Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0
0002 /*
0003  *  linux/fs/ext2/inode.c
0004  *
0005  * Copyright (C) 1992, 1993, 1994, 1995
0006  * Remy Card (card@masi.ibp.fr)
0007  * Laboratoire MASI - Institut Blaise Pascal
0008  * Universite Pierre et Marie Curie (Paris VI)
0009  *
0010  *  from
0011  *
0012  *  linux/fs/minix/inode.c
0013  *
0014  *  Copyright (C) 1991, 1992  Linus Torvalds
0015  *
0016  *  Goal-directed block allocation by Stephen Tweedie
0017  *  (sct@dcs.ed.ac.uk), 1993, 1998
0018  *  Big-endian to little-endian byte-swapping/bitmaps by
0019  *        David S. Miller (davem@caip.rutgers.edu), 1995
0020  *  64-bit file support on 64-bit platforms by Jakub Jelinek
0021  *  (jj@sunsite.ms.mff.cuni.cz)
0022  *
0023  *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
0024  */
0025 
0026 #include <linux/time.h>
0027 #include <linux/highuid.h>
0028 #include <linux/pagemap.h>
0029 #include <linux/dax.h>
0030 #include <linux/blkdev.h>
0031 #include <linux/quotaops.h>
0032 #include <linux/writeback.h>
0033 #include <linux/buffer_head.h>
0034 #include <linux/mpage.h>
0035 #include <linux/fiemap.h>
0036 #include <linux/iomap.h>
0037 #include <linux/namei.h>
0038 #include <linux/uio.h>
0039 #include "ext2.h"
0040 #include "acl.h"
0041 #include "xattr.h"
0042 
0043 static int __ext2_write_inode(struct inode *inode, int do_sync);
0044 
0045 /*
0046  * Test whether an inode is a fast symlink.
0047  */
0048 static inline int ext2_inode_is_fast_symlink(struct inode *inode)
0049 {
0050     int ea_blocks = EXT2_I(inode)->i_file_acl ?
0051         (inode->i_sb->s_blocksize >> 9) : 0;
0052 
0053     return (S_ISLNK(inode->i_mode) &&
0054         inode->i_blocks - ea_blocks == 0);
0055 }
0056 
0057 static void ext2_truncate_blocks(struct inode *inode, loff_t offset);
0058 
0059 static void ext2_write_failed(struct address_space *mapping, loff_t to)
0060 {
0061     struct inode *inode = mapping->host;
0062 
0063     if (to > inode->i_size) {
0064         truncate_pagecache(inode, inode->i_size);
0065         ext2_truncate_blocks(inode, inode->i_size);
0066     }
0067 }
0068 
0069 /*
0070  * Called at the last iput() if i_nlink is zero.
0071  */
0072 void ext2_evict_inode(struct inode * inode)
0073 {
0074     struct ext2_block_alloc_info *rsv;
0075     int want_delete = 0;
0076 
0077     if (!inode->i_nlink && !is_bad_inode(inode)) {
0078         want_delete = 1;
0079         dquot_initialize(inode);
0080     } else {
0081         dquot_drop(inode);
0082     }
0083 
0084     truncate_inode_pages_final(&inode->i_data);
0085 
0086     if (want_delete) {
0087         sb_start_intwrite(inode->i_sb);
0088         /* set dtime */
0089         EXT2_I(inode)->i_dtime  = ktime_get_real_seconds();
0090         mark_inode_dirty(inode);
0091         __ext2_write_inode(inode, inode_needs_sync(inode));
0092         /* truncate to 0 */
0093         inode->i_size = 0;
0094         if (inode->i_blocks)
0095             ext2_truncate_blocks(inode, 0);
0096         ext2_xattr_delete_inode(inode);
0097     }
0098 
0099     invalidate_inode_buffers(inode);
0100     clear_inode(inode);
0101 
0102     ext2_discard_reservation(inode);
0103     rsv = EXT2_I(inode)->i_block_alloc_info;
0104     EXT2_I(inode)->i_block_alloc_info = NULL;
0105     if (unlikely(rsv))
0106         kfree(rsv);
0107 
0108     if (want_delete) {
0109         ext2_free_inode(inode);
0110         sb_end_intwrite(inode->i_sb);
0111     }
0112 }
0113 
0114 typedef struct {
0115     __le32  *p;
0116     __le32  key;
0117     struct buffer_head *bh;
0118 } Indirect;
0119 
0120 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
0121 {
0122     p->key = *(p->p = v);
0123     p->bh = bh;
0124 }
0125 
0126 static inline int verify_chain(Indirect *from, Indirect *to)
0127 {
0128     while (from <= to && from->key == *from->p)
0129         from++;
0130     return (from > to);
0131 }
0132 
0133 /**
0134  *  ext2_block_to_path - parse the block number into array of offsets
0135  *  @inode: inode in question (we are only interested in its superblock)
0136  *  @i_block: block number to be parsed
0137  *  @offsets: array to store the offsets in
0138  *      @boundary: set this non-zero if the referred-to block is likely to be
0139  *             followed (on disk) by an indirect block.
0140  *  To store the locations of file's data ext2 uses a data structure common
0141  *  for UNIX filesystems - tree of pointers anchored in the inode, with
0142  *  data blocks at leaves and indirect blocks in intermediate nodes.
0143  *  This function translates the block number into path in that tree -
0144  *  return value is the path length and @offsets[n] is the offset of
0145  *  pointer to (n+1)th node in the nth one. If @block is out of range
0146  *  (negative or too large) warning is printed and zero returned.
0147  *
0148  *  Note: function doesn't find node addresses, so no IO is needed. All
0149  *  we need to know is the capacity of indirect blocks (taken from the
0150  *  inode->i_sb).
0151  */
0152 
0153 /*
0154  * Portability note: the last comparison (check that we fit into triple
0155  * indirect block) is spelled differently, because otherwise on an
0156  * architecture with 32-bit longs and 8Kb pages we might get into trouble
0157  * if our filesystem had 8Kb blocks. We might use long long, but that would
0158  * kill us on x86. Oh, well, at least the sign propagation does not matter -
0159  * i_block would have to be negative in the very beginning, so we would not
0160  * get there at all.
0161  */
0162 
0163 static int ext2_block_to_path(struct inode *inode,
0164             long i_block, int offsets[4], int *boundary)
0165 {
0166     int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
0167     int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
0168     const long direct_blocks = EXT2_NDIR_BLOCKS,
0169         indirect_blocks = ptrs,
0170         double_blocks = (1 << (ptrs_bits * 2));
0171     int n = 0;
0172     int final = 0;
0173 
0174     if (i_block < 0) {
0175         ext2_msg(inode->i_sb, KERN_WARNING,
0176             "warning: %s: block < 0", __func__);
0177     } else if (i_block < direct_blocks) {
0178         offsets[n++] = i_block;
0179         final = direct_blocks;
0180     } else if ( (i_block -= direct_blocks) < indirect_blocks) {
0181         offsets[n++] = EXT2_IND_BLOCK;
0182         offsets[n++] = i_block;
0183         final = ptrs;
0184     } else if ((i_block -= indirect_blocks) < double_blocks) {
0185         offsets[n++] = EXT2_DIND_BLOCK;
0186         offsets[n++] = i_block >> ptrs_bits;
0187         offsets[n++] = i_block & (ptrs - 1);
0188         final = ptrs;
0189     } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
0190         offsets[n++] = EXT2_TIND_BLOCK;
0191         offsets[n++] = i_block >> (ptrs_bits * 2);
0192         offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
0193         offsets[n++] = i_block & (ptrs - 1);
0194         final = ptrs;
0195     } else {
0196         ext2_msg(inode->i_sb, KERN_WARNING,
0197             "warning: %s: block is too big", __func__);
0198     }
0199     if (boundary)
0200         *boundary = final - 1 - (i_block & (ptrs - 1));
0201 
0202     return n;
0203 }
0204 
0205 /**
0206  *  ext2_get_branch - read the chain of indirect blocks leading to data
0207  *  @inode: inode in question
0208  *  @depth: depth of the chain (1 - direct pointer, etc.)
0209  *  @offsets: offsets of pointers in inode/indirect blocks
0210  *  @chain: place to store the result
0211  *  @err: here we store the error value
0212  *
0213  *  Function fills the array of triples <key, p, bh> and returns %NULL
0214  *  if everything went OK or the pointer to the last filled triple
0215  *  (incomplete one) otherwise. Upon the return chain[i].key contains
0216  *  the number of (i+1)-th block in the chain (as it is stored in memory,
0217  *  i.e. little-endian 32-bit), chain[i].p contains the address of that
0218  *  number (it points into struct inode for i==0 and into the bh->b_data
0219  *  for i>0) and chain[i].bh points to the buffer_head of i-th indirect
0220  *  block for i>0 and NULL for i==0. In other words, it holds the block
0221  *  numbers of the chain, addresses they were taken from (and where we can
0222  *  verify that chain did not change) and buffer_heads hosting these
0223  *  numbers.
0224  *
0225  *  Function stops when it stumbles upon zero pointer (absent block)
0226  *      (pointer to last triple returned, *@err == 0)
0227  *  or when it gets an IO error reading an indirect block
0228  *      (ditto, *@err == -EIO)
0229  *  or when it notices that chain had been changed while it was reading
0230  *      (ditto, *@err == -EAGAIN)
0231  *  or when it reads all @depth-1 indirect blocks successfully and finds
0232  *  the whole chain, all way to the data (returns %NULL, *err == 0).
0233  */
0234 static Indirect *ext2_get_branch(struct inode *inode,
0235                  int depth,
0236                  int *offsets,
0237                  Indirect chain[4],
0238                  int *err)
0239 {
0240     struct super_block *sb = inode->i_sb;
0241     Indirect *p = chain;
0242     struct buffer_head *bh;
0243 
0244     *err = 0;
0245     /* i_data is not going away, no lock needed */
0246     add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
0247     if (!p->key)
0248         goto no_block;
0249     while (--depth) {
0250         bh = sb_bread(sb, le32_to_cpu(p->key));
0251         if (!bh)
0252             goto failure;
0253         read_lock(&EXT2_I(inode)->i_meta_lock);
0254         if (!verify_chain(chain, p))
0255             goto changed;
0256         add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
0257         read_unlock(&EXT2_I(inode)->i_meta_lock);
0258         if (!p->key)
0259             goto no_block;
0260     }
0261     return NULL;
0262 
0263 changed:
0264     read_unlock(&EXT2_I(inode)->i_meta_lock);
0265     brelse(bh);
0266     *err = -EAGAIN;
0267     goto no_block;
0268 failure:
0269     *err = -EIO;
0270 no_block:
0271     return p;
0272 }
0273 
0274 /**
0275  *  ext2_find_near - find a place for allocation with sufficient locality
0276  *  @inode: owner
0277  *  @ind: descriptor of indirect block.
0278  *
0279  *  This function returns the preferred place for block allocation.
0280  *  It is used when heuristic for sequential allocation fails.
0281  *  Rules are:
0282  *    + if there is a block to the left of our position - allocate near it.
0283  *    + if pointer will live in indirect block - allocate near that block.
0284  *    + if pointer will live in inode - allocate in the same cylinder group.
0285  *
0286  * In the latter case we colour the starting block by the callers PID to
0287  * prevent it from clashing with concurrent allocations for a different inode
0288  * in the same block group.   The PID is used here so that functionally related
0289  * files will be close-by on-disk.
0290  *
0291  *  Caller must make sure that @ind is valid and will stay that way.
0292  */
0293 
0294 static ext2_fsblk_t ext2_find_near(struct inode *inode, Indirect *ind)
0295 {
0296     struct ext2_inode_info *ei = EXT2_I(inode);
0297     __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
0298     __le32 *p;
0299     ext2_fsblk_t bg_start;
0300     ext2_fsblk_t colour;
0301 
0302     /* Try to find previous block */
0303     for (p = ind->p - 1; p >= start; p--)
0304         if (*p)
0305             return le32_to_cpu(*p);
0306 
0307     /* No such thing, so let's try location of indirect block */
0308     if (ind->bh)
0309         return ind->bh->b_blocknr;
0310 
0311     /*
0312      * It is going to be referred from inode itself? OK, just put it into
0313      * the same cylinder group then.
0314      */
0315     bg_start = ext2_group_first_block_no(inode->i_sb, ei->i_block_group);
0316     colour = (current->pid % 16) *
0317             (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
0318     return bg_start + colour;
0319 }
0320 
0321 /**
0322  *  ext2_find_goal - find a preferred place for allocation.
0323  *  @inode: owner
0324  *  @block:  block we want
0325  *  @partial: pointer to the last triple within a chain
0326  *
0327  *  Returns preferred place for a block (the goal).
0328  */
0329 
0330 static inline ext2_fsblk_t ext2_find_goal(struct inode *inode, long block,
0331                       Indirect *partial)
0332 {
0333     struct ext2_block_alloc_info *block_i;
0334 
0335     block_i = EXT2_I(inode)->i_block_alloc_info;
0336 
0337     /*
0338      * try the heuristic for sequential allocation,
0339      * failing that at least try to get decent locality.
0340      */
0341     if (block_i && (block == block_i->last_alloc_logical_block + 1)
0342         && (block_i->last_alloc_physical_block != 0)) {
0343         return block_i->last_alloc_physical_block + 1;
0344     }
0345 
0346     return ext2_find_near(inode, partial);
0347 }
0348 
0349 /**
0350  *  ext2_blks_to_allocate: Look up the block map and count the number
0351  *  of direct blocks need to be allocated for the given branch.
0352  *
0353  *  @branch: chain of indirect blocks
0354  *  @k: number of blocks need for indirect blocks
0355  *  @blks: number of data blocks to be mapped.
0356  *  @blocks_to_boundary:  the offset in the indirect block
0357  *
0358  *  return the number of direct blocks to allocate.
0359  */
0360 static int
0361 ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
0362         int blocks_to_boundary)
0363 {
0364     unsigned long count = 0;
0365 
0366     /*
0367      * Simple case, [t,d]Indirect block(s) has not allocated yet
0368      * then it's clear blocks on that path have not allocated
0369      */
0370     if (k > 0) {
0371         /* right now don't hanel cross boundary allocation */
0372         if (blks < blocks_to_boundary + 1)
0373             count += blks;
0374         else
0375             count += blocks_to_boundary + 1;
0376         return count;
0377     }
0378 
0379     count++;
0380     while (count < blks && count <= blocks_to_boundary
0381         && le32_to_cpu(*(branch[0].p + count)) == 0) {
0382         count++;
0383     }
0384     return count;
0385 }
0386 
0387 /**
0388  *  ext2_alloc_blocks: multiple allocate blocks needed for a branch
0389  *  @indirect_blks: the number of blocks need to allocate for indirect
0390  *          blocks
0391  *  @blks: the number of blocks need to allocate for direct blocks
0392  *  @new_blocks: on return it will store the new block numbers for
0393  *  the indirect blocks(if needed) and the first direct block,
0394  */
0395 static int ext2_alloc_blocks(struct inode *inode,
0396             ext2_fsblk_t goal, int indirect_blks, int blks,
0397             ext2_fsblk_t new_blocks[4], int *err)
0398 {
0399     int target, i;
0400     unsigned long count = 0;
0401     int index = 0;
0402     ext2_fsblk_t current_block = 0;
0403     int ret = 0;
0404 
0405     /*
0406      * Here we try to allocate the requested multiple blocks at once,
0407      * on a best-effort basis.
0408      * To build a branch, we should allocate blocks for
0409      * the indirect blocks(if not allocated yet), and at least
0410      * the first direct block of this branch.  That's the
0411      * minimum number of blocks need to allocate(required)
0412      */
0413     target = blks + indirect_blks;
0414 
0415     while (1) {
0416         count = target;
0417         /* allocating blocks for indirect blocks and direct blocks */
0418         current_block = ext2_new_blocks(inode,goal,&count,err);
0419         if (*err)
0420             goto failed_out;
0421 
0422         target -= count;
0423         /* allocate blocks for indirect blocks */
0424         while (index < indirect_blks && count) {
0425             new_blocks[index++] = current_block++;
0426             count--;
0427         }
0428 
0429         if (count > 0)
0430             break;
0431     }
0432 
0433     /* save the new block number for the first direct block */
0434     new_blocks[index] = current_block;
0435 
0436     /* total number of blocks allocated for direct blocks */
0437     ret = count;
0438     *err = 0;
0439     return ret;
0440 failed_out:
0441     for (i = 0; i <index; i++)
0442         ext2_free_blocks(inode, new_blocks[i], 1);
0443     if (index)
0444         mark_inode_dirty(inode);
0445     return ret;
0446 }
0447 
0448 /**
0449  *  ext2_alloc_branch - allocate and set up a chain of blocks.
0450  *  @inode: owner
0451  *  @indirect_blks: depth of the chain (number of blocks to allocate)
0452  *  @blks: number of allocated direct blocks
0453  *  @goal: preferred place for allocation
0454  *  @offsets: offsets (in the blocks) to store the pointers to next.
0455  *  @branch: place to store the chain in.
0456  *
0457  *  This function allocates @num blocks, zeroes out all but the last one,
0458  *  links them into chain and (if we are synchronous) writes them to disk.
0459  *  In other words, it prepares a branch that can be spliced onto the
0460  *  inode. It stores the information about that chain in the branch[], in
0461  *  the same format as ext2_get_branch() would do. We are calling it after
0462  *  we had read the existing part of chain and partial points to the last
0463  *  triple of that (one with zero ->key). Upon the exit we have the same
0464  *  picture as after the successful ext2_get_block(), except that in one
0465  *  place chain is disconnected - *branch->p is still zero (we did not
0466  *  set the last link), but branch->key contains the number that should
0467  *  be placed into *branch->p to fill that gap.
0468  *
0469  *  If allocation fails we free all blocks we've allocated (and forget
0470  *  their buffer_heads) and return the error value the from failed
0471  *  ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
0472  *  as described above and return 0.
0473  */
0474 
0475 static int ext2_alloc_branch(struct inode *inode,
0476             int indirect_blks, int *blks, ext2_fsblk_t goal,
0477             int *offsets, Indirect *branch)
0478 {
0479     int blocksize = inode->i_sb->s_blocksize;
0480     int i, n = 0;
0481     int err = 0;
0482     struct buffer_head *bh;
0483     int num;
0484     ext2_fsblk_t new_blocks[4];
0485     ext2_fsblk_t current_block;
0486 
0487     num = ext2_alloc_blocks(inode, goal, indirect_blks,
0488                 *blks, new_blocks, &err);
0489     if (err)
0490         return err;
0491 
0492     branch[0].key = cpu_to_le32(new_blocks[0]);
0493     /*
0494      * metadata blocks and data blocks are allocated.
0495      */
0496     for (n = 1; n <= indirect_blks;  n++) {
0497         /*
0498          * Get buffer_head for parent block, zero it out
0499          * and set the pointer to new one, then send
0500          * parent to disk.
0501          */
0502         bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
0503         if (unlikely(!bh)) {
0504             err = -ENOMEM;
0505             goto failed;
0506         }
0507         branch[n].bh = bh;
0508         lock_buffer(bh);
0509         memset(bh->b_data, 0, blocksize);
0510         branch[n].p = (__le32 *) bh->b_data + offsets[n];
0511         branch[n].key = cpu_to_le32(new_blocks[n]);
0512         *branch[n].p = branch[n].key;
0513         if ( n == indirect_blks) {
0514             current_block = new_blocks[n];
0515             /*
0516              * End of chain, update the last new metablock of
0517              * the chain to point to the new allocated
0518              * data blocks numbers
0519              */
0520             for (i=1; i < num; i++)
0521                 *(branch[n].p + i) = cpu_to_le32(++current_block);
0522         }
0523         set_buffer_uptodate(bh);
0524         unlock_buffer(bh);
0525         mark_buffer_dirty_inode(bh, inode);
0526         /* We used to sync bh here if IS_SYNC(inode).
0527          * But we now rely upon generic_write_sync()
0528          * and b_inode_buffers.  But not for directories.
0529          */
0530         if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
0531             sync_dirty_buffer(bh);
0532     }
0533     *blks = num;
0534     return err;
0535 
0536 failed:
0537     for (i = 1; i < n; i++)
0538         bforget(branch[i].bh);
0539     for (i = 0; i < indirect_blks; i++)
0540         ext2_free_blocks(inode, new_blocks[i], 1);
0541     ext2_free_blocks(inode, new_blocks[i], num);
0542     return err;
0543 }
0544 
0545 /**
0546  * ext2_splice_branch - splice the allocated branch onto inode.
0547  * @inode: owner
0548  * @block: (logical) number of block we are adding
0549  * @where: location of missing link
0550  * @num:   number of indirect blocks we are adding
0551  * @blks:  number of direct blocks we are adding
0552  *
0553  * This function fills the missing link and does all housekeeping needed in
0554  * inode (->i_blocks, etc.). In case of success we end up with the full
0555  * chain to new block and return 0.
0556  */
0557 static void ext2_splice_branch(struct inode *inode,
0558             long block, Indirect *where, int num, int blks)
0559 {
0560     int i;
0561     struct ext2_block_alloc_info *block_i;
0562     ext2_fsblk_t current_block;
0563 
0564     block_i = EXT2_I(inode)->i_block_alloc_info;
0565 
0566     /* XXX LOCKING probably should have i_meta_lock ?*/
0567     /* That's it */
0568 
0569     *where->p = where->key;
0570 
0571     /*
0572      * Update the host buffer_head or inode to point to more just allocated
0573      * direct blocks blocks
0574      */
0575     if (num == 0 && blks > 1) {
0576         current_block = le32_to_cpu(where->key) + 1;
0577         for (i = 1; i < blks; i++)
0578             *(where->p + i ) = cpu_to_le32(current_block++);
0579     }
0580 
0581     /*
0582      * update the most recently allocated logical & physical block
0583      * in i_block_alloc_info, to assist find the proper goal block for next
0584      * allocation
0585      */
0586     if (block_i) {
0587         block_i->last_alloc_logical_block = block + blks - 1;
0588         block_i->last_alloc_physical_block =
0589                 le32_to_cpu(where[num].key) + blks - 1;
0590     }
0591 
0592     /* We are done with atomic stuff, now do the rest of housekeeping */
0593 
0594     /* had we spliced it onto indirect block? */
0595     if (where->bh)
0596         mark_buffer_dirty_inode(where->bh, inode);
0597 
0598     inode->i_ctime = current_time(inode);
0599     mark_inode_dirty(inode);
0600 }
0601 
0602 /*
0603  * Allocation strategy is simple: if we have to allocate something, we will
0604  * have to go the whole way to leaf. So let's do it before attaching anything
0605  * to tree, set linkage between the newborn blocks, write them if sync is
0606  * required, recheck the path, free and repeat if check fails, otherwise
0607  * set the last missing link (that will protect us from any truncate-generated
0608  * removals - all blocks on the path are immune now) and possibly force the
0609  * write on the parent block.
0610  * That has a nice additional property: no special recovery from the failed
0611  * allocations is needed - we simply release blocks and do not touch anything
0612  * reachable from inode.
0613  *
0614  * `handle' can be NULL if create == 0.
0615  *
0616  * return > 0, # of blocks mapped or allocated.
0617  * return = 0, if plain lookup failed.
0618  * return < 0, error case.
0619  */
0620 static int ext2_get_blocks(struct inode *inode,
0621                sector_t iblock, unsigned long maxblocks,
0622                u32 *bno, bool *new, bool *boundary,
0623                int create)
0624 {
0625     int err;
0626     int offsets[4];
0627     Indirect chain[4];
0628     Indirect *partial;
0629     ext2_fsblk_t goal;
0630     int indirect_blks;
0631     int blocks_to_boundary = 0;
0632     int depth;
0633     struct ext2_inode_info *ei = EXT2_I(inode);
0634     int count = 0;
0635     ext2_fsblk_t first_block = 0;
0636 
0637     BUG_ON(maxblocks == 0);
0638 
0639     depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
0640 
0641     if (depth == 0)
0642         return -EIO;
0643 
0644     partial = ext2_get_branch(inode, depth, offsets, chain, &err);
0645     /* Simplest case - block found, no allocation needed */
0646     if (!partial) {
0647         first_block = le32_to_cpu(chain[depth - 1].key);
0648         count++;
0649         /*map more blocks*/
0650         while (count < maxblocks && count <= blocks_to_boundary) {
0651             ext2_fsblk_t blk;
0652 
0653             if (!verify_chain(chain, chain + depth - 1)) {
0654                 /*
0655                  * Indirect block might be removed by
0656                  * truncate while we were reading it.
0657                  * Handling of that case: forget what we've
0658                  * got now, go to reread.
0659                  */
0660                 err = -EAGAIN;
0661                 count = 0;
0662                 partial = chain + depth - 1;
0663                 break;
0664             }
0665             blk = le32_to_cpu(*(chain[depth-1].p + count));
0666             if (blk == first_block + count)
0667                 count++;
0668             else
0669                 break;
0670         }
0671         if (err != -EAGAIN)
0672             goto got_it;
0673     }
0674 
0675     /* Next simple case - plain lookup or failed read of indirect block */
0676     if (!create || err == -EIO)
0677         goto cleanup;
0678 
0679     mutex_lock(&ei->truncate_mutex);
0680     /*
0681      * If the indirect block is missing while we are reading
0682      * the chain(ext2_get_branch() returns -EAGAIN err), or
0683      * if the chain has been changed after we grab the semaphore,
0684      * (either because another process truncated this branch, or
0685      * another get_block allocated this branch) re-grab the chain to see if
0686      * the request block has been allocated or not.
0687      *
0688      * Since we already block the truncate/other get_block
0689      * at this point, we will have the current copy of the chain when we
0690      * splice the branch into the tree.
0691      */
0692     if (err == -EAGAIN || !verify_chain(chain, partial)) {
0693         while (partial > chain) {
0694             brelse(partial->bh);
0695             partial--;
0696         }
0697         partial = ext2_get_branch(inode, depth, offsets, chain, &err);
0698         if (!partial) {
0699             count++;
0700             mutex_unlock(&ei->truncate_mutex);
0701             goto got_it;
0702         }
0703 
0704         if (err) {
0705             mutex_unlock(&ei->truncate_mutex);
0706             goto cleanup;
0707         }
0708     }
0709 
0710     /*
0711      * Okay, we need to do block allocation.  Lazily initialize the block
0712      * allocation info here if necessary
0713     */
0714     if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
0715         ext2_init_block_alloc_info(inode);
0716 
0717     goal = ext2_find_goal(inode, iblock, partial);
0718 
0719     /* the number of blocks need to allocate for [d,t]indirect blocks */
0720     indirect_blks = (chain + depth) - partial - 1;
0721     /*
0722      * Next look up the indirect map to count the total number of
0723      * direct blocks to allocate for this branch.
0724      */
0725     count = ext2_blks_to_allocate(partial, indirect_blks,
0726                     maxblocks, blocks_to_boundary);
0727     /*
0728      * XXX ???? Block out ext2_truncate while we alter the tree
0729      */
0730     err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
0731                 offsets + (partial - chain), partial);
0732 
0733     if (err) {
0734         mutex_unlock(&ei->truncate_mutex);
0735         goto cleanup;
0736     }
0737 
0738     if (IS_DAX(inode)) {
0739         /*
0740          * We must unmap blocks before zeroing so that writeback cannot
0741          * overwrite zeros with stale data from block device page cache.
0742          */
0743         clean_bdev_aliases(inode->i_sb->s_bdev,
0744                    le32_to_cpu(chain[depth-1].key),
0745                    count);
0746         /*
0747          * block must be initialised before we put it in the tree
0748          * so that it's not found by another thread before it's
0749          * initialised
0750          */
0751         err = sb_issue_zeroout(inode->i_sb,
0752                 le32_to_cpu(chain[depth-1].key), count,
0753                 GFP_NOFS);
0754         if (err) {
0755             mutex_unlock(&ei->truncate_mutex);
0756             goto cleanup;
0757         }
0758     }
0759     *new = true;
0760 
0761     ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
0762     mutex_unlock(&ei->truncate_mutex);
0763 got_it:
0764     if (count > blocks_to_boundary)
0765         *boundary = true;
0766     err = count;
0767     /* Clean up and exit */
0768     partial = chain + depth - 1;    /* the whole chain */
0769 cleanup:
0770     while (partial > chain) {
0771         brelse(partial->bh);
0772         partial--;
0773     }
0774     if (err > 0)
0775         *bno = le32_to_cpu(chain[depth-1].key);
0776     return err;
0777 }
0778 
0779 int ext2_get_block(struct inode *inode, sector_t iblock,
0780         struct buffer_head *bh_result, int create)
0781 {
0782     unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
0783     bool new = false, boundary = false;
0784     u32 bno;
0785     int ret;
0786 
0787     ret = ext2_get_blocks(inode, iblock, max_blocks, &bno, &new, &boundary,
0788             create);
0789     if (ret <= 0)
0790         return ret;
0791 
0792     map_bh(bh_result, inode->i_sb, bno);
0793     bh_result->b_size = (ret << inode->i_blkbits);
0794     if (new)
0795         set_buffer_new(bh_result);
0796     if (boundary)
0797         set_buffer_boundary(bh_result);
0798     return 0;
0799 
0800 }
0801 
0802 static int ext2_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
0803         unsigned flags, struct iomap *iomap, struct iomap *srcmap)
0804 {
0805     unsigned int blkbits = inode->i_blkbits;
0806     unsigned long first_block = offset >> blkbits;
0807     unsigned long max_blocks = (length + (1 << blkbits) - 1) >> blkbits;
0808     struct ext2_sb_info *sbi = EXT2_SB(inode->i_sb);
0809     bool new = false, boundary = false;
0810     u32 bno;
0811     int ret;
0812 
0813     ret = ext2_get_blocks(inode, first_block, max_blocks,
0814             &bno, &new, &boundary, flags & IOMAP_WRITE);
0815     if (ret < 0)
0816         return ret;
0817 
0818     iomap->flags = 0;
0819     iomap->offset = (u64)first_block << blkbits;
0820     if (flags & IOMAP_DAX)
0821         iomap->dax_dev = sbi->s_daxdev;
0822     else
0823         iomap->bdev = inode->i_sb->s_bdev;
0824 
0825     if (ret == 0) {
0826         iomap->type = IOMAP_HOLE;
0827         iomap->addr = IOMAP_NULL_ADDR;
0828         iomap->length = 1 << blkbits;
0829     } else {
0830         iomap->type = IOMAP_MAPPED;
0831         iomap->addr = (u64)bno << blkbits;
0832         if (flags & IOMAP_DAX)
0833             iomap->addr += sbi->s_dax_part_off;
0834         iomap->length = (u64)ret << blkbits;
0835         iomap->flags |= IOMAP_F_MERGED;
0836     }
0837 
0838     if (new)
0839         iomap->flags |= IOMAP_F_NEW;
0840     return 0;
0841 }
0842 
0843 static int
0844 ext2_iomap_end(struct inode *inode, loff_t offset, loff_t length,
0845         ssize_t written, unsigned flags, struct iomap *iomap)
0846 {
0847     if (iomap->type == IOMAP_MAPPED &&
0848         written < length &&
0849         (flags & IOMAP_WRITE))
0850         ext2_write_failed(inode->i_mapping, offset + length);
0851     return 0;
0852 }
0853 
0854 const struct iomap_ops ext2_iomap_ops = {
0855     .iomap_begin        = ext2_iomap_begin,
0856     .iomap_end      = ext2_iomap_end,
0857 };
0858 
0859 int ext2_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
0860         u64 start, u64 len)
0861 {
0862     int ret;
0863 
0864     inode_lock(inode);
0865     len = min_t(u64, len, i_size_read(inode));
0866     ret = iomap_fiemap(inode, fieinfo, start, len, &ext2_iomap_ops);
0867     inode_unlock(inode);
0868 
0869     return ret;
0870 }
0871 
0872 static int ext2_writepage(struct page *page, struct writeback_control *wbc)
0873 {
0874     return block_write_full_page(page, ext2_get_block, wbc);
0875 }
0876 
0877 static int ext2_read_folio(struct file *file, struct folio *folio)
0878 {
0879     return mpage_read_folio(folio, ext2_get_block);
0880 }
0881 
0882 static void ext2_readahead(struct readahead_control *rac)
0883 {
0884     mpage_readahead(rac, ext2_get_block);
0885 }
0886 
0887 static int
0888 ext2_write_begin(struct file *file, struct address_space *mapping,
0889         loff_t pos, unsigned len, struct page **pagep, void **fsdata)
0890 {
0891     int ret;
0892 
0893     ret = block_write_begin(mapping, pos, len, pagep, ext2_get_block);
0894     if (ret < 0)
0895         ext2_write_failed(mapping, pos + len);
0896     return ret;
0897 }
0898 
0899 static int ext2_write_end(struct file *file, struct address_space *mapping,
0900             loff_t pos, unsigned len, unsigned copied,
0901             struct page *page, void *fsdata)
0902 {
0903     int ret;
0904 
0905     ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
0906     if (ret < len)
0907         ext2_write_failed(mapping, pos + len);
0908     return ret;
0909 }
0910 
0911 static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
0912 {
0913     return generic_block_bmap(mapping,block,ext2_get_block);
0914 }
0915 
0916 static ssize_t
0917 ext2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
0918 {
0919     struct file *file = iocb->ki_filp;
0920     struct address_space *mapping = file->f_mapping;
0921     struct inode *inode = mapping->host;
0922     size_t count = iov_iter_count(iter);
0923     loff_t offset = iocb->ki_pos;
0924     ssize_t ret;
0925 
0926     ret = blockdev_direct_IO(iocb, inode, iter, ext2_get_block);
0927     if (ret < 0 && iov_iter_rw(iter) == WRITE)
0928         ext2_write_failed(mapping, offset + count);
0929     return ret;
0930 }
0931 
0932 static int
0933 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
0934 {
0935     return mpage_writepages(mapping, wbc, ext2_get_block);
0936 }
0937 
0938 static int
0939 ext2_dax_writepages(struct address_space *mapping, struct writeback_control *wbc)
0940 {
0941     struct ext2_sb_info *sbi = EXT2_SB(mapping->host->i_sb);
0942 
0943     return dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
0944 }
0945 
0946 const struct address_space_operations ext2_aops = {
0947     .dirty_folio        = block_dirty_folio,
0948     .invalidate_folio   = block_invalidate_folio,
0949     .read_folio     = ext2_read_folio,
0950     .readahead      = ext2_readahead,
0951     .writepage      = ext2_writepage,
0952     .write_begin        = ext2_write_begin,
0953     .write_end      = ext2_write_end,
0954     .bmap           = ext2_bmap,
0955     .direct_IO      = ext2_direct_IO,
0956     .writepages     = ext2_writepages,
0957     .migrate_folio      = buffer_migrate_folio,
0958     .is_partially_uptodate  = block_is_partially_uptodate,
0959     .error_remove_page  = generic_error_remove_page,
0960 };
0961 
0962 static const struct address_space_operations ext2_dax_aops = {
0963     .writepages     = ext2_dax_writepages,
0964     .direct_IO      = noop_direct_IO,
0965     .dirty_folio        = noop_dirty_folio,
0966 };
0967 
0968 /*
0969  * Probably it should be a library function... search for first non-zero word
0970  * or memcmp with zero_page, whatever is better for particular architecture.
0971  * Linus?
0972  */
0973 static inline int all_zeroes(__le32 *p, __le32 *q)
0974 {
0975     while (p < q)
0976         if (*p++)
0977             return 0;
0978     return 1;
0979 }
0980 
0981 /**
0982  *  ext2_find_shared - find the indirect blocks for partial truncation.
0983  *  @inode:   inode in question
0984  *  @depth:   depth of the affected branch
0985  *  @offsets: offsets of pointers in that branch (see ext2_block_to_path)
0986  *  @chain:   place to store the pointers to partial indirect blocks
0987  *  @top:     place to the (detached) top of branch
0988  *
0989  *  This is a helper function used by ext2_truncate().
0990  *
0991  *  When we do truncate() we may have to clean the ends of several indirect
0992  *  blocks but leave the blocks themselves alive. Block is partially
0993  *  truncated if some data below the new i_size is referred from it (and
0994  *  it is on the path to the first completely truncated data block, indeed).
0995  *  We have to free the top of that path along with everything to the right
0996  *  of the path. Since no allocation past the truncation point is possible
0997  *  until ext2_truncate() finishes, we may safely do the latter, but top
0998  *  of branch may require special attention - pageout below the truncation
0999  *  point might try to populate it.
1000  *
1001  *  We atomically detach the top of branch from the tree, store the block
1002  *  number of its root in *@top, pointers to buffer_heads of partially
1003  *  truncated blocks - in @chain[].bh and pointers to their last elements
1004  *  that should not be removed - in @chain[].p. Return value is the pointer
1005  *  to last filled element of @chain.
1006  *
1007  *  The work left to caller to do the actual freeing of subtrees:
1008  *      a) free the subtree starting from *@top
1009  *      b) free the subtrees whose roots are stored in
1010  *          (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1011  *      c) free the subtrees growing from the inode past the @chain[0].p
1012  *          (no partially truncated stuff there).
1013  */
1014 
1015 static Indirect *ext2_find_shared(struct inode *inode,
1016                 int depth,
1017                 int offsets[4],
1018                 Indirect chain[4],
1019                 __le32 *top)
1020 {
1021     Indirect *partial, *p;
1022     int k, err;
1023 
1024     *top = 0;
1025     for (k = depth; k > 1 && !offsets[k-1]; k--)
1026         ;
1027     partial = ext2_get_branch(inode, k, offsets, chain, &err);
1028     if (!partial)
1029         partial = chain + k-1;
1030     /*
1031      * If the branch acquired continuation since we've looked at it -
1032      * fine, it should all survive and (new) top doesn't belong to us.
1033      */
1034     write_lock(&EXT2_I(inode)->i_meta_lock);
1035     if (!partial->key && *partial->p) {
1036         write_unlock(&EXT2_I(inode)->i_meta_lock);
1037         goto no_top;
1038     }
1039     for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1040         ;
1041     /*
1042      * OK, we've found the last block that must survive. The rest of our
1043      * branch should be detached before unlocking. However, if that rest
1044      * of branch is all ours and does not grow immediately from the inode
1045      * it's easier to cheat and just decrement partial->p.
1046      */
1047     if (p == chain + k - 1 && p > chain) {
1048         p->p--;
1049     } else {
1050         *top = *p->p;
1051         *p->p = 0;
1052     }
1053     write_unlock(&EXT2_I(inode)->i_meta_lock);
1054 
1055     while(partial > p)
1056     {
1057         brelse(partial->bh);
1058         partial--;
1059     }
1060 no_top:
1061     return partial;
1062 }
1063 
1064 /**
1065  *  ext2_free_data - free a list of data blocks
1066  *  @inode: inode we are dealing with
1067  *  @p: array of block numbers
1068  *  @q: points immediately past the end of array
1069  *
1070  *  We are freeing all blocks referred from that array (numbers are
1071  *  stored as little-endian 32-bit) and updating @inode->i_blocks
1072  *  appropriately.
1073  */
1074 static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
1075 {
1076     unsigned long block_to_free = 0, count = 0;
1077     unsigned long nr;
1078 
1079     for ( ; p < q ; p++) {
1080         nr = le32_to_cpu(*p);
1081         if (nr) {
1082             *p = 0;
1083             /* accumulate blocks to free if they're contiguous */
1084             if (count == 0)
1085                 goto free_this;
1086             else if (block_to_free == nr - count)
1087                 count++;
1088             else {
1089                 ext2_free_blocks (inode, block_to_free, count);
1090                 mark_inode_dirty(inode);
1091             free_this:
1092                 block_to_free = nr;
1093                 count = 1;
1094             }
1095         }
1096     }
1097     if (count > 0) {
1098         ext2_free_blocks (inode, block_to_free, count);
1099         mark_inode_dirty(inode);
1100     }
1101 }
1102 
1103 /**
1104  *  ext2_free_branches - free an array of branches
1105  *  @inode: inode we are dealing with
1106  *  @p: array of block numbers
1107  *  @q: pointer immediately past the end of array
1108  *  @depth: depth of the branches to free
1109  *
1110  *  We are freeing all blocks referred from these branches (numbers are
1111  *  stored as little-endian 32-bit) and updating @inode->i_blocks
1112  *  appropriately.
1113  */
1114 static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
1115 {
1116     struct buffer_head * bh;
1117     unsigned long nr;
1118 
1119     if (depth--) {
1120         int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1121         for ( ; p < q ; p++) {
1122             nr = le32_to_cpu(*p);
1123             if (!nr)
1124                 continue;
1125             *p = 0;
1126             bh = sb_bread(inode->i_sb, nr);
1127             /*
1128              * A read failure? Report error and clear slot
1129              * (should be rare).
1130              */ 
1131             if (!bh) {
1132                 ext2_error(inode->i_sb, "ext2_free_branches",
1133                     "Read failure, inode=%ld, block=%ld",
1134                     inode->i_ino, nr);
1135                 continue;
1136             }
1137             ext2_free_branches(inode,
1138                        (__le32*)bh->b_data,
1139                        (__le32*)bh->b_data + addr_per_block,
1140                        depth);
1141             bforget(bh);
1142             ext2_free_blocks(inode, nr, 1);
1143             mark_inode_dirty(inode);
1144         }
1145     } else
1146         ext2_free_data(inode, p, q);
1147 }
1148 
1149 /* mapping->invalidate_lock must be held when calling this function */
1150 static void __ext2_truncate_blocks(struct inode *inode, loff_t offset)
1151 {
1152     __le32 *i_data = EXT2_I(inode)->i_data;
1153     struct ext2_inode_info *ei = EXT2_I(inode);
1154     int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1155     int offsets[4];
1156     Indirect chain[4];
1157     Indirect *partial;
1158     __le32 nr = 0;
1159     int n;
1160     long iblock;
1161     unsigned blocksize;
1162     blocksize = inode->i_sb->s_blocksize;
1163     iblock = (offset + blocksize-1) >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1164 
1165 #ifdef CONFIG_FS_DAX
1166     WARN_ON(!rwsem_is_locked(&inode->i_mapping->invalidate_lock));
1167 #endif
1168 
1169     n = ext2_block_to_path(inode, iblock, offsets, NULL);
1170     if (n == 0)
1171         return;
1172 
1173     /*
1174      * From here we block out all ext2_get_block() callers who want to
1175      * modify the block allocation tree.
1176      */
1177     mutex_lock(&ei->truncate_mutex);
1178 
1179     if (n == 1) {
1180         ext2_free_data(inode, i_data+offsets[0],
1181                     i_data + EXT2_NDIR_BLOCKS);
1182         goto do_indirects;
1183     }
1184 
1185     partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1186     /* Kill the top of shared branch (already detached) */
1187     if (nr) {
1188         if (partial == chain)
1189             mark_inode_dirty(inode);
1190         else
1191             mark_buffer_dirty_inode(partial->bh, inode);
1192         ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1193     }
1194     /* Clear the ends of indirect blocks on the shared branch */
1195     while (partial > chain) {
1196         ext2_free_branches(inode,
1197                    partial->p + 1,
1198                    (__le32*)partial->bh->b_data+addr_per_block,
1199                    (chain+n-1) - partial);
1200         mark_buffer_dirty_inode(partial->bh, inode);
1201         brelse (partial->bh);
1202         partial--;
1203     }
1204 do_indirects:
1205     /* Kill the remaining (whole) subtrees */
1206     switch (offsets[0]) {
1207         default:
1208             nr = i_data[EXT2_IND_BLOCK];
1209             if (nr) {
1210                 i_data[EXT2_IND_BLOCK] = 0;
1211                 mark_inode_dirty(inode);
1212                 ext2_free_branches(inode, &nr, &nr+1, 1);
1213             }
1214             fallthrough;
1215         case EXT2_IND_BLOCK:
1216             nr = i_data[EXT2_DIND_BLOCK];
1217             if (nr) {
1218                 i_data[EXT2_DIND_BLOCK] = 0;
1219                 mark_inode_dirty(inode);
1220                 ext2_free_branches(inode, &nr, &nr+1, 2);
1221             }
1222             fallthrough;
1223         case EXT2_DIND_BLOCK:
1224             nr = i_data[EXT2_TIND_BLOCK];
1225             if (nr) {
1226                 i_data[EXT2_TIND_BLOCK] = 0;
1227                 mark_inode_dirty(inode);
1228                 ext2_free_branches(inode, &nr, &nr+1, 3);
1229             }
1230             break;
1231         case EXT2_TIND_BLOCK:
1232             ;
1233     }
1234 
1235     ext2_discard_reservation(inode);
1236 
1237     mutex_unlock(&ei->truncate_mutex);
1238 }
1239 
1240 static void ext2_truncate_blocks(struct inode *inode, loff_t offset)
1241 {
1242     if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1243         S_ISLNK(inode->i_mode)))
1244         return;
1245     if (ext2_inode_is_fast_symlink(inode))
1246         return;
1247 
1248     filemap_invalidate_lock(inode->i_mapping);
1249     __ext2_truncate_blocks(inode, offset);
1250     filemap_invalidate_unlock(inode->i_mapping);
1251 }
1252 
1253 static int ext2_setsize(struct inode *inode, loff_t newsize)
1254 {
1255     int error;
1256 
1257     if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1258         S_ISLNK(inode->i_mode)))
1259         return -EINVAL;
1260     if (ext2_inode_is_fast_symlink(inode))
1261         return -EINVAL;
1262     if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1263         return -EPERM;
1264 
1265     inode_dio_wait(inode);
1266 
1267     if (IS_DAX(inode))
1268         error = dax_zero_range(inode, newsize,
1269                        PAGE_ALIGN(newsize) - newsize, NULL,
1270                        &ext2_iomap_ops);
1271     else
1272         error = block_truncate_page(inode->i_mapping,
1273                 newsize, ext2_get_block);
1274     if (error)
1275         return error;
1276 
1277     filemap_invalidate_lock(inode->i_mapping);
1278     truncate_setsize(inode, newsize);
1279     __ext2_truncate_blocks(inode, newsize);
1280     filemap_invalidate_unlock(inode->i_mapping);
1281 
1282     inode->i_mtime = inode->i_ctime = current_time(inode);
1283     if (inode_needs_sync(inode)) {
1284         sync_mapping_buffers(inode->i_mapping);
1285         sync_inode_metadata(inode, 1);
1286     } else {
1287         mark_inode_dirty(inode);
1288     }
1289 
1290     return 0;
1291 }
1292 
1293 static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1294                     struct buffer_head **p)
1295 {
1296     struct buffer_head * bh;
1297     unsigned long block_group;
1298     unsigned long block;
1299     unsigned long offset;
1300     struct ext2_group_desc * gdp;
1301 
1302     *p = NULL;
1303     if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1304         ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1305         goto Einval;
1306 
1307     block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1308     gdp = ext2_get_group_desc(sb, block_group, NULL);
1309     if (!gdp)
1310         goto Egdp;
1311     /*
1312      * Figure out the offset within the block group inode table
1313      */
1314     offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1315     block = le32_to_cpu(gdp->bg_inode_table) +
1316         (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1317     if (!(bh = sb_bread(sb, block)))
1318         goto Eio;
1319 
1320     *p = bh;
1321     offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1322     return (struct ext2_inode *) (bh->b_data + offset);
1323 
1324 Einval:
1325     ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1326            (unsigned long) ino);
1327     return ERR_PTR(-EINVAL);
1328 Eio:
1329     ext2_error(sb, "ext2_get_inode",
1330            "unable to read inode block - inode=%lu, block=%lu",
1331            (unsigned long) ino, block);
1332 Egdp:
1333     return ERR_PTR(-EIO);
1334 }
1335 
1336 void ext2_set_inode_flags(struct inode *inode)
1337 {
1338     unsigned int flags = EXT2_I(inode)->i_flags;
1339 
1340     inode->i_flags &= ~(S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME |
1341                 S_DIRSYNC | S_DAX);
1342     if (flags & EXT2_SYNC_FL)
1343         inode->i_flags |= S_SYNC;
1344     if (flags & EXT2_APPEND_FL)
1345         inode->i_flags |= S_APPEND;
1346     if (flags & EXT2_IMMUTABLE_FL)
1347         inode->i_flags |= S_IMMUTABLE;
1348     if (flags & EXT2_NOATIME_FL)
1349         inode->i_flags |= S_NOATIME;
1350     if (flags & EXT2_DIRSYNC_FL)
1351         inode->i_flags |= S_DIRSYNC;
1352     if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
1353         inode->i_flags |= S_DAX;
1354 }
1355 
1356 void ext2_set_file_ops(struct inode *inode)
1357 {
1358     inode->i_op = &ext2_file_inode_operations;
1359     inode->i_fop = &ext2_file_operations;
1360     if (IS_DAX(inode))
1361         inode->i_mapping->a_ops = &ext2_dax_aops;
1362     else
1363         inode->i_mapping->a_ops = &ext2_aops;
1364 }
1365 
1366 struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
1367 {
1368     struct ext2_inode_info *ei;
1369     struct buffer_head * bh = NULL;
1370     struct ext2_inode *raw_inode;
1371     struct inode *inode;
1372     long ret = -EIO;
1373     int n;
1374     uid_t i_uid;
1375     gid_t i_gid;
1376 
1377     inode = iget_locked(sb, ino);
1378     if (!inode)
1379         return ERR_PTR(-ENOMEM);
1380     if (!(inode->i_state & I_NEW))
1381         return inode;
1382 
1383     ei = EXT2_I(inode);
1384     ei->i_block_alloc_info = NULL;
1385 
1386     raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1387     if (IS_ERR(raw_inode)) {
1388         ret = PTR_ERR(raw_inode);
1389         goto bad_inode;
1390     }
1391 
1392     inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1393     i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1394     i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1395     if (!(test_opt (inode->i_sb, NO_UID32))) {
1396         i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1397         i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1398     }
1399     i_uid_write(inode, i_uid);
1400     i_gid_write(inode, i_gid);
1401     set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
1402     inode->i_size = le32_to_cpu(raw_inode->i_size);
1403     inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1404     inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1405     inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1406     inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1407     ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1408     /* We now have enough fields to check if the inode was active or not.
1409      * This is needed because nfsd might try to access dead inodes
1410      * the test is that same one that e2fsck uses
1411      * NeilBrown 1999oct15
1412      */
1413     if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1414         /* this inode is deleted */
1415         ret = -ESTALE;
1416         goto bad_inode;
1417     }
1418     inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1419     ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1420     ext2_set_inode_flags(inode);
1421     ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1422     ei->i_frag_no = raw_inode->i_frag;
1423     ei->i_frag_size = raw_inode->i_fsize;
1424     ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1425     ei->i_dir_acl = 0;
1426 
1427     if (ei->i_file_acl &&
1428         !ext2_data_block_valid(EXT2_SB(sb), ei->i_file_acl, 1)) {
1429         ext2_error(sb, "ext2_iget", "bad extended attribute block %u",
1430                ei->i_file_acl);
1431         ret = -EFSCORRUPTED;
1432         goto bad_inode;
1433     }
1434 
1435     if (S_ISREG(inode->i_mode))
1436         inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1437     else
1438         ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1439     if (i_size_read(inode) < 0) {
1440         ret = -EFSCORRUPTED;
1441         goto bad_inode;
1442     }
1443     ei->i_dtime = 0;
1444     inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1445     ei->i_state = 0;
1446     ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1447     ei->i_dir_start_lookup = 0;
1448 
1449     /*
1450      * NOTE! The in-memory inode i_data array is in little-endian order
1451      * even on big-endian machines: we do NOT byteswap the block numbers!
1452      */
1453     for (n = 0; n < EXT2_N_BLOCKS; n++)
1454         ei->i_data[n] = raw_inode->i_block[n];
1455 
1456     if (S_ISREG(inode->i_mode)) {
1457         ext2_set_file_ops(inode);
1458     } else if (S_ISDIR(inode->i_mode)) {
1459         inode->i_op = &ext2_dir_inode_operations;
1460         inode->i_fop = &ext2_dir_operations;
1461         inode->i_mapping->a_ops = &ext2_aops;
1462     } else if (S_ISLNK(inode->i_mode)) {
1463         if (ext2_inode_is_fast_symlink(inode)) {
1464             inode->i_link = (char *)ei->i_data;
1465             inode->i_op = &ext2_fast_symlink_inode_operations;
1466             nd_terminate_link(ei->i_data, inode->i_size,
1467                 sizeof(ei->i_data) - 1);
1468         } else {
1469             inode->i_op = &ext2_symlink_inode_operations;
1470             inode_nohighmem(inode);
1471             inode->i_mapping->a_ops = &ext2_aops;
1472         }
1473     } else {
1474         inode->i_op = &ext2_special_inode_operations;
1475         if (raw_inode->i_block[0])
1476             init_special_inode(inode, inode->i_mode,
1477                old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1478         else 
1479             init_special_inode(inode, inode->i_mode,
1480                new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1481     }
1482     brelse (bh);
1483     unlock_new_inode(inode);
1484     return inode;
1485     
1486 bad_inode:
1487     brelse(bh);
1488     iget_failed(inode);
1489     return ERR_PTR(ret);
1490 }
1491 
1492 static int __ext2_write_inode(struct inode *inode, int do_sync)
1493 {
1494     struct ext2_inode_info *ei = EXT2_I(inode);
1495     struct super_block *sb = inode->i_sb;
1496     ino_t ino = inode->i_ino;
1497     uid_t uid = i_uid_read(inode);
1498     gid_t gid = i_gid_read(inode);
1499     struct buffer_head * bh;
1500     struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1501     int n;
1502     int err = 0;
1503 
1504     if (IS_ERR(raw_inode))
1505         return -EIO;
1506 
1507     /* For fields not tracking in the in-memory inode,
1508      * initialise them to zero for new inodes. */
1509     if (ei->i_state & EXT2_STATE_NEW)
1510         memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1511 
1512     raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1513     if (!(test_opt(sb, NO_UID32))) {
1514         raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1515         raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1516 /*
1517  * Fix up interoperability with old kernels. Otherwise, old inodes get
1518  * re-used with the upper 16 bits of the uid/gid intact
1519  */
1520         if (!ei->i_dtime) {
1521             raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1522             raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1523         } else {
1524             raw_inode->i_uid_high = 0;
1525             raw_inode->i_gid_high = 0;
1526         }
1527     } else {
1528         raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1529         raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1530         raw_inode->i_uid_high = 0;
1531         raw_inode->i_gid_high = 0;
1532     }
1533     raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1534     raw_inode->i_size = cpu_to_le32(inode->i_size);
1535     raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1536     raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1537     raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1538 
1539     raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1540     raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1541     raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1542     raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1543     raw_inode->i_frag = ei->i_frag_no;
1544     raw_inode->i_fsize = ei->i_frag_size;
1545     raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1546     if (!S_ISREG(inode->i_mode))
1547         raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1548     else {
1549         raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1550         if (inode->i_size > 0x7fffffffULL) {
1551             if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1552                     EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1553                 EXT2_SB(sb)->s_es->s_rev_level ==
1554                     cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1555                    /* If this is the first large file
1556                 * created, add a flag to the superblock.
1557                 */
1558                 spin_lock(&EXT2_SB(sb)->s_lock);
1559                 ext2_update_dynamic_rev(sb);
1560                 EXT2_SET_RO_COMPAT_FEATURE(sb,
1561                     EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1562                 spin_unlock(&EXT2_SB(sb)->s_lock);
1563                 ext2_sync_super(sb, EXT2_SB(sb)->s_es, 1);
1564             }
1565         }
1566     }
1567     
1568     raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1569     if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1570         if (old_valid_dev(inode->i_rdev)) {
1571             raw_inode->i_block[0] =
1572                 cpu_to_le32(old_encode_dev(inode->i_rdev));
1573             raw_inode->i_block[1] = 0;
1574         } else {
1575             raw_inode->i_block[0] = 0;
1576             raw_inode->i_block[1] =
1577                 cpu_to_le32(new_encode_dev(inode->i_rdev));
1578             raw_inode->i_block[2] = 0;
1579         }
1580     } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1581         raw_inode->i_block[n] = ei->i_data[n];
1582     mark_buffer_dirty(bh);
1583     if (do_sync) {
1584         sync_dirty_buffer(bh);
1585         if (buffer_req(bh) && !buffer_uptodate(bh)) {
1586             printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1587                 sb->s_id, (unsigned long) ino);
1588             err = -EIO;
1589         }
1590     }
1591     ei->i_state &= ~EXT2_STATE_NEW;
1592     brelse (bh);
1593     return err;
1594 }
1595 
1596 int ext2_write_inode(struct inode *inode, struct writeback_control *wbc)
1597 {
1598     return __ext2_write_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1599 }
1600 
1601 int ext2_getattr(struct user_namespace *mnt_userns, const struct path *path,
1602          struct kstat *stat, u32 request_mask, unsigned int query_flags)
1603 {
1604     struct inode *inode = d_inode(path->dentry);
1605     struct ext2_inode_info *ei = EXT2_I(inode);
1606     unsigned int flags;
1607 
1608     flags = ei->i_flags & EXT2_FL_USER_VISIBLE;
1609     if (flags & EXT2_APPEND_FL)
1610         stat->attributes |= STATX_ATTR_APPEND;
1611     if (flags & EXT2_COMPR_FL)
1612         stat->attributes |= STATX_ATTR_COMPRESSED;
1613     if (flags & EXT2_IMMUTABLE_FL)
1614         stat->attributes |= STATX_ATTR_IMMUTABLE;
1615     if (flags & EXT2_NODUMP_FL)
1616         stat->attributes |= STATX_ATTR_NODUMP;
1617     stat->attributes_mask |= (STATX_ATTR_APPEND |
1618             STATX_ATTR_COMPRESSED |
1619             STATX_ATTR_ENCRYPTED |
1620             STATX_ATTR_IMMUTABLE |
1621             STATX_ATTR_NODUMP);
1622 
1623     generic_fillattr(&init_user_ns, inode, stat);
1624     return 0;
1625 }
1626 
1627 int ext2_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
1628          struct iattr *iattr)
1629 {
1630     struct inode *inode = d_inode(dentry);
1631     int error;
1632 
1633     error = setattr_prepare(&init_user_ns, dentry, iattr);
1634     if (error)
1635         return error;
1636 
1637     if (is_quota_modification(mnt_userns, inode, iattr)) {
1638         error = dquot_initialize(inode);
1639         if (error)
1640             return error;
1641     }
1642     if (i_uid_needs_update(mnt_userns, iattr, inode) ||
1643         i_gid_needs_update(mnt_userns, iattr, inode)) {
1644         error = dquot_transfer(mnt_userns, inode, iattr);
1645         if (error)
1646             return error;
1647     }
1648     if (iattr->ia_valid & ATTR_SIZE && iattr->ia_size != inode->i_size) {
1649         error = ext2_setsize(inode, iattr->ia_size);
1650         if (error)
1651             return error;
1652     }
1653     setattr_copy(&init_user_ns, inode, iattr);
1654     if (iattr->ia_valid & ATTR_MODE)
1655         error = posix_acl_chmod(&init_user_ns, inode, inode->i_mode);
1656     mark_inode_dirty(inode);
1657 
1658     return error;
1659 }