Back to home page

OSCL-LXR

 
 

    


0001 // SPDX-License-Identifier: GPL-2.0-only
0002 /*
0003  *  linux/fs/exec.c
0004  *
0005  *  Copyright (C) 1991, 1992  Linus Torvalds
0006  */
0007 
0008 /*
0009  * #!-checking implemented by tytso.
0010  */
0011 /*
0012  * Demand-loading implemented 01.12.91 - no need to read anything but
0013  * the header into memory. The inode of the executable is put into
0014  * "current->executable", and page faults do the actual loading. Clean.
0015  *
0016  * Once more I can proudly say that linux stood up to being changed: it
0017  * was less than 2 hours work to get demand-loading completely implemented.
0018  *
0019  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
0020  * current->executable is only used by the procfs.  This allows a dispatch
0021  * table to check for several different types  of binary formats.  We keep
0022  * trying until we recognize the file or we run out of supported binary
0023  * formats.
0024  */
0025 
0026 #include <linux/kernel_read_file.h>
0027 #include <linux/slab.h>
0028 #include <linux/file.h>
0029 #include <linux/fdtable.h>
0030 #include <linux/mm.h>
0031 #include <linux/vmacache.h>
0032 #include <linux/stat.h>
0033 #include <linux/fcntl.h>
0034 #include <linux/swap.h>
0035 #include <linux/string.h>
0036 #include <linux/init.h>
0037 #include <linux/sched/mm.h>
0038 #include <linux/sched/coredump.h>
0039 #include <linux/sched/signal.h>
0040 #include <linux/sched/numa_balancing.h>
0041 #include <linux/sched/task.h>
0042 #include <linux/pagemap.h>
0043 #include <linux/perf_event.h>
0044 #include <linux/highmem.h>
0045 #include <linux/spinlock.h>
0046 #include <linux/key.h>
0047 #include <linux/personality.h>
0048 #include <linux/binfmts.h>
0049 #include <linux/utsname.h>
0050 #include <linux/pid_namespace.h>
0051 #include <linux/module.h>
0052 #include <linux/namei.h>
0053 #include <linux/mount.h>
0054 #include <linux/security.h>
0055 #include <linux/syscalls.h>
0056 #include <linux/tsacct_kern.h>
0057 #include <linux/cn_proc.h>
0058 #include <linux/audit.h>
0059 #include <linux/kmod.h>
0060 #include <linux/fsnotify.h>
0061 #include <linux/fs_struct.h>
0062 #include <linux/oom.h>
0063 #include <linux/compat.h>
0064 #include <linux/vmalloc.h>
0065 #include <linux/io_uring.h>
0066 #include <linux/syscall_user_dispatch.h>
0067 #include <linux/coredump.h>
0068 
0069 #include <linux/uaccess.h>
0070 #include <asm/mmu_context.h>
0071 #include <asm/tlb.h>
0072 
0073 #include <trace/events/task.h>
0074 #include "internal.h"
0075 
0076 #include <trace/events/sched.h>
0077 
0078 static int bprm_creds_from_file(struct linux_binprm *bprm);
0079 
0080 int suid_dumpable = 0;
0081 
0082 static LIST_HEAD(formats);
0083 static DEFINE_RWLOCK(binfmt_lock);
0084 
0085 void __register_binfmt(struct linux_binfmt * fmt, int insert)
0086 {
0087     write_lock(&binfmt_lock);
0088     insert ? list_add(&fmt->lh, &formats) :
0089          list_add_tail(&fmt->lh, &formats);
0090     write_unlock(&binfmt_lock);
0091 }
0092 
0093 EXPORT_SYMBOL(__register_binfmt);
0094 
0095 void unregister_binfmt(struct linux_binfmt * fmt)
0096 {
0097     write_lock(&binfmt_lock);
0098     list_del(&fmt->lh);
0099     write_unlock(&binfmt_lock);
0100 }
0101 
0102 EXPORT_SYMBOL(unregister_binfmt);
0103 
0104 static inline void put_binfmt(struct linux_binfmt * fmt)
0105 {
0106     module_put(fmt->module);
0107 }
0108 
0109 bool path_noexec(const struct path *path)
0110 {
0111     return (path->mnt->mnt_flags & MNT_NOEXEC) ||
0112            (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
0113 }
0114 
0115 #ifdef CONFIG_USELIB
0116 /*
0117  * Note that a shared library must be both readable and executable due to
0118  * security reasons.
0119  *
0120  * Also note that we take the address to load from the file itself.
0121  */
0122 SYSCALL_DEFINE1(uselib, const char __user *, library)
0123 {
0124     struct linux_binfmt *fmt;
0125     struct file *file;
0126     struct filename *tmp = getname(library);
0127     int error = PTR_ERR(tmp);
0128     static const struct open_flags uselib_flags = {
0129         .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
0130         .acc_mode = MAY_READ | MAY_EXEC,
0131         .intent = LOOKUP_OPEN,
0132         .lookup_flags = LOOKUP_FOLLOW,
0133     };
0134 
0135     if (IS_ERR(tmp))
0136         goto out;
0137 
0138     file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
0139     putname(tmp);
0140     error = PTR_ERR(file);
0141     if (IS_ERR(file))
0142         goto out;
0143 
0144     /*
0145      * may_open() has already checked for this, so it should be
0146      * impossible to trip now. But we need to be extra cautious
0147      * and check again at the very end too.
0148      */
0149     error = -EACCES;
0150     if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
0151              path_noexec(&file->f_path)))
0152         goto exit;
0153 
0154     fsnotify_open(file);
0155 
0156     error = -ENOEXEC;
0157 
0158     read_lock(&binfmt_lock);
0159     list_for_each_entry(fmt, &formats, lh) {
0160         if (!fmt->load_shlib)
0161             continue;
0162         if (!try_module_get(fmt->module))
0163             continue;
0164         read_unlock(&binfmt_lock);
0165         error = fmt->load_shlib(file);
0166         read_lock(&binfmt_lock);
0167         put_binfmt(fmt);
0168         if (error != -ENOEXEC)
0169             break;
0170     }
0171     read_unlock(&binfmt_lock);
0172 exit:
0173     fput(file);
0174 out:
0175     return error;
0176 }
0177 #endif /* #ifdef CONFIG_USELIB */
0178 
0179 #ifdef CONFIG_MMU
0180 /*
0181  * The nascent bprm->mm is not visible until exec_mmap() but it can
0182  * use a lot of memory, account these pages in current->mm temporary
0183  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
0184  * change the counter back via acct_arg_size(0).
0185  */
0186 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
0187 {
0188     struct mm_struct *mm = current->mm;
0189     long diff = (long)(pages - bprm->vma_pages);
0190 
0191     if (!mm || !diff)
0192         return;
0193 
0194     bprm->vma_pages = pages;
0195     add_mm_counter(mm, MM_ANONPAGES, diff);
0196 }
0197 
0198 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
0199         int write)
0200 {
0201     struct page *page;
0202     int ret;
0203     unsigned int gup_flags = FOLL_FORCE;
0204 
0205 #ifdef CONFIG_STACK_GROWSUP
0206     if (write) {
0207         ret = expand_downwards(bprm->vma, pos);
0208         if (ret < 0)
0209             return NULL;
0210     }
0211 #endif
0212 
0213     if (write)
0214         gup_flags |= FOLL_WRITE;
0215 
0216     /*
0217      * We are doing an exec().  'current' is the process
0218      * doing the exec and bprm->mm is the new process's mm.
0219      */
0220     mmap_read_lock(bprm->mm);
0221     ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
0222             &page, NULL, NULL);
0223     mmap_read_unlock(bprm->mm);
0224     if (ret <= 0)
0225         return NULL;
0226 
0227     if (write)
0228         acct_arg_size(bprm, vma_pages(bprm->vma));
0229 
0230     return page;
0231 }
0232 
0233 static void put_arg_page(struct page *page)
0234 {
0235     put_page(page);
0236 }
0237 
0238 static void free_arg_pages(struct linux_binprm *bprm)
0239 {
0240 }
0241 
0242 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
0243         struct page *page)
0244 {
0245     flush_cache_page(bprm->vma, pos, page_to_pfn(page));
0246 }
0247 
0248 static int __bprm_mm_init(struct linux_binprm *bprm)
0249 {
0250     int err;
0251     struct vm_area_struct *vma = NULL;
0252     struct mm_struct *mm = bprm->mm;
0253 
0254     bprm->vma = vma = vm_area_alloc(mm);
0255     if (!vma)
0256         return -ENOMEM;
0257     vma_set_anonymous(vma);
0258 
0259     if (mmap_write_lock_killable(mm)) {
0260         err = -EINTR;
0261         goto err_free;
0262     }
0263 
0264     /*
0265      * Place the stack at the largest stack address the architecture
0266      * supports. Later, we'll move this to an appropriate place. We don't
0267      * use STACK_TOP because that can depend on attributes which aren't
0268      * configured yet.
0269      */
0270     BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
0271     vma->vm_end = STACK_TOP_MAX;
0272     vma->vm_start = vma->vm_end - PAGE_SIZE;
0273     vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
0274     vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
0275 
0276     err = insert_vm_struct(mm, vma);
0277     if (err)
0278         goto err;
0279 
0280     mm->stack_vm = mm->total_vm = 1;
0281     mmap_write_unlock(mm);
0282     bprm->p = vma->vm_end - sizeof(void *);
0283     return 0;
0284 err:
0285     mmap_write_unlock(mm);
0286 err_free:
0287     bprm->vma = NULL;
0288     vm_area_free(vma);
0289     return err;
0290 }
0291 
0292 static bool valid_arg_len(struct linux_binprm *bprm, long len)
0293 {
0294     return len <= MAX_ARG_STRLEN;
0295 }
0296 
0297 #else
0298 
0299 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
0300 {
0301 }
0302 
0303 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
0304         int write)
0305 {
0306     struct page *page;
0307 
0308     page = bprm->page[pos / PAGE_SIZE];
0309     if (!page && write) {
0310         page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
0311         if (!page)
0312             return NULL;
0313         bprm->page[pos / PAGE_SIZE] = page;
0314     }
0315 
0316     return page;
0317 }
0318 
0319 static void put_arg_page(struct page *page)
0320 {
0321 }
0322 
0323 static void free_arg_page(struct linux_binprm *bprm, int i)
0324 {
0325     if (bprm->page[i]) {
0326         __free_page(bprm->page[i]);
0327         bprm->page[i] = NULL;
0328     }
0329 }
0330 
0331 static void free_arg_pages(struct linux_binprm *bprm)
0332 {
0333     int i;
0334 
0335     for (i = 0; i < MAX_ARG_PAGES; i++)
0336         free_arg_page(bprm, i);
0337 }
0338 
0339 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
0340         struct page *page)
0341 {
0342 }
0343 
0344 static int __bprm_mm_init(struct linux_binprm *bprm)
0345 {
0346     bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
0347     return 0;
0348 }
0349 
0350 static bool valid_arg_len(struct linux_binprm *bprm, long len)
0351 {
0352     return len <= bprm->p;
0353 }
0354 
0355 #endif /* CONFIG_MMU */
0356 
0357 /*
0358  * Create a new mm_struct and populate it with a temporary stack
0359  * vm_area_struct.  We don't have enough context at this point to set the stack
0360  * flags, permissions, and offset, so we use temporary values.  We'll update
0361  * them later in setup_arg_pages().
0362  */
0363 static int bprm_mm_init(struct linux_binprm *bprm)
0364 {
0365     int err;
0366     struct mm_struct *mm = NULL;
0367 
0368     bprm->mm = mm = mm_alloc();
0369     err = -ENOMEM;
0370     if (!mm)
0371         goto err;
0372 
0373     /* Save current stack limit for all calculations made during exec. */
0374     task_lock(current->group_leader);
0375     bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
0376     task_unlock(current->group_leader);
0377 
0378     err = __bprm_mm_init(bprm);
0379     if (err)
0380         goto err;
0381 
0382     return 0;
0383 
0384 err:
0385     if (mm) {
0386         bprm->mm = NULL;
0387         mmdrop(mm);
0388     }
0389 
0390     return err;
0391 }
0392 
0393 struct user_arg_ptr {
0394 #ifdef CONFIG_COMPAT
0395     bool is_compat;
0396 #endif
0397     union {
0398         const char __user *const __user *native;
0399 #ifdef CONFIG_COMPAT
0400         const compat_uptr_t __user *compat;
0401 #endif
0402     } ptr;
0403 };
0404 
0405 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
0406 {
0407     const char __user *native;
0408 
0409 #ifdef CONFIG_COMPAT
0410     if (unlikely(argv.is_compat)) {
0411         compat_uptr_t compat;
0412 
0413         if (get_user(compat, argv.ptr.compat + nr))
0414             return ERR_PTR(-EFAULT);
0415 
0416         return compat_ptr(compat);
0417     }
0418 #endif
0419 
0420     if (get_user(native, argv.ptr.native + nr))
0421         return ERR_PTR(-EFAULT);
0422 
0423     return native;
0424 }
0425 
0426 /*
0427  * count() counts the number of strings in array ARGV.
0428  */
0429 static int count(struct user_arg_ptr argv, int max)
0430 {
0431     int i = 0;
0432 
0433     if (argv.ptr.native != NULL) {
0434         for (;;) {
0435             const char __user *p = get_user_arg_ptr(argv, i);
0436 
0437             if (!p)
0438                 break;
0439 
0440             if (IS_ERR(p))
0441                 return -EFAULT;
0442 
0443             if (i >= max)
0444                 return -E2BIG;
0445             ++i;
0446 
0447             if (fatal_signal_pending(current))
0448                 return -ERESTARTNOHAND;
0449             cond_resched();
0450         }
0451     }
0452     return i;
0453 }
0454 
0455 static int count_strings_kernel(const char *const *argv)
0456 {
0457     int i;
0458 
0459     if (!argv)
0460         return 0;
0461 
0462     for (i = 0; argv[i]; ++i) {
0463         if (i >= MAX_ARG_STRINGS)
0464             return -E2BIG;
0465         if (fatal_signal_pending(current))
0466             return -ERESTARTNOHAND;
0467         cond_resched();
0468     }
0469     return i;
0470 }
0471 
0472 static int bprm_stack_limits(struct linux_binprm *bprm)
0473 {
0474     unsigned long limit, ptr_size;
0475 
0476     /*
0477      * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
0478      * (whichever is smaller) for the argv+env strings.
0479      * This ensures that:
0480      *  - the remaining binfmt code will not run out of stack space,
0481      *  - the program will have a reasonable amount of stack left
0482      *    to work from.
0483      */
0484     limit = _STK_LIM / 4 * 3;
0485     limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
0486     /*
0487      * We've historically supported up to 32 pages (ARG_MAX)
0488      * of argument strings even with small stacks
0489      */
0490     limit = max_t(unsigned long, limit, ARG_MAX);
0491     /*
0492      * We must account for the size of all the argv and envp pointers to
0493      * the argv and envp strings, since they will also take up space in
0494      * the stack. They aren't stored until much later when we can't
0495      * signal to the parent that the child has run out of stack space.
0496      * Instead, calculate it here so it's possible to fail gracefully.
0497      *
0498      * In the case of argc = 0, make sure there is space for adding a
0499      * empty string (which will bump argc to 1), to ensure confused
0500      * userspace programs don't start processing from argv[1], thinking
0501      * argc can never be 0, to keep them from walking envp by accident.
0502      * See do_execveat_common().
0503      */
0504     ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
0505     if (limit <= ptr_size)
0506         return -E2BIG;
0507     limit -= ptr_size;
0508 
0509     bprm->argmin = bprm->p - limit;
0510     return 0;
0511 }
0512 
0513 /*
0514  * 'copy_strings()' copies argument/environment strings from the old
0515  * processes's memory to the new process's stack.  The call to get_user_pages()
0516  * ensures the destination page is created and not swapped out.
0517  */
0518 static int copy_strings(int argc, struct user_arg_ptr argv,
0519             struct linux_binprm *bprm)
0520 {
0521     struct page *kmapped_page = NULL;
0522     char *kaddr = NULL;
0523     unsigned long kpos = 0;
0524     int ret;
0525 
0526     while (argc-- > 0) {
0527         const char __user *str;
0528         int len;
0529         unsigned long pos;
0530 
0531         ret = -EFAULT;
0532         str = get_user_arg_ptr(argv, argc);
0533         if (IS_ERR(str))
0534             goto out;
0535 
0536         len = strnlen_user(str, MAX_ARG_STRLEN);
0537         if (!len)
0538             goto out;
0539 
0540         ret = -E2BIG;
0541         if (!valid_arg_len(bprm, len))
0542             goto out;
0543 
0544         /* We're going to work our way backwards. */
0545         pos = bprm->p;
0546         str += len;
0547         bprm->p -= len;
0548 #ifdef CONFIG_MMU
0549         if (bprm->p < bprm->argmin)
0550             goto out;
0551 #endif
0552 
0553         while (len > 0) {
0554             int offset, bytes_to_copy;
0555 
0556             if (fatal_signal_pending(current)) {
0557                 ret = -ERESTARTNOHAND;
0558                 goto out;
0559             }
0560             cond_resched();
0561 
0562             offset = pos % PAGE_SIZE;
0563             if (offset == 0)
0564                 offset = PAGE_SIZE;
0565 
0566             bytes_to_copy = offset;
0567             if (bytes_to_copy > len)
0568                 bytes_to_copy = len;
0569 
0570             offset -= bytes_to_copy;
0571             pos -= bytes_to_copy;
0572             str -= bytes_to_copy;
0573             len -= bytes_to_copy;
0574 
0575             if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
0576                 struct page *page;
0577 
0578                 page = get_arg_page(bprm, pos, 1);
0579                 if (!page) {
0580                     ret = -E2BIG;
0581                     goto out;
0582                 }
0583 
0584                 if (kmapped_page) {
0585                     flush_dcache_page(kmapped_page);
0586                     kunmap_local(kaddr);
0587                     put_arg_page(kmapped_page);
0588                 }
0589                 kmapped_page = page;
0590                 kaddr = kmap_local_page(kmapped_page);
0591                 kpos = pos & PAGE_MASK;
0592                 flush_arg_page(bprm, kpos, kmapped_page);
0593             }
0594             if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
0595                 ret = -EFAULT;
0596                 goto out;
0597             }
0598         }
0599     }
0600     ret = 0;
0601 out:
0602     if (kmapped_page) {
0603         flush_dcache_page(kmapped_page);
0604         kunmap_local(kaddr);
0605         put_arg_page(kmapped_page);
0606     }
0607     return ret;
0608 }
0609 
0610 /*
0611  * Copy and argument/environment string from the kernel to the processes stack.
0612  */
0613 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
0614 {
0615     int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
0616     unsigned long pos = bprm->p;
0617 
0618     if (len == 0)
0619         return -EFAULT;
0620     if (!valid_arg_len(bprm, len))
0621         return -E2BIG;
0622 
0623     /* We're going to work our way backwards. */
0624     arg += len;
0625     bprm->p -= len;
0626     if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
0627         return -E2BIG;
0628 
0629     while (len > 0) {
0630         unsigned int bytes_to_copy = min_t(unsigned int, len,
0631                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
0632         struct page *page;
0633 
0634         pos -= bytes_to_copy;
0635         arg -= bytes_to_copy;
0636         len -= bytes_to_copy;
0637 
0638         page = get_arg_page(bprm, pos, 1);
0639         if (!page)
0640             return -E2BIG;
0641         flush_arg_page(bprm, pos & PAGE_MASK, page);
0642         memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
0643         put_arg_page(page);
0644     }
0645 
0646     return 0;
0647 }
0648 EXPORT_SYMBOL(copy_string_kernel);
0649 
0650 static int copy_strings_kernel(int argc, const char *const *argv,
0651                    struct linux_binprm *bprm)
0652 {
0653     while (argc-- > 0) {
0654         int ret = copy_string_kernel(argv[argc], bprm);
0655         if (ret < 0)
0656             return ret;
0657         if (fatal_signal_pending(current))
0658             return -ERESTARTNOHAND;
0659         cond_resched();
0660     }
0661     return 0;
0662 }
0663 
0664 #ifdef CONFIG_MMU
0665 
0666 /*
0667  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
0668  * the binfmt code determines where the new stack should reside, we shift it to
0669  * its final location.  The process proceeds as follows:
0670  *
0671  * 1) Use shift to calculate the new vma endpoints.
0672  * 2) Extend vma to cover both the old and new ranges.  This ensures the
0673  *    arguments passed to subsequent functions are consistent.
0674  * 3) Move vma's page tables to the new range.
0675  * 4) Free up any cleared pgd range.
0676  * 5) Shrink the vma to cover only the new range.
0677  */
0678 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
0679 {
0680     struct mm_struct *mm = vma->vm_mm;
0681     unsigned long old_start = vma->vm_start;
0682     unsigned long old_end = vma->vm_end;
0683     unsigned long length = old_end - old_start;
0684     unsigned long new_start = old_start - shift;
0685     unsigned long new_end = old_end - shift;
0686     struct mmu_gather tlb;
0687 
0688     BUG_ON(new_start > new_end);
0689 
0690     /*
0691      * ensure there are no vmas between where we want to go
0692      * and where we are
0693      */
0694     if (vma != find_vma(mm, new_start))
0695         return -EFAULT;
0696 
0697     /*
0698      * cover the whole range: [new_start, old_end)
0699      */
0700     if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
0701         return -ENOMEM;
0702 
0703     /*
0704      * move the page tables downwards, on failure we rely on
0705      * process cleanup to remove whatever mess we made.
0706      */
0707     if (length != move_page_tables(vma, old_start,
0708                        vma, new_start, length, false))
0709         return -ENOMEM;
0710 
0711     lru_add_drain();
0712     tlb_gather_mmu(&tlb, mm);
0713     if (new_end > old_start) {
0714         /*
0715          * when the old and new regions overlap clear from new_end.
0716          */
0717         free_pgd_range(&tlb, new_end, old_end, new_end,
0718             vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
0719     } else {
0720         /*
0721          * otherwise, clean from old_start; this is done to not touch
0722          * the address space in [new_end, old_start) some architectures
0723          * have constraints on va-space that make this illegal (IA64) -
0724          * for the others its just a little faster.
0725          */
0726         free_pgd_range(&tlb, old_start, old_end, new_end,
0727             vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
0728     }
0729     tlb_finish_mmu(&tlb);
0730 
0731     /*
0732      * Shrink the vma to just the new range.  Always succeeds.
0733      */
0734     vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
0735 
0736     return 0;
0737 }
0738 
0739 /*
0740  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
0741  * the stack is optionally relocated, and some extra space is added.
0742  */
0743 int setup_arg_pages(struct linux_binprm *bprm,
0744             unsigned long stack_top,
0745             int executable_stack)
0746 {
0747     unsigned long ret;
0748     unsigned long stack_shift;
0749     struct mm_struct *mm = current->mm;
0750     struct vm_area_struct *vma = bprm->vma;
0751     struct vm_area_struct *prev = NULL;
0752     unsigned long vm_flags;
0753     unsigned long stack_base;
0754     unsigned long stack_size;
0755     unsigned long stack_expand;
0756     unsigned long rlim_stack;
0757     struct mmu_gather tlb;
0758 
0759 #ifdef CONFIG_STACK_GROWSUP
0760     /* Limit stack size */
0761     stack_base = bprm->rlim_stack.rlim_max;
0762 
0763     stack_base = calc_max_stack_size(stack_base);
0764 
0765     /* Add space for stack randomization. */
0766     stack_base += (STACK_RND_MASK << PAGE_SHIFT);
0767 
0768     /* Make sure we didn't let the argument array grow too large. */
0769     if (vma->vm_end - vma->vm_start > stack_base)
0770         return -ENOMEM;
0771 
0772     stack_base = PAGE_ALIGN(stack_top - stack_base);
0773 
0774     stack_shift = vma->vm_start - stack_base;
0775     mm->arg_start = bprm->p - stack_shift;
0776     bprm->p = vma->vm_end - stack_shift;
0777 #else
0778     stack_top = arch_align_stack(stack_top);
0779     stack_top = PAGE_ALIGN(stack_top);
0780 
0781     if (unlikely(stack_top < mmap_min_addr) ||
0782         unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
0783         return -ENOMEM;
0784 
0785     stack_shift = vma->vm_end - stack_top;
0786 
0787     bprm->p -= stack_shift;
0788     mm->arg_start = bprm->p;
0789 #endif
0790 
0791     if (bprm->loader)
0792         bprm->loader -= stack_shift;
0793     bprm->exec -= stack_shift;
0794 
0795     if (mmap_write_lock_killable(mm))
0796         return -EINTR;
0797 
0798     vm_flags = VM_STACK_FLAGS;
0799 
0800     /*
0801      * Adjust stack execute permissions; explicitly enable for
0802      * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
0803      * (arch default) otherwise.
0804      */
0805     if (unlikely(executable_stack == EXSTACK_ENABLE_X))
0806         vm_flags |= VM_EXEC;
0807     else if (executable_stack == EXSTACK_DISABLE_X)
0808         vm_flags &= ~VM_EXEC;
0809     vm_flags |= mm->def_flags;
0810     vm_flags |= VM_STACK_INCOMPLETE_SETUP;
0811 
0812     tlb_gather_mmu(&tlb, mm);
0813     ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
0814             vm_flags);
0815     tlb_finish_mmu(&tlb);
0816 
0817     if (ret)
0818         goto out_unlock;
0819     BUG_ON(prev != vma);
0820 
0821     if (unlikely(vm_flags & VM_EXEC)) {
0822         pr_warn_once("process '%pD4' started with executable stack\n",
0823                  bprm->file);
0824     }
0825 
0826     /* Move stack pages down in memory. */
0827     if (stack_shift) {
0828         ret = shift_arg_pages(vma, stack_shift);
0829         if (ret)
0830             goto out_unlock;
0831     }
0832 
0833     /* mprotect_fixup is overkill to remove the temporary stack flags */
0834     vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
0835 
0836     stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
0837     stack_size = vma->vm_end - vma->vm_start;
0838     /*
0839      * Align this down to a page boundary as expand_stack
0840      * will align it up.
0841      */
0842     rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
0843 #ifdef CONFIG_STACK_GROWSUP
0844     if (stack_size + stack_expand > rlim_stack)
0845         stack_base = vma->vm_start + rlim_stack;
0846     else
0847         stack_base = vma->vm_end + stack_expand;
0848 #else
0849     if (stack_size + stack_expand > rlim_stack)
0850         stack_base = vma->vm_end - rlim_stack;
0851     else
0852         stack_base = vma->vm_start - stack_expand;
0853 #endif
0854     current->mm->start_stack = bprm->p;
0855     ret = expand_stack(vma, stack_base);
0856     if (ret)
0857         ret = -EFAULT;
0858 
0859 out_unlock:
0860     mmap_write_unlock(mm);
0861     return ret;
0862 }
0863 EXPORT_SYMBOL(setup_arg_pages);
0864 
0865 #else
0866 
0867 /*
0868  * Transfer the program arguments and environment from the holding pages
0869  * onto the stack. The provided stack pointer is adjusted accordingly.
0870  */
0871 int transfer_args_to_stack(struct linux_binprm *bprm,
0872                unsigned long *sp_location)
0873 {
0874     unsigned long index, stop, sp;
0875     int ret = 0;
0876 
0877     stop = bprm->p >> PAGE_SHIFT;
0878     sp = *sp_location;
0879 
0880     for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
0881         unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
0882         char *src = kmap_local_page(bprm->page[index]) + offset;
0883         sp -= PAGE_SIZE - offset;
0884         if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
0885             ret = -EFAULT;
0886         kunmap_local(src);
0887         if (ret)
0888             goto out;
0889     }
0890 
0891     *sp_location = sp;
0892 
0893 out:
0894     return ret;
0895 }
0896 EXPORT_SYMBOL(transfer_args_to_stack);
0897 
0898 #endif /* CONFIG_MMU */
0899 
0900 static struct file *do_open_execat(int fd, struct filename *name, int flags)
0901 {
0902     struct file *file;
0903     int err;
0904     struct open_flags open_exec_flags = {
0905         .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
0906         .acc_mode = MAY_EXEC,
0907         .intent = LOOKUP_OPEN,
0908         .lookup_flags = LOOKUP_FOLLOW,
0909     };
0910 
0911     if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
0912         return ERR_PTR(-EINVAL);
0913     if (flags & AT_SYMLINK_NOFOLLOW)
0914         open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
0915     if (flags & AT_EMPTY_PATH)
0916         open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
0917 
0918     file = do_filp_open(fd, name, &open_exec_flags);
0919     if (IS_ERR(file))
0920         goto out;
0921 
0922     /*
0923      * may_open() has already checked for this, so it should be
0924      * impossible to trip now. But we need to be extra cautious
0925      * and check again at the very end too.
0926      */
0927     err = -EACCES;
0928     if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
0929              path_noexec(&file->f_path)))
0930         goto exit;
0931 
0932     err = deny_write_access(file);
0933     if (err)
0934         goto exit;
0935 
0936     if (name->name[0] != '\0')
0937         fsnotify_open(file);
0938 
0939 out:
0940     return file;
0941 
0942 exit:
0943     fput(file);
0944     return ERR_PTR(err);
0945 }
0946 
0947 struct file *open_exec(const char *name)
0948 {
0949     struct filename *filename = getname_kernel(name);
0950     struct file *f = ERR_CAST(filename);
0951 
0952     if (!IS_ERR(filename)) {
0953         f = do_open_execat(AT_FDCWD, filename, 0);
0954         putname(filename);
0955     }
0956     return f;
0957 }
0958 EXPORT_SYMBOL(open_exec);
0959 
0960 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
0961     defined(CONFIG_BINFMT_ELF_FDPIC)
0962 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
0963 {
0964     ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
0965     if (res > 0)
0966         flush_icache_user_range(addr, addr + len);
0967     return res;
0968 }
0969 EXPORT_SYMBOL(read_code);
0970 #endif
0971 
0972 /*
0973  * Maps the mm_struct mm into the current task struct.
0974  * On success, this function returns with exec_update_lock
0975  * held for writing.
0976  */
0977 static int exec_mmap(struct mm_struct *mm)
0978 {
0979     struct task_struct *tsk;
0980     struct mm_struct *old_mm, *active_mm;
0981     int ret;
0982 
0983     /* Notify parent that we're no longer interested in the old VM */
0984     tsk = current;
0985     old_mm = current->mm;
0986     exec_mm_release(tsk, old_mm);
0987     if (old_mm)
0988         sync_mm_rss(old_mm);
0989 
0990     ret = down_write_killable(&tsk->signal->exec_update_lock);
0991     if (ret)
0992         return ret;
0993 
0994     if (old_mm) {
0995         /*
0996          * If there is a pending fatal signal perhaps a signal
0997          * whose default action is to create a coredump get
0998          * out and die instead of going through with the exec.
0999          */
1000         ret = mmap_read_lock_killable(old_mm);
1001         if (ret) {
1002             up_write(&tsk->signal->exec_update_lock);
1003             return ret;
1004         }
1005     }
1006 
1007     task_lock(tsk);
1008     membarrier_exec_mmap(mm);
1009 
1010     local_irq_disable();
1011     active_mm = tsk->active_mm;
1012     tsk->active_mm = mm;
1013     tsk->mm = mm;
1014     /*
1015      * This prevents preemption while active_mm is being loaded and
1016      * it and mm are being updated, which could cause problems for
1017      * lazy tlb mm refcounting when these are updated by context
1018      * switches. Not all architectures can handle irqs off over
1019      * activate_mm yet.
1020      */
1021     if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1022         local_irq_enable();
1023     activate_mm(active_mm, mm);
1024     if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1025         local_irq_enable();
1026     tsk->mm->vmacache_seqnum = 0;
1027     vmacache_flush(tsk);
1028     task_unlock(tsk);
1029     if (old_mm) {
1030         mmap_read_unlock(old_mm);
1031         BUG_ON(active_mm != old_mm);
1032         setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1033         mm_update_next_owner(old_mm);
1034         mmput(old_mm);
1035         return 0;
1036     }
1037     mmdrop(active_mm);
1038     return 0;
1039 }
1040 
1041 static int de_thread(struct task_struct *tsk)
1042 {
1043     struct signal_struct *sig = tsk->signal;
1044     struct sighand_struct *oldsighand = tsk->sighand;
1045     spinlock_t *lock = &oldsighand->siglock;
1046 
1047     if (thread_group_empty(tsk))
1048         goto no_thread_group;
1049 
1050     /*
1051      * Kill all other threads in the thread group.
1052      */
1053     spin_lock_irq(lock);
1054     if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1055         /*
1056          * Another group action in progress, just
1057          * return so that the signal is processed.
1058          */
1059         spin_unlock_irq(lock);
1060         return -EAGAIN;
1061     }
1062 
1063     sig->group_exec_task = tsk;
1064     sig->notify_count = zap_other_threads(tsk);
1065     if (!thread_group_leader(tsk))
1066         sig->notify_count--;
1067 
1068     while (sig->notify_count) {
1069         __set_current_state(TASK_KILLABLE);
1070         spin_unlock_irq(lock);
1071         schedule();
1072         if (__fatal_signal_pending(tsk))
1073             goto killed;
1074         spin_lock_irq(lock);
1075     }
1076     spin_unlock_irq(lock);
1077 
1078     /*
1079      * At this point all other threads have exited, all we have to
1080      * do is to wait for the thread group leader to become inactive,
1081      * and to assume its PID:
1082      */
1083     if (!thread_group_leader(tsk)) {
1084         struct task_struct *leader = tsk->group_leader;
1085 
1086         for (;;) {
1087             cgroup_threadgroup_change_begin(tsk);
1088             write_lock_irq(&tasklist_lock);
1089             /*
1090              * Do this under tasklist_lock to ensure that
1091              * exit_notify() can't miss ->group_exec_task
1092              */
1093             sig->notify_count = -1;
1094             if (likely(leader->exit_state))
1095                 break;
1096             __set_current_state(TASK_KILLABLE);
1097             write_unlock_irq(&tasklist_lock);
1098             cgroup_threadgroup_change_end(tsk);
1099             schedule();
1100             if (__fatal_signal_pending(tsk))
1101                 goto killed;
1102         }
1103 
1104         /*
1105          * The only record we have of the real-time age of a
1106          * process, regardless of execs it's done, is start_time.
1107          * All the past CPU time is accumulated in signal_struct
1108          * from sister threads now dead.  But in this non-leader
1109          * exec, nothing survives from the original leader thread,
1110          * whose birth marks the true age of this process now.
1111          * When we take on its identity by switching to its PID, we
1112          * also take its birthdate (always earlier than our own).
1113          */
1114         tsk->start_time = leader->start_time;
1115         tsk->start_boottime = leader->start_boottime;
1116 
1117         BUG_ON(!same_thread_group(leader, tsk));
1118         /*
1119          * An exec() starts a new thread group with the
1120          * TGID of the previous thread group. Rehash the
1121          * two threads with a switched PID, and release
1122          * the former thread group leader:
1123          */
1124 
1125         /* Become a process group leader with the old leader's pid.
1126          * The old leader becomes a thread of the this thread group.
1127          */
1128         exchange_tids(tsk, leader);
1129         transfer_pid(leader, tsk, PIDTYPE_TGID);
1130         transfer_pid(leader, tsk, PIDTYPE_PGID);
1131         transfer_pid(leader, tsk, PIDTYPE_SID);
1132 
1133         list_replace_rcu(&leader->tasks, &tsk->tasks);
1134         list_replace_init(&leader->sibling, &tsk->sibling);
1135 
1136         tsk->group_leader = tsk;
1137         leader->group_leader = tsk;
1138 
1139         tsk->exit_signal = SIGCHLD;
1140         leader->exit_signal = -1;
1141 
1142         BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1143         leader->exit_state = EXIT_DEAD;
1144 
1145         /*
1146          * We are going to release_task()->ptrace_unlink() silently,
1147          * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1148          * the tracer won't block again waiting for this thread.
1149          */
1150         if (unlikely(leader->ptrace))
1151             __wake_up_parent(leader, leader->parent);
1152         write_unlock_irq(&tasklist_lock);
1153         cgroup_threadgroup_change_end(tsk);
1154 
1155         release_task(leader);
1156     }
1157 
1158     sig->group_exec_task = NULL;
1159     sig->notify_count = 0;
1160 
1161 no_thread_group:
1162     /* we have changed execution domain */
1163     tsk->exit_signal = SIGCHLD;
1164 
1165     BUG_ON(!thread_group_leader(tsk));
1166     return 0;
1167 
1168 killed:
1169     /* protects against exit_notify() and __exit_signal() */
1170     read_lock(&tasklist_lock);
1171     sig->group_exec_task = NULL;
1172     sig->notify_count = 0;
1173     read_unlock(&tasklist_lock);
1174     return -EAGAIN;
1175 }
1176 
1177 
1178 /*
1179  * This function makes sure the current process has its own signal table,
1180  * so that flush_signal_handlers can later reset the handlers without
1181  * disturbing other processes.  (Other processes might share the signal
1182  * table via the CLONE_SIGHAND option to clone().)
1183  */
1184 static int unshare_sighand(struct task_struct *me)
1185 {
1186     struct sighand_struct *oldsighand = me->sighand;
1187 
1188     if (refcount_read(&oldsighand->count) != 1) {
1189         struct sighand_struct *newsighand;
1190         /*
1191          * This ->sighand is shared with the CLONE_SIGHAND
1192          * but not CLONE_THREAD task, switch to the new one.
1193          */
1194         newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1195         if (!newsighand)
1196             return -ENOMEM;
1197 
1198         refcount_set(&newsighand->count, 1);
1199         memcpy(newsighand->action, oldsighand->action,
1200                sizeof(newsighand->action));
1201 
1202         write_lock_irq(&tasklist_lock);
1203         spin_lock(&oldsighand->siglock);
1204         rcu_assign_pointer(me->sighand, newsighand);
1205         spin_unlock(&oldsighand->siglock);
1206         write_unlock_irq(&tasklist_lock);
1207 
1208         __cleanup_sighand(oldsighand);
1209     }
1210     return 0;
1211 }
1212 
1213 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1214 {
1215     task_lock(tsk);
1216     /* Always NUL terminated and zero-padded */
1217     strscpy_pad(buf, tsk->comm, buf_size);
1218     task_unlock(tsk);
1219     return buf;
1220 }
1221 EXPORT_SYMBOL_GPL(__get_task_comm);
1222 
1223 /*
1224  * These functions flushes out all traces of the currently running executable
1225  * so that a new one can be started
1226  */
1227 
1228 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1229 {
1230     task_lock(tsk);
1231     trace_task_rename(tsk, buf);
1232     strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1233     task_unlock(tsk);
1234     perf_event_comm(tsk, exec);
1235 }
1236 
1237 /*
1238  * Calling this is the point of no return. None of the failures will be
1239  * seen by userspace since either the process is already taking a fatal
1240  * signal (via de_thread() or coredump), or will have SEGV raised
1241  * (after exec_mmap()) by search_binary_handler (see below).
1242  */
1243 int begin_new_exec(struct linux_binprm * bprm)
1244 {
1245     struct task_struct *me = current;
1246     int retval;
1247 
1248     /* Once we are committed compute the creds */
1249     retval = bprm_creds_from_file(bprm);
1250     if (retval)
1251         return retval;
1252 
1253     /*
1254      * Ensure all future errors are fatal.
1255      */
1256     bprm->point_of_no_return = true;
1257 
1258     /*
1259      * Make this the only thread in the thread group.
1260      */
1261     retval = de_thread(me);
1262     if (retval)
1263         goto out;
1264 
1265     /*
1266      * Cancel any io_uring activity across execve
1267      */
1268     io_uring_task_cancel();
1269 
1270     /* Ensure the files table is not shared. */
1271     retval = unshare_files();
1272     if (retval)
1273         goto out;
1274 
1275     /*
1276      * Must be called _before_ exec_mmap() as bprm->mm is
1277      * not visible until then. This also enables the update
1278      * to be lockless.
1279      */
1280     retval = set_mm_exe_file(bprm->mm, bprm->file);
1281     if (retval)
1282         goto out;
1283 
1284     /* If the binary is not readable then enforce mm->dumpable=0 */
1285     would_dump(bprm, bprm->file);
1286     if (bprm->have_execfd)
1287         would_dump(bprm, bprm->executable);
1288 
1289     /*
1290      * Release all of the old mmap stuff
1291      */
1292     acct_arg_size(bprm, 0);
1293     retval = exec_mmap(bprm->mm);
1294     if (retval)
1295         goto out;
1296 
1297     bprm->mm = NULL;
1298 
1299 #ifdef CONFIG_POSIX_TIMERS
1300     spin_lock_irq(&me->sighand->siglock);
1301     posix_cpu_timers_exit(me);
1302     spin_unlock_irq(&me->sighand->siglock);
1303     exit_itimers(me);
1304     flush_itimer_signals();
1305 #endif
1306 
1307     /*
1308      * Make the signal table private.
1309      */
1310     retval = unshare_sighand(me);
1311     if (retval)
1312         goto out_unlock;
1313 
1314     me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1315                     PF_NOFREEZE | PF_NO_SETAFFINITY);
1316     flush_thread();
1317     me->personality &= ~bprm->per_clear;
1318 
1319     clear_syscall_work_syscall_user_dispatch(me);
1320 
1321     /*
1322      * We have to apply CLOEXEC before we change whether the process is
1323      * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1324      * trying to access the should-be-closed file descriptors of a process
1325      * undergoing exec(2).
1326      */
1327     do_close_on_exec(me->files);
1328 
1329     if (bprm->secureexec) {
1330         /* Make sure parent cannot signal privileged process. */
1331         me->pdeath_signal = 0;
1332 
1333         /*
1334          * For secureexec, reset the stack limit to sane default to
1335          * avoid bad behavior from the prior rlimits. This has to
1336          * happen before arch_pick_mmap_layout(), which examines
1337          * RLIMIT_STACK, but after the point of no return to avoid
1338          * needing to clean up the change on failure.
1339          */
1340         if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1341             bprm->rlim_stack.rlim_cur = _STK_LIM;
1342     }
1343 
1344     me->sas_ss_sp = me->sas_ss_size = 0;
1345 
1346     /*
1347      * Figure out dumpability. Note that this checking only of current
1348      * is wrong, but userspace depends on it. This should be testing
1349      * bprm->secureexec instead.
1350      */
1351     if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1352         !(uid_eq(current_euid(), current_uid()) &&
1353           gid_eq(current_egid(), current_gid())))
1354         set_dumpable(current->mm, suid_dumpable);
1355     else
1356         set_dumpable(current->mm, SUID_DUMP_USER);
1357 
1358     perf_event_exec();
1359     __set_task_comm(me, kbasename(bprm->filename), true);
1360 
1361     /* An exec changes our domain. We are no longer part of the thread
1362        group */
1363     WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1364     flush_signal_handlers(me, 0);
1365 
1366     retval = set_cred_ucounts(bprm->cred);
1367     if (retval < 0)
1368         goto out_unlock;
1369 
1370     /*
1371      * install the new credentials for this executable
1372      */
1373     security_bprm_committing_creds(bprm);
1374 
1375     commit_creds(bprm->cred);
1376     bprm->cred = NULL;
1377 
1378     /*
1379      * Disable monitoring for regular users
1380      * when executing setuid binaries. Must
1381      * wait until new credentials are committed
1382      * by commit_creds() above
1383      */
1384     if (get_dumpable(me->mm) != SUID_DUMP_USER)
1385         perf_event_exit_task(me);
1386     /*
1387      * cred_guard_mutex must be held at least to this point to prevent
1388      * ptrace_attach() from altering our determination of the task's
1389      * credentials; any time after this it may be unlocked.
1390      */
1391     security_bprm_committed_creds(bprm);
1392 
1393     /* Pass the opened binary to the interpreter. */
1394     if (bprm->have_execfd) {
1395         retval = get_unused_fd_flags(0);
1396         if (retval < 0)
1397             goto out_unlock;
1398         fd_install(retval, bprm->executable);
1399         bprm->executable = NULL;
1400         bprm->execfd = retval;
1401     }
1402     return 0;
1403 
1404 out_unlock:
1405     up_write(&me->signal->exec_update_lock);
1406 out:
1407     return retval;
1408 }
1409 EXPORT_SYMBOL(begin_new_exec);
1410 
1411 void would_dump(struct linux_binprm *bprm, struct file *file)
1412 {
1413     struct inode *inode = file_inode(file);
1414     struct user_namespace *mnt_userns = file_mnt_user_ns(file);
1415     if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
1416         struct user_namespace *old, *user_ns;
1417         bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1418 
1419         /* Ensure mm->user_ns contains the executable */
1420         user_ns = old = bprm->mm->user_ns;
1421         while ((user_ns != &init_user_ns) &&
1422                !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
1423             user_ns = user_ns->parent;
1424 
1425         if (old != user_ns) {
1426             bprm->mm->user_ns = get_user_ns(user_ns);
1427             put_user_ns(old);
1428         }
1429     }
1430 }
1431 EXPORT_SYMBOL(would_dump);
1432 
1433 void setup_new_exec(struct linux_binprm * bprm)
1434 {
1435     /* Setup things that can depend upon the personality */
1436     struct task_struct *me = current;
1437 
1438     arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1439 
1440     arch_setup_new_exec();
1441 
1442     /* Set the new mm task size. We have to do that late because it may
1443      * depend on TIF_32BIT which is only updated in flush_thread() on
1444      * some architectures like powerpc
1445      */
1446     me->mm->task_size = TASK_SIZE;
1447     up_write(&me->signal->exec_update_lock);
1448     mutex_unlock(&me->signal->cred_guard_mutex);
1449 }
1450 EXPORT_SYMBOL(setup_new_exec);
1451 
1452 /* Runs immediately before start_thread() takes over. */
1453 void finalize_exec(struct linux_binprm *bprm)
1454 {
1455     /* Store any stack rlimit changes before starting thread. */
1456     task_lock(current->group_leader);
1457     current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1458     task_unlock(current->group_leader);
1459 }
1460 EXPORT_SYMBOL(finalize_exec);
1461 
1462 /*
1463  * Prepare credentials and lock ->cred_guard_mutex.
1464  * setup_new_exec() commits the new creds and drops the lock.
1465  * Or, if exec fails before, free_bprm() should release ->cred
1466  * and unlock.
1467  */
1468 static int prepare_bprm_creds(struct linux_binprm *bprm)
1469 {
1470     if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1471         return -ERESTARTNOINTR;
1472 
1473     bprm->cred = prepare_exec_creds();
1474     if (likely(bprm->cred))
1475         return 0;
1476 
1477     mutex_unlock(&current->signal->cred_guard_mutex);
1478     return -ENOMEM;
1479 }
1480 
1481 static void free_bprm(struct linux_binprm *bprm)
1482 {
1483     if (bprm->mm) {
1484         acct_arg_size(bprm, 0);
1485         mmput(bprm->mm);
1486     }
1487     free_arg_pages(bprm);
1488     if (bprm->cred) {
1489         mutex_unlock(&current->signal->cred_guard_mutex);
1490         abort_creds(bprm->cred);
1491     }
1492     if (bprm->file) {
1493         allow_write_access(bprm->file);
1494         fput(bprm->file);
1495     }
1496     if (bprm->executable)
1497         fput(bprm->executable);
1498     /* If a binfmt changed the interp, free it. */
1499     if (bprm->interp != bprm->filename)
1500         kfree(bprm->interp);
1501     kfree(bprm->fdpath);
1502     kfree(bprm);
1503 }
1504 
1505 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1506 {
1507     struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1508     int retval = -ENOMEM;
1509     if (!bprm)
1510         goto out;
1511 
1512     if (fd == AT_FDCWD || filename->name[0] == '/') {
1513         bprm->filename = filename->name;
1514     } else {
1515         if (filename->name[0] == '\0')
1516             bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1517         else
1518             bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1519                           fd, filename->name);
1520         if (!bprm->fdpath)
1521             goto out_free;
1522 
1523         bprm->filename = bprm->fdpath;
1524     }
1525     bprm->interp = bprm->filename;
1526 
1527     retval = bprm_mm_init(bprm);
1528     if (retval)
1529         goto out_free;
1530     return bprm;
1531 
1532 out_free:
1533     free_bprm(bprm);
1534 out:
1535     return ERR_PTR(retval);
1536 }
1537 
1538 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1539 {
1540     /* If a binfmt changed the interp, free it first. */
1541     if (bprm->interp != bprm->filename)
1542         kfree(bprm->interp);
1543     bprm->interp = kstrdup(interp, GFP_KERNEL);
1544     if (!bprm->interp)
1545         return -ENOMEM;
1546     return 0;
1547 }
1548 EXPORT_SYMBOL(bprm_change_interp);
1549 
1550 /*
1551  * determine how safe it is to execute the proposed program
1552  * - the caller must hold ->cred_guard_mutex to protect against
1553  *   PTRACE_ATTACH or seccomp thread-sync
1554  */
1555 static void check_unsafe_exec(struct linux_binprm *bprm)
1556 {
1557     struct task_struct *p = current, *t;
1558     unsigned n_fs;
1559 
1560     if (p->ptrace)
1561         bprm->unsafe |= LSM_UNSAFE_PTRACE;
1562 
1563     /*
1564      * This isn't strictly necessary, but it makes it harder for LSMs to
1565      * mess up.
1566      */
1567     if (task_no_new_privs(current))
1568         bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1569 
1570     t = p;
1571     n_fs = 1;
1572     spin_lock(&p->fs->lock);
1573     rcu_read_lock();
1574     while_each_thread(p, t) {
1575         if (t->fs == p->fs)
1576             n_fs++;
1577     }
1578     rcu_read_unlock();
1579 
1580     if (p->fs->users > n_fs)
1581         bprm->unsafe |= LSM_UNSAFE_SHARE;
1582     else
1583         p->fs->in_exec = 1;
1584     spin_unlock(&p->fs->lock);
1585 }
1586 
1587 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1588 {
1589     /* Handle suid and sgid on files */
1590     struct user_namespace *mnt_userns;
1591     struct inode *inode;
1592     unsigned int mode;
1593     kuid_t uid;
1594     kgid_t gid;
1595 
1596     if (!mnt_may_suid(file->f_path.mnt))
1597         return;
1598 
1599     if (task_no_new_privs(current))
1600         return;
1601 
1602     inode = file->f_path.dentry->d_inode;
1603     mode = READ_ONCE(inode->i_mode);
1604     if (!(mode & (S_ISUID|S_ISGID)))
1605         return;
1606 
1607     mnt_userns = file_mnt_user_ns(file);
1608 
1609     /* Be careful if suid/sgid is set */
1610     inode_lock(inode);
1611 
1612     /* reload atomically mode/uid/gid now that lock held */
1613     mode = inode->i_mode;
1614     uid = i_uid_into_mnt(mnt_userns, inode);
1615     gid = i_gid_into_mnt(mnt_userns, inode);
1616     inode_unlock(inode);
1617 
1618     /* We ignore suid/sgid if there are no mappings for them in the ns */
1619     if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1620          !kgid_has_mapping(bprm->cred->user_ns, gid))
1621         return;
1622 
1623     if (mode & S_ISUID) {
1624         bprm->per_clear |= PER_CLEAR_ON_SETID;
1625         bprm->cred->euid = uid;
1626     }
1627 
1628     if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1629         bprm->per_clear |= PER_CLEAR_ON_SETID;
1630         bprm->cred->egid = gid;
1631     }
1632 }
1633 
1634 /*
1635  * Compute brpm->cred based upon the final binary.
1636  */
1637 static int bprm_creds_from_file(struct linux_binprm *bprm)
1638 {
1639     /* Compute creds based on which file? */
1640     struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1641 
1642     bprm_fill_uid(bprm, file);
1643     return security_bprm_creds_from_file(bprm, file);
1644 }
1645 
1646 /*
1647  * Fill the binprm structure from the inode.
1648  * Read the first BINPRM_BUF_SIZE bytes
1649  *
1650  * This may be called multiple times for binary chains (scripts for example).
1651  */
1652 static int prepare_binprm(struct linux_binprm *bprm)
1653 {
1654     loff_t pos = 0;
1655 
1656     memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1657     return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1658 }
1659 
1660 /*
1661  * Arguments are '\0' separated strings found at the location bprm->p
1662  * points to; chop off the first by relocating brpm->p to right after
1663  * the first '\0' encountered.
1664  */
1665 int remove_arg_zero(struct linux_binprm *bprm)
1666 {
1667     int ret = 0;
1668     unsigned long offset;
1669     char *kaddr;
1670     struct page *page;
1671 
1672     if (!bprm->argc)
1673         return 0;
1674 
1675     do {
1676         offset = bprm->p & ~PAGE_MASK;
1677         page = get_arg_page(bprm, bprm->p, 0);
1678         if (!page) {
1679             ret = -EFAULT;
1680             goto out;
1681         }
1682         kaddr = kmap_local_page(page);
1683 
1684         for (; offset < PAGE_SIZE && kaddr[offset];
1685                 offset++, bprm->p++)
1686             ;
1687 
1688         kunmap_local(kaddr);
1689         put_arg_page(page);
1690     } while (offset == PAGE_SIZE);
1691 
1692     bprm->p++;
1693     bprm->argc--;
1694     ret = 0;
1695 
1696 out:
1697     return ret;
1698 }
1699 EXPORT_SYMBOL(remove_arg_zero);
1700 
1701 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1702 /*
1703  * cycle the list of binary formats handler, until one recognizes the image
1704  */
1705 static int search_binary_handler(struct linux_binprm *bprm)
1706 {
1707     bool need_retry = IS_ENABLED(CONFIG_MODULES);
1708     struct linux_binfmt *fmt;
1709     int retval;
1710 
1711     retval = prepare_binprm(bprm);
1712     if (retval < 0)
1713         return retval;
1714 
1715     retval = security_bprm_check(bprm);
1716     if (retval)
1717         return retval;
1718 
1719     retval = -ENOENT;
1720  retry:
1721     read_lock(&binfmt_lock);
1722     list_for_each_entry(fmt, &formats, lh) {
1723         if (!try_module_get(fmt->module))
1724             continue;
1725         read_unlock(&binfmt_lock);
1726 
1727         retval = fmt->load_binary(bprm);
1728 
1729         read_lock(&binfmt_lock);
1730         put_binfmt(fmt);
1731         if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1732             read_unlock(&binfmt_lock);
1733             return retval;
1734         }
1735     }
1736     read_unlock(&binfmt_lock);
1737 
1738     if (need_retry) {
1739         if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1740             printable(bprm->buf[2]) && printable(bprm->buf[3]))
1741             return retval;
1742         if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1743             return retval;
1744         need_retry = false;
1745         goto retry;
1746     }
1747 
1748     return retval;
1749 }
1750 
1751 static int exec_binprm(struct linux_binprm *bprm)
1752 {
1753     pid_t old_pid, old_vpid;
1754     int ret, depth;
1755 
1756     /* Need to fetch pid before load_binary changes it */
1757     old_pid = current->pid;
1758     rcu_read_lock();
1759     old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1760     rcu_read_unlock();
1761 
1762     /* This allows 4 levels of binfmt rewrites before failing hard. */
1763     for (depth = 0;; depth++) {
1764         struct file *exec;
1765         if (depth > 5)
1766             return -ELOOP;
1767 
1768         ret = search_binary_handler(bprm);
1769         if (ret < 0)
1770             return ret;
1771         if (!bprm->interpreter)
1772             break;
1773 
1774         exec = bprm->file;
1775         bprm->file = bprm->interpreter;
1776         bprm->interpreter = NULL;
1777 
1778         allow_write_access(exec);
1779         if (unlikely(bprm->have_execfd)) {
1780             if (bprm->executable) {
1781                 fput(exec);
1782                 return -ENOEXEC;
1783             }
1784             bprm->executable = exec;
1785         } else
1786             fput(exec);
1787     }
1788 
1789     audit_bprm(bprm);
1790     trace_sched_process_exec(current, old_pid, bprm);
1791     ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1792     proc_exec_connector(current);
1793     return 0;
1794 }
1795 
1796 /*
1797  * sys_execve() executes a new program.
1798  */
1799 static int bprm_execve(struct linux_binprm *bprm,
1800                int fd, struct filename *filename, int flags)
1801 {
1802     struct file *file;
1803     int retval;
1804 
1805     retval = prepare_bprm_creds(bprm);
1806     if (retval)
1807         return retval;
1808 
1809     check_unsafe_exec(bprm);
1810     current->in_execve = 1;
1811 
1812     file = do_open_execat(fd, filename, flags);
1813     retval = PTR_ERR(file);
1814     if (IS_ERR(file))
1815         goto out_unmark;
1816 
1817     sched_exec();
1818 
1819     bprm->file = file;
1820     /*
1821      * Record that a name derived from an O_CLOEXEC fd will be
1822      * inaccessible after exec.  This allows the code in exec to
1823      * choose to fail when the executable is not mmaped into the
1824      * interpreter and an open file descriptor is not passed to
1825      * the interpreter.  This makes for a better user experience
1826      * than having the interpreter start and then immediately fail
1827      * when it finds the executable is inaccessible.
1828      */
1829     if (bprm->fdpath && get_close_on_exec(fd))
1830         bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1831 
1832     /* Set the unchanging part of bprm->cred */
1833     retval = security_bprm_creds_for_exec(bprm);
1834     if (retval)
1835         goto out;
1836 
1837     retval = exec_binprm(bprm);
1838     if (retval < 0)
1839         goto out;
1840 
1841     /* execve succeeded */
1842     current->fs->in_exec = 0;
1843     current->in_execve = 0;
1844     rseq_execve(current);
1845     acct_update_integrals(current);
1846     task_numa_free(current, false);
1847     return retval;
1848 
1849 out:
1850     /*
1851      * If past the point of no return ensure the code never
1852      * returns to the userspace process.  Use an existing fatal
1853      * signal if present otherwise terminate the process with
1854      * SIGSEGV.
1855      */
1856     if (bprm->point_of_no_return && !fatal_signal_pending(current))
1857         force_fatal_sig(SIGSEGV);
1858 
1859 out_unmark:
1860     current->fs->in_exec = 0;
1861     current->in_execve = 0;
1862 
1863     return retval;
1864 }
1865 
1866 static int do_execveat_common(int fd, struct filename *filename,
1867                   struct user_arg_ptr argv,
1868                   struct user_arg_ptr envp,
1869                   int flags)
1870 {
1871     struct linux_binprm *bprm;
1872     int retval;
1873 
1874     if (IS_ERR(filename))
1875         return PTR_ERR(filename);
1876 
1877     /*
1878      * We move the actual failure in case of RLIMIT_NPROC excess from
1879      * set*uid() to execve() because too many poorly written programs
1880      * don't check setuid() return code.  Here we additionally recheck
1881      * whether NPROC limit is still exceeded.
1882      */
1883     if ((current->flags & PF_NPROC_EXCEEDED) &&
1884         is_ucounts_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1885         retval = -EAGAIN;
1886         goto out_ret;
1887     }
1888 
1889     /* We're below the limit (still or again), so we don't want to make
1890      * further execve() calls fail. */
1891     current->flags &= ~PF_NPROC_EXCEEDED;
1892 
1893     bprm = alloc_bprm(fd, filename);
1894     if (IS_ERR(bprm)) {
1895         retval = PTR_ERR(bprm);
1896         goto out_ret;
1897     }
1898 
1899     retval = count(argv, MAX_ARG_STRINGS);
1900     if (retval == 0)
1901         pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1902                  current->comm, bprm->filename);
1903     if (retval < 0)
1904         goto out_free;
1905     bprm->argc = retval;
1906 
1907     retval = count(envp, MAX_ARG_STRINGS);
1908     if (retval < 0)
1909         goto out_free;
1910     bprm->envc = retval;
1911 
1912     retval = bprm_stack_limits(bprm);
1913     if (retval < 0)
1914         goto out_free;
1915 
1916     retval = copy_string_kernel(bprm->filename, bprm);
1917     if (retval < 0)
1918         goto out_free;
1919     bprm->exec = bprm->p;
1920 
1921     retval = copy_strings(bprm->envc, envp, bprm);
1922     if (retval < 0)
1923         goto out_free;
1924 
1925     retval = copy_strings(bprm->argc, argv, bprm);
1926     if (retval < 0)
1927         goto out_free;
1928 
1929     /*
1930      * When argv is empty, add an empty string ("") as argv[0] to
1931      * ensure confused userspace programs that start processing
1932      * from argv[1] won't end up walking envp. See also
1933      * bprm_stack_limits().
1934      */
1935     if (bprm->argc == 0) {
1936         retval = copy_string_kernel("", bprm);
1937         if (retval < 0)
1938             goto out_free;
1939         bprm->argc = 1;
1940     }
1941 
1942     retval = bprm_execve(bprm, fd, filename, flags);
1943 out_free:
1944     free_bprm(bprm);
1945 
1946 out_ret:
1947     putname(filename);
1948     return retval;
1949 }
1950 
1951 int kernel_execve(const char *kernel_filename,
1952           const char *const *argv, const char *const *envp)
1953 {
1954     struct filename *filename;
1955     struct linux_binprm *bprm;
1956     int fd = AT_FDCWD;
1957     int retval;
1958 
1959     /* It is non-sense for kernel threads to call execve */
1960     if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1961         return -EINVAL;
1962 
1963     filename = getname_kernel(kernel_filename);
1964     if (IS_ERR(filename))
1965         return PTR_ERR(filename);
1966 
1967     bprm = alloc_bprm(fd, filename);
1968     if (IS_ERR(bprm)) {
1969         retval = PTR_ERR(bprm);
1970         goto out_ret;
1971     }
1972 
1973     retval = count_strings_kernel(argv);
1974     if (WARN_ON_ONCE(retval == 0))
1975         retval = -EINVAL;
1976     if (retval < 0)
1977         goto out_free;
1978     bprm->argc = retval;
1979 
1980     retval = count_strings_kernel(envp);
1981     if (retval < 0)
1982         goto out_free;
1983     bprm->envc = retval;
1984 
1985     retval = bprm_stack_limits(bprm);
1986     if (retval < 0)
1987         goto out_free;
1988 
1989     retval = copy_string_kernel(bprm->filename, bprm);
1990     if (retval < 0)
1991         goto out_free;
1992     bprm->exec = bprm->p;
1993 
1994     retval = copy_strings_kernel(bprm->envc, envp, bprm);
1995     if (retval < 0)
1996         goto out_free;
1997 
1998     retval = copy_strings_kernel(bprm->argc, argv, bprm);
1999     if (retval < 0)
2000         goto out_free;
2001 
2002     retval = bprm_execve(bprm, fd, filename, 0);
2003 out_free:
2004     free_bprm(bprm);
2005 out_ret:
2006     putname(filename);
2007     return retval;
2008 }
2009 
2010 static int do_execve(struct filename *filename,
2011     const char __user *const __user *__argv,
2012     const char __user *const __user *__envp)
2013 {
2014     struct user_arg_ptr argv = { .ptr.native = __argv };
2015     struct user_arg_ptr envp = { .ptr.native = __envp };
2016     return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2017 }
2018 
2019 static int do_execveat(int fd, struct filename *filename,
2020         const char __user *const __user *__argv,
2021         const char __user *const __user *__envp,
2022         int flags)
2023 {
2024     struct user_arg_ptr argv = { .ptr.native = __argv };
2025     struct user_arg_ptr envp = { .ptr.native = __envp };
2026 
2027     return do_execveat_common(fd, filename, argv, envp, flags);
2028 }
2029 
2030 #ifdef CONFIG_COMPAT
2031 static int compat_do_execve(struct filename *filename,
2032     const compat_uptr_t __user *__argv,
2033     const compat_uptr_t __user *__envp)
2034 {
2035     struct user_arg_ptr argv = {
2036         .is_compat = true,
2037         .ptr.compat = __argv,
2038     };
2039     struct user_arg_ptr envp = {
2040         .is_compat = true,
2041         .ptr.compat = __envp,
2042     };
2043     return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2044 }
2045 
2046 static int compat_do_execveat(int fd, struct filename *filename,
2047                   const compat_uptr_t __user *__argv,
2048                   const compat_uptr_t __user *__envp,
2049                   int flags)
2050 {
2051     struct user_arg_ptr argv = {
2052         .is_compat = true,
2053         .ptr.compat = __argv,
2054     };
2055     struct user_arg_ptr envp = {
2056         .is_compat = true,
2057         .ptr.compat = __envp,
2058     };
2059     return do_execveat_common(fd, filename, argv, envp, flags);
2060 }
2061 #endif
2062 
2063 void set_binfmt(struct linux_binfmt *new)
2064 {
2065     struct mm_struct *mm = current->mm;
2066 
2067     if (mm->binfmt)
2068         module_put(mm->binfmt->module);
2069 
2070     mm->binfmt = new;
2071     if (new)
2072         __module_get(new->module);
2073 }
2074 EXPORT_SYMBOL(set_binfmt);
2075 
2076 /*
2077  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2078  */
2079 void set_dumpable(struct mm_struct *mm, int value)
2080 {
2081     if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2082         return;
2083 
2084     set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2085 }
2086 
2087 SYSCALL_DEFINE3(execve,
2088         const char __user *, filename,
2089         const char __user *const __user *, argv,
2090         const char __user *const __user *, envp)
2091 {
2092     return do_execve(getname(filename), argv, envp);
2093 }
2094 
2095 SYSCALL_DEFINE5(execveat,
2096         int, fd, const char __user *, filename,
2097         const char __user *const __user *, argv,
2098         const char __user *const __user *, envp,
2099         int, flags)
2100 {
2101     return do_execveat(fd,
2102                getname_uflags(filename, flags),
2103                argv, envp, flags);
2104 }
2105 
2106 #ifdef CONFIG_COMPAT
2107 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2108     const compat_uptr_t __user *, argv,
2109     const compat_uptr_t __user *, envp)
2110 {
2111     return compat_do_execve(getname(filename), argv, envp);
2112 }
2113 
2114 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2115                const char __user *, filename,
2116                const compat_uptr_t __user *, argv,
2117                const compat_uptr_t __user *, envp,
2118                int,  flags)
2119 {
2120     return compat_do_execveat(fd,
2121                   getname_uflags(filename, flags),
2122                   argv, envp, flags);
2123 }
2124 #endif
2125 
2126 #ifdef CONFIG_SYSCTL
2127 
2128 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2129         void *buffer, size_t *lenp, loff_t *ppos)
2130 {
2131     int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2132 
2133     if (!error)
2134         validate_coredump_safety();
2135     return error;
2136 }
2137 
2138 static struct ctl_table fs_exec_sysctls[] = {
2139     {
2140         .procname   = "suid_dumpable",
2141         .data       = &suid_dumpable,
2142         .maxlen     = sizeof(int),
2143         .mode       = 0644,
2144         .proc_handler   = proc_dointvec_minmax_coredump,
2145         .extra1     = SYSCTL_ZERO,
2146         .extra2     = SYSCTL_TWO,
2147     },
2148     { }
2149 };
2150 
2151 static int __init init_fs_exec_sysctls(void)
2152 {
2153     register_sysctl_init("fs", fs_exec_sysctls);
2154     return 0;
2155 }
2156 
2157 fs_initcall(init_fs_exec_sysctls);
2158 #endif /* CONFIG_SYSCTL */