(inode, nrblocks, 1);
5717 }
5718 
5719 /*
5720  * The caller must have previously called ext4_reserve_inode_write().
5721  * Give this, we know that the caller already has write access to iloc->bh.
5722  */
5723 int ext4_mark_iloc_dirty(handle_t *handle,
5724              struct inode *inode, struct ext4_iloc *iloc)
5725 {
5726     int err = 0;
5727 
5728     if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5729         put_bh(iloc->bh);
5730         return -EIO;
5731     }
5732     ext4_fc_track_inode(handle, inode);
5733 
5734     if (IS_I_VERSION(inode))
5735         inode_inc_iversion(inode);
5736 
5737     /* the do_update_inode consumes one bh->b_count */
5738     get_bh(iloc->bh);
5739 
5740     /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5741     err = ext4_do_update_inode(handle, inode, iloc);
5742     put_bh(iloc->bh);
5743     return err;
5744 }
5745 
5746 /*
5747  * On success, We end up with an outstanding reference count against
5748  * iloc->bh.  This _must_ be cleaned up later.
5749  */
5750 
5751 int
5752 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5753              struct ext4_iloc *iloc)
5754 {
5755     int err;
5756 
5757     if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5758         return -EIO;
5759 
5760     err = ext4_get_inode_loc(inode, iloc);
5761     if (!err) {
5762         BUFFER_TRACE(iloc->bh, "get_write_access");
5763         err = ext4_journal_get_write_access(handle, inode->i_sb,
5764                             iloc->bh, EXT4_JTR_NONE);
5765         if (err) {
5766             brelse(iloc->bh);
5767             iloc->bh = NULL;
5768         }
5769     }
5770     ext4_std_error(inode->i_sb, err);
5771     return err;
5772 }
5773 
5774 static int __ext4_expand_extra_isize(struct inode *inode,
5775                      unsigned int new_extra_isize,
5776                      struct ext4_iloc *iloc,
5777                      handle_t *handle, int *no_expand)
5778 {
5779     struct ext4_inode *raw_inode;
5780     struct ext4_xattr_ibody_header *header;
5781     unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5782     struct ext4_inode_info *ei = EXT4_I(inode);
5783     int error;
5784 
5785     /* this was checked at iget time, but double check for good measure */
5786     if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5787         (ei->i_extra_isize & 3)) {
5788         EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5789                  ei->i_extra_isize,
5790                  EXT4_INODE_SIZE(inode->i_sb));
5791         return -EFSCORRUPTED;
5792     }
5793     if ((new_extra_isize < ei->i_extra_isize) ||
5794         (new_extra_isize < 4) ||
5795         (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5796         return -EINVAL; /* Should never happen */
5797 
5798     raw_inode = ext4_raw_inode(iloc);
5799 
5800     header = IHDR(inode, raw_inode);
5801 
5802     /* No extended attributes present */
5803     if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5804         header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5805         memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5806                EXT4_I(inode)->i_extra_isize, 0,
5807                new_extra_isize - EXT4_I(inode)->i_extra_isize);
5808         EXT4_I(inode)->i_extra_isize = new_extra_isize;
5809         return 0;
5810     }
5811 
5812     /* try to expand with EAs present */
5813     error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5814                        raw_inode, handle);
5815     if (error) {
5816         /*
5817          * Inode size expansion failed; don't try again
5818          */
5819         *no_expand = 1;
5820     }
5821 
5822     return error;
5823 }
5824 
5825 /*
5826  * Expand an inode by new_extra_isize bytes.
5827  * Returns 0 on success or negative error number on failure.
5828  */
5829 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5830                       unsigned int new_extra_isize,
5831                       struct ext4_iloc iloc,
5832                       handle_t *handle)
5833 {
5834     int no_expand;
5835     int error;
5836 
5837     if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5838         return -EOVERFLOW;
5839 
5840     /*
5841      * In nojournal mode, we can immediately attempt to expand
5842      * the inode.  When journaled, we first need to obtain extra
5843      * buffer credits since we may write into the EA block
5844      * with this same handle. If journal_extend fails, then it will
5845      * only result in a minor loss of functionality for that inode.
5846      * If this is felt to be critical, then e2fsck should be run to
5847      * force a large enough s_min_extra_isize.
5848      */
5849     if (ext4_journal_extend(handle,
5850                 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5851         return -ENOSPC;
5852 
5853     if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5854         return -EBUSY;
5855 
5856     error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5857                       handle, &no_expand);
5858     ext4_write_unlock_xattr(inode, &no_expand);
5859 
5860     return error;
5861 }
5862 
5863 int ext4_expand_extra_isize(struct inode *inode,
5864                 unsigned int new_extra_isize,
5865                 struct ext4_iloc *iloc)
5866 {
5867     handle_t *handle;
5868     int no_expand;
5869     int error, rc;
5870 
5871     if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5872         brelse(iloc->bh);
5873         return -EOVERFLOW;
5874     }
5875 
5876     handle = ext4_journal_start(inode, EXT4_HT_INODE,
5877                     EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5878     if (IS_ERR(handle)) {
5879         error = PTR_ERR(handle);
5880         brelse(iloc->bh);
5881         return error;
5882     }
5883 
5884     ext4_write_lock_xattr(inode, &no_expand);
5885 
5886     BUFFER_TRACE(iloc->bh, "get_write_access");
5887     error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5888                           EXT4_JTR_NONE);
5889     if (error) {
5890         brelse(iloc->bh);
5891         goto out_unlock;
5892     }
5893 
5894     error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5895                       handle, &no_expand);
5896 
5897     rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5898     if (!error)
5899         error = rc;
5900 
5901 out_unlock:
5902     ext4_write_unlock_xattr(inode, &no_expand);
5903     ext4_journal_stop(handle);
5904     return error;
5905 }
5906 
5907 /*
5908  * What we do here is to mark the in-core inode as clean with respect to inode
5909  * dirtiness (it may still be data-dirty).
5910  * This means that the in-core inode may be reaped by prune_icache
5911  * without having to perform any I/O.  This is a very good thing,
5912  * because *any* task may call prune_icache - even ones which
5913  * have a transaction open against a different journal.
5914  *
5915  * Is this cheating?  Not really.  Sure, we haven't written the
5916  * inode out, but prune_icache isn't a user-visible syncing function.
5917  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5918  * we start and wait on commits.
5919  */
5920 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5921                 const char *func, unsigned int line)
5922 {
5923     struct ext4_iloc iloc;
5924     struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5925     int err;
5926 
5927     might_sleep();
5928     trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5929     err = ext4_reserve_inode_write(handle, inode, &iloc);
5930     if (err)
5931         goto out;
5932 
5933     if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5934         ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5935                            iloc, handle);
5936 
5937     err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5938 out:
5939     if (unlikely(err))
5940         ext4_error_inode_err(inode, func, line, 0, err,
5941                     "mark_inode_dirty error");
5942     return err;
5943 }
5944 
5945 /*
5946  * ext4_dirty_inode() is called from __mark_inode_dirty()
5947  *
5948  * We're really interested in the case where a file is being extended.
5949  * i_size has been changed by generic_commit_write() and we thus need
5950  * to include the updated inode in the current transaction.
5951  *
5952  * Also, dquot_alloc_block() will always dirty the inode when blocks
5953  * are allocated to the file.
5954  *
5955  * If the inode is marked synchronous, we don't honour that here - doing
5956  * so would cause a commit on atime updates, which we don't bother doing.
5957  * We handle synchronous inodes at the highest possible level.
5958  */
5959 void ext4_dirty_inode(struct inode *inode, int flags)
5960 {
5961     handle_t *handle;
5962 
5963     handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5964     if (IS_ERR(handle))
5965         return;
5966     ext4_mark_inode_dirty(handle, inode);
5967     ext4_journal_stop(handle);
5968 }
5969 
5970 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5971 {
5972     journal_t *journal;
5973     handle_t *handle;
5974     int err;
5975     struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5976 
5977     /*
5978      * We have to be very careful here: changing a data block's
5979      * journaling status dynamically is dangerous.  If we write a
5980      * data block to the journal, change the status and then delete
5981      * that block, we risk forgetting to revoke the old log record
5982      * from the journal and so a subsequent replay can corrupt data.
5983      * So, first we make sure that the journal is empty and that
5984      * nobody is changing anything.
5985      */
5986 
5987     journal = EXT4_JOURNAL(inode);
5988     if (!journal)
5989         return 0;
5990     if (is_journal_aborted(journal))
5991         return -EROFS;
5992 
5993     /* Wait for all existing dio workers */
5994     inode_dio_wait(inode);
5995 
5996     /*
5997      * Before flushing the journal and switching inode's aops, we have
5998      * to flush all dirty data the inode has. There can be outstanding
5999      * delayed allocations, there can be unwritten extents created by
6000      * fallocate or buffered writes in dioread_nolock mode covered by
6001      * dirty data which can be converted only after flushing the dirty
6002      * data (and journalled aops don't know how to handle these cases).
6003      */
6004     if (val) {
6005         filemap_invalidate_lock(inode->i_mapping);
6006         err = filemap_write_and_wait(inode->i_mapping);
6007         if (err < 0) {
6008             filemap_invalidate_unlock(inode->i_mapping);
6009             return err;
6010         }
6011     }
6012 
6013     percpu_down_write(&sbi->s_writepages_rwsem);
6014     jbd2_journal_lock_updates(journal);
6015 
6016     /*
6017      * OK, there are no updates running now, and all cached data is
6018      * synced to disk.  We are now in a completely consistent state
6019      * which doesn't have anything in the journal, and we know that
6020      * no filesystem updates are running, so it is safe to modify
6021      * the inode's in-core data-journaling state flag now.
6022      */
6023 
6024     if (val)
6025         ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6026     else {
6027         err = jbd2_journal_flush(journal, 0);
6028         if (err < 0) {
6029             jbd2_journal_unlock_updates(journal);
6030             percpu_up_write(&sbi->s_writepages_rwsem);
6031             return err;
6032         }
6033         ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6034     }
6035     ext4_set_aops(inode);
6036 
6037     jbd2_journal_unlock_updates(journal);
6038     percpu_up_write(&sbi->s_writepages_rwsem);
6039 
6040     if (val)
6041         filemap_invalidate_unlock(inode->i_mapping);
6042 
6043     /* Finally we can mark the inode as dirty. */
6044 
6045     handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6046     if (IS_ERR(handle))
6047         return PTR_ERR(handle);
6048 
6049     ext4_fc_mark_ineligible(inode->i_sb,
6050         EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6051     err = ext4_mark_inode_dirty(handle, inode);
6052     ext4_handle_sync(handle);
6053     ext4_journal_stop(handle);
6054     ext4_std_error(inode->i_sb, err);
6055 
6056     return err;
6057 }
6058 
6059 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6060                 struct buffer_head *bh)
6061 {
6062     return !buffer_mapped(bh);
6063 }
6064 
6065 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6066 {
6067     struct vm_area_struct *vma = vmf->vma;
6068     struct page *page = vmf->page;
6069     loff_t size;
6070     unsigned long len;
6071     int err;
6072     vm_fault_t ret;
6073     struct file *file = vma->vm_file;
6074     struct inode *inode = file_inode(file);
6075     struct address_space *mapping = inode->i_mapping;
6076     handle_t *handle;
6077     get_block_t *get_block;
6078     int retries = 0;
6079 
6080     if (unlikely(IS_IMMUTABLE(inode)))
6081         return VM_FAULT_SIGBUS;
6082 
6083     sb_start_pagefault(inode->i_sb);
6084     file_update_time(vma->vm_file);
6085 
6086     filemap_invalidate_lock_shared(mapping);
6087 
6088     err = ext4_convert_inline_data(inode);
6089     if (err)
6090         goto out_ret;
6091 
6092     /*
6093      * On data journalling we skip straight to the transaction handle:
6094      * there's no delalloc; page truncated will be checked later; the
6095      * early return w/ all buffers mapped (calculates size/len) can't
6096      * be used; and there's no dioread_nolock, so only ext4_get_block.
6097      */
6098     if (ext4_should_journal_data(inode))
6099         goto retry_alloc;
6100 
6101     /* Delalloc case is easy... */
6102     if (test_opt(inode->i_sb, DELALLOC) &&
6103         !ext4_nonda_switch(inode->i_sb)) {
6104         do {
6105             err = block_page_mkwrite(vma, vmf,
6106                            ext4_da_get_block_prep);
6107         } while (err == -ENOSPC &&
6108                ext4_should_retry_alloc(inode->i_sb, &retries));
6109         goto out_ret;
6110     }
6111 
6112     lock_page(page);
6113     size = i_size_read(inode);
6114     /* Page got truncated from under us? */
6115     if (page->mapping != mapping || page_offset(page) > size) {
6116         unlock_page(page);
6117         ret = VM_FAULT_NOPAGE;
6118         goto out;
6119     }
6120 
6121     if (page->index == size >> PAGE_SHIFT)
6122         len = size & ~PAGE_MASK;
6123     else
6124         len = PAGE_SIZE;
6125     /*
6126      * Return if we have all the buffers mapped. This avoids the need to do
6127      * journal_start/journal_stop which can block and take a long time
6128      *
6129      * This cannot be done for data journalling, as we have to add the
6130      * inode to the transaction's list to writeprotect pages on commit.
6131      */
6132     if (page_has_buffers(page)) {
6133         if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
6134                         0, len, NULL,
6135                         ext4_bh_unmapped)) {
6136             /* Wait so that we don't change page under IO */
6137             wait_for_stable_page(page);
6138             ret = VM_FAULT_LOCKED;
6139             goto out;
6140         }
6141     }
6142     unlock_page(page);
6143     /* OK, we need to fill the hole... */
6144     if (ext4_should_dioread_nolock(inode))
6145         get_block = ext4_get_block_unwritten;
6146     else
6147         get_block = ext4_get_block;
6148 retry_alloc:
6149     handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6150                     ext4_writepage_trans_blocks(inode));
6151     if (IS_ERR(handle)) {
6152         ret = VM_FAULT_SIGBUS;
6153         goto out;
6154     }
6155     /*
6156      * Data journalling can't use block_page_mkwrite() because it
6157      * will set_buffer_dirty() before do_journal_get_write_access()
6158      * thus might hit warning messages for dirty metadata buffers.
6159      */
6160     if (!ext4_should_journal_data(inode)) {
6161         err = block_page_mkwrite(vma, vmf, get_block);
6162     } else {
6163         lock_page(page);
6164         size = i_size_read(inode);
6165         /* Page got truncated from under us? */
6166         if (page->mapping != mapping || page_offset(page) > size) {
6167             ret = VM_FAULT_NOPAGE;
6168             goto out_error;
6169         }
6170 
6171         if (page->index == size >> PAGE_SHIFT)
6172             len = size & ~PAGE_MASK;
6173         else
6174             len = PAGE_SIZE;
6175 
6176         err = __block_write_begin(page, 0, len, ext4_get_block);
6177         if (!err) {
6178             ret = VM_FAULT_SIGBUS;
6179             if (ext4_walk_page_buffers(handle, inode,
6180                     page_buffers(page), 0, len, NULL,
6181                     do_journal_get_write_access))
6182                 goto out_error;
6183             if (ext4_walk_page_buffers(handle, inode,
6184                     page_buffers(page), 0, len, NULL,
6185                     write_end_fn))
6186                 goto out_error;
6187             if (ext4_jbd2_inode_add_write(handle, inode,
6188                               page_offset(page), len))
6189                 goto out_error;
6190             ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6191         } else {
6192             unlock_page(page);
6193         }
6194     }
6195     ext4_journal_stop(handle);
6196     if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6197         goto retry_alloc;
6198 out_ret:
6199     ret = block_page_mkwrite_return(err);
6200 out:
6201     filemap_invalidate_unlock_shared(mapping);
6202     sb_end_pagefault(inode->i_sb);
6203     return ret;
6204 out_error:
6205     unlock_page(page);
6206     ext4_journal_stop(handle);
6207     goto out;
6208 }